WO2018146902A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2018146902A1
WO2018146902A1 PCT/JP2017/041743 JP2017041743W WO2018146902A1 WO 2018146902 A1 WO2018146902 A1 WO 2018146902A1 JP 2017041743 W JP2017041743 W JP 2017041743W WO 2018146902 A1 WO2018146902 A1 WO 2018146902A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
power conversion
converter
vdc
Prior art date
Application number
PCT/JP2017/041743
Other languages
English (en)
French (fr)
Inventor
秀太 石川
岩田 明彦
樹 松永
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018524303A priority Critical patent/JP6453526B1/ja
Priority to CN201780085334.5A priority patent/CN110249518B/zh
Priority to DE112017007042.2T priority patent/DE112017007042T5/de
Priority to US16/472,052 priority patent/US10756629B2/en
Publication of WO2018146902A1 publication Critical patent/WO2018146902A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed

Definitions

  • This invention relates to a power converter, and more particularly to a power converter for driving an AC motor.
  • Patent Document 1 discloses a motor drive control device for driving a compressor of an air conditioner, a DC power source configured by a three-phase AC power source and a three-phase rectifier circuit, a motor Describes a configuration in which a step-up converter is arranged between an inverter for supplying an AC voltage.
  • the DC voltage input to the inverter can be increased more than the input voltage from the DC power supply.
  • the boost converter it is possible to avoid the increase in loss due to the increase in motor current and the temperature rise, and to drive the motor appropriately.
  • Patent Document 2 describes a configuration of a power converter in which a multi-level chopper circuit is connected between a DC power source and an inverter similar to Patent Document 1.
  • the multi-level chopper circuit by switching the boost mode according to the load state of the AC motor, it is possible to reduce the cost by reducing the size of the switching element and to expand the operating range of the AC motor by increasing the boost ratio. .
  • JP 2010-166719 A International Publication No. 2016/002053
  • Patent Documents 1 and 2 the DC voltage input to the inverter cannot be made lower than the input voltage from the DC power supply. For this reason, in the low rotation speed region of the motor, the input voltage to the inverter (that is, the input voltage from the DC power supply) becomes higher than the AC voltage output from the inverter, so that motor iron loss and inverter loss are reduced. There was a problem of increasing. That is, in Patent Documents 1 and 2, the efficiency in the high rotation speed region (that is, at the time of heavy load) can be improved, but the improvement in efficiency at the time of light load (that is, the low rotation speed region) becomes a problem.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide a heavy duty region and a light load in a power converter for driving an AC motor in accordance with the operating state of the AC motor.
  • the AC motor is driven with high efficiency in both load regions.
  • a power converter for driving an AC motor includes an inverter for supplying an AC voltage to the AC motor, a converter connected between the DC power source and the inverter, 2 bypass switches and a control circuit.
  • the converter includes an input node, an output node, a step-down circuit having a first semiconductor element, and a step-up circuit having a second semiconductor element.
  • a first DC voltage from a DC power supply is input to the input node.
  • the output node is connected to the DC side of the inverter.
  • the step-up circuit and the step-down circuit are connected in series between the input node and the output node.
  • the step-down circuit is configured to perform first power conversion for stepping down a voltage input during operation.
  • the booster circuit is configured to execute a second power conversion for boosting a voltage input during operation.
  • the first bypass switch is connected in parallel with the first semiconductor element.
  • the second bypass switch is connected in parallel with the second semiconductor element.
  • the AC motor in the power converter for driving an AC motor, the AC motor can be driven with high efficiency in both the heavy load region and the light load region according to the operating state of the AC motor 200.
  • FIG. It is a schematic circuit diagram for demonstrating the structure of the power converter device according to Embodiment 1.
  • FIG. It is a conceptual diagram explaining the example of a setting of the target voltage of the converter shown by FIG. It is a table
  • It is a partial circuit diagram explaining operation
  • FIG. 5 is a schematic waveform diagram for explaining PWM control for DC / AC voltage conversion in an inverter.
  • 6 is a flowchart illustrating a control process for setting a target voltage of a converter according to a first modification of the first embodiment. It is a schematic circuit diagram for demonstrating the structure of the power converter device according to the modification 2 of Embodiment 1.
  • FIG. 10 is a table for explaining circuit operations in each operation mode of a converter in the power conversion device according to the second embodiment.
  • FIG. 2 is a waveform diagram of an input voltage from the DC power source shown in FIG. 1.
  • 12 is a flowchart illustrating a control process for setting a target voltage of a converter according to a third embodiment. It is a conceptual diagram explaining the setting of the target voltage of the converter and selection of the operation mode of a converter according to Embodiment 3.
  • 20 is a flowchart illustrating a control process for setting a target voltage of a converter according to a fourth embodiment. It is a conceptual diagram explaining the setting of the target voltage of the converter and selection of the operation mode of a converter according to Embodiment 4.
  • 10 is a flowchart illustrating a control process for setting a target voltage of a converter according to a fifth embodiment. It is a conceptual diagram explaining the setting of the target voltage of the converter and selection of the operation mode of a converter according to Embodiment 5.
  • FIG. 1 is a schematic circuit diagram for illustrating the configuration of the power conversion device according to the first embodiment.
  • power conversion device 100 a converts DC voltage Vin from DC power supply 10 into an AC voltage for driving AC motor 200.
  • the DC power supply 10 can be constituted by, for example, an AC power supply (for example, a three-phase AC power supply) 12 and a rectifier circuit 15.
  • Power conversion device 100a includes a converter 40a for performing DC / DC power conversion, a smoothing capacitor 50, an inverter 60 for performing DC / AC power conversion, and a control circuit 90.
  • Control circuit 90 controls operations of converter 40 and inverter 60.
  • the control circuit 90 is configured to realize each control function described later by software processing by executing a program stored in advance and / or hardware processing by a dedicated electronic circuit.
  • the control circuit 90 can be configured by a so-called microcomputer.
  • the converter 40a includes a step-down circuit 20, a step-up circuit 30, and bypass switches 25 and 35. As will be described later, the step-down circuit 20 and the step-up circuit 30 are configured to share a reactor 45.
  • the input node Ni of the converter 40 is connected to the positive electrode side of the DC power supply 10.
  • the reference voltage wiring 11 is connected to the negative electrode side of the DC power supply 10.
  • DC voltage Vin (hereinafter also referred to as input voltage Vin) from DC power supply 10 is input to converter 40a.
  • the step-down circuit 20 includes a power semiconductor switching element (hereinafter also simply referred to as “switching element”) 21, a diode 22, and a reactor 45.
  • Switching element 21 is connected between input node Ni and node N1.
  • Bypass switch 25 is electrically connected in parallel with switching element 21 between input node Ni and node N1.
  • the switching element can be configured by an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • the semiconductor material for forming the switching elements 21 and 31 and the diodes 22 and 32 is not particularly limited. In addition to Si (silicon), SiC (silicon carbide), GaN (gallium nitride), or the like may be applied. Is possible. On / off of the switching element 21 is controlled by the control circuit 90.
  • the diode 22 is electrically connected between the reference voltage line 11 and the node N1, with the direction from the reference voltage line 11 toward the node N1 as the forward direction.
  • Reactor 45 shared with booster circuit 30 is electrically connected between nodes N1 and N2.
  • the switching element 21, the diode 22, and the reactor 45 can constitute a so-called step-down chopper.
  • the booster circuit 30 has a switching element 31, a diode 32, and a reactor 45.
  • Switching element 31 is electrically connected between node N 2 and reference voltage line 11.
  • the bypass switch 35 is electrically connected in parallel with the diode 32 between the node N2 and the reference voltage line 11. On / off of the switching element 31 is controlled by the control circuit 90.
  • Diode 22 is electrically connected between node N2 and output node No, with the direction from node N2 toward output node No of converter 40 as the forward direction.
  • Reactor 45 connected between nodes N1 and N2 is shared with step-down circuit 20 as described above.
  • the switching element 31, the diode 32, and the reactor 45 can constitute a so-called boost chopper.
  • bypass switch 25 is configured by an element having an on resistance lower than the on resistance of the switching element 21.
  • bypass switch 35 is preferably composed of an element having an on-resistance lower than the on-resistance of the diode 32.
  • the bypass switches 25 and 35 can be configured using electromagnetic relays that are controlled to open and close in accordance with excitation signals from the control circuit 90.
  • step-down chopper step-down circuit 20
  • an ON period and an OFF period of the switching element 21 are repeatedly provided.
  • the electric power for stepping down the input DC voltage the input voltage Vin in the example of FIG. 1). Conversion is performed.
  • the switching element 21 is always turned on, power conversion for step-down is stopped, and the input DC voltage passes through the step-down circuit 20 without being converted.
  • the switching element 21 corresponds to an example of “first semiconductor element”
  • the power conversion by the step-down chopper by turning on / off the switching element 21 corresponds to an example of “first power conversion”.
  • the bypass switch 25 corresponds to an example of a “first bypass switch”.
  • the ON period and the OFF period of the switching element 31 are repeatedly provided.
  • the input DC voltage (the voltage at node N1 in the example of FIG. 1) is boosted by switching between the current path including reactor 45 and switching element 31 and the current path including reactor 45 and diode 32.
  • Power conversion is performed. Specifically, the electric power from the DC power source 10 is accumulated as electromagnetic energy in the reactor 45 during the ON period of the switching element 31, and the electric power from the DC power source 10 is transmitted via the diode 32 during the OFF period of the switching element 31.
  • the electromagnetic energy accumulated in the reactor 45 is output to the output node No, so that the input voltage Vin can be boosted.
  • the switching element 31 is always turned off and the diode 32 is always turned on, power conversion for boosting is stopped, and the input DC voltage passes through the boosting circuit 30 without being converted.
  • the diode 32 corresponds to an example of “second semiconductor element”
  • the power conversion in the boost chopper by turning on and off the switching element 31 corresponds to an example of “second power conversion”.
  • the bypass switch 35 corresponds to an example of a “second bypass switch”.
  • the output node No of the converter 40 and the reference voltage wiring 11 are connected to the DC link side of the inverter 60.
  • a smoothing capacitor 50 is connected between the output node No and the reference voltage wiring 11.
  • the DC voltage Vdc at the output node No is also referred to as an output voltage Vdc.
  • the output voltage Vdc is detected by the voltage sensor 51.
  • a voltage sensor for detecting the input voltage Vin can be further arranged. The detection value by each voltage sensor is input to the control circuit 90.
  • the inverter 60 converts the output voltage Vdc of the converter 40a into an AC voltage for driving the AC motor 200 at a variable speed.
  • the output voltage (AC voltage) of the inverter 60 is supplied to the coil winding of the AC motor 200.
  • AC electric motor 200 is constituted by, for example, a three-phase AC electric motor.
  • the inverter 60 can be configured by a general three-phase inverter.
  • the inverter 60 controls the ON / OFF of a plurality of switching elements (not shown) arranged on the upper and lower arms of each phase by a control circuit 90, whereby a pulse waveform voltage (hereinafter referred to as pulse width modulation (PWM) controlled) of the DC voltage Vdc. , Also referred to as PWM voltage).
  • PWM pulse width modulation
  • the PWM voltage from the inverter 60 is supplied to the coil winding of the AC motor 200 as a pseudo AC voltage for driving the AC motor 200.
  • inverter 60 supplies an AC voltage (PWM voltage) whose phase is shifted by 120 degrees to the coil windings of each phase.
  • the AC motor 200 When the AC motor 200 is a synchronous motor, an induced voltage having an amplitude corresponding to the rotation speed is generated.
  • the amplitude of the pseudo AC voltage (PWM voltage) applied from the inverter 60 to the AC motor 200 is lower than the amplitude of the induced voltage, the power in the inverter 60 and the AC motor 200 is increased due to an increase in the current flowing through the AC motor 200.
  • the output voltage Vdc of the converter 40 is set so that the amplitude of the PWM voltage (that is, the output voltage Vdc of the converter 40a) is higher than the amplitude of the induced voltage. It is preferable to control it higher than the input voltage Vin.
  • the AC motor 200 is an induction motor, it is preferable from the viewpoint of efficiency to reduce the amplitude of the PWM voltage at a low rotational speed and increase the amplitude of the PWM voltage at a high rotational speed.
  • target voltage Vdc target voltage
  • FIG. 2 is a conceptual diagram illustrating a setting example of target voltage Vdc * of converter 40a.
  • target voltage Vdc * is set so as to increase in the high rotation speed region but decrease in the low rotation speed region according to the rotation speed of AC electric motor 200.
  • the target voltage Vdc * can be set in proportion to the rotation speed.
  • target voltage Vdc * is set over both the region of Vdc * ⁇ Vin and the region of Vin ⁇ Vdc *. Can do.
  • the control circuit 90 selects the operation mode of the converter 40a based on the comparison between the target voltage Vdc * and the input voltage Vin. Specifically, converter 40a is operated in the step-up mode in the region of Vdc * ⁇ Vin, while converter 40a is operated in the step-down mode in the region of Vdc * ⁇ Vin.
  • the input voltage Vin compared with the target voltage Vdc * can be a detection value by a voltage sensor (not shown). Alternatively, a constant value set in advance according to the characteristics of the DC power supply 10 may be compared with the target voltage Vdc *.
  • FIG. 3 is a chart for explaining circuit operations in each operation mode of converter 40a.
  • step-down mode step-down circuit 20 operates, while step-up circuit 30 stops.
  • the output voltage Vdc can be controlled in the range of Vdc ⁇ Vin by PWM control of the switching element 21.
  • the step-down mode corresponds to the “second mode”.
  • FIG. 4 shows a waveform example for explaining the PWM control in the converter.
  • PWM control switching is performed according to a voltage comparison between a carrier wave voltage Vcw constituted by a periodic signal (for example, a sawtooth wave or a triangular wave) and a control voltage Vc corresponding to the target duty ratio DT *.
  • the element 21 is turned on / off.
  • the switching element 21 is turned off during the period of Vcw> Vc, while the switching element 21 is turned on during the period of Vc> Vcw.
  • Control voltage Vc can be set according to the product of carrier wave amplitude and target duty ratio DT *.
  • step-down circuit 20 outputs a DC voltage obtained by stepping down input voltage Vin to node N2 by ON / OFF control of switching element 21.
  • the booster circuit 30 stops power conversion by always turning off the switching element 31.
  • FIG. 5 is a partial circuit diagram for explaining the operation of the booster circuit 30 in the step-down mode.
  • step-up circuit 30 in step-down mode, step-up circuit 30 always turns off switching element 31 and stops power conversion (step-up operation), while voltage step-down circuit 20 outputs the voltage (step-down) output to node N2. It is necessary to form a path that passes through without conversion and is transmitted to the output node No.
  • the booster circuit 30 can always form the current path P1 from the node N2 to the output node No by the conduction (ON) of the diode 32. Furthermore, the current path P2 from the node N2 to the output node No can also be formed by always turning on the bypass switch 35.
  • FIG. 6 shows a waveform example of the output voltage in the step-down mode.
  • DC power supply 10 is constituted by a three-phase AC power supply and a rectifier circuit
  • a ripple voltage having a frequency three times the power supply frequency is generated in input voltage Vin.
  • the step-down circuit 20 performs power conversion (step-down) in accordance with the target voltage Vdc * set in the region of Vdc * ⁇ Vin, and the output voltage of the step-down circuit 20 is output node No. by a path including the bypass switch 35.
  • the DC voltage Vdc can be controlled to the target voltage Vdc *.
  • step-down circuit 20 stops power conversion (step-down operation) by always turning on switching element 21.
  • the boost mode corresponds to the “first mode”.
  • FIG. 7 is a partial circuit diagram for explaining the operation of the step-down circuit 20 in the step-up mode.
  • step-up mode step-down circuit 20 always turns on switching element 21 and stops power conversion (step-down operation).
  • boost mode it is necessary to form a path for transmitting the input voltage Vin from the input node Ni to the node N1.
  • the current path P3 from the input node Ni to the node N1 can be formed by the switching element 21 that is always turned on. Furthermore, by always turning on the bypass switch 25, a current path P4 from the input node Ni to the node N1 can be formed.
  • the electrical resistance value of the path for transmitting the input voltage Vin to the booster circuit 30 can be lowered in the boost mode.
  • the switching element 21 can be turned off to interrupt the current path P3.
  • boost circuit 30 formed of a boost chopper boosts input voltage Vin by PWM control of switching element 31 to control output voltage Vdc. (Vdc ⁇ Vdc).
  • step-up circuit 30 In the step-up mode in which only the step-up chopper (step-up circuit 30) operates, assuming that the duty ratio defined by the ratio of the ON period of the switching element 31 to the switching period Tc is DT, between the output voltage Vdc and the input voltage Vin, The following equation (2) is established.
  • Vdc 1 / (1-DT) ⁇ Vin (2)
  • the control voltage Vc can be set using a target duty ratio DT * obtained by modifying Equation (2).
  • the target duty ratio DT * can be calculated by the following equation (3).
  • DT * 1.0-1 / (Vdc * / Vin) (3)
  • a feedback term based on the voltage deviation ⁇ Vdc (Vdc * ⁇ Vdc) is further added to the value calculated by the expression (3) to obtain the target duty ratio DT. * Can also be calculated.
  • FIG. 8 shows a waveform example of the output voltage in the boost mode.
  • a ripple voltage having a frequency that is three times the power supply frequency is generated in the input voltage Vin.
  • the input voltage Vin is transmitted to the booster circuit 30 through a path including the bypass switch 25.
  • the booster circuit 30 performs power conversion (boost) according to the target voltage Vdc * set in the region of Vdc *> Vin, whereby the DC voltage Vdc can be controlled to the target voltage Vdc *.
  • DC is input to inverter 60 that drives AC electric motor 200 by configuring converter 40a so as to selectively operate the step-up circuit and the step-down circuit.
  • the voltage Vdc can be controlled over both a higher voltage range and a lower voltage range than the input voltage Vin.
  • the bypass switches 25 and 35 can suppress the power loss of the converter 40a that selectively operates the step-down circuit 20 and the step-up circuit 30.
  • AC motor 200 can be driven with high efficiency in both the heavy load region and the light load region.
  • FIG. 9 is a schematic waveform diagram for explaining PWM control for DC / AC voltage conversion in the inverter 60.
  • voltage command (phase voltage) Vac * indicates a sine wave voltage to be applied to each phase coil winding of AC electric motor 200.
  • the voltage command Vac * is generated as a sine wave voltage whose phase is shifted by 120 degrees between phases.
  • voltage command Vac * can be obtained by current feedback control of each phase of AC electric motor 200.
  • the torque of AC electric motor 200 can be controlled by the amplitude of voltage command Vac *.
  • the frequency of voltage command Vac * corresponds to the rotational speed of AC electric motor 200.
  • a PWM voltage having the amplitude of the DC voltage Vdc from the converter 40a is output to the AC motor 200 by the PWM control of the inverter 60.
  • a switching element (not shown) constituting the inverter 60 is turned on / off in accordance with a voltage comparison between the triangular carrier wave voltage Vcw and the voltage command Vac *, thereby generating a PWM voltage according to the voltage command Vac *.
  • the fundamental wave component of the PWM voltage corresponds to the voltage command Vac *.
  • the peak-to-peak value of the carrier wave voltage Vcw in the PWM control corresponds to the DC voltage Vdc from the converter 40a.
  • Vam in equation (4) is the amplitude of Vac *.
  • FIG. 10 is a flowchart illustrating a control process for setting the target voltage of the converter according to the first modification of the first embodiment.
  • control circuit 90 calculates AC voltage command Vac * from the operating state of AC electric motor 200 in step S100.
  • the AC voltage command Vac * is determined so as to have an amplitude and a frequency for appropriately controlling the torque and / or rotational speed of the AC motor 200 by feedback control of the rotational speed and / or current of the AC motor 200. .
  • step S110 the control circuit 90 calculates the target voltage Vdc * from the AC voltage command Vac * (amplitude Vam) obtained in step S100 according to the equation (4) or the equation (5).
  • the constant value can be set to be larger than 1.0 so that the inverter 60 is overmodulated. In the overmodulation operation, the voltage waveform is distorted, but the efficiency in the inverter 60 can be improved.
  • target voltage Vdc * of converter 40a has been described in this modification instead of the setting according to the rotational speed of AC electric motor 200 as shown in FIG.
  • the modulation rate or the voltage utilization rate in the inverter 60 is set to be constant, it can be set appropriately in accordance with the operating state of the AC motor 200.
  • FIG. 11 is a schematic circuit diagram for illustrating a configuration of power conversion device 100b according to the second modification of the first embodiment.
  • power conversion device 100b according to the second modification of the first embodiment includes converter 40b instead of converter 40a (FIG. 1).
  • converter 40b includes a plurality of (three in the example of FIG. 11) bypass switches 25 arranged in correspondence with step-down circuit 20 and constituted by switch elements 25a to 25c connected in parallel. Is different.
  • the switch elements 25a to 25c are commonly controlled by the control circuit 90. That is, on / off of the switch elements 25a to 25c is controlled in the same manner as the bypass switch 25.
  • the switch elements 25a to 25c can also be configured by electromagnetic relays, for example.
  • Securing the current capacity is facilitated by configuring the bypass switch with a plurality of switches (for example, electromagnetic relays) connected in parallel.
  • switches for example, electromagnetic relays
  • the current capacity is ensured by using a relatively inexpensive low-capacity switch, thereby reducing the cost compared to a configuration in which the capacity of a single bypass switch is increased. be able to.
  • bypass switch 25 is configured by a plurality of switch elements connected in parallel.
  • the same configuration is applied to the bypass switch 25 disposed corresponding to the booster circuit 30. be able to.
  • the bypass switches 25 and / or 35 by configuring the bypass switches 25 and / or 35 with a plurality of switch elements connected in parallel, the current capacity can be secured while suppressing the cost. Becomes easy.
  • FIG. 12 is a schematic circuit diagram for illustrating the configuration of the power conversion device according to the second embodiment.
  • FIG. 12 is compared with FIG. 1, and power conversion device 100c according to the second embodiment includes converter 40c instead of converter 40a (FIG. 1).
  • Converter 40c is different from converter 40a in that booster circuit 70 is provided instead of booster circuit 30.
  • the step-up circuit 70 includes diodes 71 and 72, switching elements 73 and 74, an intermediate capacitor 75, and a reactor 45 shared with the step-down circuit 20.
  • Diodes 71 and 72 are connected in series between node N2 and output node No. Each of diodes 71 and 72 is connected with the direction from node N2 toward output node No as the forward direction.
  • the switching elements 73 and 74 are connected in series between the node N2 and the reference voltage wiring 11. Intermediate capacitor 75 is electrically connected between the connection point of diodes 71 and 72 and the connection point of switching elements 73 and 74. The on / off of each of the switching elements 73 and 74 is controlled by the control circuit 90.
  • Reactor 45 is electrically connected between nodes N1 and N2 and shared by step-down circuit 20 and step-up circuit 70, as in the first embodiment.
  • the booster circuit 70 has a circuit configuration similar to that of the multilevel chopper circuit described in Patent Document 2.
  • the bypass switch 35 is connected between the node N2 and the output node No. That is, the bypass switch 35 is connected in parallel with the diodes 71 and 72.
  • the diodes 71 and 72 correspond to “first and second diodes”, respectively.
  • An example of the “semiconductor element” can be configured.
  • the node N2 corresponds to an “intermediate node”, and the switching elements 73 and 42 correspond to “first and second switching elements”.
  • Target voltage Vdc * of converter 40c can also be set according to the operating state of AC electric motor 200 in accordance with the first embodiment or the first modification thereof.
  • each of the bypass switches 25 and 35 can be configured by a plurality of switch elements connected in parallel as in the first modification of the first embodiment.
  • FIG. 13 shows circuit operations in each operation mode of converter 40c according to the second embodiment.
  • step-down circuit 20 performs target voltage Vdc * (Vdc * ⁇ Vin) by PWM control of switching element 21 described in the first embodiment. ), The output voltage Vdc can be controlled.
  • the bypass switch 25 connected in parallel with the PWM-controlled switching element 21 is always turned off as in the first embodiment.
  • step-down mode the step-up circuit 70 stops power conversion (step-up operation) by always turning off the switching elements 73 and 74.
  • the booster circuit 70 needs to form a path for transmitting the voltage output from the step-down circuit 20 to the node N2 as the output voltage Vdc to the output node No.
  • the bypass switch 35 is always turned on as in the first embodiment.
  • the electrical resistance value of the path for transmitting the output voltage (corresponding to Vdc) of step-down circuit 20 to output node No can be reduced as compared with the configuration in which only diodes 71 and 72 are used.
  • the switching element 21 In the boost mode applied in the region of Vdc * ⁇ Vin, the switching element 21 is always turned on and the bypass switch 25 is turned on as in the first embodiment.
  • the step-down circuit 20 can stop power conversion (step-down operation) and form a path for transmitting the input voltage Vin of the input node Ni to the node N1 corresponding to the input node of the step-up chopper.
  • the switching element 21 can be turned off after a current flows through the bypass switch 25.
  • the booster circuit 70 performs power conversion for boosting the input voltage Vin by PWM control of the switching elements 73 and 74.
  • the booster circuit 70 is in the first period in which only the switching element 74 is turned on, in the second period in which only the switching element 73 is turned on, and in the switching elements 73 and 74 are both turned on.
  • the PWM control of the switching elements 73 and 74 can be performed so as to combine at least a part of the third period during which the switching elements 73 and 74 are turned off.
  • it is also possible to alternately provide the first period and the second period by turning on and off the switching elements 73 and 74 alternately by PWM control using a carrier wave whose phase is shifted by 180 degrees.
  • booster circuit 70 provides a period for accumulating electric power from DC power supply 10 in reactor 45 and intermediate capacitor 75 while switching the current path including these reactors 45, whereby the input voltage transmitted to node N2 is provided. Can be performed (ie, “second power conversion”).
  • the booster circuit 70 can generate an output voltage Vdc higher than the DC voltage at the node N2 at the output node No according to the target voltage Vdc *.
  • the switching elements 73 and 74 that is, setting of the first to fourth periods
  • Loss can be suppressed and ripple of the output voltage Vdc can be suppressed.
  • the converter 40c can increase the efficiency of the converter 40c in the boost mode.
  • booster circuit 70 since two diodes 71 and 72 are connected to the path between node N2 and output node No, there is a concern about an increase in loss in the path in the step-down mode.
  • bypass switch 35 by arranging the bypass switch 35, the efficiency of the step-down mode can be maintained equivalent to that of the converter 40a.
  • the boosting circuit 70 having a large number of semiconductor elements can increase the efficiency in the boosting mode, and the bypass switch 35 can maintain the efficiency in the bucking mode.
  • booster circuit 70 multi-level chopper circuit
  • an arbitrary booster circuit including a semiconductor element and having a boosting function can be arranged. Also in this case, in the step-down mode, the same effect can be obtained by connecting a bypass switch for forming a voltage transmission path for bypassing the step-up circuit in parallel with the semiconductor element of the step-up circuit.
  • the step-down circuit 20 can include an arbitrary step-down circuit including a semiconductor element and having a step-down function in place of the step-down chopper.
  • the same effect can be obtained by connecting a bypass switch for forming a voltage transmission path for bypassing the step-down circuit 20 in parallel with the semiconductor element of the step-down circuit in the step-up mode.
  • Embodiment 3 FIG. In the third embodiment, a preferable control example when the input voltage Vin has a ripple component by configuring the DC power supply by an AC power supply and a rectifier circuit will be described.
  • FIG. 14 is a waveform example of the input voltage Vin from the DC power supply 10.
  • the input voltage Vin generates a ripple voltage having a frequency six times the power supply frequency by rectification of the three-phase AC voltage.
  • the input voltage Vin periodically varies between an upper limit value V1 corresponding to the amplitude of the three-phase AC voltage and a lower limit value V2.
  • the lower limit value V2 can be obtained in advance based on the power supply voltage value.
  • the target voltage Vdc * is set so as to stabilize the operation of the power conversion devices 100a to 100c described in the first and second embodiments and the modifications thereof.
  • FIG. 15 is a flowchart illustrating a method for setting the target voltage of the converter according to the third embodiment.
  • control circuit 90 sets target voltage Vdc * of converters 40a to 40c according to the contents described in FIG. 2 or 10 in accordance with the operating state of AC electric motor 200. . That is, in step S200, an ideal value of Vdc based on the operating state of AC electric motor 200 is calculated.
  • step S210 the control circuit 90 determines whether or not the target voltage Vdc * calculated in step S200 is within the range of V1 ⁇ Vdc * ⁇ V2.
  • V1 ⁇ Vdc * ⁇ V2 is satisfied (YES in S210)
  • converters 40a-40c operate in the boost mode.
  • the control circuit 90 skips step S220 and sets the target voltage set in step S200. Maintain Vdc *.
  • FIG. 16 shows an example of setting of the target voltage Vdc * of the converter and selection of the operation mode according to the third embodiment.
  • target voltage Vdc * is set in proportion to the rotational speed of AC electric motor 200 in the same manner as in FIG.
  • the target voltage Vdc * is set in the range of V1 ⁇ Vdc * ⁇ V2.
  • the amplitude of the AC voltage (PWM voltage) of the inverter 60 is maintained higher than the induced voltage of the AC motor 200 by applying the boost mode instead of the step-down mode. Therefore, it is possible to prevent the efficiency of the AC electric motor 200 from greatly decreasing.
  • the DC power source of the power conversion device is configured by the AC power source and the rectifier circuit, so that it is stable even when the input voltage has a ripple component. It is possible to operate automatically.
  • Embodiment 4 FIG.
  • the fourth embodiment is different from the third embodiment in how to switch between the step-down mode and the step-up mode.
  • FIG. 17 is a flowchart illustrating a method for setting the target voltage of the converter according to the fourth embodiment.
  • control circuit 90 sets target voltage Vdc * of converters 40a to 40c in accordance with the operating state of AC electric motor 200 in step S300. Also in step S300, as in step S200 of FIG. 15, an ideal Vdc value based on the operating state of AC electric motor 200 can be calculated in accordance with the contents described in FIG.
  • step S310 the control circuit 90 determines whether or not the target voltage Vdc * calculated in step S300 is within the range of V1 ⁇ Vdc * ⁇ V2.
  • V1 ⁇ Vdc * ⁇ V2 is satisfied (YES in S310)
  • converters 40a to 40c operate in the step-down mode.
  • the control circuit 90 skips step S320 and sets the target voltage set in step S300. Maintain Vdc *.
  • FIG. 18 shows an example of setting of the target voltage Vdc * of the converter and selection of the operation mode according to the fourth embodiment.
  • target voltage Vdc * is set in proportion to the rotational speed of AC electric motor 200 as in FIG. 2, in a range where the rotational speed is higher than N ⁇ b> 1 and lower than N ⁇ b> 2, as shown by the dotted line in step S ⁇ b> 300.
  • the target voltage Vdc * is set in the range of V1 ⁇ Vdc * ⁇ V2.
  • the efficiency of the AC motor 200 is deteriorated compared to the step-up mode, but the voltage of the smoothing capacitor 50 is reduced. Loss caused by switching of the inverter 60 can be reduced.
  • the power conversion device according to the fourth embodiment can operate stably even when the input voltage has a ripple component, similarly to the power conversion device according to the third embodiment. .
  • Embodiment 5 FIG. In the fifth embodiment, a control example for operating the power conversion device with high efficiency when the input voltage Vin has a ripple component as in the third and fourth embodiments will be described.
  • FIG. 19 is a flowchart illustrating a method for setting the target voltage of the converter according to the fifth embodiment.
  • control circuit 90 sets target voltage Vdc * of converters 40a to 40c in accordance with the operating state of AC electric motor 200 in step S400. Also in step S300, as in step S200 in FIG. 15 and step S300 in FIG. 17, an ideal Vdc value based on the operating state of AC electric motor 200 can be calculated according to the contents described in FIG. 2 or FIG. it can.
  • step S410 the control circuit 90 determines whether the target voltage Vdc * calculated in step S400 is within the range of V1 ⁇ Vdc * ⁇ V2.
  • V1 ⁇ Vdc * ⁇ V2 is satisfied (YES in S410)
  • the step-up mode and the step-down mode are frequently switched if the target voltage Vdc * is used as it is.
  • step S420 the control circuit 90 confirms whether Vdc * ⁇ V3.
  • converters 40a-40c operate in the step-down mode when they are within the range of Vdc * ⁇ V3, and conversely, converters 40a-40c operate in the step-up mode when out of the range. .
  • the control circuit 90 skips steps S420 to S440 and sets in step S400. Maintained target voltage Vdc *.
  • FIG. 20 shows an example of setting of the target voltage Vdc * of the converter and selection of the operation mode according to the fifth embodiment.
  • target voltage Vdc * is set in proportion to the rotational speed of AC electric motor 200 in the same manner as in FIG.
  • the target voltage Vdc * is set in the range of V1 ⁇ Vdc * ⁇ V2.
  • the boundary value V3 is set to a value of V1 ⁇ V3 ⁇ V2.
  • the boundary between the step-down mode and the step-up mode can be determined by the set value of the boundary value V3.
  • the boundary value V3 can be set based on the total loss of the power converter 100a or 100b and the AC motor 200.
  • the boundary value V3 can be set to be smaller than the total loss (first total loss).
  • the total loss (first total loss) when power conversion devices 100a and 100b operate in the boost mode is the same as that when power conversion devices 100a and 100b operate in the step-down mode.
  • the boundary value V3 can be set to be smaller than the total loss (second total loss).
  • the step-down mode is applied in the range of Vdc * ⁇ V3 and the step-up mode is applied in the range of Vdc * ⁇ V3, it is possible to reduce the loss caused by the power conversion devices 100a and 100b and the AC motor 200.
  • the power conversion device similarly to the power conversion devices according to the third and fourth embodiments, even when the input voltage has a ripple component, it can operate stably. In addition, it is possible to operate with high efficiency so as to minimize loss of the power conversion devices 100a and 100b and the AC motor 200.
  • the configuration in which the step-down circuit 20 and the step-up circuit 30 (70) are connected in this order in the direction from the DC power supply 10 to the inverter 60 is illustrated. It is possible to connect the booster circuit 30 (70) and the step-down circuit 20 in this order. Even in such a configuration, by arranging the bypass switches 25 and 35 corresponding to the step-down circuit 20 and the step-up circuit 30 (70), the heavy load region and the light load region can be selected according to the operating state of the AC motor 200. In both cases, the function of driving the AC motor with high efficiency can be realized. Even in such a configuration, the target voltage Vdc * can be corrected by the third to fifth embodiments.
  • the reactor 45 cannot be shared, and it is necessary to arrange the reactor in both the booster circuit and the step-down circuit.
  • FIG. 1 and the like by connecting the step-down circuit and the step-up circuit in this order, it is possible to further enjoy the effects of downsizing and cost reduction by sharing the reactor 45. Become.
  • the DC power supply 10 can also be constituted by a DC power storage element such as a battery or a capacitor.

Abstract

コンバータ(40a)は、直流電源(10)からの入力電圧(Vin)を降圧または昇圧した出力電圧(Vdc)を、交流電動機(200)を駆動するためのインバータ(60)に供給する。コンバータ(40a)では、昇圧モードにおいて、降圧回路(20)は停止される一方で昇圧回路(30)が動作するとともに、第1のバイパススイッチ(25)のオンによって直流電源(10)から昇圧回路(30)への経路が形成される。降圧モードにおいて、昇圧回路(30)は停止される一方で降圧回路(20)が動作するとともに、第2のバイパススイッチ(35)のオンによって降圧回路(20)からインバータ(60)への経路が形成される。

Description

電力変換装置
 この発明は電力変換装置に関し、より特定的には、交流電動機駆動用の電力変換装置に関する。
 従来、直流/交流電圧変換を行うインバータへ入力される直流電圧を可変制御する構成が用いられている。たとえば、特開2010-166719号公報(特許文献1)には、空気調和装置の圧縮機を駆動するモータ駆動制御装置として、三相交流電源および三相整流回路によって構成される直流電源と、モータに交流電圧を供給するインバータとの間に昇圧コンバータを配置する構成が記載されている。
 昇圧コンバータを用いることにより、インバータへ入力される直流電圧を、直流電源からの入力電圧よりも上昇することができる。これにより、誘起電圧が大きくなる高回転速度領域において、モータ電流増加による損失増大や温度上昇を回避して、モータを適切に駆動することができる。
 また、国際公開第2016/002053号(特許文献2)には、特許文献1と同様の直流電源およびインバータの間に、マルチレベルチョッパ回路が接続された電力変換装置の構成が記載されている。マルチレベルチョッパ回路では、交流電動機の負荷状態に応じて昇圧モードが切換えられることにより、スイッチング素子の小型化による低コスト化および、昇圧比の増加による交流電動機の運転範囲の拡大を図ることができる。
特開2010-166719号公報 国際公開第2016/002053号
 しかしながら、特許文献1および2では、インバータに入力される直流電圧を、直流電源からの入力電圧よりも低くすることができない。このため、モータの低回転速領域では、インバータから出力される交流電圧よりも、インバータへの入力電圧(すなわち、直流電源からの入力電圧)が高くなることによって、モータ鉄損やインバータの損失が増加してしまう問題があった。すなわち、特許文献1および2では、高回転速度域(すなわち、重負荷時)の効率を改善することができる一方で、軽負荷時(すなわち、低回転速度領域)における効率改善が課題となる。
 この発明はこのような問題点を解決するためになされたものであって、この発明の目的は、交流電動機駆動用の電力変換装置において、交流電動機の動作状態に応じて、重負荷領域および軽負荷領域の両方で交流電動機を高効率で駆動することである。
 本発明のある局面では、交流電動機を駆動するための電力変換装置は、交流電動機に交流電圧を供給するためのインバータと、直流電源とインバータとの間に接続されたコンバータと、第1および第2のバイパススイッチと、制御回路とを備える。コンバータは、入力ノードと、出力ノードと、第1の半導体素子を有する降圧回路と、第2の半導体素子を有する昇圧回路とを含む。入力ノードには、直流電源からの第1の直流電圧が入力される。出力ノードは、インバータの直流側と接続される。昇圧回路および降圧回路は、入力ノードおよび出力ノードの間に直列接続される。降圧回路は、動作時に入力された電圧を降圧するための第1の電力変換を実行するように構成される。昇圧回路は、動作時に入力された電圧を昇圧するための第2の電力変換を実行するように構成される。第1のバイパススイッチは、第1の半導体素子と並列に接続される。第2のバイパススイッチは、第2の半導体素子と並列に接続される。
 この発明によれば、交流電動機駆動用の電力変換装置において、交流電動機200の動作状態に応じて、重負荷領域および軽負荷領域の両方で交流電動機を高効率で駆動することができる。
実施の形態1に従う電力変換装置の構成を説明するための概略的な回路図である。 図1に示されたコンバータの目標電圧の設定例を説明する概念図である。 コンバータの各動作モードでの回路動作を説明する図表である。 コンバータでのPWM制御を説明するための波形例が示される。 降圧モードでの昇圧回路の動作を説明する部分的な回路図である。 降圧モードにおける出力電圧の波形図の一例である。 昇圧モードでの降圧回路の動作を説明する部分的な回路図である。 昇圧モードにおける出力電圧の波形図の一例である。 インバータでの直流/交流電圧変換のためのPWM制御を説明するための概略的な波形図である。 実施の形態1の変形例1に従うコンバータの目標電圧の設定のための制御処理を説明するフローチャートである。 実施の形態1の変形例2に従う電力変換装置の構成を説明するための概略的な回路図である。 実施の形態2に従う電力変換装置の構成を説明するための概略的な回路図である。 実施の形態2に従う電力変換装置におけるコンバータの各動作モードでの回路動作を説明する図表である。 図1に示された直流電源からの入力電圧の波形図である。 実施の形態3に従うコンバータの目標電圧の設定のための制御処理を説明するフローチャートである。 実施の形態3に従うコンバータの目標電圧の設定およびコンバータの動作モードの選択を説明する概念図である。 実施の形態4に従うコンバータの目標電圧の設定のための制御処理を説明するフローチャートである。 実施の形態4に従うコンバータの目標電圧の設定およびコンバータの動作モードの選択を説明する概念図である。 実施の形態5に従うコンバータの目標電圧の設定のための制御処理を説明するフローチャートである。 実施の形態5に従うコンバータの目標電圧の設定およびコンバータの動作モードの選択を説明する概念図である。
 以下に本発明の実施の形態について図面を参照して詳細に説明する。なお以下では図中の同一または相当部分には同一符号を付してその説明は原則的に繰返さないものとする。
 実施の形態1.
 図1は、実施の形態1に従う電力変換装置の構成を説明するための概略的な回路図である。
 図1を参照して、実施の形態1に従う電力変換装置100aは、直流電源10からの直流電圧Vinを、交流電動機200を駆動するための交流電圧に変換する。
 直流電源10は、たとえば、交流電源(たとえば、三相交流電源)12および整流回路15によって構成することができる。電力変換装置100aは、直流/直流電力変換を行なうためのコンバータ40aと、平滑コンデンサ50と、直流/交流電力変換を行うためのインバータ60と、制御回路90とを含む。制御回路90は、コンバータ40およびインバータ60の動作を制御する。制御回路90は、予め格納されたプログラムの実行によるソフトウェア処理および/または専用電子回路によるハードウェア処理によって、後述する各制御機能を実現するように構成される。たとえば、制御回路90は、いわゆるマイクロコンピュータによって構成することができる。
 コンバータ40aは、降圧回路20と、昇圧回路30と、バイパススイッチ25,35とを有する。後ほど説明するように、降圧回路20および昇圧回路30は、リアクトル45を共有するように構成されている。
 コンバータ40の入力ノードNiは、直流電源10の正極側と接続される。基準電圧配線11は、直流電源10の負極側と接続される。これにより、コンバータ40aには、直流電源10からの直流電圧Vin(以下、入力電圧Vinとも称する)が入力される。
 降圧回路20は、電力用半導体スイッチング素子(以下、単に「スイッチング素子」とも称する)21、ダイオード22、および、リアクトル45を有する。スイッチング素子21は、入力ノードNiおよびノードN1の間に接続される。バイパススイッチ25は、入力ノードNiおよびノードN1の間に、スイッチング素子21と並列に電気的に接続される。
 本実施の形態において、スイッチング素子は、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)によって構成することができる。なお、スイッチング素子21,31およびダイオード22,32を形成する半導体材料は特に限定されことはなく、Si(シリコン)の他、SiC(シリコンカーバイド)、GaN(ガリウムナイトライド)等を適用することも可能である。スイッチング素子21のオンオフは、制御回路90によって制御される。
 ダイオード22は、基準電圧配線11からノードN1へ向かう方向を順方向として、基準電圧配線11およびノードN1の間に電気的に接続される。昇圧回路30との間で共有されるリアクトル45は、ノードN1およびN2の間に電気的に接続される。このように、スイッチング素子21、ダイオード22およびリアクトル45によって、いわゆる、降圧チョッパを構成することができる。
 昇圧回路30は、スイッチング素子31、ダイオード32および、リアクトル45を有する。スイッチング素子31は、ノードN2および基準電圧配線11の間に電気的に接続される。バイパススイッチ35は、ノードN2および基準電圧配線11の間に、ダイオード32と並列に電気的に接続される。スイッチング素子31のオンオフは、制御回路90によって制御される。
 ダイオード22は、ノードN2からコンバータ40の出力ノードNoへ向かう方向を順方向として、ノードN2および出力ノードNoの間に電気的に接続される。ノードN1およびN2の間に接続されるリアクトル45は、上述のように、降圧回路20との間で共有される。このように、スイッチング素子31、ダイオード32およびリアクトル45によって、いわゆる、昇圧チョッパを構成することができる。
 バイパススイッチ25,35のオンオフは、制御回路90によって制御される。好ましくは、バイパススイッチ25は、スイッチング素子21のオン抵抗よりも低いオン抵抗を有する素子によって構成される。同様に、バイパススイッチ35は、ダイオード32のオン抵抗よりも低いオン抵抗を持つ素子で構成されることが好ましい。たとえば、バイパススイッチ25,35は、制御回路90からの励磁信号に応じて開閉制御される電磁リレーを用いて構成することができる。
 降圧チョッパ(降圧回路20)では、スイッチング素子21のオン期間およびオフ期間が繰り返し設けられる。これにより、リアクトル45およびスイッチング素子21を含む電流経路と、リアクトル45およびダイオード22を含む電流経路とを切換えることによって、入力された直流電圧(図1の例では、入力電圧Vin)を降圧する電力変換が実行される。一方で、スイッチング素子21を常時オンすると、降圧のための電力変換は停止されて、入力された直流電圧は変換されることなく降圧回路20を通過する。
 すなわち、スイッチング素子21は「第1の半導体素子」の一実施例に対応し、スイッチング素子21のオンオフによる降圧チョッパでの電力変換は「第1の電力変換」の一実施例に対応する。また、バイパススイッチ25は、「第1のバイパススイッチ」の一実施例に対応する。
 昇圧チョッパ(昇圧回路30)では、スイッチング素子31のオン期間およびオフ期間を繰り返し設けられる。これにより、リアクトル45およびスイッチング素子31を含む電流経路と、リアクトル45およびダイオード32を含む電流経路とを切換えることによって、入力された直流電圧(図1の例では、ノードN1の電圧)を昇圧する電力変換が実行される。具体的には、スイッチング素子31のオン期間で直流電源10からの電力をリアクトル45に電磁エネルギとして蓄積し、スイッチング素子31のオフ期間で、ダイオード32を経由して、直流電源10からの電力と、リアクトル45に蓄積された電磁エネルギとが、出力ノードNoへ出力されることで、入力電圧Vinを昇圧することができる。一方で、スイッチング素子31を常時オフしてダイオード32が常時オンすると、昇圧のための電力変換は停止されて、入力された直流電圧は変換されることなく昇圧回路30を通過する。
 すなわち、ダイオード32は「第2の半導体素子」の一実施例に対応し、スイッチング素子31のオンオフによる昇圧チョッパでの電力変換は「第2の電力変換」の一実施例に対応する。また、バイパススイッチ35は、「第2のバイパススイッチ」の一実施例に対応する。
 コンバータ40の出力ノードNoおよび基準電圧配線11は、インバータ60の直流リンク側と接続される。出力ノードNoおよび基準電圧配線11の間には、平滑コンデンサ50が接続される。以下では、出力ノードNoの直流電圧Vdcを、出力電圧Vdcとも称する。出力電圧Vdcは、電圧センサ51によって検出される。なお、図示を省略しているが、入力電圧Vinを検出するための電圧センサをさらに配置することも可能である。各電圧センサによる検出値は、制御回路90へ入力される。
 インバータ60は、コンバータ40aの出力電圧Vdcを、交流電動機200を可変速駆動するための交流電圧に変換する。インバータ60の出力電圧(交流電圧)は、交流電動機200のコイル巻線に供給される。交流電動機200は、たとえば、三相交流電動機によって構成される。このとき、インバータ60は、一般的な三相インバータによって構成することができる。
 インバータ60は、各相の上下アームに配置された複数のスイッチング素子(図示せず)を制御回路90によってオンオフ制御することによって、直流電圧Vdcをパルス幅変調(PWM)制御したパルス波形電圧(以下、PWM電圧とも称する)を発生する。インバータ60からのPWM電圧は、交流電動機200を駆動するための、擬似交流電圧として、交流電動機200のコイル巻線に供給される。たとえば、交流電動機200が三相交流電動機である場合には、インバータ60は、位相が120度ずつずれた交流電圧(PWM電圧)を、各相のコイル巻線へ供給する。
 交流電動機200が同期電動機で構成される場合には、回転速度に応じた振幅の誘起電圧が発生する。インバータ60から交流電動機200に印加される擬似交流電圧(PWM電圧)の振幅が、当該誘起電圧の振幅よりも低いと、交流電動機200を流れる電流の増加により、インバータ60および交流電動機200での電力損失の増加および温度上昇が懸念される。したがって、特許文献1,2にも記載されるように、PWM電圧の振幅(すなわち、コンバータ40aの出力電圧Vdc)が、誘起電圧の振幅よりも高くなるように、コンバータ40の出力電圧Vdcを、入力電圧Vinよりも高く制御することが好ましい。
 一方で、交流電動機200が軽負荷(たとえば、低回転速度)で動作しているときには、インバータ60からの交流電圧は、実効値が小さくなるように制御される。このとき、特許文献1,2のように、コンバータ40からの出力電圧Vdcを入力電圧Vinより低くできない構成では、出力電圧Vdcが交流電動機200に印加される交流電圧と比較して高すぎることによって、モータ電流のリップル成分が大きくなることにより、交流電動機200での鉄損の増加が懸念される。また、インバータ60でのスイッチング損失の増加も懸念される。
 また、交流電動機200が誘導電動機で構成される場合にも、低回転速度ではPWM電圧の振幅を小さくし、高回転速度ではPWM電圧の振幅を大きくすることが、効率面から好ましい。
 制御回路90は、図示しないセンサからの交流電動機200の動作状態の検出値(たとえば、回転速度および/または電流)に基づいて、コンバータ40aの出力電圧Vdcの目標値Vdc*(以下、目標電圧Vdc*とも称する)を設定し、Vdc=Vdc*とするようにコンバータ40aの動作を制御する。
 図2は、コンバータ40aの目標電圧Vdc*の設定例を説明する概念図である。
 図2を参照して、目標電圧Vdc*は、交流電動機200の回転速度に応じて、高回転速度領域では上昇する一方で低回転速度領域では低下するように設定される。たとえば、図2に例示されるように、回転速度に比例させて目標電圧Vdc*を設定することができる。
 本実施の形態に従うコンバータ40aは、降圧回路20および昇圧回路30の両方を有するため、Vdc*<Vinの領域、および、Vin≦Vdc*の領域の両方に亘って目標電圧Vdc*を設定することができる。
 制御回路90は、目標電圧Vdc*および入力電圧Vinの比較に基づき、コンバータ40aの動作モードを選択する。具体的には、Vdc*≧Vinの領域ではコンバータ40aを昇圧モードで動作させる一方で、Vdc*<Vinの領域ではコンバータ40aを降圧モードで動作させる。ここで、目標電圧Vdc*と比較される入力電圧Vinは、電圧センサ(図示せず)による検出値とすることができる。あるいは、直流電源10の特性に従って予め設定される定数値を目標電圧Vdc*と比較してもよい。
 図3は、コンバータ40aの各動作モードでの回路動作を説明するための図表である。
 図3を参照して、降圧モードでは、降圧回路20が動作する一方で、昇圧回路30は停止する。降圧チョッパで構成される降圧回路20では、スイッチング素子21のPWM制御により、Vdc≦Vinの範囲で出力電圧Vdcを制御することができる。降圧モードは「第2のモード」に対応する。
 降圧チョッパ(降圧回路20)のみが動作する降圧モードでは、デューティ比をDTとすると、出力電圧Vdcおよび入力電圧Vinの間には、下記(1)式が成立する。
 Vdc=DT・Vin  …(1)
 図4には、コンバータでのPWM制御を説明するための波形例が示される。
 図4を参照して、PWM制御では、周期信号(たとえば、のこぎり波や三角波)によって構成されるキャリア波の電圧Vcwと、目標デューティ比DT*に対応する制御電圧Vcとの電圧比較に従って、スイッチング素子21がオンオフされる。
 目標デューティ比DT*は、式(1)からDT*=(Vdc*/Vin)に設定することができる。あるいは、電圧偏差ΔVdc=(Vdc*-Vdc)のフィードバック項をさらに加算して、目標デューティ比DT*を算出することも可能である。
 降圧チョッパでは、Vcw>Vcの期間ではスイッチング素子21がオフされる一方で、Vc>Vcwの期間ではスイッチング素子21がオンされる。スイッチング素子21のオン期間およびオフ期間の和で示されるスイッチング周期Tcに対する、オン期間Tonの比が、式(1)でのデューティ比DTに相当する(DT=Ton/Tc)。制御電圧Vcは、キャリア波の振幅および目標デューティ比DT*の積に従って設定することができる。
 再び図3および図2を参照して、降圧モードにおいて、降圧回路20は、スイッチング素子21のオンオフ制御によって、入力電圧Vinを降圧した直流電圧をノードN2に出力する。一方で、昇圧回路30は、スイッチング素子31を常時オフとすることによって、電力変換を停止する。
 図5は、降圧モードでの昇圧回路30の動作を説明する部分的な回路図である。
 図5を参照して、降圧モードにおいて、昇圧回路30は、スイッチング素子31を常時オフして電力変換(昇圧動作)を停止する一方で、降圧回路20がノードN2に出力した電圧(降圧)を変換することなく通過させて、出力ノードNoへ伝達する経路を形成する必要がある。
 スイッチング素子31が常時オフされることにより、昇圧回路30では、ダイオード32の導通(オン)によって、ノードN2から出力ノードNoへの電流経路P1を常時形成することができる。さらに、バイパススイッチ35が常時オンすることによっても、ノードN2から出力ノードNoへの電流経路P2を形成することができる。
 このように、バイパススイッチ35による電流経路P2をダイオード32と並列に設けることにより、降圧モードにおいて、降圧回路20の出力電圧を出力ノードNoへ伝達する経路の電気抵抗値を低下できるので、コンバータ40aの電力損失を抑制することができる。
 図6には、降圧モードにおける出力電圧の波形例が示される。
 図6を参照して、直流電源10が三相交流電源および整流回路で構成されていると、入力電圧Vinには、電源周波数の3倍の周波数を有するリップル電圧が発生している。降圧モードでは、Vdc*<Vinの領域に設定された目標電圧Vdc*に従って降圧回路20が電力変換(降圧)を実行するとともに、降圧回路20の出力電圧がバイパススイッチ35を含む経路によって出力ノードNoに伝達されることによって、直流電圧Vdcを目標電圧Vdc*に制御することができる。
 再び図3および図2を参照して、昇圧モードでは、降圧回路20は、スイッチング素子21を常時オンすることによって電力変換(降圧動作)を停止する。昇圧モードは「第1のモード」に対応する。
 図7は、昇圧モードでの降圧回路20の動作を説明する部分的な回路図である。
 図7を参照して、昇圧モードにおいて、降圧回路20は、スイッチング素子21を常時オンして電力変換(降圧動作)を停止する。一方で、昇圧モードでは、入力ノードNiからノードN1へ入力電圧Vinを伝達する経路を形成する必要がある。
 降圧回路20では、常時オンされたスイッチング素子21によって、入力ノードNiからノードN1への電流経路P3を形成することができる。さらに、バイパススイッチ25が常時オンすることによって、入力ノードNiからノードN1への電流経路P4を形成することができる。
 このように、バイパススイッチ25による電流経路P4をスイッチング素子21と並列に設けることにより、昇圧モードにおいて、入力電圧Vinを昇圧回路30へ伝達する経路の電気抵抗値を低下できる。なお、昇圧モードでは、バイパススイッチ25に電流が流れた後に、スイッチング素子21をオフして電流経路P3を遮断することも可能である。
 再び図3および図2を参照して、昇圧モードにおいて、昇圧チョッパで構成される昇圧回路30では、スイッチング素子31のPWM制御により、入力電圧Vinを昇圧して、出力電圧Vdcを制御することができる(Vdc≧Vdc)。
 昇圧チョッパ(昇圧回路30)のみが動作する昇圧モードでは、スイッチング周期Tcに対するスイッチング素子31のオン期間の比で定義されるデューティ比をDTとすると、出力電圧Vdcおよび入力電圧Vinの間には、下記(2)式が成立する。
 Vdc=1/(1-DT)・Vin  …(2)
 昇圧モードでは、図4で説明したPWM制御において、制御電圧Vcは、式(2)を変形して得られる目標デューティ比DT*を用いて設定することができる。具体的には、目標デューティ比DT*は下記の式(3)で算出することができる。
 DT*=1.0-1/(Vdc*/Vin)  …(3)
 なお、降圧回路20の制御で説明したのと同様に、式(3)で算出された値に、電圧偏差ΔVdc=(Vdc*-Vdc)に基づくフィードバック項をさらに加算して、目標デューティ比DT*を算出することも可能である。
 図8には、昇圧モードにおける出力電圧の波形例が示される。
 図8を参照して、図7と同様に、入力電圧Vinには、電源周波数の3倍の周波数を有するリップル電圧が発生している。昇圧モードでは、入力電圧Vinがバイパススイッチ25を含む経路によって昇圧回路30へ伝達される。さらに、Vdc*>Vinの領域に設定された目標電圧Vdc*に従って昇圧回路30が電力変換(昇圧)を実行することにより、直流電圧Vdcを目標電圧Vdc*に制御することができる。
 以上説明したように、実施の形態1に従う電力変換装置では、昇圧回路および降圧回路を選択的に動作させるようにコンバータ40aを構成することにより、交流電動機200を駆動するインバータ60に入力される直流電圧Vdcを、入力電圧Vinよりも高電圧の範囲および低電圧の範囲の両方に亘って制御することができる。さらに、バイパススイッチ25,35によって、降圧回路20および昇圧回路30を選択的に動作させるコンバータ40aの電力損失を抑制できる。この結果、交流電動機200の動作状態に応じて、重負荷領域および軽負荷領域の両方において交流電動機200を高効率で駆動することができる。
 実施の形態1の変形例1.
 実施の形態1の変形例1では、コンバータ40aの目標電圧Vdc*の他の設定例を説明する。具体的には、インバータ60での電力変換に係る指標が一定となるように、目標電圧Vdc*を設定する例が示される。
 図9は、インバータ60での直流/交流電圧変換のためのPWM制御を説明するための概略的な波形図である。
 図9を参照して、電圧指令(相電圧)Vac*は、交流電動機200の各相コイル巻線に印加されるべき正弦波電圧を示している。三相交流電動機では、電圧指令Vac*は、相間で120度ずつ位相がずれた正弦波電圧として生成される。たとえば、交流電動機200の各相の電流フィードバック制御によって、電圧指令Vac*を求めることができる。電圧指令Vac*の振幅によって、交流電動機200のトルクを制御することができる。また、電圧指令Vac*の周波数は、交流電動機200の回転速度に対応する。
 インバータ60のPWM制御によって、コンバータ40aからの直流電圧Vdcを振幅とするPWM電圧が、交流電動機200に出力される。三角波のキャリア波の電圧Vcwと、電圧指令Vac*との電圧比較に従って、インバータ60を構成するスイッチング素子(図示せず)がオンオフ制御されることにより、電圧指令Vac*に従うPWM電圧が発生される。PWM電圧の基本波成分は、電圧指令Vac*に相当する。また、PWM制御におけるキャリア波電圧Vcwのピーク・トゥ・ピーク値は、コンバータ40aからの直流電圧Vdcに相当する。
 一般に、インバータ60による変調率K1および電圧利用率K2は、下記の(4)式および(5)式で示されることが知られている。
 K1=Vam/(Vdc/2) …(4)
 K2=√2・Vlm/Vdc  …(5)
 なお、式(4)中におけるVamは、Vac*の振幅である。式(5)中において、Vlmは、Vac*(相電圧)によって生じる交流電動機200での線間電圧の実効値であり、Vlm=√(3/2)・Vamの関係がある。
 図10は、実施の形態1の変形例1に従うコンバータの目標電圧の設定のための制御処理を説明するフローチャートである。
 図10を参照して、制御回路90はステップS100により、交流電動機200の動作状態から、交流電圧指令Vac*を算出する。たとえば、交流電動機200の回転速度および/または電流のフィードバック制御により、交流電動機200のトルクおよび/または回転速度を適切に制御するための振幅および周波数を有するように、交流電圧指令Vac*が求められる。
 制御回路90は、ステップS110により、ステップS100で求められた交流電圧指令Vac*(振幅Vam)から、式(4)または式(5)に従って、目標電圧Vdc*を算出する。
 たとえば、式(4)においてK1が一定値(たとえば、K1=1.0、すなわち、変調率=100(%))、または、式(5)においてK2が一定値(たとえば、K2=1.0、すなわち、電圧利用率=100(%))となるように、目標電圧Vdc*を算出することができる。あるいは、上記一定値は、インバータ60を過変調運転するように、1.0より大きく設定することも可能である。過変調運転では、電圧波形に歪みが生じるが、インバータ60での効率を改善することができる。
 このように、実施の形態1に従う電力変換装置において、コンバータ40aの目標電圧Vdc*は、図2に示したように交流電動機200の回転速度に従った設定に代えて、この変形例で説明したように、インバータ60での変調率または電圧利用率が一定となるように設定しても、交流電動機200の動作状態に対応させて適切に設定することができる。
 実施の形態1の変形例2.
 図11は、実施の形態1の変形例2に従う電力変換装置100bの構成を説明するための概略的な回路図である。
 図11を図1と比較して、実施の形態1の変形例2に従う電力変換装置100bは、コンバータ40a(図1)に代えて、コンバータ40bを備える。コンバータ40bは、コンバータ40aと比較して、降圧回路20に対応して配置されるバイパススイッチ25が、複数個(図11の例では3個)の並列接続されたスイッチ素子25a~25cによって構成されている点で異なる。スイッチ素子25a~25cは、制御回路90によって共通に制御される。すなわち、スイッチ素子25a~25cのオンオフは、バイパススイッチ25と同様に制御される。スイッチ素子25a~25cについても、たとえば、電磁リレーによって構成することができる。
 コンバータ40bのその他の部分の構成および動作は、コンバータ40aと同様であり、電力変換装置100bについても、コンバータ40b以外の部分の構成および動作は、電力変換装置100aと同様であるので、詳細な説明は繰り返さない。したがって、コンバータ40bによる出力電圧Vdcの制御は、実施の形態1のコンバータ40aと同様であり、インバータ60による交流電動機200の制御についても実施の形態1と同様である。
 バイパススイッチを、並列接続された複数個のスイッチ(たとえば、電磁リレー)で構成することにより、電流容量の確保は容易となる。特に、大容量へ対応する場合には、比較的安価な低容量のスイッチを用いて電流容量を確保することにより、単一のバイパススイッチの容量を大きくする構成と比較して、コストを抑制することができる。
 なお、図11では、バイパススイッチ25を並列接続された複数個のスイッチ素子で構成する例を説明したが、昇圧回路30に対応して配置されるバイパススイッチ25についても、同様の構成を適用することができる。
 すなわち、実施の形態1の変形例2によれば、バイパススイッチ25および/または35を、並列接続された複数個のスイッチ素子によって構成することにより、コストを抑制した上で電流容量を確保することが容易となる。
 実施の形態2.
 図12は、実施の形態2に従う電力変換装置の構成を説明するための概略的な回路図である。
 図12を図1と比較して、実施の形態2に従う電力変換装置100cは、コンバータ40a(図1)に代えて、コンバータ40cを備える。コンバータ40cは、コンバータ40aと比較して、昇圧回路30に代えて昇圧回路70を有する点で異なる。
 昇圧回路70は、ダイオード71,72と、スイッチング素子73,74と、中間コンデンサ75と、降圧回路20と共有されるリアクトル45とを有する。
 ダイオード71および72は、ノードN2および出力ノードNoの間に直列接続される。ダイオード71および72の各々は、ノードN2から出力ノードNoに向かう方向を順方向として接続される。
 スイッチング素子73および74は、ノードN2および基準電圧配線11の間に直列に接続される。中間コンデンサ75は、ダイオード71および72の接続点と、スイッチング素子73および74の接続点との間に電気的に接続される。スイッチング素子73,74の各々のオンオフは、制御回路90によって制御される。
 リアクトル45は、実施の形態1と同様に、ノードN1およびN2の間に電気的に接続されて、降圧回路20および昇圧回路70によって共有される。昇圧回路70は、特許文献2に記載されたマルチレベルチョッパ回路と同様の回路構成を有している。
 コンバータ40cにおいても、バイパススイッチ35は、ノードN2および出力ノードNoの間に接続される。すなわち、バイパススイッチ35は、ダイオード71および72と並列に接続されており、コンバータ40cでは、ダイオード71および72は「第1および第2のダイオード」にそれぞれ対応し、ダイオード71および72によって「第2の半導体素子」の一実施例を構成することができる。また、ノードN2は「中間ノード」に対応し、スイッチング素子73および42は「第1および第2のスイッチング素子」に対応する。
 コンバータ40cのその他の部分の構成および動作は、コンバータ40aと同様であり、電力変換装置100cについて、コンバータ40c以外の部分の構成および動作は、電力変換装置100aと同様であるので、詳細な説明は繰り返さない。コンバータ40cの目標電圧Vdc*についても、実施の形態1またはその変形例1に従って、交流電動機200の動作状態に対応させて設定することができる。
 また、実施の形態2においても、バイパススイッチ25および35の各々は、実施の形態1の変形例1と同様に、並列接続された複数個のスイッチ素子によって構成することが可能である。
 図13には、実施の形態2に従うコンバータ40cの各動作モードでの回路動作が示される。
 図13を参照して、Vdc*<Vinの領域で適用される降圧モードでは、降圧回路20は、実施の形態1で説明したスイッチング素子21のPWM制御によって、目標電圧Vdc*(Vdc*≦Vin)に従って出力電圧Vdcを制御することができる。PWM制御されるスイッチング素子21と並列に接続されたバイパススイッチ25は、実施の形態1と同様に常時オフされる。
 降圧モードでは、昇圧回路70は、スイッチング素子73および74を常時オフすることによって電力変換(昇圧動作)を停止する。一方で、昇圧回路70は、降圧回路20がノードN2に出力した電圧を、出力電圧Vdcとして出力ノードNoへ伝達する経路を形成する必要がある。
 降圧モードにおいて、バイパススイッチ35は、実施の形態1と同様に常時オンされる。これにより、降圧モードにおいて、降圧回路20の出力電圧(Vdc相当)を出力ノードNoへ伝達する経路の電気抵抗値を、ダイオード71,72のみで伝達する構成と比較して低下することができる。
 Vdc*≧Vinの領域で適用される昇圧モードにおいて、実施の形態1と同様に、スイッチング素子21を常時オンするとともに、バイパススイッチ25がオンされる。これにより、降圧回路20が電力変換(降圧動作)を停止するとともに、入力ノードNiの入力電圧Vinを、昇圧チョッパの入力ノードに相当するノードN1へ伝達する経路を形成することができる。実施の形態1で説明した様に、スイッチング素子21は、バイパススイッチ25に電流が流れた後にオフすることも可能である。
 一方で、昇圧回路70は、スイッチング素子73および74のPWM制御によって、入力電圧Vinを昇圧する電力変換を実行する。昇圧回路70は、特許文献2の図3に示されるように、スイッチング素子74のみがオンされる第1の期間、スイッチング素子73のみがオンされる第2の期間、スイッチング素子73,74ともオンされる第3の期間、および、スイッチング素子73,74ともオフされる第4の期間のうちの少なくとも一部を組み合わせるように、スイッチング素子73,74のPWM制御を行うことができる。特に、位相が180度ずれたキャリア波を用いたPWM制御によって、スイッチング素子73および74が交互にオンオフすることにより、第1の期間および第2の期間を交互に設けることも可能である。
 上記第1~第4の期間では、リアクトル45を含む異なった電流経路が形成される。したがって、昇圧回路70は、これらのリアクトル45を含む電流経路を切換えながら、直流電源10からの電力を、リアクトル45および中間コンデンサ75に蓄積する期間を設けることによって、ノードN2に伝達された入力電圧を昇圧する電力変換(すなわち、「第2の電力変換」)を実行することができる。
 したがって、昇圧回路70は、昇圧回路30と同様に、目標電圧Vdc*に従って、ノードN2の直流電圧よりも高い出力電圧Vdcを、出力ノードNoに生成することができる。この際に、中間コンデンサ75の電圧をVdc/2に制御するようにスイッチング素子73,74のオンオフ(すなわち、第1~4の期間の設定)を制御することによって、スイッチング素子73,74での損失の抑制、および、出力電圧Vdcのリップルの抑制を図ることができる。
 この結果、コンバータ40cでは、昇圧モードにおけるコンバータ40cの効率を高めることができる。一方で、昇圧回路70では、ノードN2および出力ノードNoの間の経路に2個のダイオード71,72が接続されるので、降圧モードにおける当該経路での損失の増加が懸念される。しかしながら、バイパススイッチ35を配置することによって、降圧モードの効率についても、コンバータ40aと同等に維持できる。
 このように、実施の形態2に従う電力変換装置によれば、半導体素子数が多い昇圧回路70によって昇圧モードでの効率を高めるとともに、バイパススイッチ35によって降圧モードでの効率を維持することができる。
 なお、実施の形態2での昇圧回路70(マルチレベルチョッパ回路)に代えて、半導体素子を含んで構成された、昇圧機能を有する任意の昇圧回路を配置することも可能である。この場合にも、降圧モードにおいて、昇圧回路をバイパスする電圧伝達経路を形成するためのバイパススイッチを、当該昇圧回路の半導体素子と並列に接続することにより、同様の効果を得ることができる。
 同様に、各実施の形態において、降圧回路20についても、半導体素子を含んで構成された、降圧機能を有する任意の降圧回路を降圧チョッパに代えて配置することが可能である。この場合にも、昇圧モードにおいて、降圧回路20をバイパスする電圧伝達経路を形成するためのバイパススイッチを、当該降圧回路の半導体素子と並列に接続することにより、同様の効果を得ることができる。
 実施の形態3.
 実施の形態3では、直流電源が交流電源および整流回路によって構成されることによって、入力電圧Vinがリップル成分を有しているときの好ましい制御例について説明する。
 図14は、直流電源10からの入力電圧Vinの波形例である。
 図14を参照して、入力電圧Vinには、三相交流電圧の整流によって、電源周波数の6倍の周波数のリップル電圧が発生する。これにより、入力電圧Vinは、三相交流電圧の振幅に相当する上限値V1と、下限値V2との間で周期的に変動する。下限値V2は、電源電圧値に基づいて予め求めることが可能である。
 このように入力電圧Vinが変動することにより、交流電動機200の動作状態に対応して設定された目標電圧Vdc*がV1~V2の範囲内であるときには、昇圧モードおよび降圧モードの切換えが頻繁に発生することで、コンバータ40a~40cの動作が不安定化することが懸念される。
 したがって、実施の形態3では、実施の形態1および2ならびにその変形例で説明した電力変換装置100a~100cの動作を安定化するように目標電圧Vdc*を設定する。
 図15は、実施の形態3に従うコンバータの目標電圧の設定手法を説明するフローチャートである。
 図15を参照して、制御回路90は、ステップS200により、交流電動機200の動作状態に対応させて、図2または図10で説明した内容に従って、コンバータ40a~40cの目標電圧Vdc*を設定する。すなわち、ステップS200では、交流電動機200の動作状態に基づく理想的なVdcの値が算出されている。
 制御回路90は、ステップS210により、ステップS200で算出した目標電圧Vdc*が、V1<Vdc*<V2の範囲内であるかどうかを判定する。V1<Vdc*<V2の範囲内であるとき(S210のYES判定時)には、このままの目標電圧Vdc*を用いると、昇圧モードおよび降圧モードが頻繁に切換わることが懸念される。したがって制御回路は、ステップS220により、目標電圧Vdc*=V2に修正する。これにより、コンバータ40a~40cは、昇圧モードで動作することになる。
 一方で、制御回路90は、目標電圧Vdc*がV1<Vdc*<V2の範囲内にないとき(S210のNO判定時)には、ステップS220をスキップして、ステップS200で設定された目標電圧Vdc*を維持する。
 図16には、実施の形態3によるコンバータの目標電圧Vdc*の設定および動作モードの選択の一例が示される。
 図16を参照して、図2と同様に交流電動機200の回転速度に比例して目標電圧Vdc*を設定すると、回転速度がN1より高くN2以下の範囲では、ステップS200では、点線で示すようにV1<Vdc*<V2の範囲に、目標電圧Vdc*が設定されてしまう。
 図16中に実線で示されるように、ステップS210~S220の処理により、V1<Vdc*<V2の電圧範囲内では、強制的にVdc*=V2に修正される。したがって、回転速度がN1~N2の範囲では、継続的に昇圧モードが適用されることにより、昇圧モードおよび降圧モードの切換えが頻繁に発生することを回避して、コンバータ40a~40cを安定的に動作させることができる。
 なお、V1<Vdc*<V2の範囲内において、降圧モードではなく昇圧モードを適用することにより、インバータ60の交流電圧(PWM電圧)の振幅を、交流電動機200の誘起電圧よりも高く維持することができるので、交流電動機200の効率が大幅に低下することを防止できる。
 このように、実施の形態3に従う電力変換装置によれば、電力変換装置の直流電源が交流電源および整流回路で構成されることによって、入力電圧がリップル成分を有しているときにも、安定的に動作することが可能である。
 実施の形態4.
 実施の形態4では、直流電源が交流電源および整流回路によって構成されることによって、入力電圧Vinがリップル成分を有しているときの好ましい他の制御例について説明する。実施の形態4では、実施の形態3と比較して、降圧モードと昇圧モードの切り替え方が異なる。
 図17は、実施の形態4に従うコンバータの目標電圧の設定手法を説明するフローチャートである。
 図17を参照して、制御回路90は、ステップS300により、交流電動機200の動作状態に対応させて、コンバータ40a~40cの目標電圧Vdc*を設定する。ステップS300においても、図15のステップS200と同様に、図2または図10で説明した内容に従って、交流電動機200の動作状態に基づく理想的なVdcの値を算出することができる。
 制御回路90は、ステップS310により、ステップS300で算出した目標電圧Vdc*が、V1<Vdc*<V2の範囲内であるかどうかを判定する。V1<Vdc*<V2の範囲内であるとき(S310のYES判定時)には、このままの目標電圧Vdc*を用いると、昇圧モードおよび降圧モードが頻繁に切換わることが懸念される。したがって制御回路は、ステップS320により、目標電圧Vdc*=V1に修正する。これにより、コンバータ40a~40cは、降圧モードで動作することになる。
 一方で、制御回路90は、目標電圧Vdc*がV1<Vdc*<V2の範囲内にないとき(S310のNO判定時)には、ステップS320をスキップして、ステップS300で設定された目標電圧Vdc*を維持する。
 図18には、実施の形態4によるコンバータの目標電圧Vdc*の設定および動作モードの選択の一例が示される。
 図18を参照して、図2と同様に交流電動機200の回転速度に比例して目標電圧Vdc*を設定すると、回転速度がN1より高くN2以下の範囲では、ステップS300では、点線で示すようにV1<Vdc*<V2の範囲に、目標電圧Vdc*が設定されてしまう。
 図18中に実線で示されるように、ステップS310~S320の処理により、V1<Vdc*<V2の電圧範囲内では、強制的にVdc*=V1に修正される。したがって、回転速度がN1~N2の範囲では、継続的に降圧モードが適用されることにより、昇圧モードおよび降圧モードの切換えが頻繁に発生することを回避して、コンバータ40a~40cを安定的に動作させることができる。
 V1<Vdc*<V2の範囲内において、昇圧モードではなく降圧モードを適用することにより、昇圧モードと比較して交流電動機200の効率が悪化するものの、平滑コンデンサ50の電圧が低くなることから、インバータ60のスイッチングによって生じる損失を低減することができる。
 このように、実施の形態4に従う電力変換装置によっても、実施の形態3に従う電力変換装置と同様に入力電圧がリップル成分を有しているときにも、安定的に動作することが可能である。
 実施の形態5.
 実施の形態5では、実施の形態3および4と同様に入力電圧Vinがリップル成分を有しているときに、電力変換装置を高効率に動作させるための制御例を説明する。
 図19は、実施の形態5に従うコンバータの目標電圧の設定手法を説明するフローチャートである。
 図19を参照して、制御回路90は、ステップS400により、交流電動機200の動作状態に対応させて、コンバータ40a~40cの目標電圧Vdc*を設定する。ステップS300においても、図15のステップS200および図17のステップS300と同様に、図2または図10で説明した内容に従って、交流電動機200の動作状態に基づく理想的なVdcの値を算出することができる。
 制御回路90は、ステップS410により、ステップS400で算出した目標電圧Vdc*が、V1<Vdc*<V2の範囲内であるかどうかを判定する。V1<Vdc*<V2の範囲内であるとき(S410のYES判定時)には、このままの目標電圧Vdc*を用いると、昇圧モードおよび降圧モードが頻繁に切換わることが懸念される。
 そこで、制御回路90は、ステップS420により、Vdc*<V3の範囲内であるか確認する。制御回路90は、Vdc*<V3であるときには(S420のYES判定時)、ステップS430により、Vdc*=V1に修正する。一方で、制御回路90は、Vdc*≧V3であるときには(S420のNO判定時)、ステップS440により、Vdc*=V2に修正する。
 これにより、コンバータ40a~40cは、Vdc*<V3の範囲内にあるときは、降圧モードで動作し、逆に範囲外であるときは、コンバータ40a~40cは、昇圧モードで動作することになる。
 これに対して、制御回路90は、目標電圧Vdc*がV1<Vdc*<V2の範囲内にないとき(S410のNO判定時)には、ステップS420~S440をスキップして、ステップS400で設定された目標電圧Vdc*を維持する。
 図20には、実施の形態5によるコンバータの目標電圧Vdc*の設定および動作モードの選択の一例が示される。
 図20を参照して、図2と同様に交流電動機200の回転速度に比例して目標電圧Vdc*を設定すると、回転速度がN1より高くN2以下の範囲では、ステップS400では、点線で示すようにV1<Vdc*<V2の範囲に、目標電圧Vdc*が設定されてしまう。
 図20中に実線で示されるように、ステップS410~S440の処理により、V1<Vdc*<V2の範囲内では、Vdc*と予め定められた境界値V3との比較に従って、Vdc*=V1またはVdc*=V2に修正される。したがって、回転速度がN1~N2の範囲では、昇圧モードおよび降圧モードの切換えが頻繁に発生することを回避して、コンバータ40a~40cを安定的に動作させることができる。
 ここで、境界値V3は、V1<V3<V2の値で設定される。境界値V3の設定値によって、降圧モードと昇圧モードの境目を決定できる。境界値V3は、電力変換装置100aまたは100bと、交流電動機200のトータル損失に基づいて設定することができる。例えば、V1<Vdc*<V2の範囲において、実施の形態3のように昇圧モードで固定的に動作させた場合における、電力変換装置100a,100b(昇圧回路30およびインバータ60)ならびに交流電動機200のトータル損失(第1の全損失)と、実施の形態3のように降圧モードで固定的に動作させた場合における、電力変換装置100a,100b(降圧回路20およびインバータ60)ならびに交流電動機200のトータル損失(第2の全損失)とを、シミュレーション等によって各Vdc*に対して取得する。そして、昇圧モードで固定的に動作させた場合における第1の全損失と、降圧モードで固定的に動作させた場合における第2の全損失とが等しくなるポイントをV3に設定することができる。
 これにより、Vdc*<V3の範囲では、電力変換装置100a,100bが降圧モードで動作したときのトータル損失(第2の全損失)が、電力変換装置100a,100bが昇圧モードで動作したときのトータル損失(第1の全損失)よりも小さくなるように、境界値V3を設定することができる。同様に、Vdc*>V3の範囲では、電力変換装置100a,100bが昇圧モードで動作したときのトータル損失(第1の全損失)が、電力変換装置100a,100bが降圧モードで動作したときのトータル損失(第2の全損失)よりも小さくなるように、境界値V3を設定することができる。この結果、Vdc*<V3の範囲では降圧モードを適用し、Vdc*≧V3の範囲では昇圧モードを適用することによって、電力変換装置100a,100bおよび交流電動機200による損失を低減することができる。
 このように、実施の形態5に従う電力変換装置によれば、実施の形態3および4に従う電力変換装置と同様に入力電圧がリップル成分を有しているときにも、安定的に動作することが可能であるとともに、電力変換装置100a,100bおよび交流電動機200の損失を最小化するように高効率で動作することが可能である。
 なお、実施の形態1および2、ならびに、それらの変形例では、直流電源10からインバータ60へ向かう方向で、降圧回路20、昇圧回路30(70)の順で接続される構成を例示したが、昇圧回路30(70)および降圧回路20の順に接続する構成とすることも可能である。このような構成としても、バイパススイッチ25,35を降圧回路20および昇圧回路30(70)に対応して配置することにより、交流電動機200の動作状態に応じて、重負荷領域および軽負荷領域の両方において交流電動機を高効率で駆動する機能を実現することができる。なお、このような構成においても、実施の形態3~5によって目標電圧Vdc*を修正することが可能である。
 しかしながら、昇圧回路および降圧回路の順に接続した構成では、リアクトル45を共有することができなくなり、昇圧回路および降圧回路の両方にリアクトルを配置することが必要となる。言い換えると、図1等に例示したように降圧回路および昇圧回路の順で接続される構成とすることによって、リアクトル45の共有による、小型化および低コスト化の効果をさらに享受することが可能となる。
 なお、実施の形態1および2、ならびに、それらの変形例では、直流電源10は、バッテリやコンデンサ等の直流電力の蓄積要素によって構成することも可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 直流電源、11 基準電圧配線、15 整流回路、20 降圧回路、21,31,73,74 スイッチング素子、22,32,71,72 ダイオード、25,35 バイパススイッチ、25a,25c スイッチ素子、30,70 昇圧回路、40,40a,40b,40c コンバータ、45 リアクトル、50 平滑コンデンサ、51 電圧センサ、60 インバータ、75 中間コンデンサ、90 制御回路、100a,100b,100c 電力変換装置、200 交流電動機、DT デューティ比、N1,N2 ノード、Ni 入力ノード(コンバータ)、No 出力ノード(コンバータ)、P1~P4 電流経路、Tc スイッチング周期、Ton オン期間、Vc 制御電圧、Vcw キャリア波電圧、Vdc 出力電圧(コンバータ)、Vdc* 目標電圧(コンバータ)。

Claims (12)

  1.  交流電動機を駆動するための電力変換装置であって、
     前記交流電動機に交流電圧を供給するためのインバータと、
     直流電源と前記インバータとの間に接続されたコンバータとを備え、
     前記コンバータは、
     直流電源と接続される入力ノードと、
     前記インバータの直流側と接続される出力ノードと、
     第1の半導体素子を有する降圧回路と、
     第2の半導体素子を有する昇圧回路とを含み、
     前記降圧回路および前記昇圧回路は、前記入力ノードおよび前記出力ノードの間に直列接続され、
     前記降圧回路は、動作時に入力された電圧を降圧するための第1の電力変換を実行し、
     前記昇圧回路は、動作時に入力された電圧を昇圧するための第2の電力変換を実行し、
     前記電力変換装置は、
     前記第1の半導体素子と並列に接続された第1のバイパススイッチと、
     前記第2の半導体素子と並列に接続された第2のバイパススイッチと、
     前記昇圧回路、前記降圧回路、ならびに、前記第1および第2のバイパススイッチを制御するための制御回路とをさらに備える、電力変換装置。
  2.  前記第1のバイパススイッチのオン抵抗は、前記第1の半導体素子のオン抵抗よりも低く、かつ、前記第2のバイパススイッチのオン抵抗は、前記第2の半導体素子のオン抵抗よりも低い、請求項1記載の電力変換装置。
  3.  前記降圧回路は、前記入力ノードおよび前記昇圧回路の間に接続され、
     前記昇圧回路は、前記降圧回路および前記出力ノードの間に接続され、
     前記降圧回路および前記昇圧回路は、前記第1および第2の半導体素子の間に電気的に接続されるリアクトルを共有し、
     前記降圧回路は、前記リアクトルを含む複数の異なる電流経路を切換えることによって、前記第1の電力変換を実行し、
     前記昇圧回路は、前記リアクトルを含む複数の異なる電流経路を切換えることによって、前記第2の電力変換を実行する、請求項1または2に記載の電力変換装置。
  4.  前記昇圧回路は、
     接地配線および中間ノードの間に直列に接続された第1および第2のスイッチング素子と、
     前記中間ノードおよび前記出力ノードの間に、前記第2の半導体素子として、直列に接続された第1および第2のダイオードと、
     前記第1および第2のスイッチング素子の接続点と、前記第1および第2のダイオードの接続点との間に接続された中間コンデンサとを有し、
     前記リアクトルは、前記中間ノードおよび前記降圧回路の前記第1の半導体素子の間に電気的に接続される、請求項3記載の電力変換装置。
  5.  前記入力ノードには第1の直流電圧が入力されるとともに前記出力ノードから第2の直流電圧が出力され、
     前記制御回路は、前記第2の直流電圧を前記第1の直流電圧よりも高い範囲に制御する第1のモードにおいて、前記降圧回路による前記第1の電力変換を停止する一方で前記昇圧回路を動作させるとともに、前記第2のバイパススイッチをオンする一方で前記第1のバイパススイッチをオフし、かつ、
     前記第2の直流電圧を前記第1の直流電圧よりも低く制御する第2のモードにおいて、前記昇圧回路による前記第2の電力変換を停止する一方で前記降圧回路を動作させるとともに、前記第1のバイパススイッチをオンする一方で前記第2のバイパススイッチをオフする、請求項1~4のいずれか1項に記載の電力変換装置。
  6.  前記制御回路は、前記交流電動機の回転速度の上昇に応じて前記第2の直流電圧を上昇するとともに、前記回転速度の低下に応じて前記第2の直流電圧を低下するように、前記回転速度に応じて前記第2の直流電圧の目標値を設定する、請求項5記載の電力変換装置。
  7.  前記制御回路は、前記交流電圧および前記第2の直流電圧から算出される前記インバータの変調率または電圧利用率が一定となるように、前記第2の直流電圧の目標値を設定する、請求項5記載の電力変換装置。
  8.  前記直流電源は、交流電源と、前記交流電源および前記入力ノードの間に接続された整流回路とを含んで構成され、
     前記制御回路は、前記交流電動機の状態に応じて設定された前記第2の直流電圧の目標値が、前記整流回路からの出力電圧がリップル成分を有する電圧領域に対応して予め定められた電圧範囲内である場合には、前記目標値を前記電圧範囲よりも高い電圧に修正するとともに、前記第2の直流電圧を前記第1の直流電圧よりも高い範囲に制御する第1のモードで前記電力変換装置を動作させる、請求項6または7に記載の電力変換装置。
  9.  前記直流電源は、交流電源と、前記交流電源および前記入力ノードの間に接続された整流回路とを含んで構成され、
     前記制御回路は、前記交流電動機の状態に応じて設定された前記第2の直流電圧の目標値が、前記整流回路からの出力電圧がリップル成分を有する電圧領域に対応して予め定められた電圧範囲内である場合には、前記目標値を前記電圧範囲よりも低い電圧に修正するとともに、前記電力変換装置を前記第2のモードで動作させる、請求項6または7に記載の電力変換装置。
  10.  前記直流電源は、交流電源と、前記交流電源および前記入力ノードの間に接続された整流回路とを含んで構成され、
     前記制御回路は、前記交流電動機の状態に応じて設定された前記第2の直流電圧の目標値が、前記整流回路からの出力電圧がリップル成分を有する電圧領域に対応して予め定められた電圧範囲内である場合には、前記目標値が、前記電圧範囲内に予め定められた境界値よりも低いときには、前記目標値を前記電圧範囲よりも低い電圧に修正するとともに、前記電力変換装置を前記第2のモードで動作させる一方で、前記目標値が前記境界値よりも高いときには、前記目標値を前記電圧範囲よりも高い電圧に修正するとともに、前記電力変換装置を前記第1のモードで動作させる、請求項6または7に記載の電力変換装置。
  11.  前記境界値は、前記電力変換装置が前記第1のモードで動作したときの前記電力変換装置および前記交流電動機のトータル損失である第1の全損失と、前記電力変換装置が前記第1のモードで動作したときの前記電力変換装置および前記交流電動機のトータル損失である第2の全損失との比較に基づいて予め設定される、請求項10記載の電力変換装置。
  12.  前記第1および第2のバイパススイッチの少なくとも一方は、並列接続された複数のスイッチ素子によって構成される、請求項1~11のいずれか1項に記載の電力変換装置。
PCT/JP2017/041743 2017-02-10 2017-11-21 電力変換装置 WO2018146902A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018524303A JP6453526B1 (ja) 2017-02-10 2017-11-21 電力変換装置
CN201780085334.5A CN110249518B (zh) 2017-02-10 2017-11-21 电力变换装置
DE112017007042.2T DE112017007042T5 (de) 2017-02-10 2017-11-21 Leistungswandlervorrichtung
US16/472,052 US10756629B2 (en) 2017-02-10 2017-11-21 Power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017023169 2017-02-10
JP2017-023169 2017-02-10

Publications (1)

Publication Number Publication Date
WO2018146902A1 true WO2018146902A1 (ja) 2018-08-16

Family

ID=63108104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041743 WO2018146902A1 (ja) 2017-02-10 2017-11-21 電力変換装置

Country Status (5)

Country Link
US (1) US10756629B2 (ja)
JP (1) JP6453526B1 (ja)
CN (1) CN110249518B (ja)
DE (1) DE112017007042T5 (ja)
WO (1) WO2018146902A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117920A (zh) * 2019-06-20 2020-12-22 台达电子工业股份有限公司 电源供应器及其控制方法及电源供应系统
JP2022532311A (ja) * 2021-02-03 2022-07-14 深▲せん▼市正浩創新科技股▲ふん▼有限公司 双方向dc/dcコンバータ及びエネルギ貯蔵システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017008012T5 (de) * 2017-09-08 2020-07-09 Mitsubishi Electric Corporation Leistungswandler, Verdichter, Luftsendeeinrichtung und Klimaanlage
JP6661831B2 (ja) * 2017-11-16 2020-03-11 三菱電機株式会社 電力変換装置
KR102491650B1 (ko) * 2017-12-04 2023-01-26 삼성전자주식회사 전압을 조정하기 위한 전자 장치 및 그의 동작 방법
KR102609536B1 (ko) * 2018-07-13 2023-12-05 삼성전자주식회사 전자장치
CN111342685B (zh) * 2020-03-17 2021-06-15 美的集团股份有限公司 升降压驱动电路、方法、空调器和计算机可读存储介质
TWI777736B (zh) * 2021-01-13 2022-09-11 立錡科技股份有限公司 具旁通模式的升降壓切換式電源電路及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332286A (ja) * 1998-05-14 1999-11-30 Matsushita Seiko Co Ltd 空気調和機の制御装置
JP2004357442A (ja) * 2003-05-30 2004-12-16 Hitachi Ltd 交流モータ駆動システム
JP2005045943A (ja) * 2003-07-23 2005-02-17 Matsushita Electric Ind Co Ltd 昇降圧dc−dcコンバータ
JP2007166783A (ja) * 2005-12-14 2007-06-28 Mitsubishi Electric Corp 電力変換装置
JP2010252591A (ja) * 2009-04-20 2010-11-04 Toyota Central R&D Labs Inc 電圧変換装置制御システム
WO2016139734A1 (ja) * 2015-03-02 2016-09-09 三菱電機株式会社 電力変換装置及び冷凍サイクル装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295280A (ja) 2007-04-27 2008-12-04 Meidensha Corp モータ駆動装置
JP2010016671A (ja) 2008-07-04 2010-01-21 Nikon Corp カメラ、および情報処理装置
JP4937281B2 (ja) 2009-01-16 2012-05-23 三菱電機株式会社 モーター駆動制御装置、圧縮機、送風機、空気調和機及び冷蔵庫又は冷凍庫
JP5132797B2 (ja) 2011-06-06 2013-01-30 三菱電機株式会社 電力変換装置
JP6086005B2 (ja) * 2012-09-20 2017-03-01 カシオ計算機株式会社 駆動装置、発光装置及び投影装置
US9941834B2 (en) 2014-07-03 2018-04-10 Mitsubishi Electric Corporation Power conversion apparatus and air-conditioning apparatus including the power conversion apparatus
KR102350484B1 (ko) * 2014-12-01 2022-01-17 삼성전자주식회사 모터 구동 장치, 이를 포함하는 공기조화기 및 그의 제어방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332286A (ja) * 1998-05-14 1999-11-30 Matsushita Seiko Co Ltd 空気調和機の制御装置
JP2004357442A (ja) * 2003-05-30 2004-12-16 Hitachi Ltd 交流モータ駆動システム
JP2005045943A (ja) * 2003-07-23 2005-02-17 Matsushita Electric Ind Co Ltd 昇降圧dc−dcコンバータ
JP2007166783A (ja) * 2005-12-14 2007-06-28 Mitsubishi Electric Corp 電力変換装置
JP2010252591A (ja) * 2009-04-20 2010-11-04 Toyota Central R&D Labs Inc 電圧変換装置制御システム
WO2016139734A1 (ja) * 2015-03-02 2016-09-09 三菱電機株式会社 電力変換装置及び冷凍サイクル装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117920A (zh) * 2019-06-20 2020-12-22 台达电子工业股份有限公司 电源供应器及其控制方法及电源供应系统
US11101738B2 (en) 2019-06-20 2021-08-24 Delta Electronics, Inc. Power converter and control method thereof and power supply system
CN112117920B (zh) * 2019-06-20 2022-02-22 台达电子工业股份有限公司 电源供应器及其控制方法及电源供应系统
JP2022532311A (ja) * 2021-02-03 2022-07-14 深▲せん▼市正浩創新科技股▲ふん▼有限公司 双方向dc/dcコンバータ及びエネルギ貯蔵システム
JP7169467B2 (ja) 2021-02-03 2022-11-10 深▲せん▼市正浩創新科技股▲ふん▼有限公司 双方向dc/dcコンバータ及びエネルギ貯蔵システム

Also Published As

Publication number Publication date
US20200099300A1 (en) 2020-03-26
CN110249518A (zh) 2019-09-17
CN110249518B (zh) 2021-04-27
US10756629B2 (en) 2020-08-25
DE112017007042T5 (de) 2019-10-24
JP6453526B1 (ja) 2019-01-16
JPWO2018146902A1 (ja) 2019-04-11

Similar Documents

Publication Publication Date Title
JP6453526B1 (ja) 電力変換装置
EP2466740B1 (en) Circuit of high efficient buck-boost switching regulator and control method thereof
JP5575235B2 (ja) 電力変換装置
US9184674B2 (en) Power conversion apparatus that provides power conversion between AC and DC power
US9488995B2 (en) Voltage converter and voltage conversion method having multiple converter stages
KR102009509B1 (ko) 3상 인버터의 옵셋 전압 생성 장치 및 방법
EP2528221A2 (en) Multi-phase active rectifier
US20170305278A1 (en) Charging circuit for an electrical energy accumulator, electrical drive system and method for operating a charging circuit
US9525346B2 (en) Power device
CN102906982B (zh) 开关电源电路及其控制方法
CN111542999A (zh) 电力变换装置
JP6185860B2 (ja) 双方向コンバータ
JP6659190B2 (ja) 電力変換装置、および電力変換システム
Ahmed Modeling and simulation of ac–dc buck-boost converter fed dc motor with uniform PWM technique
JP6065753B2 (ja) Dc/dcコンバータおよびバッテリ充放電装置
JP2018182815A (ja) 電力変換装置
JP2014197945A (ja) 電力変換装置およびそれを備えたモータ駆動装置
JP6507948B2 (ja) 昇降圧インバータ回路及びその制御方法
JP6286380B2 (ja) 電力変換装置
CN113728543A (zh) 功率变换器的控制方法、装置及存储介质
JP2013005642A (ja) 電力変換装置
JP2006042579A (ja) スイッチング制御方法、整流装置及び駆動システム
US20220329159A1 (en) Dc/dc converter
JP2020202711A (ja) 電力変換装置、制御方法、及び車両
JP2019122173A (ja) 電力変換器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018524303

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895677

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17895677

Country of ref document: EP

Kind code of ref document: A1