JP2004357442A - 交流モータ駆動システム - Google Patents

交流モータ駆動システム Download PDF

Info

Publication number
JP2004357442A
JP2004357442A JP2003153676A JP2003153676A JP2004357442A JP 2004357442 A JP2004357442 A JP 2004357442A JP 2003153676 A JP2003153676 A JP 2003153676A JP 2003153676 A JP2003153676 A JP 2003153676A JP 2004357442 A JP2004357442 A JP 2004357442A
Authority
JP
Japan
Prior art keywords
voltage
converter
power
modulation
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003153676A
Other languages
English (en)
Other versions
JP4186714B2 (ja
Inventor
Toshifumi Yoshikawa
敏文 吉川
Hiroshi Nagase
博 長瀬
Naoto Onuma
大沼  直人
Sadao Hokari
定夫 保苅
Shunsuke Mitsune
三根  俊介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003153676A priority Critical patent/JP4186714B2/ja
Publication of JP2004357442A publication Critical patent/JP2004357442A/ja
Application granted granted Critical
Publication of JP4186714B2 publication Critical patent/JP4186714B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】確実に高い変調率でインバータを運転できる交流モータ駆動システムを提供する。
【解決手段】直流電力を交流電力に変換する直流/交流変換器(例えば、インバータ)に対する電圧出力指令に応じて直流電力の電圧を可変制御する。あるいは、直流/交流変換器の変調率を求め、求めた変調率が変調率指令に一致するように直流電圧を可変制御する。
【効果】負荷量が変動しても、確実に高い変調率で直流/交流変換器を運転できる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、交流モータ駆動システムに関する。
【0002】
【従来の技術】
交流モータを可変速駆動する場合、コンバータ(交流/直流変換器)によって電源の交流電力を一度直流電力に変換し、さらにパルス幅変調(PWM:Pulse Width Modulation)方式によるインバータ(直流/交流変換器)によって直流電力を可変電圧でかつ可変周波数の交流電力に変換するような交流モータ駆動システムが適用される。このような交流モータ駆動システムにおいて、インバータの変調率を高めるために、直流電圧を可変に制御する技術が知られている(例えば、特許文献1,特許文献2,特許文献3を参照。)。
【0003】
【特許文献1】
特開平4−222499号公報
【特許文献2】
特開2001−16860号公報
【特許文献3】
特開2002−186286号公報
【0004】
【発明が解決しようとしている課題】
上記従来技術は、モータにかかる負荷の変動が少ない場合には、高め変調率によるインバータ運転が可能であるが、エレベータのように負荷量が大きく変化する場合には、制御の信頼性が低かった。
【0005】
本発明は、上記問題点を考慮してなされたものであり、確実に高い変調率でインバータを運転できる交流モータ駆動システムを提供することを課題とする。
【0006】
【課題を解決するための手段】
直流電力を交流電力に変換する直流/交流変換器(例えば、インバータ)に対する電圧出力指令に応じて直流電力の電圧を可変制御する。これにより、直流/交流変換器の交流側電圧に応じて直流電圧を可変制御しているので、負荷量が変動しても、確実に高い変調率で直流/交流変換器を運転できる。
【0007】
あるいは、直流/交流変換器の変調率を求め、求めた変調率が変調率指令に一致するように直流電圧を可変制御する。これにより、直接、変調率をフィードバックして直流電圧が制御されるので、負荷量が変動しても、確実に高い変調率で直流/交流変換器を運転できる。
【0008】
本発明による交流モータ駆動システムの他の特徴は、以下の記載より明らかになるであろう。
【0009】
【発明の実施の形態】
図1は本発明による交流モータ駆動システムの第一の実施例を表している。
【0010】
図1に示された交流モータ駆動システムは、PWMコンバータ2,平滑コンデンサ3,PWMインバータ4,交流モータ5によって構成されている。PWMコンバータ2はIGBTやトランジスタなどのスイッチング素子2Aで構成されており、交流電源1から入力した交流電力を直流電力に変換する。平滑コンデンサ3はPWMコンバータ2で変換された直流電力を平滑化する。PWMインバータ4は、PWMコンバータ2と同様の回路構成であるが、直流電力をスイッチング作用によって可変電圧,可変周波数の交流電力に変換する。交流モータ5は、この交流電力によって任意に可変速駆動される。ここで、交流モータ5としては、永久磁石同期モータや誘導モータ等が適用される。交流モータ5はエレベータシステムの動力となっており、モータ軸を介して綱車6を回転させて、ロープで結ばれたかごと釣り合い錘をつるべ式の原理で上下に移動させる。
【0011】
次に、PWMコンバータ2とPWMインバータ4に対する制御ブロックの概要を説明する。PWMコンバータ2は、直流側電圧が、目標値である直流電圧指令に従うように制御される。具体的には、直流電圧制御回路204において、直流電圧指令と直流電圧検出値を比較して両者を一致させるようなコンバータ電流指令(電源電流指令)を出力する。電流制御回路203は、コンバータ電流指令とコンバータ電流検出値(電流センサ9により検出)を比較して両者を一致させるようなコンバータ電圧指令を出力する。PWM制御回路202は、コンバータ電圧指令をパルス幅変調(PWM)により、ゲートパルス信号に変換する。ゲート回路201は、PWM制御回路202より出力されたゲートパルス信号に従ってPWMコンバータをスイッチング駆動する。
【0012】
PWMインバータ4は、交流モータ5の速度が目標値である速度指令に従うように制御される。具体的には、速度制御回路404において、速度指令と速度検出値をフィードバック制御し、インバータ電流指令を出力する。電流制御回路403は、インバータ電流指令とインバータ電流検出値(電流センサ11により検出)を比較して両者を一致させるようなインバータ電圧指令を出力する。PWM制御回路402は、インバータ電圧指令をパルス幅変調(PWM)により、ゲートパルス信号に変換する。ゲート回路401では、PWM制御回路402より出力されたゲートパルス信号に従ってPWMインバータをスイッチング駆動する。
【0013】
次に、直流電圧可変方式のPWMインバータ制御について説明する。図1のPWMインバータ側の制御ブロックにおいて、電流制御回路403からインバータ電圧指令が出力され、これをPWM制御回路402でパルス幅変調波に変換する。PWMインバータ4はこのパルス幅変調波と同じ電圧波形を出力する。ここで、パルス幅変調とは、波形の高さをパルスの幅に変換する変調である。つまり、電圧指令の振幅が大きいほど、パルスの幅が広いパルス幅変調波が生じる。図11(イ)はその様子を示している。図11(イ)のようにPWMの変調率が低い場合は、インバータの出力電圧波形のパルス幅は狭くなる。一方、図11(ロ)のようにPWMの変調率が高い場合は、インバータの出力電圧のパルス幅は広くなる。どちらの波形も低域通過フィルタにより、高周波成分を取り除くと、変調前と同じ波形(正弦波)が現れる。つまり、パルス幅変調波は、変調前の正弦波と高周波成分によって合成された波形となっている。尚、変調率とは直流電圧をVdc、PWMインバータの出力電圧の振幅を|vi|とすると、次式のように表される。
【0014】
変調率k=|vi|/Vdc (但し、k≦1.0) (1)
図11(イ)と(ロ)のインバータの出力電圧波形を比較すると、図11(イ)の波形のように、パルス幅が狭くかつ時間当たりのパルス数が多いとその分、不要な高周波成分が多く含まれることになる。この不要な高周波成分の電圧は、交流モータに印加されると、銅損や鉄損の損失となるため、効率が低下する。そこで、できるだけ図11(ロ)の波形のように、変調率の高い状態で運転させて、効率を向上させようというのが、直流電圧可変方式のPWMインバータ制御である。具体的には、(1)式において、直流電圧Vdcを適切に下げることで、変調率を高めに設定できる。
【0015】
図1において、インバータ変調率演算回路1503は、インバータ電圧指令と直流電圧検出信号(直流電圧センサ10で検出)により、PWMインバータ4のPWMの変調率を演算して推定する。コンバータ変調率演算回路1505は、コンバータ電圧指令と直流電圧検出信号(直流電圧センサ10で検出)により、PWMコンバータ2のPWMの変調率を演算して推定する。最大値選択回路1502は、PWMインバータ4のPWMの変調率とPWMコンバータ2のPWMの変調率とを比較して値の大きい方を選択する。変調率制御回路1501は、変調率指令出力回路1504より出力された変調率指令と最大値選択回路1502で選択された大きい方の変調率とを比較し、両者が一致するような直流電圧指令を演算し、この指令をPWMコンバータ2の制御系の直流電圧制御回路204へ出力する。PWMコンバータ2は、直流電圧制御回路204以下の働きによって、与えられた直流電圧指令に従うように直流電圧を制御する。
【0016】
次に、上記制御ブロックにおける処理方法を説明する。PWMコンバータ2のPWM変調率をk_conv、PWMインバータ4のPWM変調率をk_inv、PWMコンバータ2の交流側電圧振幅を|vc|、PWMインバータ4の交流側電圧振幅を|vi|、直流電圧をVdcとすると、k_invとk_convはそれぞれ次のように表される。
【0017】
k_inv=|vi|/Vdc (但し、k_inv≦1.0)(2)
k_conv=|vc|/Vdc (但し、k_conv≦1.0)(3)
PWMインバータ4の変調率k_invを高め運転させるためには、Vdcを可変制御(基本的には下げ方向に制御)する。しかし、図1のようなPWMコンバータ2とPWMインバータ4を組み合わせた構成では、Vdcは任意に変えられるわけではなく、(3)式で決まるPWMコンバータ2の変調率k_convの制約を考慮する必要がある。具体的に述べると、(2)式でk_invを上げるためにVdcを下げていった場合、(3)式で表されるk_convも上がっていく。仮に|vi|<|vc|とすると、k_invを上限値1.0 まで上げた場合、k_convは上限値1.0 を超えてしまう。こうなるとPWMコンバータ2は過変調となり、波形が乱れてしまう。従って、k_invとk_convの両方をチェックして、どちらも上限値を超えないような範囲で直流電圧を可変制御することが好ましい。本実施例においては、最大値選択回路1502により、インバータ変調率演算回路1503で演算されたk_invとコンバータ変調率演算回路1505で演算されたk_convのうちの大きい方を選択して、これを高くするためにVdcを下げるので、PWMコンバータ2が過変調にならずに、PWMインバータ4を高い変調率で運転できる。
【0018】
次に、インバータ変調率演算回路1503とコンバータ変調率演算回路1505の詳細について説明するが、はじめにPWMインバータの制御ブロックとPWMコンバータの制御ブロックの詳細について説明する。
【0019】
図13はPWMインバータ4の制御ブロックの詳細を表している。図13において、図1と同じ番号のものは同じ要素を表している。電流センサ11で検出した交流3相のインバータ電流iiu,iiv,iiwはdq変換回路4031によりd軸電流成分(励磁に関わる電流成分)iidとq軸電流成分(トルクに関わる電流成分)iiqの直流2相に変換される(それぞれの成分は直交している)。一方、インバータのd軸電流に対する電流指令iid はd軸電流指令発生器1801から出力され、q軸電流に対する電流指令iiq は速度制御回路404から出力される。d軸成分について、iid とiidの偏差が減算器4032で演算され、比例積分器4033を介してこの偏差を零にするようなd軸電圧指令vid が演算される。q軸成分についても、iiq とiiqの偏差が減算器4034で演算され、比例積分器4035を介してこの偏差を零にするようなq軸電圧指令viq が演算される。逆dq変換回路1802は、vid とviq を逆dq変換して、交流3相の電圧指令viu ,viv ,viw に変換し、その出力がPWM制御回路402の入力となりPWMパルスに変換される。
【0020】
図12はPWMコンバータ2の制御ブロックの詳細を表している。図12において、図1と同じ番号のものは同じ要素を表している。電流センサ9で検出した交流3相のコンバータ電流icu,icv,icwはdq変換回路2031によりd軸電流成分(励磁に関わる電流成分)icdとq軸電流成分(トルクに関わる電流成分)icqの直流2相に変換される。一方、コンバータのd軸電流に対する電流指令icd はd軸電流指令発生器1701から出力され、q軸電流に対する電流指令icq は直流電圧制御回路204から出力される。d軸成分について、icd とicdの偏差が減算器2032で演算され、比例積分器2033を介してこの偏差を零にするようなd軸電圧指令vcd が演算される。q軸成分についても、icq とicqの偏差が減算器2034で演算され、比例積分器2035を介してこの偏差を零にするようなq軸電圧指令vcq が演算される。逆dq変換回路1702は、vcd とvcq を逆dq変換して、交流3相の電圧指令vcu ,vcv ,vcw に変換し、その出力がPWM制御回路202の入力となりPWMパルスに変換される。
【0021】
以上、説明したPWMインバータ4とPWMコンバータ2の制御ブロックの内容を基にして、インバータ変調率演算回路1503とコンバータ変調率演算回路1505の詳細について説明する。
【0022】
まずインバータ変調率演算回路1503の詳細を説明する。図4はインバータ変調率演算回路1503の詳細を表している。インバータ変調率演算回路1503で実際に用いるインバータ電圧指令は、図13で説明したd軸電圧指令vid とq軸電圧指令viq の直流量の2相成分を用いる。このd軸,q軸成分を用いると、vid とviq が直流量であるため、電圧振幅|vi |は(4)式のように簡単に演算できる。
【0023】
|vi |=α・√(vid*2+viq*2) (αは定数) (4)
図4中のインバータ電圧振幅演算回路1503Aと補正係数乗算器1503Bは、(4)式の処理を行っており、その結果、インバータ電圧指令の振幅|vi|を演算できる。PWMインバータ4の変調率をk_invとすると、k_invは次式により演算できる。
【0024】
k_inv=|vi |/Vdc (5)
除算器1503Cは(5)式の処理を実行しており、その結果、k_invを演算できる。以上のように、図4に示したインバータ変調率演算回路1503を用いることにより、交流電圧センサを用いることなく簡単な処理でPWMインバータの変調率を演算することができる。
【0025】
次に、コンバータ変調率演算回路1505の詳細を図5を用いて説明する。入力と出力が変わるだけで、コンバータ変調率演算回路1505の動作は、インバータ変調率演算回路1503の動作と同様である。用いるコンバータ電圧指令は、図12で説明したd軸電圧指令vcd とq軸電圧指令vcq の直流2相を用いる。このとき電圧振幅|vc |は(6)式のように簡単に演算できる。
【0026】
|vc |=α・√(vcd*2+vcq*2) (αは定数) (6)
図5中のコンバータ電圧振幅演算回路1505Aと補正係数乗算器1505Bは、(6)式の処理を行っており、その結果、コンバータ電圧指令の振幅|vc|を演算できる。PWMコンバータ2の変調率をk_convとすると、k_convは次式により演算できる。
【0027】
k_conv=|vc |/Vdc (7)
除算器1505Cは(7)式の処理を実行しており、その結果、k_convを演算できる。以上のように、図5に示したコンバータ変調率演算回路1505を用いることにより、交流電圧センサを用いることなく簡単な処理でPWMコンバータの変調率を演算することができる。
【0028】
続いて、図1に示された変調率指令出力回路1504と変調率制御回路1501の詳細について説明する。
【0029】
変調率指令出力回路1504は、図1のPWMインバータ4が高め変調率運転をするための変調率指令を出力する手段であり、本実施例では変調率の上限値1.0を指令値として出力する。
【0030】
変調率制御回路1501の詳細構成を図6に示す。ここでは、PWMインバータの変調率とPWMコンバータの変調率のうちの大きい方を、変調率指令に従うように調整する働きがなされる。そして、このように変調率を直接にフィードバック制御するため、交流モータの速度(周波数)と負荷量に対応して、確実な直流電圧可変制御が可能となる。以下、具体的に説明する。減算器1501Aでは、変調率指令出力回路1504より入力された変調率指令k と、PWMインバータ4の変調率k_invとPWMコンバータ2の変調率k_convのうちの大きい方の変調率値との偏差が取られる。この偏差は、係数乗算器1501Aで符号反転された後、比例積分補償器1501Cに入力される。比例積分補償器1501Cでは、比例積分補償により、偏差を零にするような直流電圧指令修正値△Vdc が演算される。直流電圧指令Vdc は、△Vdc と直流電圧基準値Vdc0 との和を加算器1501Eで演算し、さらにリミッタ回路1501Fを通して直流電圧の下限と上限の範囲内に抑えることによって得ることができる。直流電圧基準値Vdc0 を後から加算する理由は、制御の始動時に比例積分補償器の出力が確定しない時でも、あらかじめ所定の直流電圧指令を与えることで、安定化させるためである。また、直流電圧指令が逸脱した値を取らないように、リミッタ回路1501Fで範囲を限定する。図6に示すような変調率制御回路1501を用いることにより、変調率を変調率指令に一致させるような直流電圧指令を得ることができ、かつ制御の始動時にも安定して直流電圧指令を得ることができる。また、直流電圧指令の値が逸脱することも避けることができる。
【0031】
以上説明した実施例によれば、高い変調率k_invでPWMインバータ4を駆動させるため、インバータ出力電圧に含まれる不要な高周波成分を抑制でき、銅損や鉄損を低減できる。従って、システムを省エネ化できる。
【0032】
なお、上記実施例では、電圧指令を用いて変調率を演算して求めたが、交流電圧センサを用いて検出した電圧を用いて変調率検出値を求めても良い。この場合も、変調率を直接フィードバックするので、PWMインバータを確実に高め変調率で運転できる。
【0033】
図8は、図1に示した実施例の効果の様子を示したものである。この図8は、本実施例におけるPWMインバータの出力電圧波形をシミュレーションで解析した結果で、左側に直流電圧を固定した場合の結果、右側に本実施例による結果を比較して示している。波形は上の段からそれぞれ、イ)インバータの出力電圧波形、ロ)上記波形に対する基本波成分の周波数解析結果、ハ)高周波成分領域の周波数解析結果、ニ)ロ)において2fc周波数成分付近を拡大した結果を表している。
【0034】
まず、インバータの出力電圧波形について比較すると、本実施例による結果の方は、インバータの変調率を高め運転とするために、直流電圧を下げており、波形の振幅(高さ)が小さくなっている。他方、図中の波形では確認できないが、振幅が小さくなった分、パルスの幅は本実施例の結果の方が広くなっている。
【0035】
次に基本波成分の周波数解析結果を比較すると、基本波成分については、共に同じ程度の出力である。
【0036】
PWMインバータで問題となる高周波領域(PWM搬送波以上)の周波数解析結果を比較すると、本実施例による結果の方が高周波成分を全体にわたって小さい。これは、既に説明したように、直流電圧を下げて高め変調率運転を実施した効果による。
【0037】
2fc成分(fcはPWMインバータのPWM搬送波周波数)付近の周波数解析結果を見ると、直流電圧を固定した場合に比べ、本実施例の場合では、2fc成分を大きく低減できている。
【0038】
以上、図8が示すように、本実施例によれば、速度と負荷量に対応して直流電圧を可変制御することで、PWMインバータの高め変調率運転を実現でき、その結果、出力電圧中に含まれる高周波成分を大きく抑制することができる。従って、交流モータの鉄損,銅損を低減することができるので、システムを省エネ化できる。
【0039】
次に、図2を用いて、本発明による交流モータ駆動システムの第二の実施例について説明する。図2において、図1と同じ構成要素は同じ番号で表しており、説明を省略する。図2の構成が図1と異なる部分は、まず変換器システムの構成において、ダイオード整流器12,昇降圧チョッパ13,PWMインバータ4によって構成されている点にある。ダイオード整流器12は交流電源1から入力した交流電力を直流電力に変換する。ダイオード整流器12は、整流作用のあるダイオード12Aで構成されており、変換された直流電圧は交流電源1の線間電圧ピーク値に固定される。昇降圧チョッパ13はダイオード整流器12が出力した直流電圧を昇降圧させてPWMインバータ4側へ出力する。昇降圧チョッパ13は、直流リアクトル13B,昇降圧用のスイッチング素子(IGBT,トランジスタ等)13C,13Dで構成され、直流リアクトル13Bに電流の形態で電気エネルギーを蓄積して、この電流をスイッチング素子13Cと13Dで交互に切り換えることで、図中左から右へもしくは右から左へ電力を受け渡すことができる。電力が左から右へ流れた場合はインバータ側の直流電圧は昇圧となり、電力が右から左へ流れた場合はインバータ側の直流電圧は降圧となる。このような動作により、昇降圧チョッパ13はPWMインバータ4側の直流電圧を昇降圧することが可能である。
【0040】
次に、昇降圧チョッパ13に対する制御ブロックを説明する。直流電圧制御回路1304は、直流電圧指令を電圧センサ10で検出した直流電圧検出値との偏差が零になるような直流電流指令を演算する。電流制御回路1303は、直流電圧制御回路1304より出力された直流電流指令と電流センサ13Aで検出した直流電流検出値とを用いて、両者の偏差が零になるような電圧指令を演算する。PWM制御回路1302は、電流制御回路1303より出力された電圧指令をパルス幅変調してゲートパルス信号に変換する。ゲート回路1301は、PWM制御回路1302より出力されたゲートパルス信号に従って昇降圧チョッパ13をスイッチング駆動する。
【0041】
次に、図2に示された交流モータ駆動システムの制御について説明する。直流電圧指令をVdc 、PWMインバータの電圧指令の振幅を|vi |、所望とする高め変調率をk*とすると、|vi |に対して、所望とする高め変調率をk*を実現するような直流電圧指令は次式により与えられる。
【0042】
Vdc =|vi |/k (8)
インバータ電圧指令の中に交流モータの速度と負荷量による効果が含まれており、交流モータの速度と負荷量の両方に対応した高めPWM変調率運転が実現できる。また、電圧指令を用いるため交流電圧センサが不要となる。尚、図2の構成の場合は、PWMインバータ4とダイオード整流器12の間に昇降圧チョッパ13が挿入されているため、PWMインバータ4側の直流電圧は原理的には任意に変えることができる。この点が図1とは異なる。
【0043】
図2において、(8)式の処理を実行するのが直流電圧指令作成回路1601と電圧振幅演算回路1602である。電圧振幅演算回路1602では、インバータ電圧指令の振幅を演算する。直流電圧指令作成回路1601では、演算したインバータ電圧指令の振幅から直流電圧指令を作成する。作成された直流電圧指令は、昇降圧チョッパ13に対する制御ブロック内の直流電圧制御回路1304に入力する。そして、昇降圧チョッパ13は、PWMインバータ4側の直流電圧を直流電圧指令に一致させるように制御する。この結果、PWMインバータ4側の直流電圧は、PWMインバータ4を高め変調率で運転するように、可変制御される。
【0044】
図7は、電圧振幅演算回路1602と直流電圧指令作成回路1601の詳細を示した図を表している。電圧振幅演算回路1602で実際に用いるインバータ電圧指令は、図13で説明したd軸電圧指令vid とq軸電圧指令viq の直流量の2相成分を用いる。このd軸,q軸成分を用いると、電圧指令の振幅|vi |は既に示した(4)式のように簡単i演算できる。交流量を用いると時間と共に値が変わるため、振幅を求めるのは容易ではないが、vid とviq が直流量であるために、(4)式により容易に振幅を求めることができる。直流電圧指令作成回路1601は、インバータ電圧指令の振幅|vi |から、(8)式に従って所望の高め変調率k を実現する直流電圧指令Vdc を演算する。
【0045】
直流電圧指令作成回路1601の具体的な入出力特性の例を図9に示す。図9において、左側のグラフは直流電圧指令作成回路1601の入出力特性、即ち|vi |に対するVdc の特性を示したものであり、右側のグラフは左側の入出力特性の基になっている目標とする変調率k の|vi |に対する特性を表している。
【0046】
図9の特性においては、直流電圧指令Vdc*が下限値Vdc _minに達するまでは変調率k =1.0を保持させるように、(8)式に従ってVdc を変える。直流電圧指令Vdc*が下限値Vdc_minに達すると、Vdc=Vdc_minと一定にする。これを数式で表すと下記のようになる。
【0047】
Figure 2004357442
この特性により、直流電圧指令Vdc が下限値Vdc_min を下回るまでは、k =1の高め変調率で運転させて、それよりさらにVdc を下げる場合は、Vdcを下限値Vdc_minに維持することを優先させるというような適応的なVdc の調整が可能となる。PWMインバータ4の直流電圧Vdcをあまり下げすぎると、PWMインバータ4の上アームと下アームの並列ダイオードの両端電圧の差が小さくなり、ダイオードのスイッチング動作が不安定になる可能性がある。これはIGBT(Insulated Gate Bipolar Transistor)やトランジスタでも同様である。従って、直流電圧はある程度の値以上に保持することが望ましく、図9に示すように、Vdc に下限値を持たせる方法が有効である。
【0048】
図10は、直流電圧指令作成回路1601の入出力特性の、図9とは異なる例を表している。この場合は、図10の右側に示すk の特性より、目標とする変調率k を常にk =1.0として、(8)式にしたがってVdcを決める。従って、図10の左側に示す|vi |に対するVdcの特性のように、Vdcは零値まで可変となる。この場合、直流電圧が零値付近になってもPWMインバータ4のダイオードやIGBTの動作が不安定化しないような工夫をする必要があるが、常に高め変調率で運転できるため、省エネ効果を高めることができる。
【0049】
図2に示した実施例によれば、PWMインバータの変調率は確実に高い値(本実施例では1.0)を保つようになり、インバータ出力電圧に含まれる不要な高周波成分を抑制でき、銅損や鉄損を低減できる。従って、システムを省エネ化できる。また、この方法では、インバータ電圧指令を用いて直流電圧指令を演算しており、このインバータ電圧指令の中に交流モータの負荷量の影響も含まれているため、交流モータの速度と負荷量に応じて直流電圧を可変制御することが可能である。そして、電圧指令を用いているため交流電圧センサが不要となる。
【0050】
次に、図3を用いて本発明による交流モータ駆動システムの第三の実施例について説明する。図3のシステムは図2のシステムとほぼ同じ構成であり、異なる点は、ダイオード整流器12がPWMコンバータ2に入れ替わっている点にある。
【0051】
図3の実施例では、PWMコンバータ2とPWMインバータ4の間に昇降圧チョッパ13が挿入されているため、PWMインバータ4の直流側電圧は比較的自由に変えることができる。従って、図2に示した直流電圧可変制御方法をそのまま適用することができる。その結果、図3のシステムでは、図2のシステムと同様の効果を得ることができる。
【0052】
図3における昇降圧チョッパにおけるスイッチング素子に、半導体基板材料としてSiC(炭化珪素)結晶などのワイドギャップ半導体を用いた非常に低損失のスイッチング素子を適用すれば、直流電圧可変範囲を広げた制御を実施でき、より省エネ効果を向上できる。
【0053】
上記各実施例では、変調率がほぼ1となるようにインバータまたはコンバータが運転しているが、個々のシステムにおける回路や半導体素子の特性などに応じて、1以外の値に設定しても良い。
【0054】
なお、上記各実施例に限らず、本発明の技術的思想の範囲内において、種々の変形例が可能である。
【0055】
【発明の効果】
本発明によれば、モータにかかる負荷が変化するような場合であっても、負荷に応じて適切に直流電圧を可変制御して、確実にインバータのPWM変調率を高め運転できる。
【図面の簡単な説明】
【図1】本発明による交流モータ駆動システムの第一の実施例。
【図2】本発明による交流モータ駆動システムの第ニの実施例。
【図3】本発明による交流モータ駆動システムの第三の実施例。
【図4】インバータの変調率演算回路。
【図5】コンバータの変調率演算回路。
【図6】変調率制御回路。
【図7】電圧振幅演算回路と直流電圧指令作成回路。
【図8】実施例における出力電圧波形の解析結果。
【図9】直流電圧指令作成回路の入出力特性例。
【図10】直流電圧指令作成回路の入出力特性例。
【図11】変調率の違いによるPWMパルス波形の違いを表した図。
【図12】PWMコンバータの制御ブロック。
【図13】PWMインバータの制御ブロック。
【符号の説明】
1…交流電源、2…PWMコンバータ、3…平滑コンデンサ、4…PWMインバータ、5…交流モータ、6…エレベータの綱車、7…エレベータのかご、8…釣り合い錘、9,11…電流センサ、10…直流電圧センサ、13…昇降圧チョッパ、201,1301…ゲート回路、202,402,1302…PWM制御回路、203,403…電流制御回路、204,1304…直流電圧制御回路、401…ゲート回路、404…速度制御回路、1501…変調率制御回路、1502…最大値選択回路、1503…インバータ変調率演算回路、1504…変調率指令出力回路、1505…コンバータ変調率演算回路、1601…直流電圧指令作成回路、1602…電圧振幅演算回路、1701,1801…インバータ側のd軸電流指令発生器、1702,1802…逆dq変換回路、2031,4031…dq変換回路、2032,2034,4032,4034…減算器、2033,2035,4033,4035…比例積分補償器。

Claims (7)

  1. 直流電力を交流電力に変換する直流/交流変換器と、
    前記直流/交流変換器が出力する交流電力によって駆動される交流モータと、
    前記直流/交流変換器に対する電圧出力指令に応じて前記直流電力の電圧を可変に制御する直流電圧制御手段と、
    を備える交流モータ駆動システム。
  2. 請求項1において、前記直流電圧制御手段は、前記電圧出力指令の振幅に比例した直流電圧指令を作成し、前記直流電力の前記電圧の検出値が前記直流電圧指令に一致するように前記直流電力の前記電圧を可変に制御する交流モータ駆動システム。
  3. 請求項1または請求項2において、前記直流電力は、交流電力を直流電力に変換する交流/直流変換器から、昇降圧手段を介して、前記直流/交流変換器に入力され、前記直流電力の前記電圧は前記昇降圧手段の出力電圧である交流モータ駆動システム。
  4. 請求項1において、前記直流/交流変換器はパルス幅変調制御によって前記直流電力を前記交流電力に変換し、前記直流電圧制御手段は、前記電圧出力指令と前記直流電力の前記電圧の検出値とから前記直流/交流変換器の出力電圧に対するパルス幅変調の変調率を演算し、演算された前記変調率を変調率指令に一致するように、前記直流電力の前記電圧を可変に制御する交流モータ駆動システム。
  5. 直流電力を、パルス幅変調制御によって交流電力に変換する直流/交流変換器と、
    前記直流/交流変換器が出力する交流電力によって駆動される交流モータと、
    前記直流/交流変換器の出力電圧に対するパルス幅変調の変調率を求め、求めた前記変調率を変調率指令に一致するように、前記直流電力の電圧を可変に制御する直流電圧制御手段と、
    を備える交流モータ駆動システム。
  6. 交流電力を、パルス幅変調制御によって直流電力に変換する交流/直流変換器と、
    前記直流電力を、パルス幅変調制御によって交流電力に変換する直流/交流変換器と、
    前記直流/交流変換器が出力する交流電力によって駆動される交流モータと、
    前記交流/直流変換器もしくは前記直流/交流変換器の出力電圧に対するパルス幅変調の変調率を求め、求めた前記変調率を変調率指令に一致するように、前記交流/直流変換器が出力する前記直流電力の前記電圧を可変に制御する直流電圧制御手段と、
    を備える交流モータ駆動システム。
  7. 請求項6において、前記直流電圧制御手段は、前記交流/直流変換器の出力電圧に対するパルス幅変調の変調率と、前記直流/交流変換器の出力電圧に対するパルス幅変調の変調率のうちの大きい方の変調率を変調率指令に一致するように、前記交流/直流変換器が出力する前記直流電力の前記電圧を可変に制御する交流モータ駆動システム。
JP2003153676A 2003-05-30 2003-05-30 交流モータ駆動システム Expired - Fee Related JP4186714B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153676A JP4186714B2 (ja) 2003-05-30 2003-05-30 交流モータ駆動システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153676A JP4186714B2 (ja) 2003-05-30 2003-05-30 交流モータ駆動システム

Publications (2)

Publication Number Publication Date
JP2004357442A true JP2004357442A (ja) 2004-12-16
JP4186714B2 JP4186714B2 (ja) 2008-11-26

Family

ID=34048531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153676A Expired - Fee Related JP4186714B2 (ja) 2003-05-30 2003-05-30 交流モータ駆動システム

Country Status (1)

Country Link
JP (1) JP4186714B2 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311768A (ja) * 2005-05-02 2006-11-09 Toyota Motor Corp モータ駆動システムの制御装置
JP2006333615A (ja) * 2005-05-25 2006-12-07 Toshiba Elevator Co Ltd 電力変換装置
JP2007082274A (ja) * 2005-09-12 2007-03-29 Mitsubishi Electric Corp 電力変換装置
WO2008001615A1 (fr) * 2006-06-26 2008-01-03 Sanyo Electric Co., Ltd. Dispositif d'attaque de moteur électrique
JP2008160912A (ja) * 2006-12-21 2008-07-10 Ihi Corp モータ制御装置、モータ制御方法
JP2008160997A (ja) * 2006-12-25 2008-07-10 Denso Corp モータの制御方法およびその装置
JP2011061887A (ja) * 2009-09-07 2011-03-24 Mitsubishi Electric Corp 電力変換装置、電力変換装置の制御方法、および空気調和機
JP2011066974A (ja) * 2009-09-16 2011-03-31 Denso Corp 回転機の制御装置
WO2011105589A1 (ja) * 2010-02-26 2011-09-01 三洋電機株式会社 電力変換装置、系統連系装置及び系統連系システム
JP2011177027A (ja) * 2011-06-15 2011-09-08 Mitsubishi Electric Corp 電力変換装置
JP2011193583A (ja) * 2010-03-12 2011-09-29 Toshiba Mitsubishi-Electric Industrial System Corp 3レベル電力変換装置
JP5002082B1 (ja) * 2012-03-29 2012-08-15 東芝Itコントロールシステム株式会社 系統連系電源装置の制御装置および系統連系電源装置
JP2012223008A (ja) * 2011-04-12 2012-11-12 Denso Corp 電力変換装置
JP2014168998A (ja) * 2013-03-01 2014-09-18 Sumitomo Electric Ind Ltd 電力変換装置
WO2018034007A1 (ja) * 2016-08-19 2018-02-22 三菱電機株式会社 電力変換装置
JP2018050383A (ja) * 2016-09-21 2018-03-29 住友重機械工業株式会社 電力変換装置
WO2018146902A1 (ja) * 2017-02-10 2018-08-16 三菱電機株式会社 電力変換装置

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311768A (ja) * 2005-05-02 2006-11-09 Toyota Motor Corp モータ駆動システムの制御装置
JP4635703B2 (ja) * 2005-05-02 2011-02-23 トヨタ自動車株式会社 モータ駆動システムの制御装置
JP2006333615A (ja) * 2005-05-25 2006-12-07 Toshiba Elevator Co Ltd 電力変換装置
JP2007082274A (ja) * 2005-09-12 2007-03-29 Mitsubishi Electric Corp 電力変換装置
WO2008001615A1 (fr) * 2006-06-26 2008-01-03 Sanyo Electric Co., Ltd. Dispositif d'attaque de moteur électrique
JP2008160912A (ja) * 2006-12-21 2008-07-10 Ihi Corp モータ制御装置、モータ制御方法
JP2008160997A (ja) * 2006-12-25 2008-07-10 Denso Corp モータの制御方法およびその装置
JP2011061887A (ja) * 2009-09-07 2011-03-24 Mitsubishi Electric Corp 電力変換装置、電力変換装置の制御方法、および空気調和機
JP2011066974A (ja) * 2009-09-16 2011-03-31 Denso Corp 回転機の制御装置
CN102474199A (zh) * 2010-02-26 2012-05-23 三洋电机株式会社 电力变换装置、电力网互联装置以及电力网互联系统
WO2011105589A1 (ja) * 2010-02-26 2011-09-01 三洋電機株式会社 電力変換装置、系統連系装置及び系統連系システム
EP2541750A4 (en) * 2010-02-26 2017-11-29 Panasonic Intellectual Property Management Co., Ltd. Power conversion apparatus, grid connection apparatus, and grid connection system
US8547716B2 (en) 2010-02-26 2013-10-01 Sanyo Electric Co., Ltd. Power converting apparatus, grid interconnection apparatus and grid interconnection system
JP2011193583A (ja) * 2010-03-12 2011-09-29 Toshiba Mitsubishi-Electric Industrial System Corp 3レベル電力変換装置
JP2012223008A (ja) * 2011-04-12 2012-11-12 Denso Corp 電力変換装置
JP2011177027A (ja) * 2011-06-15 2011-09-08 Mitsubishi Electric Corp 電力変換装置
JP2013208032A (ja) * 2012-03-29 2013-10-07 Toshiba It & Control Systems Corp 系統連系電源装置の制御装置および系統連系電源装置
JP5002082B1 (ja) * 2012-03-29 2012-08-15 東芝Itコントロールシステム株式会社 系統連系電源装置の制御装置および系統連系電源装置
JP2014168998A (ja) * 2013-03-01 2014-09-18 Sumitomo Electric Ind Ltd 電力変換装置
WO2018034007A1 (ja) * 2016-08-19 2018-02-22 三菱電機株式会社 電力変換装置
JPWO2018034007A1 (ja) * 2016-08-19 2018-11-22 三菱電機株式会社 電力変換装置
JP2018050383A (ja) * 2016-09-21 2018-03-29 住友重機械工業株式会社 電力変換装置
WO2018146902A1 (ja) * 2017-02-10 2018-08-16 三菱電機株式会社 電力変換装置
JP6453526B1 (ja) * 2017-02-10 2019-01-16 三菱電機株式会社 電力変換装置
US10756629B2 (en) 2017-02-10 2020-08-25 Mitsubishi Electric Corporation Power conversion device

Also Published As

Publication number Publication date
JP4186714B2 (ja) 2008-11-26

Similar Documents

Publication Publication Date Title
JP4186714B2 (ja) 交流モータ駆動システム
US9240733B2 (en) High dynamic control apparatus for current source converter
US7294989B2 (en) Frequency converter overvoltage protection
US7881081B1 (en) Systems and methods for reducing AC drive common-mode currents
US20130181654A1 (en) Motor drive system employing an active rectifier
JPS63287397A (ja) 誘導電動機の制御装置
JP6381497B2 (ja) 電力変換装置
WO2018135045A1 (ja) 電力変換装置、および電力変換システム
JP5813934B2 (ja) 電力変換装置
Li et al. Power-factor compensation for PWM CSR–CSI-fed high-power drive system using flux adjustment
JP4029284B2 (ja) 交流−交流電力変換器の制御装置
WO2019049321A1 (ja) 電力変換装置
JPH09215398A (ja) インバータの制御装置
JP2016093001A (ja) 交流−直流変換器の制御装置
WO2016031030A1 (ja) 電力変換装置および車両駆動システム
JP3954503B2 (ja) 電気自動車用電力変換装置
JP4439846B2 (ja) 多相電流供給回路
JP2005348597A (ja) 電気車の制御装置
JP2012065481A (ja) Pwmインバータの制御装置およびpwmインバータの制御装置を備えた鉄道車両
JP4120868B2 (ja) 交流電動機の制御装置
JP5833524B2 (ja) 電力変換装置および電力変換装置の制御装置
JP7202244B2 (ja) 電力変換装置
JP3747259B2 (ja) 電気車の制御装置
JP7111026B2 (ja) 電動機駆動システムおよび電動機駆動システムにおけるインバータ制御方法
JP4446688B2 (ja) 多相電流供給回路及びその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees