JP2004281918A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2004281918A
JP2004281918A JP2003074194A JP2003074194A JP2004281918A JP 2004281918 A JP2004281918 A JP 2004281918A JP 2003074194 A JP2003074194 A JP 2003074194A JP 2003074194 A JP2003074194 A JP 2003074194A JP 2004281918 A JP2004281918 A JP 2004281918A
Authority
JP
Japan
Prior art keywords
resistor
semiconductor device
region
film
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003074194A
Other languages
English (en)
Inventor
Masami Seto
正己 瀬戸
Kikuo Saka
喜久男 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003074194A priority Critical patent/JP2004281918A/ja
Publication of JP2004281918A publication Critical patent/JP2004281918A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

【課題】抵抗値の安定した抵抗体を備えた半導体装置及びその製造方法を提供する。
【解決手段】抵抗体形成領域の半導体基板1にトレンチ5が形成されている。トレンチ5内に、酸化膜7を介して、抵抗体9及び低抵抗ポリシリコン領域11,11が形成されている。半導体基板1上全面にNSG膜23及びBPSG膜25が形成され、BPSG膜25上に、抵抗体9の形成領域に対応して、金属層31が形成されている。抵抗体9は半導体基板1に形成されたトレンチ5の内部に形成されているので抵抗体9上の絶縁層との接触面積を小さくすることができ、さらに、抵抗体9上にNSG膜23及びBPSG膜25を介して金属層31を備えているので金属層31よりも上層側からの抵抗体9への不純物イオンや電荷、水分、水素などの侵入を防止することができ、抵抗体9の抵抗値の安定化を図ることができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置及びその製造方法に関し、特に半導体材料からなる抵抗体を備えた半導体装置及びその製造方法に関するものである。本発明が適用される半導体装置としては、例えば電圧検出回路や定電圧発生回路などのアナログIC(集積回路)を備えた半導体装置を挙げることができる。
【0002】
【従来の技術】
従来、アナログICの高抵抗負荷型素子などに用いられるポリシリコン膜からなる抵抗体は、半導体基板表面に形成された酸化膜などの絶縁膜上に形成されている(例えば、特許文献1参照。)。
【0003】
図16は従来の半導体装置を示す図であり、(A)は平面図、(B)は(A)のX−X位置での断面図、(C)は(A)のY−Y位置での断面図である。(A)では、層間絶縁層の図示は省略している。
【0004】
シリコン基板からなる半導体基板1上に、素子分離用のLOCOS(local oxidation of silicon)酸化膜3が形成されている。
抵抗体形成領域のLOCOS酸化膜3上に、ポリシリコンパターンからなる抵抗体87が形成されている。抵抗体87の両端に、抵抗体87の電位をとるための低抵抗ポリシリコン膜89が形成されている。
【0005】
LOCOS酸化膜3で囲まれたMOSトランジスタ形成領域の半導体基板1上に、ゲート酸化膜15を介して、ゲート電極17が形成されている。MOSトランジスタ形成領域の半導体基板1に、ゲート電極17の形成領域を挟んで、ソース拡散層19及びドレイン拡散層21が形成されている。
【0006】
抵抗体87上及びゲート電極17上を含む半導体基板1上全面に、下層がNSG(non−doped silicate glass)膜23、上層がBPSG(boro−phospho silicate glass)膜25からなる層間絶縁層が形成されている。
NSG膜23及びBPSG膜25には、抵抗体9の両端に設けられた低抵抗ポリシリコン膜89,89、ゲート電極17、ソース拡散層19及びドレイン拡散層21に対応して接続孔27が形成されている。
【0007】
BPSG膜25上及び接続孔27内に金属配線層29が形成されている。
金属配線層29上及び金属層31上を含むBPSG膜25上に例えば下層がPSG(phospho silicate glass)膜33、上層がSiN(silicon nitride)膜35からなるパッシベーション膜が形成されている。
【0008】
図16に示した抵抗体87の形成方法として、LOCOS酸化膜3上を含む半導体基板1上全面にポリシリコン膜を形成し、そのポリシリコン膜に不純物のイオン注入を行なった後、写真製版技術とエッチング技術によりパターニングして形成する方法を挙げることができる。
【0009】
抵抗体用のポリシリコン層に注入する抵抗値制御用の不純物の種類や量は、目標とする抵抗値に合わせて決定される。ポリシリコン膜をパターニングして抵抗体を形成した後、注入した不純物を拡散させるために熱処理を行なう。
【0010】
また、層間絶縁層をCVD(chemical vapor deposition)法で形成して、抵抗体87を被覆している。層間絶縁層の一部にはBPSG膜25を用いるが、BPSG膜25中のボロン及びリンが半導体基板1や抵抗体87などに拡散しないように、BPSG膜25の下層にノンドープのNSG膜23を形成したり、不純物拡散の工程で半導体基板1表面及び抵抗体87表面を酸化したりしている。
パッシベーション膜となるPSG膜33やSiN膜35はプラズマCVD法で成膜される。
【0011】
【特許文献1】
特開平6−85175号公報
【0012】
【発明が解決しようとする課題】
しかし、上記の従来の抵抗体では、製造工程中や長時間の放置によって、ポリシリコン上の絶縁層を介して大気中の水分が浸入したり、上層の膜に含有されている不純物イオン等が抵抗体に侵入したりすることにより、抵抗体の抵抗値がばらつくという問題があった。特に、PSG膜やSiN膜等の絶縁膜をプラズマCVD法で成膜する場合には、PSG膜やSiN膜に含有される水素イオンの抵抗体への拡散が問題となっていた。
【0013】
また、チップの薄片化や素子側にだけ樹脂を付けるアセンブリの出現によって、アセンブリ工程でチップが樹脂で覆われると樹脂の残留応力によるひずみが生じ、アセンブリ工程前後で抵抗体の抵抗値が変動するという不具合が生じていた。抵抗体を構成するポリシリコンのダングリングボンドに結合された水素が上記応力によって変動するためであり、その供給源はCVD酸化膜又はCVDSiN膜中に残存している水素と考えられる。
【0014】
そこで本発明は、抵抗値の安定した抵抗体を備えた半導体装置及びその製造方法を提供することを目的とするものである。
【0015】
【課題を解決するための手段】
本発明の半導体装置は、半導体基板に形成された溝の内部に絶縁膜を介して埋め込まれて形成された半導体材料からなる抵抗体と、上記抵抗体上に絶縁層を介して配置された金属層を備えているものである。
【0016】
本発明の半導体装置の製造方法は、半導体材料からなる抵抗体を備えた半導体装置の製造方法であって、以下の工程(A)から(E)を含む。
(A)半導体基板の抵抗体形成予定領域に溝を形成する工程、
(B)上記溝の内壁表面に絶縁膜を形成する工程、
(C)上記溝の内部に半導体材料を埋め込んで抵抗体を形成する工程、
(D)上記抵抗体の形成領域を含む半導体基板上全面に絶縁層を形成する工程、
(E)上記抵抗体の形成領域を含む領域の上記絶縁層上に金属層を形成する工程。
【0017】
本発明の半導体装置では抵抗体は半導体基板に形成された溝の内部に形成されている。本発明の半導体装置の製造方法では抵抗体を半導体基板に形成した溝の内部に形成する。したがって、絶縁膜上に形成されたポリシリコンパターンからなる従来の抵抗体に比べて、例えばPSG膜やSiN膜などの抵抗体上の絶縁層との接触面積を小さくすることができる。
さらに、本発明の半導体装置では抵抗体上に絶縁層を介して配置された金属層を備えている。本発明の半導体装置の製造方法では抵抗体の形成領域を含む領域の絶縁層上に金属層を形成する。したがって、抵抗体の形成領域に配置された金属層により、金属層よりも上層側からの抵抗体への不純物イオンや電荷、水分、水素などの侵入を防止することができる。
これらにより、抵抗体の抵抗値の安定化を図ることができる。
【0018】
【発明の実施の形態】
本発明の半導体装置及びその製造方法において、上記半導体材料の一例としてポリシリコン及びポリシリコンゲルマニウムを挙げることができる。
【0019】
本発明の半導体装置において、複数の上記抵抗体が配列されている領域で、それらの抵抗体の上層に配置された上記金属層によりパッド電極の一部又は全部が形成されていることが好ましい。
本発明の半導体装置の製造方法において、上記工程(E)で、複数の上記抵抗体が配列されている領域に対応して上記絶縁層上に形成する上記金属層により、パッド電極の一部又は全部を形成することが好ましい。
この半導体装置の態様及び製造方法の局面では、複数の抵抗体の上層に配置される金属配線層によりパッド電極の一部又は全部を形成する、すなわち、パッド電極下の領域に複数の抵抗体を配置する。従来、パッド電極下の領域には半導体素子を何も配置していない。したがって、パッド電極下の領域に複数の抵抗体を配置することにより、従来技術に比べてチップ面積を縮小することができる。
【0020】
本発明の半導体装置において、上記パッド電極よりも上層側に再配線層が形成されており、上記パッド電極の形成領域とは異なる領域で上記再配線層上に外部接続端子が形成されているようにしてもよい。
本発明の半導体装置の製造方法において、上記工程(E)において上記パッド電極を形成した後、上記パッド電極の形成領域に対応して開口部をもつ第2絶縁層を形成し、上記パッド電極上及び上記第2絶縁層上に再配線層を形成し、上記パッド電極の形成領域とは異なる領域で上記再配線層上に外部接続端子を形成する工程を含むようにしてもよい。
ウェハレベルCSP(chip size package)など、パッド電極よりも上層側に再配線層が形成される半導体装置に本発明の半導体装置及びその製造方法を適用すれば、パッド電極には例えばワイヤボンディングなどの外部接続端子の接続処理は施されないので、パッド電極への機械的衝撃をなくすことができ、パッド電極下に配置した抵抗体へのダメージを防ぐことができる。
ここで、CSPとは、チップサイズと同等か、わずかに大きいパッケージの総称であり、高密度実装を目的としたパッケージである。また、ウェハレベルCSPは、個々のチップに分割するためのダイシング前にアレイ状のパッドを作り込むCSPである。
【0021】
本発明の半導体装置が適用される半導体装置の一例として、2個以上の抵抗による分割によって電圧出力を得、ヒューズ素子の切断によって電圧出力を調整できる分割抵抗回路を備えた半導体装置を挙げることができる。その分割抵抗回路を構成する抵抗は、本発明の半導体装置を構成する抵抗体により構成される。
本発明の半導体装置を構成する抵抗体によれば、抵抗の抵抗値の安定化を図ることができるので、分割抵抗回路の出力電圧の精度を向上させることができる。
【0022】
本発明の半導体装置が適用される半導体装置の他の例として、入力電圧を分割して分割電圧を供給するための分割抵抗回路と、基準電圧を供給するための基準電圧発生回路と、上記分割抵抗回路からの分割電圧と上記基準電圧発生回路からの基準電圧を比較するための比較回路をもつ電圧検出回路を備えた半導体装置を挙げることができる。その電圧検出回路を構成する分割抵抗回路は、本発明の半導体装置を構成する抵抗体が適用された抵抗を備えている。
本発明の半導体装置を構成する抵抗体が適用された分割抵抗回路によれば出力電圧の精度を向上させることができるので、電圧検出回路の電圧検出能力の精度を向上させることができる。
【0023】
本発明の半導体装置が適用される半導体装置のさらに他の例として、入力電圧の出力を制御する出力ドライバと、出力電圧を分割して分割電圧を供給するための分割抵抗回路と、基準電圧を供給するための基準電圧発生回路と、上記分割抵抗回路からの分割電圧と上記基準電圧発生回路からの基準電圧を比較し、比較結果に応じて上記出力ドライバの動作を制御するための比較回路をもつ定電圧発生回路を備えた半導体装置を挙げることができる。その定電圧発生回路を構成する分割抵抗回路は、本発明の半導体装置を構成する抵抗体が適用された抵抗を備えている。
本発明の半導体装置を構成する抵抗体が適用された分割抵抗回路によれば出力電圧の精度を向上させることができるので、定電圧発生回路の出力電圧の安定性を向上させることができる。
【0024】
本発明の半導体装置の製造方法において、上記抵抗体とは異なる領域の半導体基板上にMOSトランジスタを形成する場合、上記工程(B)において、上記溝の内壁表面に絶縁膜を形成する際、MOSトランジスタの形成領域の半導体基板表面にゲート酸化膜を同時に形成するようにしてもよい。これにより、抵抗体とは異なる領域の半導体基板上にMOSトランジスタを形成する場合に、製造工程の短縮を図ることができる。
【0025】
本発明の半導体装置の製造方法において、上記抵抗体とは異なる領域の半導体基板上にMOSトランジスタを形成する場合、上記工程(C)において、上記溝の内部に埋め込む半導体材料を用いてMOSトランジスタのゲート電極を同時に形成するようにしてもよい。これにより、抵抗体とは異なる領域の半導体基板上にMOSトランジスタを形成する場合に、製造工程の短縮を図ることができる。
【0026】
本発明の半導体装置の製造方法において、上記抵抗体とは異なる領域の半導体基板上にヒューズ素子を形成する場合、上記工程(C)において、上記溝の内部に埋め込む半導体材料を用いてヒューズ素子を同時に形成するようにしてもよい。これにより、抵抗体とは異なる領域の半導体基板上にヒューズ素子を形成する場合に、製造工程の短縮を図ることができる。
【0027】
【実施例】
図1は、半導体装置の一実施例を示す図であり、(A)は平面図、(B)は(A)のA−A位置での断面図、(C)は(A)のB−B位置での断面図である。図1では、抵抗体、ヒューズ素子及びMOSトランジスタについて、それぞれ1つずつ図示している。また、図1(A)では層間絶縁層の図示は省略している。
【0028】
シリコン基板からなる半導体基板1上に、LOCOS法により形成された素子分離用のLOCOS酸化膜3が形成されている。
抵抗体形成領域の半導体基板1にトレンチ(溝)5が形成されている。トレンチ5の寸法は、例えば深さが1.5〜2.5μm、幅が0.6μmである。トレンチ5の底部の角部分は丸みを帯びている。
トレンチ5の内壁表面に酸化膜7が形成されている。
【0029】
トレンチ5の内部に、酸化膜7を介して、ポリシリコンからなる帯状の抵抗体9が形成されている。抵抗体9を構成するポリシリコンには所定の抵抗値を得るための不純物イオン、例えばリンが導入されている。トレンチ5の内部で、抵抗体9の両端に、ポリシリコンに高濃度に不純物イオン、例えばリンが導入されてなる低抵抗ポリシリコン領域11が形成されている。
【0030】
ヒューズ素子形成領域のLOCOS酸化膜3上に、ポリシリコン膜からなるヒューズ素子13が形成されている。ヒューズ素子を構成するポリシリコン膜には、不純物イオン、例えばリンが高濃度に導入されて低抵抗化されている。
【0031】
LOCOS酸化膜3で囲まれたMOSトランジスタ形成領域の半導体基板1上に、ゲート酸化膜15を介して、ポリシリコンからなる帯状のゲート電極17が形成されている。ゲート電極17はLOCOS酸化膜3上に延伸して形成されている。ゲート電極17には、n型不純物イオン、例えばリンが高濃度に導入されて低抵抗化されている。
MOSトランジスタ形成領域の半導体基板1に、ゲート電極17の形成領域を挟んで、n型不純物イオン、例えばリン又はヒ素が注入されてなるソース拡散層19及びドレイン拡散層21が形成されている。
【0032】
抵抗体9上、ヒューズ素子13上及びゲート電極17上を含む半導体基板1上全面にNSG膜23が形成され、さらにその上にBPSG膜25が形成されている。
NSG膜23及びBPSG膜25には、抵抗体9の両端に設けられた低抵抗ポリシリコン領域11,11、ヒューズ素子13、ゲート電極17、ソース拡散層19及びドレイン拡散層21に対応して接続孔27が形成されている。
【0033】
BPSG膜25上及び接続孔27内に例えばAl−Si合金(Si:1w%(質量パーセント))からなる金属配線層29が形成されている。
BPSG膜25上には、抵抗体9の形成領域に対応して、金属配線層29と同じ材料からなる金属層31も形成されている。金属配線層29と金属層31は電気的に分離されている。
【0034】
金属配線層29上及び金属層31上を含むBPSG膜25上に、例えば下層がPSG膜33、上層がSiN膜35からなるパッシベーション膜が形成されている。
NSG膜23、BPSG膜25、PSG膜33及びSiN膜35には、ヒューズ素子13に対応してトリミング窓開口部37が形成されている。
【0035】
この実施例では、抵抗体9は半導体基板1に形成されたトレンチ5の内部に形成されている。したがって、絶縁膜上に形成されたポリシリコンパターンからなる従来の抵抗体に比べて、抵抗体9上の絶縁層、この実施例ではNSG膜23との接触面積を小さくすることができる。
さらに、抵抗体9上にNSG膜23及びBPSG膜25を介して金属層31を備えているので、金属層31よりも上層側からの抵抗体9への不純物イオンや電荷、水分、水素などの侵入を防止することができる。
これらにより、抵抗体9の抵抗値の安定化を図ることができる。
【0036】
図2から図4は半導体装置の製造方法の一実施例を示す工程断面図である。図5は、低抵抗ポリシリコン膜形成時に用いるマスク用酸化膜を形成した状態でのトレンチ形成領域近傍の平面図である。図1から図5を参照してこの製造方法の実施例を説明する。
【0037】
(1)ウエハ状態の半導体基板1上に、LOCOS法によりLOCOS酸化膜3を形成する。例えば、減圧CVD法により、半導体基板1上全面にマスク用酸化膜39を500nmの膜厚に形成する。写真製版技術により、半導体基板1上全面に例えばポジ型レジスト材料を塗布し、露光及び現像を行なって、抵抗体を形成するためのトレンチ形成予定領域に対応して開口部をもつレジストパターン41を形成する(図2(a)参照)。
【0038】
(2)例えばフッ素系ガスを用いたドライエッチングにより、レジストパターン41をマスクにして、マスク用酸化膜39を選択的に除去して、トレンチ形成予定領域に対応してマスク用酸化膜39に開口部を形成する。その後、レジストパターン41を除去する(図2(b)参照)。
【0039】
(3)例えば、プラズマエッチング技術により、マスク用酸化膜39をマスクにして、半導体基板1のトレンチ形成予定領域に、深さが1.5〜2.5μm、幅が0.6μmのトレンチ5を形成する(図2(c)参照)。プラズマエッチングの条件は、例えばHBrガス、NFガス、Oガスを30:10:1の比率で混合したエッチングガスを用い、80mTorr(ミリトル)の圧力、3.6W/cmの条件で行なった。トレンチ5の幅寸法は、後工程で形成するポリシリコン膜の膜厚に応じて、トレンチ5内にポリシリコン膜を隙間なく埋め込むことができる寸法に形成することが好ましい。
【0040】
(4)半導体基板1に対して、例えば1100℃程度の条件で熱酸化処理を施して、トレンチ5の内壁に酸化膜を一旦形成した後、フッ化アンモニウムを含むフッ酸溶液を用いて、トレンチ5内の酸化膜及びマスク用酸化膜39を除去する(図3(d)参照)。これにより、トレンチ5の底部の角部分に丸みをもたせることができ、かつトレンチ5の内壁表面のエッチングダメージの回復を図ることができる。
【0041】
(5)半導体基板1に対して熱酸化処理を施して、トレンチ5の内壁表面に酸化膜7を形成し、MOSトランジスタ形成領域の半導体基板1の表面にゲート酸化膜15を形成する。ここで酸化膜7及びゲート酸化膜15の膜厚は、MOSトランジスタの駆動電圧に応じて決定されるので特に制限はない。
【0042】
例えば減圧CVD法により、トレンチ5の内部を含む半導体基板1上全面にポリシリコン膜43を350nmの膜厚に形成する。減圧CVDの条件として、例えば温度は620〜635℃、成膜ガスはSiH/H=300/450sccm、圧力は0.5Torrの条件を挙げることができる。
【0043】
ポリシリコン膜43全面に、抵抗体となるトレンチ5内のポリシリコン膜の抵抗値を制御するために、n型不純物イオン、例えばリンをイオン注入する(図3(e)参照)。イオン注入条件は、例えばイオンエネルギーは30keV、ドーズ量は4.3×1014atoms/cmで行なった。ここでドーズ量は、抵抗体となるトレンチ5内のポリシリコン膜について、目的とする抵抗値に合わせて、通常1×1013〜1×1015atoms/cmで制御する。
【0044】
(6)例えば減圧CVD法により、ポリシリコン膜43上に酸化膜を200nmの膜厚に形成した後、写真製版技術により、酸化膜をパターニングして、トレンチ5の形成領域で少なくとも抵抗体となる領域を覆うマスク用酸化膜45を形成する。
【0045】
図5に、マスク用酸化膜45を形成した状態でのトレンチ形成領域近傍の平面図を示す。
トレンチ5の形成領域近傍において、マスク用酸化膜45は、トレンチ5の中央側の領域を覆い、両端側の領域を覆わないように配置されている。
【0046】
ポリシリコン膜43に対してリンガラスの堆積及びドライブ拡散を行なって、抵抗体のコンタクト用の低抵抗ポリシリコン領域、ヒューズ素子及びMOSトランジスタのゲート電極の形成予定領域を含む領域のポリシリコン膜43にリンを高濃度に導入して、低抵抗ポリシリコン膜47を形成する。このとき、トレンチ5の中央側の領域はマスク用酸化膜45により覆われているので、トレンチ5内の中央側のポリシリコン膜43にはリンは導入されず、トレンチ5内の両端側のポリシリコン膜43にはリンが導入されて低抵抗ポリシリコン膜47が形成される(図3(f)参照)。
【0047】
(7)写真製版技術及びドライエッチング技術により、ポリシリコン膜43及び低抵抗ポリシリコン膜47をパターニングして、トレンチ5内の中央側にポリシリコン膜43から抵抗体9を形成し、トレンチ5内の両端側に低抵抗ポリシリコン膜47から低抵抗ポリシリコン領域11を形成し、ヒューズ素子形成領域のLOCOS酸化膜3上に低抵抗ポリシリコン膜47からヒューズ素子13を形成し、MOSトランジスタ形成領域のゲート酸化膜15上及びLOCOS酸化膜3上に低抵抗ポリシリコン膜47からゲート電極17を形成する(図4(g)参照)。
【0048】
(8)写真製版技術により、少なくとも抵抗体9の形成領域を覆い、MOSトランジスタの形成領域に開口部をもつ、高濃度拡散層形成用のレジストパターンを形成する。イオン注入法により、高濃度拡散層形成用のレジストパターンをマスクにして、例えばリン又はヒ素をイオンエネルギーは30keV程度、ドーズ量は1.0×1013atoms/cm程度の条件で注入して、MOSトランジスタの形成領域の半導体基板1にソース拡散層19及びドレイン拡散層21を形成する。
【0049】
高濃度拡散層形成用のレジストパターンを除去した後、抵抗体9表面、低抵抗ポリシリコン領域11表面、ヒューズ素子13表面及びゲート電極17表面の酸化膜を除去する。例えばCVD法により、半導体基板1上全面にNSG膜23を形成し、さらにその上にBPSG膜25を形成した後、BPSG膜25に対して高温熱処理によるリフローを施して平坦化する。
【0050】
写真製版技術及びドライエッチング技術により、抵抗体9の両端側の低抵抗ポリシリコン領域11,11、ヒューズ素子13、ゲート電極17、ソース拡散層19及びドレイン拡散層21の形成領域に対応して、接続孔27を形成する(図4(h)及び図1参照)。
【0051】
(9)例えば、スパッタ法により、BPSG膜25上及び接続孔27内にアルミニウム合金からなる金属層を形成し、写真製版技術及びドライエッチング技術により、金属層をパターニングして金属配線層29を形成し、抵抗体9の形成領域を覆うように金属層31を形成する(図4(i)参照)。
【0052】
(10)例えばプラズマCVD法により、金属配線層29上及び金属層31上を含むBPSG膜25上にPSG膜33を形成し、さらにその上にSiN膜35を形成する。このとき、抵抗体9上に金属層31が形成されているので、PSG膜33及びSiN膜35の成膜時に周辺雰囲気に存在する水素、並びにPSG膜33及びSiN膜35に含まれる水素は金属層31により遮断され、抵抗体9に水素が侵入して抵抗値が変動するのを防止することができる。
【0053】
その後、写真製版技術及びドライエッチング技術により、ヒューズ素子13の形成領域に対応して、SiN膜35、PSG膜33、BPSG膜25及びNSG膜23にトリミング窓開口部37を形成する(図1参照)。
【0054】
この製造方法の実施例によれば、上記工程(4)において、トレンチ5の底部の角部分に丸みをもたせているので、トレンチ5の底部の角部分での電界集中を緩和することができる。
【0055】
さらに、上記工程(5)において、抵抗体9を半導体基板1とは電気的に分離するためにトレンチ5の内壁表面に形成する酸化膜7と、ゲート酸化膜15を同時に形成しているので、これらの酸化膜を別々に形成する場合に比べて製造工程の短縮を図ることができる。
【0056】
さらに、上記工程(6)及び(7)において、抵抗体9を形成するためのポリシリコン膜43を用いて、ヒューズ素子13及びゲート電極17を形成しているので、抵抗体9、ヒューズ素子13及びゲート電極17を別々の工程で形成したポリシリコン膜を用いて形成する場合に比べて製造工程の短縮を図ることができる。
【0057】
上記の実施例では、抵抗体の抵抗値を制御するための不純物としてリンを用いているが、本発明の半導体装置及びその製造方法はこれに限定されるものではない。例えば、同一半導体基板上に抵抗体とPチャネルMOSトランジスタを形成する場合、PチャネルMOSトランジスタのゲート電極にはp型不純物を導入したポリシリコン膜を用いるが、そのゲート電極用のポリシリコン膜を用いて抵抗体を形成するようにしてもよい。例えばボロンなどのp型不純物はn型不純物に比べて原子の移動度が小さいので、抵抗体としてp型不純物を抵抗値制御用に導入したポリシリコン膜を用いることによって、熱処理による抵抗値の変動を抑制することができる。
【0058】
また、上記の実施例では抵抗体9の材料としてポリシリコンを用いているが、本発明の半導体装置及びその製造方法はこれに限定されるものではなく、抵抗体の材料として例えばポリシリコンゲルマニウムなど、他の半導体材料を用いてもよい。
【0059】
また、上記の実施例では金属配線層29と金属層31は電気的に分離されているが、本発明はこれに限定されるものではなく、金属層31は、いずれか一方の低抵抗ポリシリコン領域11に電気的につながる金属配線層29に電気的に接続されていてもよいし、他の金属配線層29と電気的に接続されていてもよい。
【0060】
図6に、半導体装置の他の実施例の断面図を示す。図6において、図1に示した実施例と同じ機能を果たす部分には同じ符号を付し、それらの部分の詳細な説明は省略する。図6では、複数の抵抗体の形成領域及びパッド電極の形成領域のみを図示し、ヒューズ素子やMOSトランジスタの形成領域は示していない。
【0061】
抵抗体形成領域の半導体基板1に複数のトレンチ5が配列されている。トレンチ5の底部の角部分は丸みを帯びている。各トレンチ5の内壁表面に酸化膜7が形成されている。
各トレンチ5内の中央側に抵抗体9が形成され、両端側に低抵抗ポリシリコン領域11,11が形成されている。
【0062】
トレンチ5の形成領域を含む半導体基板1上全面にNSG膜23が形成され、さらにその上にBPSG膜25が形成されている。
NSG膜23及びBPSG膜25には、抵抗体9の両端に設けられた低抵抗ポリシリコン領域11,11に対応して接続孔27が形成されている。ただし、抵抗体9の配列の両端に配置された抵抗体9はダミーパターンとして用いられるので、ダミーパターンの抵抗体9に対応する低抵抗ポリシリコン領域11,11上には接続孔27は形成されていない。ここで、ダミーパターンは外部からの水素などの侵入や、応力の集中による特性の変化を防止する目的で設けられている。
【0063】
接続孔27内及びBPSG膜25上に金属配線層29が形成されている。BPSG膜25上には、抵抗体9の形成領域を覆うようにパッド電極49も形成されている。
金属配線層29及びパッド電極49の形成領域を含むBPSG膜25上にPSG膜33が形成され、さらにその上にSiN膜35が形成されている。PSG膜33及びSiN膜35には、パッド電極49に対応してパッド開口部51が形成されている。
【0064】
この実施例では、複数の抵抗体9をパッド電極49下の領域に配置しているので、従来技術に比べてチップ面積を縮小することができる。
【0065】
この実施例は、図1から図5を参照して説明した製造方法の実施例と同様にして形成することができる。その製造工程において、パッド電極形成予定領域を含む領域にトレンチ5を形成し、金属配線層29の形成と同時に抵抗体9の形成領域を覆うようにパッド電極49を形成し、PSG膜33及びSiN膜35を形成した後、SiN膜35及びPSG膜33にパッド開口部51を形成することにより、図6に示した実施例の構造を形成することができる。
【0066】
図6に示した実施例では、1本のトレンチ5内に抵抗体9がパッド電極49の一辺とほぼ同じ長さで形成されているが、本発明はこれに限定されるものではない。
【0067】
例えば、図7に示すように、パッド電極49下の半導体基板1に格子状に形成されたトレンチ5内に抵抗体9が形成されているようにしてもよい。図7において、接続孔27が設けられていないトレンチ5内に形成された抵抗体9はダミーパターンとして用いられるものである。なお、図7において、トレンチ5の内壁表面の酸化膜の図示は省略している。
【0068】
また、図6及び図7に示した実施例では、本発明を単層メタル配線構造に適用しているので、トレンチ5をパッド電極49の形成領域外に導いて、抵抗体9の電位をとるための低抵抗ポリシリコン領域11をパッド電極49の形成領域外に設けているが、本発明はこれに限定されるものではなく、本発明を多層メタル配線構造の半導体装置に適用する場合には、抵抗体の電位をとるための低抵抗ポリシリコン領域をパッド電極の形成領域内に設け、パッド電極よりも下層の金属配線層を用いて低抵抗ポリシリコン膜の電位をとるようにしてもよい。
【0069】
図8は、半導体装置のさらに他の実施例を示す断面図である。この実施例は本発明をウェハレベルCSPに適用したものである。この実施例の抵抗体形成領域の平面図は図6(A)と同じである。図8において図1及び図6に示した実施例と同じ機能を果たす部分には同じ符号を付し、それらの部分の詳細な説明は省略する。
【0070】
抵抗体形成領域の半導体基板1に複数のトレンチ5が配列され、各トレンチ5内に、酸化膜7を介して抵抗体9及び低抵抗ポリシリコン領域(図6(A)参照)が形成されている。
トレンチ5の形成領域を含む半導体基板1上全面にNSG膜23が形成され、さらにその上にBPSG膜25が形成されている。
NSG膜23及びBPSG膜25には、抵抗体9の両端に設けられた低抵抗ポリシリコン領域に対応して接続孔(図6(A)参照)が形成されている。
【0071】
接続孔27内及びBPSG膜25上に金属配線層(図6(A)参照)が形成され、BPSG膜25上に、抵抗体9の形成領域を覆うようにパッド電極49が形成されている。BPSG膜25上全面にPSG膜33が形成され、さらにその上にSiN膜35が形成されている。PSG膜33及びSiN膜35には、パッド電極49に対応してパッド開口部51が形成されている。
【0072】
SiN膜35上及びパッド開口部51内に、例えばAl−Si合金(Si:1w%)からなる第2金属配線層53及び第2パッド電極55が形成されている。第2金属配線層53及び第2パッド電極55は再配線層を構成する。第2金属配線層53上及び第2パッド電極55上に、例えば下層から順にTi層/Ni層/Ag層(膜厚:0.1μm/0.4μm/0.1μm)からなるバリヤメタル層57が形成されている。
【0073】
第2金属配線層53上を含むSiN膜35上に、例えば25μmの膜厚をもつポリイミド膜59が形成されている。ポリイミド膜59は最終保護膜を構成する。ポリイミド膜59に替えて、例えばポリベンゾオキサゾール膜を用いてもよい。
【0074】
ポリイミド膜59には第2パッド電極55に対応して第2パッド開口部61が形成されている。第2パッド電極55上にバリヤメタル層57を介して、例えば半田からなる外部接続端子63が形成されている。外部接続端子63はその先端部分がポリイミド膜59の表面から突出して設けられている。
【0075】
この実施例では、抵抗体9をパッド電極49下の領域に配置してチップ面積の縮小化を図ることができるのに加えて、外部接続端子63をパッド電極49の形成領域とは異なる領域に設けているので、パッド電極49への機械的衝撃をなくすことができ、パッド電極49下に配置した抵抗体9へのダメージを防ぎ、抵抗体9の抵抗値の変動を防止することができる。
【0076】
図9から図10は、図8に示した半導体装置を製造するための製造方法の一実施例を示す工程断面図である。図8から図10を参照してこの製造方法の実施例を説明する。
【0077】
(1)図2(a)から図4(g)を参照して説明した上記工程(1)から工程(7)と同様にして、半導体基板1にトレンチ5を形成し、トレンチ5内に酸化膜7、抵抗体9、及び抵抗体9の電位をとるための低抵抗ポリシリコン膜(図示は省略)を形成する。図4(h)及び図1を参照して説明した上記工程(8)と同様にして、半導体基板1上全面にNSG膜23を形成し、さらにその上にBPSG膜25を形成し、NSG膜23及びBPSG膜25の所定の領域に接続孔(図示は省略)を形成する(図9(a)参照)。
【0078】
(2)BPSG膜25上及び接続孔内に、例えばスパッタ法により、Al−Si合金(Si:1w%)を堆積し、写真製版技術及びエッチング技術により、Al−Si合金層をパターニングしてパッド電極49及び金属配線層(図示は省略)を形成する。パッド電極49は抵抗体9上の領域に形成する(図9(b)参照)。
【0079】
(3)例えばCVD法により、パッド電極49及び金属配線層の形成領域を含むBPSG膜25上に、PSG膜33及びSiN膜35を順次形成してパッシベーション膜を形成する。写真製版技術及びエッチング技術により、SiN膜35及びPSG膜33にパッド開口部51を形成する(図9(c)参照)。
【0080】
(4)SiN膜35上及びパッド開口部51内に第2金属配線層53及び第2パッド電極55を形成する。第2金属配線層53上面及び第2パッド電極55上面にバリヤメタル層57を形成する(図10(d)参照)。
【0081】
第2金属配線層53及び第2パッド電極55の材料は、例えばアルミニウム合金層(Al−Si合金(Si:1w%)、Al−Si−Cu合金(Si:1w%、Cu:0.5w%)、Al−Cu(Cu:1w%)、Al−Cu(Cu:2w%)など)や、銅などを挙げることができる。
【0082】
第2金属配線層53及び第2パッド電極55の材料にAl−Si合金(Si:1w%)を使用する場合、スパッタリング法によってAl−Si合金(Si:1w%)からなるアルミニウム合金層を3μmの厚みに成膜し、さらにその上にTi層/Ni層/Ag層(膜厚:0.1μm/0.4μm/0.1μm)からなるバリヤメタル層57をスパッタリング法又は蒸着法によって成膜する。レシスト塗布、写真製版法による露光及び現像により配線パターンに対応したレジストパターンを形成する。ウェットエッチング技術によりバリヤメタル層57を選択的に除去し、さらにドライエッチング技術によりアルミニウム合金層を選択的に除去して第2金属配線層53及び第2パッド電極55を完成させる。エッチング後、レジストパターンをプラズマアッシャーで除去する。バリヤメタル層57は他の金属材料であってもよく、例えばTi層/Ni層/Au層や、Ni層/Pd層/Au層などを挙げることができる。
【0083】
第2金属配線層53及び第2パッド電極55の材料に銅を使用する場合、スパッタリング法により、銅のマイグレーション防止と密着力向上のためのクロムを0.1μmの膜厚で、銅を0.5μmの膜厚で順次成膜する。レシスト塗布、写真製版法による露光及び現像により配線パターンに対応したレジストパターンを形成する。電解メッキ法により、銅配線を5μmの膜厚に成膜し、さらにその上にニッケルを3μm、パラジウムを0.5μm、金を1μmの膜厚で順次成膜してバリヤメタル層57を形成する。アッシャーでレジストパターンを除去した後、銅配線が形成されていない部分のクロム及び銅をウェットエッチングで除去し、第2金属配線層53及び第2パッド電極55を完成させる。
【0084】
(5)スピンコート法により、例えばネガ型感光性ポリイミド材料(HD4012(日立化成デュポンマイクロシステムズ株式会社製))を45μmの膜厚で塗布形成した後、第2パッド開口部形成領域に対応して遮光部をもつレチクルを用いて露光処理を施して、第2パッド開口部形成領域及び分離領域を除くネガ型感光性ポリイミド材料層に光照射する。現像処理を施して、ネガ型感光性ポリイミド材料層に第2パッド電極55の形成領域に対応して第2パッド開口部61を形成する。その後、320℃の硬化処理を施して、膜厚が25μm程度のポリイミド膜59を形成する(図10(e)参照)。
【0085】
(6)スクリーン印刷法により、第2パッド開口部61の位置に対応して、クリーム半田を成膜した後、赤外線リフロー炉を用いた加熱溶融法により温度260℃で10秒間加熱して外部接続端子63を形成する。その後、スクリーン印刷法で用いたフラックスを専用洗浄液で除去し、水洗、乾燥させる。その後、チップを切り出す(図8参照)。
【0086】
図11は定電圧発生回路を備えた半導体装置の一実施例を示す回路図である。直流電源65からの電源を負荷67に安定して供給すべく、定電圧発生回路69が設けられている。定電圧発生回路69は、直流電源65が接続される入力端子(Vbat)71、基準電圧発生回路(Vref)73、演算増幅器(比較回路)75、出力ドライバを構成するPチャネルMOSトランジスタ(以下、PMOSと略記する)77、分割抵抗R1,R2及び出力端子(Vout)79を備えている。
【0087】
定電圧発生回路69の演算増幅器75では、出力端子がPMOS77のゲート電極に接続され、反転入力端子に基準電圧発生回路73から基準電圧Vrefが印加され、非反転入力端子に出力電圧Voutを抵抗R1とR2で分割した電圧が印加され、抵抗R1,R2の分割電圧が基準電圧Vrefに等しくなるように制御される。
【0088】
図12は、電圧検出回路を備えた半導体装置の一実施例を示す回路図である。電圧検出回路81において、75は演算増幅器で、その反転入力端子に基準電圧発生回路73が接続され、基準電圧Vrefが印加される。入力端子(Vsens)83から入力される測定すべき端子の電圧が分割抵抗R1とR2によって分割されて演算増幅器75の非反転入力端子に入力される。演算増幅器75の出力は出力端子(Vout)85を介して外部に出力される。
【0089】
電圧検出回路81では、測定すべき端子の電圧が高く、分割抵抗R1とR2により分割された電圧が基準電圧Vrefよりも高いときは演算増幅器75の出力がHレベルを維持し、測定すべき端子の電圧が降下してきて分割抵抗R1とR2により分割された電圧が基準電圧Vref以下になってくると演算増幅器75の出力がLレベルになる。
【0090】
一般に、図11に示した定電圧発生回路や図12に示した電圧検出回路では、製造プロセスのバラツキに起因して基準電圧発生回路からの基準電圧Vrefが変動するので、その変動に対応すべく、分割抵抗としてヒューズ素子の切断により抵抗値を調整可能な抵抗回路(分割抵抗回路と称す)を用いて、分割抵抗の抵抗値を調整している。
【0091】
図13は、本発明の抵抗体が適用される分割抵抗回路の一例を示す回路図である。図14及び図15は、その分割抵抗回路のレイアウト例を示すレイアウト図であり、図14はヒューズ素子部分のレイアウト例を示し、図15は抵抗部分のレイアウト例を示す。
【0092】
図13に示すように、抵抗Rbottom、m+1個(mは正の整数)の抵抗RT0,RT1,…,RTm、抵抗Rtopが直列に接続されている。抵抗RT0,RT1,…,RTmには、各抵抗に対応してヒューズ素子RL0,RL1,…,RLmが並列に接続されている。
【0093】
図14に示すように、ヒューズ素子RL0,RL1,…,RLmは、例えばシート抵抗が20Ω〜40Ωのポリシリコン膜により形成されている。これらのヒューズ素子として図1に示したヒューズ素子13を用いることができる。図14での図示は省略しているが、各ヒューズ素子の形成領域に対応して、半導体基板にトリミング窓開口部(図1の符号37参照)が形成されている。
【0094】
抵抗RT0,RT1,…,RTmの値は抵抗Rbottom側から順に二進数的に増加するよう設定されている。すなわち、抵抗RTnの抵抗値は、抵抗RT0の抵抗値を単位値とし、その単位値の2倍である。
例えば、図15に示すように、半導体基板に形成されたトレンチ内に形成されたポリシリコンからなる抵抗体9を用い、抵抗RT0を1本の抵抗体9を単位抵抗値とし、抵抗RTnを2本の抵抗体9により構成する。抵抗体9は、例えば図1、図6又は図7に示したものが用いられる。図15では、抵抗体9の電位をとるための低抵抗ポリシリコン領域、並びに抵抗体9上に配置される金属層又はパッド電極の図示は省略している。
【0095】
図14及び図15において、符号A−A間、符号B−B間、符号C−C間、符号D−D、符号E−E、符号F−F及び符号G−G間はそれぞれ金属配線層29により電気的に接続されている。
【0096】
このように、抵抗の比の精度が重視される分割抵抗回路では、製造工程での作り込み精度を上げるために、一対の抵抗及びヒューズ素子からなる単位抵抗が直列に接続されて梯子状に配置されている。
このような分割抵抗回路では、任意のヒューズ素子RL0,RL1,…,RLmをレーザービームで切断することにより、所望の直列抵抗値を得ることができる。
【0097】
図13に示した分割抵抗回路を図11に示した定電圧発生回路の分割抵抗R1,R2に適用する場合、例えば抵抗Rbottom端を接地し、抵抗Rtop端をPMOS71のドレインに接続する。さらに、抵抗Rbottom、RT0間の端子NodeL、又は抵抗Rtop、RTm間の端子NodeMを演算増幅器75の非反転入力端子に接続する。
【0098】
また、図13に示した分割抵抗回路を図12に示した電圧検出回路の分割抵抗R1,R2に適用する場合、例えば抵抗Rbottom端を接地し、抵抗Rtop端を入力端子77に接続する。さらに、抵抗Rbottom、RT0間の端子NodeL、又は抵抗Rtop、RTm間の端子NodeMを演算増幅器75の非反転入力端子に接続する。
【0099】
本発明の半導体装置を構成する抵抗体では、抵抗値を安定させることができるので、図13に示した分割抵抗回路の出力電圧の精度を向上させることができる。
【0100】
さらに、図11に示した定電圧発生回路69では、本発明を構成する抵抗体を適用した分割抵抗回路によって分割抵抗R1,R2の出力電圧の精度を向上させることができるので、定電圧発生回路69の出力電圧の安定性を向上させることができる。
【0101】
さらに、図12に示した電圧検出回路81では、本発明を構成する抵抗体を適用した分割抵抗回路によって分割抵抗R1,R2の出力電圧の精度を向上させることができるので、電圧検出回路81の電圧検出能力の精度を向上させることができる。
【0102】
ただし、本発明を構成する抵抗体を適用した分割抵抗回路が適用される半導体装置は、定電圧発生回路を備えた半導体装置及び電圧検出回路を備えた半導体装置に限定されるものではなく、分割抵抗回路を備えた半導体装置であれば適用することができる。
【0103】
また、本発明を構成する抵抗体が適用される半導体装置は分割抵抗回路を備えた半導体装置に限定されるものではなく、半導体材料からなる抵抗体を備えた半導体装置であれば、本発明を適用することができる。
【0104】
以上、本発明の実施例を説明したが、本発明はこれに限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変更が可能である。
【0105】
【発明の効果】
請求項1及び2に記載された半導体装置では、半導体基板に形成された溝の内部に絶縁膜を介して埋め込まれて形成された半導体材料からなる抵抗体と、抵抗体上に絶縁層を介して配置された金属層を備えているようにしたので、絶縁膜上に形成されたポリシリコンパターンからなる従来の抵抗体に比べて、抵抗体上の絶縁層との接触面積を小さくすることができ、抵抗体の形成領域に配置された金属層により、金属層よりも上層側からの抵抗体への不純物イオンや電荷、水分、水素などの侵入を防止することができるので、抵抗体の抵抗値の安定化を図ることができる。
【0106】
請求項3に記載された半導体装置では、複数の抵抗体が配列されている領域で、それらの抵抗体の上層に配置された金属層によりパッド電極の一部又は全部が形成されているようにしたので、パッド電極下の領域に複数の抵抗体を配置することができ、従来技術に比べてチップ面積を縮小することができる。
【0107】
請求項4に記載された半導体装置では、パッド電極よりも上層側に再配線層が形成されており、パッド電極の形成領域とは異なる領域で再配線層上に外部接続端子が形成されているようにしたので、例えばウェハレベルCSPなど、パッド電極よりも上層側に再配線層が形成される半導体装置に本発明の半導体装置を適用した場合に、パッド電極への機械的衝撃をなくすことができ、パッド電極下に配置した抵抗体へのダメージを防ぐことができる。
【0108】
請求項5に記載された半導体装置では、2個以上の抵抗による分割によって電圧出力を得、ヒューズ素子の切断によって電圧出力を調整できる分割抵抗回路を備えた半導体装置において、分割抵抗回路を構成する抵抗は、本発明の半導体装置を構成する抵抗体により構成されるようにしたので、本発明の半導体装置を構成する抵抗体によって抵抗の抵抗値の安定化を図ることができ、分割抵抗回路の出力電圧の精度を向上させることができる。
【0109】
請求項6に記載された半導体装置では、入力電圧を分割して分割電圧を供給するための分割抵抗回路と、基準電圧を供給するための基準電圧発生回路と、分割抵抗回路からの分割電圧と基準電圧発生回路からの基準電圧を比較するための比較回路をもつ電圧検出回路を備えた半導体装置において、分割抵抗回路として請求項5に記載された分割抵抗回路を備えているようにしたので、本発明の半導体装置を構成する抵抗体が適用された分割抵抗回路では出力電圧の精度を向上させることができるので、電圧検出回路の電圧検出能力の精度を向上させることができる。
【0110】
請求項7に記載された半導体装置では、入力電圧の出力を制御する出力ドライバと、出力電圧を分割して分割電圧を供給するための分割抵抗回路と、基準電圧を供給するための基準電圧発生回路と、分割抵抗回路からの分割電圧と基準電圧発生回路からの基準電圧を比較し、比較結果に応じて出力ドライバの動作を制御するための比較回路をもつ定電圧発生回路を備えた半導体装置において、分割抵抗回路として請求項5に記載された分割抵抗回路を備えているようにしたので、本発明の半導体装置を構成する抵抗体が適用された分割抵抗回路では出力電圧の精度を向上させることができるので、定電圧発生回路の出力電圧の安定性を向上させることができる。
【0111】
請求項8及び9に記載された半導体装置の製造方法では、半導体基板の抵抗体形成予定領域に溝を形成する工程(A)、溝の内壁表面に絶縁膜を形成する工程(B)、溝の内部に半導体材料を埋め込んで抵抗体を形成する工程(C)、抵抗体の形成領域を含む半導体基板上全面に絶縁層を形成する工程(D)、抵抗体の形成領域を含む領域の絶縁層上に金属層を形成する工程(E)を含むようにしたので、絶縁膜上に形成されたポリシリコンパターンからなる従来の抵抗体に比べて抵抗体上の絶縁層との接触面積を小さくすることができ、さらに、抵抗体の形成領域を含む領域の絶縁層上に金属層を形成することにより、金属層よりも上層側からの抵抗体への不純物イオンや電荷、水分、水素などの侵入を防止することができ、抵抗体の抵抗値の安定化を図ることができる。
【0112】
請求項10に記載された半導体装置の製造方法では、工程(E)で、複数の抵抗体が配列されている領域に対応して絶縁層上に形成する金属層により、パッド電極の一部又は全部を形成するようにしたので、パッド電極下の領域に複数の抵抗体を配置することができ、従来技術に比べてチップ面積を縮小することができる。
【0113】
請求項11に記載された半導体装置の製造方法では、工程(E)においてパッド電極を形成した後、パッド電極の形成領域に対応して開口部をもつ第2絶縁層を形成し、パッド電極上及び第2絶縁層上に再配線層を形成し、パッド電極の形成領域とは異なる領域で再配線層上に外部接続端子を形成する工程を含むようにしたので、例えばウェハレベルCSPなど、パッド電極よりも上層側に再配線層が形成される半導体装置に適用した場合に、パッド電極への機械的衝撃をなくすことができ、パッド電極下に配置した抵抗体へのダメージを防ぐことができる。
【0114】
請求項12に記載された半導体装置の製造方法では、抵抗体とは異なる領域の半導体基板上にMOSトランジスタを形成する場合、工程(B)において、溝の内壁表面に絶縁膜を形成する際、MOSトランジスタの形成領域の半導体基板表面にゲート酸化膜を同時に形成するようにしたので、抵抗体とは異なる領域の半導体基板上にMOSトランジスタを形成する場合に、製造工程の短縮を図ることができる。
【0115】
請求項13に記載された半導体装置の製造方法では、抵抗体とは異なる領域の半導体基板上にMOSトランジスタを形成する場合、工程(C)において、溝の内部に埋め込む半導体材料を用いてMOSトランジスタのゲート電極を同時に形成するようにしたので、抵抗体とは異なる領域の半導体基板上にMOSトランジスタを形成する場合に、製造工程の短縮を図ることができる。
【0116】
請求項14に記載された半導体装置の製造方法では、抵抗体とは異なる領域の半導体基板上にヒューズ素子を形成する場合、工程(C)において、溝の内部に埋め込む半導体材料を用いてヒューズ素子を同時に形成するようにしたので、抵抗体とは異なる領域の半導体基板上にヒューズ素子を形成する場合に、製造工程の短縮を図ることができる。
【図面の簡単な説明】
【図1】半導体装置の一実施例を示す図であり、(A)は平面図、(B)は(A)のA−A位置での断面図、(C)は(A)のB−B位置での断面図である。
【図2】図1に示した半導体装置を製造するための製造方法の一実施例の最初を示す工程断面図である。
【図3】同実施例の続きを示す工程断面図である。
【図4】同実施例の最後を示す工程断面図である。
【図5】同実施例で、低抵抗ポリシリコン膜形成時に用いるマスク用酸化膜を形成した状態でのトレンチ形成領域近傍の平面図である。
【図6】半導体装置の他の実施例の断面図である。
【図7】パッド電極下に形成する抵抗体のパターンの一例を示す平面図である。
【図8】半導体装置のさらに他の実施例を示す断面図である。
【図9】図8に示した半導体装置を製造するための製造方法の一実施例の前半を示す工程断面図である。
【図10】同実施例の後半を示す工程断面図である。
【図11】定電圧発生回路を備えた半導体装置の一実施例を示す回路図である。
【図12】電圧検出回路を備えた半導体装置の一実施例を示す回路図である。
【図13】分割抵抗回路を備えた半導体装置の一実施例を示す回路図である。
【図14】分割抵抗回路のヒューズ素子部分のレイアウト例を示すレイアウト図である。
【図15】分割抵抗回路の抵抗体部分のレイアウト例を示すレイアウト図である。
【図16】従来の半導体装置を示す図であり、(A)は平面図、(B)は(A)のX−X位置での断面図、(C)は(A)のY−Y位置での断面図である。
【符号の説明】
1 半導体基板
3 LOCOS酸化膜
5 トレンチ
7 酸化膜
9 抵抗体
11 低抵抗ポリシリコン領域
13 ヒューズ素子
15 ゲート酸化膜
17 ゲート電極
19 ソース拡散層
21 ドレイン拡散層
23 NSG膜
25 BPSG膜
27 接続孔
29 金属配線層
31 パッド電極
33 PSG膜
35 SiN膜
37 トリミング窓開口部
39,45 マスク用酸化膜
41 レジストパターン
43 ポリシリコン膜
47 低抵抗ポリシリコン膜
49 パッド電極
51 パッド開口部
53 第2金属配線層
55 第2パッド電極
57 バリヤメタル層
59 ポリイミド膜
61 第2パッド開口部
63 外部接続端子
65 直流電源
67 負荷
69 定電圧発生回路
71 入力端子
73 基準電圧発生回路
75 演算増幅器
77 pチャネルMOSトランジスタ
79 出力端子
81 電圧検出回路
83 入力端子
85 出力端子
R1,R2 分割抵抗
Rbottom,RT0,RT1,…,RTm,Rtop 抵抗
RL0,RL1,…,RLm ヒューズ素子
NodeL,NodeM 端子

Claims (14)

  1. 半導体材料からなる抵抗体を備えた半導体装置において、
    半導体基板に形成された溝の内部に絶縁膜を介して埋め込まれて形成された半導体材料からなる抵抗体と、
    前記抵抗体上に絶縁層を介して配置された金属層を備えていることを特徴とする半導体装置。
  2. 前記半導体材料はポリシリコン又はポリシリコンゲルマニウムである請求項1に記載の半導体装置。
  3. 複数の前記抵抗体が配列されている領域において、それらの抵抗体の上層に配置された前記金属層によりパッド電極の一部又は全部が形成されている請求項1又は2に記載の半導体装置。
  4. 前記パッド電極よりも上層側に再配線層が形成されており、前記パッド電極の形成領域とは異なる領域で前記再配線層上に外部接続端子が形成されている請求項3に記載の半導体装置。
  5. 2個以上の抵抗による分割によって電圧出力を得、ヒューズ素子の切断によって電圧出力を調整できる分割抵抗回路を備えた半導体装置において、
    前記抵抗は、請求項1から4のいずれかに記載の抵抗体により構成されていることを特徴とする半導体装置。
  6. 入力電圧を分割して分割電圧を供給するための分割抵抗回路と、基準電圧を供給するための基準電圧発生回路と、前記分割抵抗回路からの分割電圧と前記基準電圧発生回路からの基準電圧を比較するための比較回路をもつ電圧検出回路を備えた半導体装置において、
    前記分割抵抗回路として請求項5に記載の分割抵抗回路を備えていることを特徴とする半導体装置。
  7. 入力電圧の出力を制御する出力ドライバと、出力電圧を分割して分割電圧を供給するための分割抵抗回路と、基準電圧を供給するための基準電圧発生回路と、前記分割抵抗回路からの分割電圧と前記基準電圧発生回路からの基準電圧を比較し、比較結果に応じて前記出力ドライバの動作を制御するための比較回路をもつ定電圧発生回路を備えた半導体装置において、
    前記分割抵抗回路として請求項5に記載の分割抵抗回路を備えていることを特徴とする半導体装置。
  8. 半導体材料からなる抵抗体を備えた半導体装置の製造方法において、以下の工程(A)から(E)を含むことを特徴とする半導体装置の製造方法。
    (A)半導体基板の抵抗体形成予定領域に溝を形成する工程、
    (B)前記溝の内壁表面に絶縁膜を形成する工程、
    (C)前記溝の内部に半導体材料を埋め込んで抵抗体を形成する工程、
    (D)前記抵抗体の形成領域を含む半導体基板上全面に絶縁層を形成する工程、
    (E)前記抵抗体の形成領域を含む領域の前記絶縁層上に金属層を形成する工程。
  9. 前記半導体材料としてポリシリコン又はポリシリコンゲルマニウムを用いる請求項8に記載の半導体装置の製造方法。
  10. 前記工程(E)において、複数の前記抵抗体が配列されている領域に対応して前記絶縁層上に形成する前記金属層により、パッド電極の一部又は全部を形成する請求項8又は9に記載の半導体装置の製造方法。
  11. 前記工程(E)において前記パッド電極を形成した後、前記パッド電極の形成領域に対応して開口部をもつ第2絶縁層を形成し、前記パッド電極上及び前記第2絶縁層上に再配線層を形成し、前記パッド電極の形成領域とは異なる領域で前記再配線層上に外部接続端子を形成する工程を含む請求項10に記載の半導体装置の製造方法。
  12. 前記抵抗体とは異なる領域の半導体基板上にMOSトランジスタを形成する場合、前記工程(B)において、前記溝の内壁表面に絶縁膜を形成する際、MOSトランジスタの形成領域の半導体基板表面にゲート酸化膜を同時に形成する請求項8から11のいずれかに記載の半導体装置の製造方法。
  13. 前記抵抗体とは異なる領域の半導体基板上にMOSトランジスタを形成する場合、前記工程(C)において、前記溝の内部に埋め込む半導体材料を用いてMOSトランジスタのゲート電極を同時に形成する請求項8から12のいずれかに記載の半導体装置の製造方法。
  14. 前記抵抗体とは異なる領域の半導体基板上にヒューズ素子を形成する場合、前記工程(C)において、前記溝の内部に埋め込む半導体材料を用いてヒューズ素子を同時に形成する請求項8から13のいずれかに記載の半導体装置の製造方法。
JP2003074194A 2003-03-18 2003-03-18 半導体装置及びその製造方法 Pending JP2004281918A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003074194A JP2004281918A (ja) 2003-03-18 2003-03-18 半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003074194A JP2004281918A (ja) 2003-03-18 2003-03-18 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2004281918A true JP2004281918A (ja) 2004-10-07

Family

ID=33289904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003074194A Pending JP2004281918A (ja) 2003-03-18 2003-03-18 半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2004281918A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006148021A (ja) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd 半導体回路装置及びその製造方法
JP2008192986A (ja) * 2007-02-07 2008-08-21 Seiko Instruments Inc 半導体装置とその製造方法
JP2008294301A (ja) * 2007-05-25 2008-12-04 Mitsubishi Electric Corp 半導体装置
US8377790B2 (en) 2011-01-27 2013-02-19 International Business Machines Corporation Method of fabricating an embedded polysilicon resistor and an embedded eFuse isolated from a substrate
JP2013077779A (ja) * 2011-09-30 2013-04-25 Seiko Instruments Inc 半導体装置
JP2014183248A (ja) * 2013-03-21 2014-09-29 Toshiba Corp 半導体装置および歪監視装置
JP2017092465A (ja) * 2015-11-02 2017-05-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 半導体デバイス及び半導体デバイスの製造方法並びに車両用制御装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4504791B2 (ja) * 2004-11-24 2010-07-14 パナソニック株式会社 半導体回路装置及びその製造方法
JP2006148021A (ja) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd 半導体回路装置及びその製造方法
US7576014B2 (en) 2004-11-24 2009-08-18 Panasonic Corporation Semiconductor device and manufacturing method thereof
JP2008192986A (ja) * 2007-02-07 2008-08-21 Seiko Instruments Inc 半導体装置とその製造方法
TWI472031B (zh) * 2007-05-25 2015-02-01 Mitsubishi Electric Corp 半導體裝置
DE102008064686B4 (de) * 2007-05-25 2014-04-10 Mitsubishi Electric Corp. Halbleitervorrichtung
JP2008294301A (ja) * 2007-05-25 2008-12-04 Mitsubishi Electric Corp 半導体装置
US9484444B2 (en) 2007-05-25 2016-11-01 Mitsubishi Electric Corporation Semiconductor device with a resistance element in a trench
US8377790B2 (en) 2011-01-27 2013-02-19 International Business Machines Corporation Method of fabricating an embedded polysilicon resistor and an embedded eFuse isolated from a substrate
JP2013077779A (ja) * 2011-09-30 2013-04-25 Seiko Instruments Inc 半導体装置
JP2014183248A (ja) * 2013-03-21 2014-09-29 Toshiba Corp 半導体装置および歪監視装置
JP2017092465A (ja) * 2015-11-02 2017-05-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 半導体デバイス及び半導体デバイスの製造方法並びに車両用制御装置
CN106910772A (zh) * 2015-11-02 2017-06-30 罗伯特·博世有限公司 半导体结构元件及用于制造半导体结构元件的方法以及用于车辆的控制装置

Similar Documents

Publication Publication Date Title
US7847370B2 (en) Semiconductor device with resistor and fuse and method of manufacturing the same
US20060163734A1 (en) Fuse structure and method for making the same
JP2004281966A (ja) 半導体装置及び半導体装置の製造方法
US20070080404A1 (en) Semiconductor device
US5759887A (en) Semiconductor device and a method of manufacturing a semiconductor device
JP2004281918A (ja) 半導体装置及びその製造方法
US10014253B2 (en) Method of manufacturing semiconductor integrated circuit device
JP3023853B2 (ja) 半導体装置の製造方法
KR100663145B1 (ko) 반도체 장치 및 그 반도체 장치의 제조 방법
JP2006222410A (ja) 半導体装置及びその製造方法
JP2762473B2 (ja) 半導体装置の製造方法
JPS5950104B2 (ja) ハンドウタイソウチ
JP4646891B2 (ja) 半導体装置及びその製造方法
JPH0492466A (ja) 半導体装置およびその製造方法
JP3113202B2 (ja) 半導体装置
JPH05326718A (ja) 半導体装置およびその製造方法
JP2012004499A (ja) 半導体装置およびその製造方法
JP2007200983A (ja) 抵抗素子、及び、同抵抗素子を備えた半導体装置、及び同半導体装置の製造方法
JPH10326896A (ja) 半導体装置及びその製造方法
JP2004342922A (ja) 半導体装置および半導体装置の製造方法
JP3372109B2 (ja) 半導体装置
JP3948102B2 (ja) 半導体装置の製造方法
TW202347425A (zh) 具有用於氫陷留之吸氣層之積體電路
JPH0547756A (ja) 半導体装置の製造方法
JPH07161809A (ja) 半導体集積回路装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105