JP2004278341A - 内燃機関の冷却装置の故障検知装置 - Google Patents

内燃機関の冷却装置の故障検知装置 Download PDF

Info

Publication number
JP2004278341A
JP2004278341A JP2003067909A JP2003067909A JP2004278341A JP 2004278341 A JP2004278341 A JP 2004278341A JP 2003067909 A JP2003067909 A JP 2003067909A JP 2003067909 A JP2003067909 A JP 2003067909A JP 2004278341 A JP2004278341 A JP 2004278341A
Authority
JP
Japan
Prior art keywords
water temperature
cooling water
failure determination
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003067909A
Other languages
English (en)
Other versions
JP3930821B2 (ja
Inventor
Munenori Tsukamoto
宗紀 塚本
Eisaku Goshiyo
栄作 五所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003067909A priority Critical patent/JP3930821B2/ja
Priority to US10/792,775 priority patent/US6907343B2/en
Publication of JP2004278341A publication Critical patent/JP2004278341A/ja
Application granted granted Critical
Publication of JP3930821B2 publication Critical patent/JP3930821B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/52Heat exchanger temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】冷却装置(ラジエータのサーモスタット)の故障を精度良く検知する。
【解決手段】内燃機関(エンジン)の冷却水を冷却すると共に、サーモスタットを備えてなるラジエータからなる冷却装置の故障検知装置において、内燃機関が始動される前に停止されていた停止時間TSを検出し(S10)、停止時間を所定時間(TREF1,2)と比較し、比較結果に基づいて予め設定された複数種のしきい値(故障判定しきい値A,B)を選択し(S12からS20,S26)、選択されたしきい値と、冷却水温の推定値と検出値の少なくともいずれかに基づいて冷却装置の故障を判定する。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
この発明は内燃機関の冷却装置の故障検知装置、詳しくはラジエータの故障検知装置、より詳しくはラジエータのサーモスタットの故障検知装置に関する。
【0002】
【従来の技術】
車両用の内燃機関はインレットパイプとアウトレットパイプからなる連通路を介して接続されて冷却水を冷却するラジエータ(冷却装置)を備え、連通路にはサーモスタット(開閉バルブ)が配置される。サーモスタットは、始動時など冷却水温が低いときは連通路を閉じると共に、昇温すると開弁して連通路を開放し、冷却水をラジエータに導入して冷却する。
【0003】
かかるラジエータも車両の搭載部品の一つであることから、その故障を検知するのが望ましい。その意図から、本出願人も、特許文献1において、内燃機関が完全にソーク(長時間あるいは十分に放置)されて外気温相当まで冷却された状態で、かつ始動からの外気温の変化が小さいとき、故障検知実行条件が成立したと判断し、推定水温を算出し、推定水温が故障判定値に達したときに検出水温が正常判定値に達していない場合など、ラジエータ、より正確にはラジエータのサーモスタットが故障と判定する技術を提案している。
【0004】
【特許文献1】
特開2000−008853号公報
【0005】
【発明が解決しようとする課題】
このように、従来技術にあっては、機関冷却水温と外気温を用いて故障を判定すると共に、スロットルバルブ下流に温度センサを配置し、吸気温を示すその出力を外気温とみなしている。即ち、この従来技術においては吸気温センサの検出値をそのまま外気温としているが、両者は本来別であり、内燃機関の冷機状態は吸気温よりも外気温の方が影響する。
【0006】
それらの温度に関しては、図9に示す如く、機関停止してから十分な時間が経過すれば、機関冷却水温と吸気温と外気温は一致するが、停止直後は冷却水温と吸気温の差異が大きいと共に、吸気温と外気温との差異も大きい。図示の如く、これらの値は経時的に接近していき、最終的には一致するが、外気温をエンジンルーム内に配置したセンサ出力から検出する場合、一致するまでの間は、内燃機関の冷機状態を誤認する事態も生じ得る。
【0007】
従って、この発明の目的は上記した不都合を解消することにあり、内燃機関の冷機状態を精度良く検出し、それに応じて故障判定することで、内燃機関の冷却装置、詳しくはラジエータ、より詳しくはそのサーモスタットの故障を一層精度良く検知するようにした内燃機関の冷却装置の故障検知装置を提供することにある。
【0008】
【課題を解決するための手段】
上記した目的を解決するために請求項1項にあっては、内燃機関に連通路を介して接続され、前記内燃機関の冷却水を冷却すると共に、前記連通路を開閉するサーモスタットを備えたラジエータからなる冷却装置の故障検知装置において、前記内燃機関の冷却水温を含む前記内燃機関の運転状態を示すパラメータを検出あるいは算出する運転状態パラメータ検出手段、前記検出あるいは算出されたパラメータの中、前記冷却水温の機関始動時の検出値と機関始動後の前記冷却水温の上昇に相関する熱負荷パラメータに少なくとも基づき、前記冷却水温の機関始動後の推定値を算出する推定水温算出手段、前記内燃機関が始動される前に停止されていた停止時間を検出する停止時間検出手段、前記停止時間を所定時間と比較し、比較結果に基づいて予め設定された複数種のしきい値を選択するしきい値選択手段、前記選択されたしきい値と、前記冷却水温の推定値と検出値の少なくともいずれかに基づき、前記冷却装置の故障を判定する故障判定手段を備える如く構成した。
【0009】
内燃機関が始動される前に停止されていた停止時間を検出して所定時間と比較し、比較結果に基づいて予め設定された複数種のしきい値を選択すると共に、選択されたしきい値と冷却水温の推定値と検出値の少なくともいずれかに基づいて冷却装置の故障を判定するように構成したので、内燃機関の冷機状態を精度良く検出することができ、それによって冷却装置の故障判定を精度良く行うことができる。
【0010】
請求項2項にあっては、前記選択されたしきい値が故障判定しきい値であり、前記故障判定手段は、前記冷却水温の推定値および前記冷却水温の推定値と検出値の差の少なくともいずれかを前記選択された故障判定しきい値と比較し、前記冷却水温の推定値および前記差の少なくともいずれかが前記選択されたしきい値を超えるとき、前記冷却装置が故障と判定する如く構成した。
【0011】
選択されたしきい値が故障判定しきい値であり、冷却水温の推定値および冷却水温の推定値と検出値の差の少なくともいずれかを選択された故障判定しきい値と比較し、それが選択されたしきい値を超えるとき、冷却装置が故障と判定するように構成、換言すれば、内燃機関の冷機状態に応じて判定しきい値を持ち替えて比較するようにしたので、判定精度の高いしきい値を設定することができ、よって冷却装置の故障判定を一層精度良く行なうことができる。
【0012】
請求項3項にあっては、前記選択されたしきい値が故障判定実行しきい値であると共に、前記冷却水温の推定値を前記選択された故障判定実行しきい値と比較する比較手段を備え、前記故障判定手段は、前記冷却水温の推定値が前記選択された故障判定実行しきい値を超えるとき、前記冷却水温の検出値を故障判定しきい値と比較し、前記冷却水温の検出値が前記故障判定しきい値を超えるとき、前記冷却装置が故障と判定する如く構成した。
【0013】
選択されたしきい値が故障判定実行しきい値であると共に、冷却水温の推定値が選択された故障判定実行しきい値を超えるとき、冷却水温の検出値を故障判定しきい値と比較し、冷却水温の検出値が故障判定しきい値を超えるとき、冷却装置が故障と判定する如く構成、換言すれば、内燃機関の冷機状態に応じて故障判定の実行の有無を決定するようにしたので、故障判定時点を適正に決定することができ、よって冷却装置の故障判定を一層精度良く行なうことができる。
【0014】
請求項4項にあっては、さらに、前記停止時間を第2の所定時間と比較し、前記停止時間が前記第2の所定時間を超えないとき、前記故障判定を禁止する故障判定禁止手段を備える如く構成した。
【0015】
さらに、停止時間を第2の所定時間と比較し、それを超えないとき、故障判定を禁止するように構成したので、内燃機関が冷機されていない状態にあるとき、故障判定を行うことがなく、よって冷却装置の故障判定を一層精度良く行なうことができる。
【0016】
請求項5項にあっては、前記冷却水温が前記内燃機関を循環する冷却水温および前記冷却装置を循環する冷却水温のいずれかである如く構成した。
【0017】
冷却水温が内燃機関を循環する冷却水温および冷却装置を循環する冷却水温のいずれかである如く構成したので、前記と同様の効果を得ることができる。
【0018】
【発明の実施の形態】
以下、添付図面に即してこの発明の一つの実施の形態を説明する。
【0019】
図1はその実施の形態に係る内燃機関の冷却装置(ラジエータ)の故障検知装置を全体的に示す概略図である。
【0020】
図において、符号10は4サイクル4気筒の内燃機関(以下「エンジン」という)を示す。エンジン10の本体10aに接続される吸気管12の途中にはスロットルバルブ14が配置される。スロットルバルブ14にはスロットル開度センサ16が連結され、スロットルバルブ14の開度θTHに応じた電気信号を出力し、電子制御ユニット(以下「ECU」という)20に送る。
【0021】
前記した吸気管12はスロットルバルブ配置位置の下流でインテークマニホルド(図示せず)を形成し、そのインテークマニホルドにおいて各気筒の吸気弁(図示せず)の上流側には燃料噴射弁(インジェクタ)22が気筒ごとに設けられる。
【0022】
燃料噴射弁22は燃料ポンプ(図示せず)に機械的に接続されて燃料の圧送を受けると共に、ECU20に電気的に接続されてその開弁時間を制御され、開弁される間、圧送された燃料を前記した吸気弁付近に噴射(供給)する。
【0023】
吸気管12においてスロットルバルブ14の下流には分岐管24を介して絶対圧センサ26が取付けられており、吸気管12内の吸気管内圧力(絶対圧)PBAに応じた電気信号を出力する。
【0024】
また、その下流には吸気温センサ30が取り付けられ、吸気温TAに応じた電気信号を出力すると共に、エンジン本体10aの冷却水通路(図示せず)の付近には水温センサ32が配置され、冷却水温(エンジン冷却水温)TWに応じた電気信号を出力する。
【0025】
また、エンジン10においてカム軸あるいはクランク軸(共に図示せず)の付近には、気筒判別センサ34が取り付けられ、所定気筒のピストン位置ごとに気筒判別信号CYLを出力する。
【0026】
同様に、カム軸あるいはクランク軸(共に図示せず)の付近には、TDCセンサ36が取付けられ、ピストン(図示せず)のTDC位置に関連したクランク角度(例えばBTDC10度)ごとにTDC信号パルスを出力すると共に、クランク角センサ38が取り付けられ、前記TDC信号パルスの周期より短いクランク角度(例えば30度)周期でCRK信号パルスを出力する。
【0027】
また、エンジン10の排気系においてはエキゾストマニホルド(図示せず)に接続される排気管40の適宜位置に空燃比センサ(O2 センサ)42が設けられ、排気ガス中の酸素濃度O2 に応じた信号を出力すると共に、その下流には三元触媒44が設けられ、排気ガス中のHC,CO,NOx成分を浄化する。
【0028】
また、エンジン10の燃焼室(図示せず)には点火プラグ48が配置され、点火コイル、イグナイタ50を介してECU20に電気的に接続される。
【0029】
さらに、エンジン本体10aのシリンダヘッド(図示せず)にはノックセンサ52が配置され、エンジン10の振動に応じた信号を出力する。また、エンジン10が搭載される車両のドライブシャフト(図示せず)の付近には車輪速センサ54が搭載され、車輪の単位回転ごとにパルスを出力する。
【0030】
これらセンサの出力もECU20に送られる。ECU20はマイクロコンピュータからなり、上記した各種センサからの入力信号波形の整形、電圧レベルの変換、あるいはアナログ信号値のデジタル信号化などの処理を行う入力回路20a、論理演算を行うCPU(中央演算処理装置)20b、CPUで実行される各種演算プログラムと演算結果などを記憶する記憶手段20c、および出力回路20dなどから構成される。
【0031】
ECU20にはさらに、エンジン10が停止されてからの経過時間を計測するオフタイマが設けられる。
【0032】
ECU20において、ノックセンサ52の出力は検出回路(図示せず)に入力され、そこでノイズレベルを増幅して得たノック判定レベルと比較される。CPU20bは検出回路出力から燃焼室内にノックが発生したか否か検出する。またCPU20bは、CRK信号パルスをカウントしてエンジン回転数NEを検出すると共に、車輪速センサ54の出力パルスをカウントして車速VPSを検出する。
【0033】
CPU20bは、検出したエンジン回転数NEと吸気管内絶対圧PBA(エンジン負荷パラメータ)とから予め設定されて記憶手段20c内に格納されているマップを検索し、基本点火時期を算出し、エンジン冷却水温TWなどから基本点火時期を補正すると共に、ノックが検出されたときは基本点火時期を遅角補正する。
【0034】
また、CPU20bは燃料噴射量(開弁時間)を決定し、出力回路20dおよび駆動回路(図示せず)を介して燃料噴射弁22を駆動する。
【0035】
エンジン10には、ラジエータ(冷却装置)60が接続される。
【0036】
図2はそのラジエータ60を詳細に示す説明側面断面図である。
【0037】
図示の如く、エンジン本体10aはラジエータ60にインレットパイプ(連通路)62を介して接続され、インレットパイプ62にはサーモスタット64が配置される。
【0038】
インレットパイプ62はアッパタンク66に接続され、そこから下部のロアタンク68に至る空間には蜂の巣状のコア70が収納される。冷却水通路の冷却水はウォータポンプ72で圧送されてインレットパイプ62からタンク内に入り、コア70に接触しつつ循環し、アウトレットパイプ74からエンジン本体10a内の冷却水通路に戻る。尚、図示は省略するが、インレットパイプ62あるいはその上流側には分岐管が接続され、車室内を暖めるヒータのヒータコアを加熱する。
【0039】
図2に矢印で示す如く、コア70は車両進行方向から風を受けて冷却されると共に、背面側に設置されエンジン出力で駆動されるファン76で強制的に冷却される。
【0040】
サーモスタット64はバイメタルからなる開閉バルブであり、冷却水温が低い始動時にはインレットパイプ62を閉じて冷却水の侵入するのを防止すると共に、冷却水温が上がると開放し、冷却水をコア70に接触させて冷却して冷却水通路に戻す。
【0041】
上記した構成において、ECU20は後述する如く、温度センサ78などの出力に基づき、ラジエータ(冷却装置)60の故障、具体的にはそのサーモスタット64の故障、より具体的にはそのサーモスタット64の開故障(開弁状態に固着するような故障)を検知する。
【0042】
図3フロー・チャートを参照し、この実施の形態に係る故障検知装置の動作を説明する。尚、図示のプログラムは、イグニション・スイッチがオンされてから動作を開始し、以後、定期的に、例えば2secごとに実行される。
【0043】
以下説明すると、S10でエンジン10が始動される前に停止されていた時間(停止時間TS)を検出する。これは、前記したオフタイマの値を読み込むことで行なう。即ち、イグニション・スイッチがオフされてエンジン10が停止された後、再びオンされることで、図示のプログラムの実行が開始されるが、このステップではオフタイマの値を読み込むことで、その停止時間TSを検出する。
【0044】
次いでS12に進み、検出された停止時間TSが第1の所定時間TREF1(例えば2時間)を超えるか否か判断し、否定されるときはS14に進み、故障判定許可フラグ(flg)のビットを0にリセットし、S16に進み、故障判定を保留する。このように、このフラグのビットを0にリセットすることは、故障判定が許可されないことを意味する。
【0045】
他方、S12で肯定されるときはS18に進み、検出された停止時間TSが第2の所定時間TREF2(例えば5時間)を超えるか否か判断し、否定されるときはS20に進んで故障判定しきい値をA(例えば10℃)とし(選択し)、S22に進んで故障判定許可フラグのビットを1にセットし、S24に進んで検出された吸気温TAを外気温と置き換える。他方、S18で肯定されるときはS26に進んで故障判定しきい値をB(例えば5℃)とし(選択し)、S28に進んで同様に故障判定許可フラグのビットを1にセットし、S30に進んで同様に検出された吸気温TAを外気温と置き換える。故障判定許可フラグのビットを1にセットすることは、故障判定が許可されることを意味する。尚、S24およびS30で吸気温TAを外気温と置き換えるのは、この実施の形態では外気温センサが設けられていない一方、後述する水温推定演算で外気温を使用するからである。
【0046】
上記の処理について説明すると、図9を参照して先に述べたように、エンジン10が停止してから十分な時間が経過すれば、冷却水温TWと吸気温TAと外気温は一致するが、停止の直後は冷却水温TWと吸気温TAの差異が大きいと共に、吸気温TAと外気温との差異も大きい。これらの値は経時的に接近していき、最終的には一致するが、外気温をエンジンルーム内に配置したスロットルバルブ下流の吸気温センサ30の出力から検出する場合、一致するまでの間は、エンジン10の冷機状態を誤認する事態も生じ得る。
【0047】
そこで、この実施の形態にあっては、停止時間TSが第1の所定時間TREF1(2時間)を超えないとき、エンジン10が冷機されていず、冷却水温TWと吸気温TAと外気温との差異が大きいと判断して故障判定を許可せず、判定保留(故障診断停止)とするようにした。
【0048】
また、停止時間TSが第1の所定時間TREF1(2時間)を超えるときは第2の時間TREF2(5時間)と比較し、第2の所定時間を超えないときは冷却水温TWと吸気温TAと外気温との差異が依然としてあると共に、吸気温TAと外気温の差異も多少あってエンジン10が完全には冷機されていない準冷機状態にあると判断し、故障判定しきい値を10℃とするようにした。他方、停止時間TSが第2の所定時間を超えるときは冷却水温TWと吸気温TAと外気温の差異がなく、エンジン10が完全に冷機されている状態にあると判断し、故障判定しきい値を5℃とするようにした。
【0049】
図4にこれら故障判定しきい値A,Bを示すが、図示の如く、判定しきい値Aは、Bに比して大きく(高温側に)設定される。この実施の形態においては、エンジン10の停止時間TSに応じてかかる2種(複数)の判定しきい値A,Bのいずれかを選択すると共に、選択されたしきい値を用いて後述するように故障判定を行なうようにした。尚、故障判定しきい値A,Bは、図示の如く、検出水温TW(同図に「実水温」と示す)からの偏差として示される。
【0050】
図4に示す特性を説明すると、ラジエータ60においてサーモスタット64が正常に動作している場合、エンジン10が始動されてから暖機されるまで、サーモスタット64は閉弁してインレットパイプ62を閉鎖する。その結果、ラジエータ60に残留する冷却水はその内部を循環するに止まり、エンジン10の暖機が促進される。
【0051】
その後、エンジン10の暖機が進むにつれてエンジン冷却水温TWが上昇すると、サーモスタット64が開弁(開放)してエンジン冷却水がインレットパイプ62を介してラジエータ60に流入し、その内部で循環されて冷却する。冷却されたラジエータ冷却水は、アウトレットパイプ74を介してエンジン10に流出させられ、エンジン冷却水となってエンジン10を冷却する。
【0052】
このとき、サーモスタット64が故障、より具体的には開弁(開放)状態に固着される開故障を生じると、始動直後からエンジン冷却水がインレットパイプ62を流れる結果、オーバークール状態に陥り、冷却水温の上昇が緩慢になる。この実施の形態にあっては、後述するようにエンジン10の熱負荷を算出すると共に、外気温などから冷却損失を算出し、算出された熱負荷から冷却損失を減算して(サーモスタット正常時の)エンジン冷却水温TWの上昇値を推定するが、このときの冷却損失が外気温(初期吸気温)を用いて算出されるため、準冷機状態では冷却損失が小さくなり、高い推定値となるおそれがある。
【0053】
即ち、推定演算時の冷却損失は現温度と外気温の差によって与えられ、その差が大きくなるにつれて冷却損失も大きくなるため、外気温が実際値よりも高い可能性がある準冷機状態では推定値が誤って高く算出されるおそれがある。そこで、この実施の形態にあっては、準冷機状態の故障判定しきい値Aを冷機状態のしきい値Bよりも高く設定し誤判定を防止するようにした。このように、この実施の形態においては、エンジン10の停止時間TSを検出し、それに応じて故障判定の許可・不許可を決定すると共に、故障判定を許可するときも停止時間TSに応じてかく設定故障判定しきい値A,B2種のいずれかを選択するようにしたので、エンジン10の冷機状態を精度良く検出することができ、故障判定しきい値を判定精度の高い値に設定することができ、よって故障判定を精度良く行うことができる。
【0054】
図5は、図3に示すフロー・チャートと平行して実行される、同様にこの実施の形態に係る故障検知装置の動作を説明するフロー・チャートである。図示のプログラムもイグニション・スイッチがオンされてから動作を開始し、以後、定期的に、例えば2secごとに実行される。
【0055】
以下説明すると、S100において前記したフラグのビットが1にセットされているか否か判断し、否定されるときは以降の処理をスキップすると共に、肯定されるときはS102に進み、水温推定演算を実行する。ここで水温推定演算は、前記したエンジン冷却水温TWの推定値の算出である。S102の水温推定演算は、本出願人が先に特開2000−008853号で提案した手法を用いて行なう。
【0056】
その特開2000−008853号で提案した手法を簡単に説明すると、推定水温は、冷却水温TWのエンジン始動時の検出値とエンジン始動後の冷却水温TWの上昇に相関する熱負荷パラメータ(水温推定基本値)に少なくとも基づいて算出する。より具体的には、燃料噴射量などからエンジン負荷積算値を求めると共に、冷却水温TWのエンジン始動時の検出値と前記した外気温の差などから温室内ヒータ、走行風の冷却損失などを積算して積算冷却損失値を求め、エンジン負荷積算値から減算してエンジン始動後の冷却水温TWの上昇に相関する熱負荷パラメータを求める。次いで、その熱負荷パラメータから水温推定基本値を求めると共に、水温推定始動時水温補正係数を乗じ、よって得た積を冷却水温TWのエンジン始動の検出値に加算することで、推定水温(エンジン水温TWの推定値)を算出する。
【0057】
次いで、S104に進み、推定水温から検出水温を減算した差(冷却水温TWの推定値と検出値(図4に示す実水温)の差)が、前記した故障判定しきい値、即ち、図3フロー・チャートの処理で選択された故障判定しきい値AあるいはBを超えるか否か判断し、肯定されるときはS106に進み、冷却装置(ラジエータ)60が故障、具体的にはサーモスタット64が故障,より具体的にはそれが開弁状態に固着される開故障にあると判定(検知)する。次いでS108に進み、判定を終了したことから、故障判定許可フラグのビットを0にリセットして以降の処理をスキップする。
【0058】
一方、S104で否定されるときはS110に進み、検出された冷却水温TWが故障判定トリガ温度(故障判定実行しきい値)以上か否か判断し、否定されるときは以降の処理をスキップすると共に、肯定されるときはS112に進み、S104の処理と逆に冷却水温の検出値TWから推定値(エンジン水温TWの推定値)を減算して得た差が正常判定しきい値(図4に示す)を超えるか否か判断し、肯定されるときはS114に進み、冷却装置(ラジエータ)が正常、具体的にはサーモスタット64が正常と判定し、S116に進んで前記フラグのビットを0にリセットする。このように、S110の故障判定トリガ温度(故障判定実行しきい値)は故障判定、より正確には正常か否かの判定を行なうためのしきい値を意味する。
【0059】
他方、S112で否定されるときはS118に進み、故障・正常の判定を保留すると共に、S120に進み、前記したフラグのビットを0にリセットする。尚、S118で判定を保留するのは、S104で推定値−検出値が故障判定しきい値を超えていないと判断されることから故障とは判定し難い一方、検出値−推定値が比較的低く設定される正常判定しきい値を超えないと判断されることから、正常とも判断し難いためである。これによって、誤検知を回避することができる。
【0060】
この実施の形態は上記の如く、エンジン10の停止時間を検出し、それに応じて故障判定の許可・不許可を決定すると共に、故障判定を許可するときも停止時間に応じて故障判定しきい値をA,Bの間で選択するようにしたので、エンジン10の冷機状態を精度良く検出でき、それによって冷却装置(ラジエータ)60の故障判定を精度良く行うことができる。
【0061】
図6は、この発明の第2の実施の形態に係る故障検知装置の動作を説明する、図3と同様なフロー・チャートである。図示のプログラムもイグニション・スイッチがオンされてから動作を開始し、以後、定期的に、例えば2secごとに実行される。
【0062】
尚、第2の実施の形態に係る装置にあっては、図2に1点鎖線で示す如く、サーモスタット64の下流においてインレットパイプ62の適宜位置には温度センサ78が配置され、インレットパイプ62およびアウトレットパイプ74の少なくともいずれか、より具体的にはインレットパイプ62を流れる冷却水の温度(以下「ラジエータ水温」という)を示す電気信号を出力(検出)する。温度センサ78の出力もECU20に送られる。
【0063】
以下説明すると、S200で第1の実施の形態と同様、エンジン10が始動される前に停止されていた時間(停止時間TS)を検出し、S202に進み、検出された停止時間TSが第1の所定時間TREF1(例えば2時間)を超えるか否か判断し、否定されるときはS204に進み、故障判定許可フラグ(flg)のビットを0にリセットする。次いでS206に進み、故障判定を保留する。
【0064】
他方、S202で肯定されるときはS208に進み、検出された停止時間TSが第2の所定時間TREF2(例えば5時間)を超えるか否か判断し、否定されるときはS210に進んで故障判定トリガ温度偏差(故障判定実行しきい値)をA(例えば40℃)とし(選択し)、S212に進んで故障判定許可フラグのビットを1にセットし、S214に進んで吸気温TAを外気温と置き換えると共に、S208で肯定されるときはS216に進んで故障判定トリガ温度偏差(故障判定実行しきい値)をB(例えば35℃)とし(選択し)、S218に進んで同様に故障判定許可フラグのビットを1にセットし、S220に進んで吸気温TAを外気温と置き換える。
【0065】
上記の処理について説明すると、先に述べたように、エンジン10の停止時間に応じて冷却水温TWと吸気温TAと外気温の関係は変化する。そこで、第2の実施の形態にあっても、停止時間TSが第1の所定時間TREF1(2時間)を超えないときは判定保留とする(故障診断停止)と共に、停止時間TSが第1の所定時間TREF1(2時間)を超えるときは、第2の時間TREF2(5時間)と比較し、第2の所定時間(5時間)を超えないときは冷却水温TWと吸気温TAと外気温との差異が依然としてあると共に、吸気温TAと外気温の差異も多少あり、エンジン10が完全に冷機されていない準冷機状態にあると判断し、故障判定トリガ温度偏差をA(40℃)とするようにした。他方、停止時間TSが第2の所定時間を超えるときは冷却水温TWと吸気温TAと外気温の差異がなく、エンジン10が完全に冷機されている冷機状態にあると判断し、故障判定トリガ温度偏差をB(35℃)とするようにした。
【0066】
図7にこれら故障判定トリガ温度偏差A,Bを示す。第2の実施の形態においては、エンジン10の停止時間TSに応じてかかる2種(複数)の故障判定トリガ温度偏差A,Bのいずれかを選択すると共に、選択された値を推定水温(エンジン冷却水温TWの推定値)と比較して故障判定を実行するか否か判断するようにした。第1の実施の形態で述べたと同様の理由から、図示の如く、エンジン10が準冷機状態にあると判断されるとき選択される故障判定トリガ温度偏差Aは、Bに比して大きく(高温側に)設定される。尚、故障判定トリガ温度偏差A,Bは、図示の如く、検出ラジエータ水温TR(図に「実水温」と示す)からの偏差として示される。
【0067】
図8は、図6に示すフロー・チャートと平行して実行される第2の実施の形態に係る装置の動作を説明する、図5と同様なフロー・チャートである。
【0068】
以下説明すると、S300において前記したフラグのビットが1にセットされているか否か判断し、否定されるときは以降の処理をスキップすると共に、肯定されるときはS302に進み、第1の実施の形態と同様、エンジン水温TWの推定演算を実行する。S302の水温推定演算も、具体的には、本出願人が先に特開2000−008853号で提案した手法を用いて行なう。
【0069】
次いで、S304に進み、推定水温温度偏差が故障判定トリガ温度偏差、即ち、図6フロー・チャートの処理で選択された故障判定トリガ温度偏差AあるいはBを超えるか否か判断し、否定されるときは故障判定を実行しないと判断して以降の処理をスキップすると共に、肯定されるときはS306に進み、検出されたラジエータ水温が故障判定実水温変化しきい値(故障判定しきい値)を超えるか否か判断する。
【0070】
S306で肯定されるときはS308に進み、冷却装置(ラジエータ)60が故障、具体的にはサーモスタット64が故障,より具体的にはそれが開弁状態に固着される開故障にあると判定(検知)する。次いでS310に進み、故障判定許可フラグのビットを0にリセットして以降の処理をスキップする。
【0071】
一方、S306で否定されるときはS312に進み、検出されたラジエータ水温TRが正常判定実水温変化しきい値(図7に示す)未満か否か判断し、肯定されるときはS314に進み、冷却装置(ラジエータ)が正常、具体的にはサーモスタット64が正常と判定し、S316に進んで前記フラグのビットを0にリセットする。
【0072】
他方、S312で否定されるときはS318に進み、第1の実施の形態と同様の理由から故障・正常の判定を保留すると共に、S320に進み、前記したフラグのビットを0にリセットする。
【0073】
この実施の形態は上記の如く、エンジン10の停止時間を検出し、それに応じて故障判定を許可・不許可を決定すると共に、故障判定を許可するときも停止時間に応じて故障判定トリガ温度偏差(故障判定実行しきい値)をA,Bの間で選択するようにした。図7を参照して説明すると、完全に冷機された状態を基準に考えると、本来は時点t1で故障判定を実行するのが望ましいが、準冷機状態にあるとき、推定水温が高くなることから、故障判定トリガ温度偏差が1種しか設定されない場合、t1より前のt2で実行することになる。
【0074】
しかしながら、第2の実施の形態にあっては上記のように構成したことで、適正な時点で故障判定を実行することができる。これにより、エンジン10の冷機状態を精度良く検出でき、それによって冷却装置(ラジエータ)60の故障判定を精度良く行うことができる。
【0075】
この実施の形態は上記の如く、内燃機関(エンジン)10に連通路を介して接続され、前記内燃機関の冷却水を冷却すると共に、前記連通路を開閉するサーモスタット64を備えてなるラジエータ60からなる冷却装置の故障検知装置において、前記内燃機関の冷却水温TWを含む前記内燃機関の運転状態を示すパラメータを検出あるいは算出する運転状態パラメータ検出手段(水温センサ32、ECU20)、前記検出あるいは算出されたパラメータの中、前記冷却水温の機関始動時の検出値と機関始動後の前記冷却水温の上昇に相関する熱負荷パラメータに少なくとも基づき、前記冷却水温の機関始動後の推定値を算出する推定水温算出手段(ECU20、S102,S302)、前記内燃機関が始動される前に停止されていた停止時間TSを検出する停止時間検出手段(ECU20、S10,S200)、前記停止時間を所定時間(TREF2)と比較し、比較結果に基づいて予め設定された複数種のしきい値(故障判定しきい値A,B、故障判定トリガ温度偏差(故障判定実行しきい値A,B))を選択するしきい値選択手段(ECU20、S12からS20,S26,S202からS210,S216)、前記選択されたしきい値と、前記冷却水温の推定値と検出値の少なくともいずれかに基づき、前記冷却装置の故障を判定する故障判定手段(ECU20、S100からS120,S300からS320)を備える如く構成した。
【0076】
また、前記選択されたしきい値が故障判定しきい値であり、前記故障判定手段は、前記冷却水温の推定値および前記冷却水温の推定値と検出値の差の少なくともいずれか、より具体的には前記冷却水温の推定値と検出値の差を前記選択された故障判定しきい値と比較し、前記冷却水温の推定値および前記差の少なくともいずれかが前記選択されたしきい値を超えるとき、前記冷却装置が故障と判定する(ECU20、S100からS120)如く構成した。
【0077】
また、前記選択されたしきい値が故障判定実行しきい値(故障判定トリガ温度)であると共に、前記冷却水温の推定値を前記選択された故障判定実行しきい値と比較する比較手段(ECU20,S306)を備え、前記故障判定手段は、前記冷却水温の推定値が前記選択された故障判定実行しきい値を超えるとき、前記冷却水温の検出値を故障判定しきい値と比較し、前記冷却水温の検出値が前記故障判定しきい値を超えるとき、前記冷却装置が故障と判定する(ECU20、S300からS320)如く構成した。
【0078】
さらに、前記停止時間TSを第2の所定時間(TREF1)と比較し、前記停止時間が前記第2の所定時間を超えないとき、前記故障判定を禁止する故障判定禁止手段を備える(ECU20、S10,S14,S200,S204)如く構成した。
【0079】
また、前記冷却水温が前記内燃機関を循環する冷却水温(エンジン冷却水温TW)および前記冷却装置を循環する冷却水温(ラジエータ水温TR)のいずれかである如く構成した。
【0080】
尚、上記において、ラジエータ60は図2に示す構造に限定されるものではなく、例えば、サーモスタット64をアウトレットパイプ74の側に設けても良い(その場合は温度センサ78をアウトレットパイプ74側に配置するのが望ましい)。
【0081】
また、水温推定を本出願人が先にて提案した手法を用いて行なうようにしたが、それに限られるものではなく、熱負荷などに応じたエンジン冷却水温TWの上昇値を推定できるならば、それ以外の適宜な手法を用いても良い。いずれにしても、この発明はエンジンの冷機状態を精度良く検出し、それに応じて故障判定あるいは故障判定実行のしきい値を選択することにあるので、それと比較されるべき値は図示したものに限られず、種々の変形が可能である。
【0082】
【発明の効果】
請求項1項にあっては、内燃機関が始動される前に停止されていた停止時間を検出して所定時間と比較し、比較結果に基づいて予め設定された複数種のしきい値を選択すると共に、選択されたしきい値と冷却水温の推定値と検出値の少なくともいずれかに基づいて冷却装置の故障を判定するように構成したので、内燃機関の冷機状態を精度良く検出することができ、それによって冷却装置の故障判定を精度良く行うことができる。
【0083】
請求項2項にあっては、選択されたしきい値が故障判定しきい値であり、冷却水温の推定値および冷却水温の推定値と検出値の差の少なくともいずれかを選択された故障判定しきい値と比較し、それが選択されたしきい値を超えるとき、冷却装置が故障と判定するように構成、換言すれば、内燃機関の冷機状態に応じて判定しきい値を持ち替えて比較するようにしたので、判定精度の高いしきい値を設定することができ、よって冷却装置の故障判定を一層精度良く行なうことができる。
【0084】
請求項3項にあっては、選択されたしきい値が故障判定実行しきい値であると共に、冷却水温の推定値が選択された故障判定実行しきい値を超えるとき、冷却水温の検出値を故障判定しきい値と比較し、冷却水温の検出値が故障判定しきい値を超えるとき、冷却装置が故障と判定する如く構成、換言すれば、内燃機関の冷機状態に応じて故障判定の実行の有無を決定するようにしたので、故障判定時点を適正に決定することができ、よって冷却装置の故障判定を一層精度良く行なうことができる。
【0085】
請求項4項にあっては、さらに停止時間を第2の所定時間と比較し、それを超えないとき、故障判定を禁止するように構成したので、内燃機関が冷機されていない状態にあるとき、故障判定を行うことがなく、よって冷却装置の故障判定を一層精度良く行なうことができる。
【0086】
請求項5項にあっては、冷却水温が内燃機関を循環する冷却水温および冷却装置を循環する冷却水温のいずれかである如く構成したので、前記したと同様の効果を得ることができる。
【図面の簡単な説明】
【図1】この発明の一つの実施の形態に係る内燃機関の冷却装置の故障検知装置を全体的に示す概略図である。
【図2】図1装置の中の冷却装置(ラジエータ)の詳細を示す説明側面断面図である。
【図3】図1装置の動作を示すフロー・チャートである。
【図4】図3フロー・チャートの処理で使用される故障判定しきい値などの特性を示すタイム・チャートである。
【図5】図3と同様に図1装置の動作を示すフロー・チャートである。
【図6】この発明の第2の実施の形態に係る内燃機関の冷却装置の故障検知装置の動作を示す、図3と同様なフロー・チャートである。
【図7】図6フロー・チャートの処理で使用される故障判定トリガ温度偏差などの特性を示すタイム・チャートである。
【図8】図6と同様に第2の実施の形態に係る装置の動作を示すフロー・チャートである。
【図9】内燃機関の冷機状態と水温などの経時的な変化を示すタイム・チャートである。
【符号の説明】
10 内燃機関(エンジン)
20 ECU(電子制御ユニット)
20b CPU
22 燃料噴射弁(インジェクタ)
26 絶対圧センサ
30 外気温(吸気温)センサ
32 水温センサ
38 クランク角センサ
54 車輪速センサ
60 ラジエータ
62 インレットパイプ(連通路)
64 サーモスタット
78 温度センサ

Claims (5)

  1. 内燃機関に連通路を介して接続され、前記内燃機関の冷却水を冷却すると共に、前記連通路を開閉するサーモスタットを備えたラジエータからなる冷却装置の故障検知装置において、
    a.前記内燃機関の冷却水温を含む前記内燃機関の運転状態を示すパラメータを
    検出あるいは算出する運転状態パラメータ検出手段、
    b.前記検出あるいは算出されたパラメータの中、前記冷却水温の機関始動時の検出値と機関始動後の前記冷却水温の上昇に相関する熱負荷パラメータに少なくとも基づき、前記冷却水温の機関始動後の推定値を算出する推定水温算
    出手段、
    c.前記内燃機関が始動される前に停止されていた停止時間を検出する停止時間
    検出手段、
    d.前記停止時間を所定時間と比較し、比較結果に基づいて予め設定された複数
    種のしきい値を選択するしきい値選択手段、
    e.前記選択されたしきい値と、前記冷却水温の推定値と検出値の少なくともい
    ずれかに基づき、前記冷却装置の故障を判定する故障判定手段、
    を備えたことを特徴とする内燃機関の冷却装置の故障検知装置。
  2. 前記選択されたしきい値が故障判定しきい値であり、前記故障判定手段は、前記冷却水温の推定値および前記冷却水温の推定値と検出値の差の少なくともいずれかを前記選択された故障判定しきい値と比較し、前記冷却水温の推定値および前記差の少なくともいずれかが前記選択されたしきい値を超えるとき、前記冷却装置が故障と判定することを特徴とする請求項1項記載の内燃機関の冷却装置の故障検知装置。
  3. 前記選択されたしきい値が故障判定実行しきい値であると共に、
    f.前記冷却水温の推定値を前記選択された故障判定実行しきい値と比較する比
    較手段、
    を備え、前記故障判定手段は、前記冷却水温の推定値が前記選択された故障判定実行しきい値を超えるとき、前記冷却水温の検出値を故障判定しきい値と比較し、前記冷却水温の検出値が前記故障判定しきい値を超えるとき、前記冷却装置が故障と判定することを特徴とする請求項1項記載の内燃機関の冷却装置の故障検知装置。
  4. さらに、
    g.前記停止時間を第2の所定時間と比較し、前記停止時間が前記第2の所定時
    間を超えないとき、前記故障判定を禁止する故障判定禁止手段、
    を備えたことを特徴とする請求項1項から3項のいずれかに記載の内燃機関の冷却装置の故障検知装置。
  5. 前記冷却水温が前記内燃機関を循環する冷却水温および前記冷却装置を循環する冷却水温のいずれかであることを特徴とする請求項1項から4項のいずれかに記載の内燃機関の冷却装置の故障検知装置。
JP2003067909A 2003-03-13 2003-03-13 内燃機関の冷却装置の故障検知装置 Expired - Fee Related JP3930821B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003067909A JP3930821B2 (ja) 2003-03-13 2003-03-13 内燃機関の冷却装置の故障検知装置
US10/792,775 US6907343B2 (en) 2003-03-13 2004-03-05 Malfunction detecting system of engine cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067909A JP3930821B2 (ja) 2003-03-13 2003-03-13 内燃機関の冷却装置の故障検知装置

Publications (2)

Publication Number Publication Date
JP2004278341A true JP2004278341A (ja) 2004-10-07
JP3930821B2 JP3930821B2 (ja) 2007-06-13

Family

ID=32959312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067909A Expired - Fee Related JP3930821B2 (ja) 2003-03-13 2003-03-13 内燃機関の冷却装置の故障検知装置

Country Status (2)

Country Link
US (1) US6907343B2 (ja)
JP (1) JP3930821B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103541808A (zh) * 2012-07-13 2014-01-29 通用汽车环球科技运作有限责任公司 低冷却剂温度故障诊断系统和方法
KR20140073311A (ko) * 2012-12-06 2014-06-16 콘티넨탈 오토모티브 시스템 주식회사 자동차의 써모스탯 오진단 방지방법
JP2017053270A (ja) * 2015-09-09 2017-03-16 株式会社デンソー 診断装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4479465B2 (ja) * 2004-10-29 2010-06-09 トヨタ自動車株式会社 水温センサの異常診断装置
JP4407589B2 (ja) * 2005-07-29 2010-02-03 トヨタ自動車株式会社 内燃機関の冷却装置
US7771113B2 (en) * 2007-06-29 2010-08-10 Cummins Filtration Ip, Inc Sensor rationality diagnostic
TW201010881A (en) * 2008-09-05 2010-03-16 Jun-Guang Luo Monitoring device and monitoring method for stable kinetic energy
US8370052B2 (en) * 2008-10-22 2013-02-05 Caterpillar Inc. Engine cooling system onboard diagnostic strategy
JP5218526B2 (ja) * 2010-11-11 2013-06-26 トヨタ自動車株式会社 水温センサ異常判定装置
US8849540B2 (en) * 2011-11-02 2014-09-30 Honda Motor Co., Ltd. Methods and systems for monitoring engine coolant temperature sensor
JP5906981B2 (ja) * 2012-07-23 2016-04-20 三菱自動車工業株式会社 サーモスタットの故障診断装置及び故障診断方法
DE102014211323B4 (de) * 2013-07-17 2019-03-21 Ford Global Technologies, Llc Verfahren für den Betrieb einer Brennkraftmaschine, Brennkraftmaschine und Kraftfahrzeug mit verbesserter Zugleistung bei niedrigen Geschwindigkeiten
US10190481B2 (en) 2013-10-02 2019-01-29 GM Global Technology Operations LLC Minimum power consumption for cool down diagnostic based on cylinder deactivation
JP6123741B2 (ja) * 2014-06-20 2017-05-10 トヨタ自動車株式会社 冷却器
JP6530238B2 (ja) * 2015-05-26 2019-06-12 日野自動車株式会社 サーモスタットの異常判定装置
US10519875B2 (en) * 2015-07-28 2019-12-31 Denso Corporation Diagnostic device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200021B1 (en) * 1997-11-10 2001-03-13 Toyoto Jidosha Kabushiki Kaisha Abnormality detector apparatus for a coolant apparatus for cooling an engine
JP3538545B2 (ja) 1998-06-19 2004-06-14 本田技研工業株式会社 内燃機関のラジエータ故障検知装置
JP3565800B2 (ja) * 2001-07-05 2004-09-15 本田技研工業株式会社 温度センサの故障判定装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103541808A (zh) * 2012-07-13 2014-01-29 通用汽车环球科技运作有限责任公司 低冷却剂温度故障诊断系统和方法
KR20140073311A (ko) * 2012-12-06 2014-06-16 콘티넨탈 오토모티브 시스템 주식회사 자동차의 써모스탯 오진단 방지방법
KR101939171B1 (ko) 2012-12-06 2019-01-16 콘티넨탈 오토모티브 시스템 주식회사 자동차의 써모스탯 오진단 방지방법
JP2017053270A (ja) * 2015-09-09 2017-03-16 株式会社デンソー 診断装置

Also Published As

Publication number Publication date
US20040181333A1 (en) 2004-09-16
JP3930821B2 (ja) 2007-06-13
US6907343B2 (en) 2005-06-14

Similar Documents

Publication Publication Date Title
JP3538545B2 (ja) 内燃機関のラジエータ故障検知装置
JP3924254B2 (ja) 内燃機関の冷却装置の故障検知装置
JP3811044B2 (ja) 内燃機関のラジエータ故障検知装置
US7757649B2 (en) Controller, cooling system abnormality diagnosis device and block heater determination device of internal combustion engine
US7818997B2 (en) Diagnostic device and method for an intake air temperature sensor of an internal combustion engine
JP3930821B2 (ja) 内燃機関の冷却装置の故障検知装置
WO2011148837A1 (ja) 温度センサの故障診断装置
JP3645827B2 (ja) 内燃機関のサーモスタット故障判定装置
JP2006220026A (ja) 内燃機関の制御装置
JP2009257198A (ja) 内燃機関の診断装置
JP3551060B2 (ja) サーモスタットの異常検出装置
JP5101960B2 (ja) 故障診断装置、および故障診断方法
JP5379722B2 (ja) 水温センサの異常判定装置
JP4030916B2 (ja) 内燃機関用温度センサの故障診断装置
JP3598778B2 (ja) エンジン冷却系の異常診断装置
JP3763458B2 (ja) エンジン温度調整用サーモスタットの異常検出装置
JP3407572B2 (ja) エンジン冷却系のサーモスタット故障検出装置
JP2003343242A (ja) 触媒の温度推定装置
JPH09184443A (ja) 触媒下流側空燃比センサのヒータ制御装置
JP4591841B2 (ja) 内燃機関の水温センサ異常診断装置
JP2011185230A (ja) 水温センサの異常判定装置
JP2002174121A (ja) サーモスタットの診断装置
JP3697866B2 (ja) エンジン冷却系の異常診断装置
JP2009133261A (ja) 内燃機関の水温センサ異常診断装置
JP3697865B2 (ja) エンジン冷却系の異常診断装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees