JP2004245694A - 走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置 - Google Patents

走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置 Download PDF

Info

Publication number
JP2004245694A
JP2004245694A JP2003035668A JP2003035668A JP2004245694A JP 2004245694 A JP2004245694 A JP 2004245694A JP 2003035668 A JP2003035668 A JP 2003035668A JP 2003035668 A JP2003035668 A JP 2003035668A JP 2004245694 A JP2004245694 A JP 2004245694A
Authority
JP
Japan
Prior art keywords
sample
light
scanning probe
probe microscope
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003035668A
Other languages
English (en)
Inventor
Masaji Suruga
正次 駿河
Kudryashov Igor
イゴーリ クドゥリヤショフ
Rutkovski Pavel
パベル ルツコフスキー
Viktor A Bykov
ビクトル エー バイコフ
Sergei A Saunin
セルゲイ エ− ゾウニン
Alexei D Volkov
アレクセイ ディー ボルコフ
Alexei V Zhizhimontov
アレクセイ ブイ ジジモントフ
Alexei V Ikonnikov
アレクセイ ブイ イコニコフ
Satoshi Kawada
聡 河田
Koji Inoue
康志 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO INSTR Inc
Japan Science and Technology Agency
Tokyo Instruments Inc
Original Assignee
TOKYO INSTR Inc
Japan Science and Technology Agency
Tokyo Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO INSTR Inc, Japan Science and Technology Agency, Tokyo Instruments Inc filed Critical TOKYO INSTR Inc
Priority to JP2003035668A priority Critical patent/JP2004245694A/ja
Publication of JP2004245694A publication Critical patent/JP2004245694A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】強い発光スペクトルを示す試料に限定されずに物質情報及び形状の測定が短時間で行え、物質情報及び形状測定結果の対応関係が明確である走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置を提供する。
【解決手段】試料Sに励起光を集光させ試料Sが発する光を結像させる共焦点顕微光学系6と、試料Sが発した光を分光する分光計と、走査型プローブ顕微鏡4とを備え、試料Sの位置を順次移動させつつ試料Sの同一位置について共焦点顕微光学系6による結像光の検出及び走査型プローブ顕微鏡4による試料の形状測定を同時に行う。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、走査型プローブ顕微鏡により試料の形状測定を行うとともに、試料に光束を照射したときに生ずる散乱光などを共焦点顕微光学系により検出する走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置に関する。
【0002】
【従来の技術】
従来、いわゆる「サブミクロン領域」乃至「ナノメータ領域」における結晶構造、物質組成などを精密に制御して、従来の材料やデバイスでは実現できなかった高度な性能、新規な物性を有する材料を得ようとする開発が進められている。また、いわゆる「バイオロジー」の分野においても、従来よりさらに微細な領域における分子機能、生理機能の解明が求められている。
【0003】
これらの開発や解明においては、試料に光束を照射したときに生ずるラマン散乱や蛍光などを共焦点顕微光学系を介して検出し、この試料の微細構造を測定することが行われる。この共焦点顕微光学系としては、図7に示すように、レーザ光源より発せられたレーザ光束を第1の集光レンズ101により集光させ、この第1の集光レンズによる集光点上に第1のピンホールマスク(空間フィルタ)102のピンホール103を位置させ、このピンホール103内を通過した拡散する光束をビームスプリッタ104を介して第2の集光レンズ105に導き、この第2の集光レンズ105により光束を試料106上に集光させるように構成されたものが特開平6−109956号公報において提案されている。
【0004】
そして、この共焦点顕微光学系においては、試料106上に集光された光束は、この試料106により散乱光などを含んで反射され、第2の集光レンズ105を経て収束しつつビームスプリッタ104に戻る。ビームスプリッタ104に戻った反射光束は、このビームスプリッタ104により、レーザ光源側に戻る光路より分岐されて検出手段である光電子増倍管(PMT:photomultiplier tube)109の側に導かれる。この反射光束は、ビームスプリッタ104を経て光電子増倍管109に至る間に、一旦集光する。この集光点上には、第2のピンホールマスク107のピンホール108が位置している。すなわち、第1のピンホールマスク102のピンホール103と第2のピンホールマスク107のピンホール108とは、ビームスプリッタ104に対して共役な位置となされている。
【0005】
また、従来、共焦点顕微光学系としては、図8に示すように、試料106上に集光され反射されて第2の集光レンズ105を経て収束しつつビームスプリッタ104を経た光束を、電荷結合素子(CCD:charge−coupled device)110上に集光させて検出するようにしたものが特開平8−271225号公報において提案されている。この共焦点顕微光学系においては、試料106上への光束の集光は、上述の共焦点顕微光学系と同様に、レーザ光源より発せられたレーザ光束を第1の集光レンズ101により集光させ、この第1の集光レンズによる集光点上にピンホールマスク102のピンホール103を位置させ、このピンホール103内を通過した拡散光束をビームスプリッタ104を介して第2の集光レンズ105に導き、この第2の集光レンズ105により集光させることによって行われる。
【0006】
また、従来、図9に示すように、上述のような共焦点顕微光学系111を介して電荷結合素子110などにより検出される光束についての波長選択を行う手段として、ノッチフィルタ(Notch−filter)115を使用することが特開平8−327550号公報において提案されている。このノッチフィルタ115は、特定の狭い波長域の光束のみを遮断(反射)する特性を持ったフィルタであり、ここでは、レーザ光源112より発せられる光束の中心波長帯域を遮断(反射)するものを用いる。
【0007】
この場合においては、レーザ光源112より発せられた平行光束であるレーザ光束を第1の集光レンズ101によりピンホールマスク102のピンホール103内に集光させ、このピンホール103内を通過して拡散する光束をコリメータレンズ113により平行光束に戻し、この平行光束をミラー114を介して、ノッチフィルタ115に入射させる。ミラー114を介してノッチフィルタ115に入射される光束は、該ノッチフィルタ115に対して、例えば90°の入射角をもって入射される。
【0008】
そして、このノッチフィルタ115により反射された光束は、共焦点顕微光学系111に入射され、試料上に集光される。この試料により反射されて共焦点顕微光学系111を経た光束は、ノッチフィルタ115に戻り、このノッチフィルタ115を透過して、電荷結合素子110などの検出手段に入射する。この電荷結合素子110においては、試料から反射された光束のうち、試料において生じたラマン散乱光や蛍光など、レーザ光源より発せられた光束とは異なる波長の光が検出される。
【0009】
【特許文献1】
特開平6−109956号公報
【特許文献2】
特開平8−271225号公報
【特許文献3】
特開平8−327550号公報
【0010】
【発明が解決しようとする課題】
ところで、上述のような新材料の開発や分子機能、生理機能の解明においては、「サブミクロン領域」乃至「ナノメータ領域」における物質情報の測定のみならず、この物質情報に対応した形状測定をも行う必要がある。そのため、試料の微小部分の物質組成・状態・分布と、形状とを同時に測定できる測定装置の開発が求められている。
【0011】
「サブミクロン領域」乃至「ナノメータ領域」における形状測定を行う手段としては、走査型または透過型の電子顕微鏡や、あるいは、原子間力顕微鏡(AFM)や走査型トンネル顕微鏡(STM)などの走査型プローブ顕微鏡が使用されている。
【0012】
しかしながら、走査型プローブ顕微鏡を用いることによって、物質組成や状態情報を取得することは難しい。また、電子顕微鏡においては、表面形状の測定とともに、電子線照射により物質から発生する特性X線を用いた元素分析や元素分布測定が可能であるが、水素、炭素、酸素、窒素など、軽元素の検出は難しい。すなわち、電子顕微鏡においては、これら軽元素からなる物質の詳細な組成や状態解析は困難である。
【0013】
また、微小部分の表面形状と詳細な物質情報とを同時に測定できる手段としては、共焦点顕微光学系を利用した表面形状及び物質解析法が用いられている。この解析法は、共焦点顕微鏡像の測定と、レーザ励起蛍光分光、レーザ励起ラマン分光とを行うものである。レーザ励起蛍光分光、レーザ励起ラマン分光によって、分子スペクトルや結晶の格子振動スペクトルが測定でき、詳細な物質情報が得られる。
【0014】
しかしながら、この解析法においては、光学的回折限界の制限から、サブミクロンレベルまでの位置分解能(空間分解能)の情報しか得られない。したがって、微細構造を有する領域を測定した場合には、スペクトルを測定しても微細構造のどの部分からの情報なのかを知ることができなかった。
【0015】
そこで、本発明は、上述の実情に鑑みて提案されるものであって、強い発光スペクトルを示す試料に限定されることなく、この試料に関する物質情報及びこの物質情報に対応した形状測定が短時間で行え、また、微細構造を有する領域を測定した場合にも物質情報及び形状測定結果の対応関係が明確であるようになされた走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置を提供しようとするものである。
【0016】
【課題を解決するための手段】
上述の課題を解決するため、本発明に係る走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置は、試料を移動操作可能な透明基板上において保持する試料保持機構と、この試料保持機構の透明基板を移動操作する試料走査機構と、励起用レーザ光源からの励起光を試料保持機構に保持された試料に透明基板を透して集光させこの試料が発した光を結像させる共焦点顕微光学系と、試料が発した光について波長選択を行う波長選択手段と、この波長選択手段により波長選択された共焦点顕微光学系による結像光を検出する検出手段と、試料の励起用レーザ光源からの励起光が集光された位置の反対側に設置された探針プローブを有する走査型プローブ顕微鏡とを備えている。
【0017】
そして、この走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置においては、試料走査機構により、試料の位置を順次移動させながら、この試料の同一位置についての共焦点顕微光学系による結像光の検出及び走査型プローブ顕微鏡による試料の形状測定を同時に行うことを特徴とするものである。
【0018】
この走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置においては、試料の位置が順次移動されながら、この試料の同一位置についての共焦点顕微光学系による結像光の検出及び走査型プローブ顕微鏡による試料の形状測定が同時に行われるので、微細構造を有する領域を測定した場合にも、物質情報及び形状測定結果の対応関係が明確である。
【0019】
また、本発明は、上述の各走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置において、試料走査機構は、制御手段によって制御されることにより、透明基板を、励起用レーザ光源からの励起光の光軸方向及びこの光軸方向に直交する平面内の方向に移動操作することとしたものである。
【0020】
この場合においては、一つの制御手段によって試料の二次元方向の走査と励起光の焦点調節とを行うことができ、迅速な測定を容易に行うことができる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しながら説明する。
【0022】
本発明に係る走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置は、図1に示すように、対物レンズブロック部1内に設置される試料Sに対し、励起用レーザ光源2より発せられた励起光(レーザ光束)を照射し、この照射により試料Sから生ずるラマン散乱や蛍光などの成分を共焦点顕微光学系及び波長選択手段を介して検出手段となる光電子増倍管(PMT:photomultiplier tube)3により検出する装置である。
【0023】
また、この走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置は、図2に示すように、試料Sの励起用レーザ光源2からの励起光が集光された位置の反対側に設置された探針プローブ4を有する走査型プローブ顕微鏡(SPM)を備えており、試料Sの位置を順次移動させながら、この試料Sの同一位置についての共焦点顕微光学系による結像光の検出及び走査型プローブ顕微鏡による試料Sの形状測定を同時に行うものである。
【0024】
この走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置において、試料Sは、試料保持機構を構成する移動操作可能な透明基板5上において保持される。この透明基板5は、試料走査機構によって移動操作される。すなわち、この透明基板5は、いわゆる「ピエゾステージ」であって、図示しないピエゾ素子(電歪素子)によって移動操作される。励起用レーザ光源2からの励起光は、透明基板5を透過して、この透明基板5上に保持された試料Sに集光される。
【0025】
この走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置は、この装置内の各部分の動作を制御するための制御手段となる制御回路(コントローラ)35を内蔵している。試料走査機構を構成するピエゾ素子は、この制御回路35によって制御されることにより、透明基板5を、図2中矢印zで示す励起用レーザ光源2からの励起光の光軸方向及び図2中矢印x,yで示す光軸方向に直交する平面内の方向に移動操作する。
【0026】
そして、この走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置の共焦点顕微光学系6においては、図3に示すように、励起用レーザ光源2より発せられた平行光束である励起光は、ビームスプリッタ7により90°偏向されて、第1の集光レンズ8に導かれる。励起光は、この第1の集光レンズ8により集光される。この第1の集光レンズ8による集光点上には、ピンホールマスク(空間フィルタ)9のピンホール10が位置されている。このピンホール10内を通過して拡散する光束は、第2の集光レンズ11により試料S上に集光される。
【0027】
そして、この共焦点顕微光学系6おいては、試料S上に集光された光束は、この試料Sにより散乱光などを含んで反射され、第2の集光レンズ11を経て収束しつつ、再び、ピンホールマスク9のピンホール10に戻り、このピンホール10内において結像される。このピンホール10内を通過し拡散する反射光束は、第1の集光レンズ8により平行光束に戻され、ビームスプリッタ7に戻る。反射光束は、このビームスプリッタ7を透過することにより、レーザ光源側に戻る光路より分岐されて光電子増倍管(PMT)3側に導かれる。ビームスプリッタ7を経た反射光束は、第3の集光レンズ12により収束されて、光電子増倍管3により検出される。
【0028】
なお、光電子増倍管3は、光電陰極と出力電極の間に一つ以上のダイノードをもつ光電管である。この光電子増倍管3においては、光電陰極からの電子の流れは、おのおののダイノードで順次反射され、反射時ごとに二次電子放出を伴うものとなる。
【0029】
そして、この共焦点顕微光学系6におけるビームスプリッタ7は、ホログラフィックビームスプリッタであり、反射光束について波長選択を行う波長選択手段ともなっている。すなわち、図4に示すように、励起用レーザ光源2より発せられた励起光は、ミラー13を経てホログラフィックビームスプリッタであるビームスプリッタ7に入射されると、励起用レーザ光源2の発振波長を中心とする2nm程度の狭い波長帯域の光束のみが反射されて第1の集光レンズ8に導かれる。励起光は、この第1の集光レンズ8から、上述のように、ピンホールマスク9及び第2の集光レンズ11を含む対物レンズブロック部1に入射され、試料にSより反射されて、再び、ピンホールマスク9及び第1の集光レンズ8を経て、ビームスプリッタ7に戻る。このビームスプリッタ7において、試料Sからの反射光束は、励起用レーザ光源2の発振波長を中心とする2nm程度の狭い波長帯域以外の帯域の光が90%程度の高い透過率で透過し、光電子増倍管3に向かう。ここで、さらにノッチフィルタ(Notch−filter)14を透過させるようにすれば、波長選択性をより高めることができる。このノッチフィルタ14に対しては、反射光束は、垂直入射させる。
【0030】
この走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置の全体の構成としては、図1に示すように、励起用レーザ光源2より発せられた光束は、ミラー15,16を経て、まず、集光レンズ17、ピンホールマスク18及びコリメータレンズ19を経て、平行光束となされる。この平行光束は、さらに、ミラー20,13を経て、直線偏光状態で、上述したビームスプリッタ7に入射される。そして、ビームスプリッタ7に入射された光束は、共焦点顕微光学系6を構成する第1の集光レンズ8、ピンホールマスク9を経て、対物レンズブロック部1内のミラー21を介して、第2の集光レンズ11に入射されて、試料S上に集光される。ここでは、第2の集光レンズ11は、コリメータレンズ11aと対物レンズ11bとから構成されている。
【0031】
そして、試料Sにおいて反射された反射光束は、第2の集光レンズ11、ミラー21、ピンホールマスク9及び第1の集光レンズ8を経て、ビームスプリッタ7に戻る。ここで、反射光束のうちのラマン散乱や蛍光による成分は、上述のように、ビームスプリッタ7を透過して、ノッチフィルタ14,22を経て、さらに、ミラー23、干渉フィルタ24、第3の集光レンズ12を介して、分光ブロック25に導入される。なお、干渉フィルタ24は、いわゆるターレット式により異なるものに差し替えることが可能となっている。
【0032】
分光ブロック25においては、反射光束は、ミラー26,27に反射され、反射型回折格子28を経て、さらに、ミラー29に反射されて、スリット30を介して、光電子増倍管3により検出される。なお、反射型回折格子28は、いわゆるターレット式により異なるものに差し替えることが可能となっている。
【0033】
そして、この走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置においては、ビームスプリッタ7を透過してノッチフィルタ14,22を経た反射光束を、ミラー31、干渉フィルタ24及び集光レンズ32を介して電荷結合素子(CCD:charge−coupled device)33に導く光路も形成されている。この光路を使用する場合には、反射光束を分光ブロック25内に導入するミラー23を光路より外し、また、電荷結合素子33へ至る光路を遮断しているシャッタ34を開ける。この電荷結合素子33により、ビームスプリッタ7及びノッチフィルタ14,22を経た反射光束を画像として観察することができる。
【0034】
さらに、この走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置においては、ミラー23を介して分光ブロック25に入射され、この分光ブロック25においてミラー26,27に反射され、反射型回折格子28を経て、ミラー29に反射された反射光束を、電荷結合素子(CCD)33により観察することができる。すなわち、シャッタ34の電荷結合素子33側はミラー面となっており、図1に示すように、このシャッタ34を電荷結合素子33に対する閉位置と開位置との中間の位置とすることにより、ミラー29に反射されて光電子増倍管3に向かう反射光束は、このシャッタ34のミラー面に反射されて電荷結合素子33に入射される。
【0035】
このようにして分光ブロック25内の光学系を経て電荷結合素子33に入射された光束においては、この電荷結合素子33により、この分光ブロック25内で分散されたスペクトル領域の全域を同時測定することができる。電荷結合素子33により反射光束を観測する場合には、短時間の測光が可能である。また、数十分間といった長時間に亘って露光することも可能である。
【0036】
なお、この走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置の筐体内には、上述した制御回路35が内蔵されている。
【0037】
そして、走査型プローブ顕微鏡の探針プローブ4は、図5に示すように、カンチレバー4aによって支持され、試料Sの励起用レーザ光源2からの励起光2aが透明基板5を透して集光された位置の反対側に先端部を近接させて設置されている。この探針プローブ4の先端部は、例えば、20nm乃至30nm程度の曲率半径となされている。
【0038】
この走査型プローブ顕微鏡においては、試料Sが、図5中矢印x,yで示す励起光2aの光軸に直交する平面内の方向に移動操作されて走査されることにより、探針プローブ4の、図5中矢印zで示す励起光2aの光軸の方向についての高さの情報に基づいて、試料Sの表面形状の測定を行うことができる。
【0039】
すなわち、この走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置においては、図2に示すように、試料Sの位置を順次移動させながら、この試料Sの同一位置についての共焦点顕微光学系6による結像光の検出及び走査型プローブ顕微鏡による試料Sの形状測定を同時に行うことができる。探針プローブ4の高さ情報は、顕微鏡制御部36において処理されて、信号処理回路37に送られる。また、光電子増倍管3により得られる分光情報も、信号処理回路37に送られる。そして、この信号処理回路37は、制御回路35を介して、透明基板5の移動操作を行う。一方、信号処理回路37は、走査型プローブ顕微鏡により得られる試料Sの形状測定の結果と、共焦点顕微光学系6、分光ブロック25及び光電子増倍管3により得られる試料Sからのラマン散乱や蛍光の情報とについて、表示装置38により表示(出力)を行う。
【0040】
試料Sにおいて隣接する各点について上述のような測定を順次行って試料S上を走査し、これらのデータを繋ぎ合わせることにより、表示装置38において、図6に示すように、三次元的なレーザ励起発光分布像(ラマンマッピング)(図6中の(a)、(c)及び(d))及び走査型プローブ顕微鏡像(図6中の(b))を表示することができる。
【0041】
なお、レーザ励起発光分布像(ラマンマッピング)は、共焦点顕微光学系6から光電子増倍管3に至る分光測定系において、図6中の(e)に示すように、単一、または、同時測定可能な複数個のスペクトル窓(選択波長帯域)を設けておき、このスペクトル窓を経て測定したスペクトル強度に基づいた分布像を構成することによって得ることができる。
【0042】
また、試料走査機構と走査型プローブ顕微鏡において表面形状を得るための探針プローブの位置制御とを、同一の制御回路によって行うようにすれば、表面形状の測定位置と、ラマン散乱や蛍光の測定位置との同期の精度を向上させることができる。
【0043】
上述のような走査型プローブ顕微鏡の位置分解能(空間分解能)は、サブミクロンからナノメートル(nm)程度である。そして、共焦点顕微光学系6の分解能は、サブミクロンレベルであり、物質分布に関する分解能もサブミクロンレベルとなる。しかし、走査型プローブ顕微鏡による表面形状測定と、共焦点顕微光学系6を用いたレーザ励起蛍光分光、または、レーザ励起ラマン分光とを併用し、試料Sの同一位置における表面形状情報と詳細な物質情報とを同時に測定することによって、従来より精度の高い物質情報を取得することができる。すなわち、得られた物質情報を、同時測定した走査型プローブ顕微鏡からの表面形状情報と照合することによって、より精度の高い物質情報を取得することができるのである。
【0044】
【発明の効果】
上述のように、本発明に係る走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置においては、試料の位置が順次移動されながら、この試料の同一位置についての共焦点顕微光学系による結像光の検出及び走査型プローブ顕微鏡による試料の形状測定が同時に行われる。
【0045】
したがって、この走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置においては、微細構造を有する領域を測定した場合にも、物質情報及び形状測定結果の対応関係が明確となされる。
【0046】
また、これら走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置において、試料走査機構が制御手段による制御によって透明基板を励起光の光軸方向及びこの光軸方向に直交する平面内の方向に移動操作するようにした場合には、一つの制御手段によって試料の二次元方向の走査と励起光の焦点調節とを行うことができ、迅速な測定を容易に行うことができる。
【0047】
すなわち、本発明は、強い発光スペクトルを示す試料に限定されることなく、この試料に関する物質情報及びこの物質情報に対応した形状測定が短時間で行え、また、微細構造を有する領域を測定した場合にも物質情報及び形状測定結果の対応関係が明確であるようになされた走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置を提供することができるものである。
【図面の簡単な説明】
【図1】本発明に係る走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置の構成を示す側面図である。
【図2】上記走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置の構成を示すブロック図である。
【図3】上記走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置を構成する共焦点顕微光学系の光学系を示す側面図である。
【図4】上記走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置を構成する波長選択手段を含む光学系を示す側面図である。
【図5】上記走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置において試料を保持する透明基板の周囲の構成を示す要部側面図である。
【図6】上記走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置において得られた走査型プローブ顕微鏡像及びレーザ励起発光分布像を示すグラフである。
【図7】従来の共焦点顕微光学系の構成を示す側面図である。
【図8】従来の共焦点顕微光学系の構成の他の例を示す側面図である。
【図9】従来の波長選択手段を含む光学系を示す側面図である。
【符号の説明】
2 レーザ光源、3 光電子増倍管、4 第1の集光レンズ、5 ピンホールマスク、6 ピンホール、7 第2の集光レンズ、8 ビームスプリッタ

Claims (2)

  1. 試料を移動操作可能な透明基板上において保持する試料保持機構と、
    上記試料保持機構の透明基板を移動操作する試料走査機構と、
    励起用レーザ光源からの励起光を上記試料保持機構に保持された試料に上記透明基板を透して集光させ、この試料が発した光を結像させる共焦点顕微光学系と、
    上記試料が発した光について波長選択を行う波長選択手段と、
    上記波長選択手段により波長選択された上記共焦点顕微光学系による結像光を検出する検出手段と、
    上記試料の上記励起用レーザ光源からの励起光が集光された位置の反対側に設置された探針プローブを有する走査型プローブ顕微鏡とを備え、
    上記試料走査機構により、上記試料の位置を順次移動させながら、この試料の同一位置についての上記共焦点顕微光学系による結像光の検出及び上記走査型プローブ顕微鏡による上記試料の形状測定を同時に行うことを特徴とする走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置。
  2. 上記試料走査機構は、制御手段によって制御されることにより、上記透明基板を、上記励起用レーザ光源からの励起光の光軸方向及びこの光軸方向に直交する平面内の方向に移動操作することを特徴とする請求項1記載の走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置。
JP2003035668A 2003-02-13 2003-02-13 走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置 Pending JP2004245694A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035668A JP2004245694A (ja) 2003-02-13 2003-02-13 走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003035668A JP2004245694A (ja) 2003-02-13 2003-02-13 走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置

Publications (1)

Publication Number Publication Date
JP2004245694A true JP2004245694A (ja) 2004-09-02

Family

ID=33021028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035668A Pending JP2004245694A (ja) 2003-02-13 2003-02-13 走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置

Country Status (1)

Country Link
JP (1) JP2004245694A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285975A (ja) * 2006-04-19 2007-11-01 Research Institute Of Biomolecule Metrology Co Ltd 走査型プローブ顕微鏡及び基板検査方法
JP2008116432A (ja) * 2006-07-06 2008-05-22 Ricoh Co Ltd ラマン分光測定装置、及びこれを用いたラマン分光測定法
RU2616854C2 (ru) * 2015-09-30 2017-04-18 Общество с ограниченной ответственностью "НТ-МДТ" Сканирующий зондовый микроскоп для оптической спектрометрии
CN107247160A (zh) * 2017-06-30 2017-10-13 中国计量大学 一种基于原子力探针的显微镜头与样品台锁定系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285975A (ja) * 2006-04-19 2007-11-01 Research Institute Of Biomolecule Metrology Co Ltd 走査型プローブ顕微鏡及び基板検査方法
JP2008116432A (ja) * 2006-07-06 2008-05-22 Ricoh Co Ltd ラマン分光測定装置、及びこれを用いたラマン分光測定法
RU2616854C2 (ru) * 2015-09-30 2017-04-18 Общество с ограниченной ответственностью "НТ-МДТ" Сканирующий зондовый микроскоп для оптической спектрометрии
CN107247160A (zh) * 2017-06-30 2017-10-13 中国计量大学 一种基于原子力探针的显微镜头与样品台锁定系统
CN107247160B (zh) * 2017-06-30 2024-04-19 中国计量大学 一种基于原子力探针的显微镜头与样品台锁定系统

Similar Documents

Publication Publication Date Title
US5192980A (en) Apparatus and method for method for spatially- and spectrally-resolved measurements
US8181268B2 (en) Scanning probe microscope and method of observing sample using the same
JP5667968B2 (ja) 走査プローブ顕微鏡およびこれを用いた試料の観察方法
JP2013525838A (ja) 試料表面を結像する装置
WO2012070314A1 (ja) 顕微鏡用分光分析装置、光軸ズレ補正装置、分光装置とそれを用いた顕微鏡
JP4696197B2 (ja) カソードルミネッセンス検出装置
CN113008849B (zh) 紫外-近红外宽波段微区光致发光光谱测试装置
JP4601266B2 (ja) レーザ顕微鏡
JP2004317741A (ja) 顕微鏡およびその光学調整方法
JP4720146B2 (ja) 分光装置および分光システム
JP4498081B2 (ja) 散乱型近接場顕微鏡およびその測定方法
JPH085471A (ja) 応力測定方法および応力測定装置
KR101861919B1 (ko) 반도체의 고속 광학 검사방법
JPH05113418A (ja) 表面分析装置
JP2004245694A (ja) 走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置
JPH06347405A (ja) ラマンスペクトル測定装置及びその測定方法
JPH07248217A (ja) 試料分析装置
JP2009244156A (ja) 分光装置、及び分光共焦点顕微鏡
JP4446396B2 (ja) 顕微フォトルミネッセンス測定装置及び測定方法
JP4136891B2 (ja) 蛍光画像/スペクトルを測定する蛍光測定装置
JP4202076B2 (ja) 散乱型近接場顕微鏡
JP2010266452A (ja) 走査型近接場光学顕微鏡
JP4595571B2 (ja) 顕微ラマン分光装置及び顕微ラマン分光測定方法
JP4448534B2 (ja) 走査型プローブ顕微鏡
CN210571973U (zh) 一种带有光镊的显微拉曼系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Effective date: 20070817

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408