RU2616854C2 - Сканирующий зондовый микроскоп для оптической спектрометрии - Google Patents

Сканирующий зондовый микроскоп для оптической спектрометрии Download PDF

Info

Publication number
RU2616854C2
RU2616854C2 RU2015141511A RU2015141511A RU2616854C2 RU 2616854 C2 RU2616854 C2 RU 2616854C2 RU 2015141511 A RU2015141511 A RU 2015141511A RU 2015141511 A RU2015141511 A RU 2015141511A RU 2616854 C2 RU2616854 C2 RU 2616854C2
Authority
RU
Russia
Prior art keywords
optical
sample
lens
output system
probe
Prior art date
Application number
RU2015141511A
Other languages
English (en)
Other versions
RU2015141511A (ru
Inventor
Андрей Викторович Быков
Евгений Владимирович Кузнецов
Сергей Владимирович Тимофеев
Сергей Анатольевич Фастов
Артем Викторович Шелаев
Original Assignee
Общество с ограниченной ответственностью "НТ-МДТ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "НТ-МДТ" filed Critical Общество с ограниченной ответственностью "НТ-МДТ"
Priority to RU2015141511A priority Critical patent/RU2616854C2/ru
Publication of RU2015141511A publication Critical patent/RU2015141511A/ru
Application granted granted Critical
Publication of RU2616854C2 publication Critical patent/RU2616854C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof

Abstract

Изобретение предназначено для оптической микроскопии и спектрометрии комбинационного рассеяния, люминесценции или флуоресценции с использованием зондового датчика в качестве оптической антенны. Микроскоп содержит основание 1, измерительную головку 2, зондовый датчик 3, держатель зондового датчика 4, сканирующее основание 5 с держателем образца 6, первый объектив 7 и первую систему визуализации 9, оптически сопряженную с первым объективом 7 и образцом 10. Также в микроскоп введены первая система ввода/вывода излучения 8, расположенная со стороны измерительной головки 2 относительно основания прибора 1, конфокальный микроскоп 11, оптически сопряженный с, по меньшей мере, одним источником излучения 12 и с первой системой ввода/вывода излучения 8, спектрометр 13, содержащий, по меньшей мере, один детектор 14 и оптически сопряженный с первой системой ввода/вывода излучения 8. Зондовый датчик 3 оптически открыт для доступа источника излучения 12, оптически сопряжен посредством первого объектива 7 с первой системой ввода/вывода излучения 8 и содержит оптически активную зону 15. Технический результат – повышение универсальности конструкции, усиление флуоресценции, комбинационного рассеяния, повышение пространственного разрешения оптической спектроскопии. 22 з.п. ф-лы, 3 ил.

Description

Изобретение предназначено для измерения рельефа, линейных размеров, физических характеристик поверхности, с одновременным измерением оптических спектров флуоресценции, комбинационного рассеяния и люминесценции, в том числе и усиленных зондом, и может быть использовано преимущественно в материаловедении, микро- и наноэлектронике, биологии.
Известен сканирующий зондовый микроскоп (СЗМ), совмещенный с оптическим микроскопом, содержащий основание прибора, измерительную головку, зондовый датчик, по меньшей мере, один держатель зондового датчика, сканирующее основание с держателем образца и первый объектив [Патент RU 2244332. Сканирующий зондовый микроскоп, совмещенный с оптическим микроскопом]. Это устройство выбрано в качестве прототипа предложенного решения. Недостаток этого устройства заключается в том, что невозможно использовать первый объектив для возбуждения и/или детектирования оптического отклика образца, снятия спектральных характеристик, что снижает универсальность применения СЗМ и сужает его функциональные возможности.
Технический результат изобретения заключается в придании свойств универсальности конструкции СЗМ, позволяющей исследовать выбранный участок образца методами зондовой микроскопии и оптической спектроскопии, что приводит к расширению функциональных возможностей. Кроме того, технический результат изобретения заключается в усилении флуоресценции или комбинационного рассеяния образца и повышении пространственного разрешения оптической спектроскопии за счет использования зонда с оптически активной зоной.
Указанный технический результат достигается тем, что в сканирующий зондовый микроскоп для оптической спектрометрии, содержащий основание прибора, измерительную головку, зондовый датчик, по меньшей мере, один держатель зондового датчика, сканирующее основание с держателем образца первый объектив и первую систему визуализации, оптически сопряженную с первым объективом и образцом, введены первая система ввода/вывода излучения, расположенная со стороны измерительной головки относительно основания прибора, конфокальный микроскоп, оптически сопряженный с, по меньшей мере, одним источником излучения и оптически сопряженный с первой системой ввода/вывода излучения, спектрометр, содержащий, по меньшей мере, один детектор и оптически сопряженный с первой системой ввода/вывода излучения, а зондовый датчик оптически открыт для доступа источника излучения, оптически сопряжен посредством первого объектива с первой системой ввода/вывода излучения и содержит оптически активную зону.
Существует вариант, в котором в первую систему ввода/вывода излучения введен первый сканер-зеркало, обеспечивающий возможность прецизионного перемещения и сканирования сфокусированным лазерным пятном по поверхности образца.
Существует также вариант, в котором в устройство введена оптическая система регистрации отклонения зондового датчика.
Существует также вариант, в котором первая система ввода/вывода излучения содержит подвижку с фильтрами.
Существует также вариант, в котором держатель зондового датчика оснащен механизмом поворота зондового датчика.
Существует также вариант, в котором сканирующее основание со стороны, противоположной от первого объектива, оснащено вторым объективом и фокусирующим механизмом.
Существует также вариант, в котором измерительная головка оснащена блоком плоскопараллельного подвода, состоящим из трех опор, сопряженных с тремя приводами.
Существует также вариант, в котором держатель образца оснащен прецизионным механизмом установки на сканирующее основание.
Существует также вариант, в котором держатель образца оснащен жидкостной ячейкой, выполненной из прозрачного материала, с оптическим доступом со стороны сканирующего основания или из непрозрачного материала.
Существует также вариант, в котором в устройство введен герметичный колпак с первым оптическим окном и фланец со вторым оптическим окном, обеспечивающие оптический доступ к образцу.
Существует также вариант, в котором первый объектив установлен в измерительной головке и оптически сопряжен с оптической системой регистрации.
Существует также вариант, в котором в устройство введен механизм прецизионной установки оптической системы регистрации на измерительную головку, состоящий из установочной части и базовой части, обеспечивающий возможность быстрого съема и замены оптической системы регистрации.
Существует также вариант, в котором в устройство введена вторая система ввода/вывода излучения, расположенная со стороны, противоположной измерительной головке относительно образца.
Существует также вариант, в котором жидкостная ячейка оснащена первым электродом, вторым электродом электрически сопряженными с блоком управления потенциалами.
Существует также вариант, в котором жидкостная ячейка оснащена модулем изменения температуры образца и первым датчиком температуры.
Существует также вариант, в котором в устройство введен элемент нагрева/охлаждения со вторым датчиком температуры, расположенный внутри герметичного колпака.
Существует также вариант, в котором в устройство введен датчик влажности атмосферы, расположенный внутри герметичного колпака.
Существует также вариант, в котором введен блок подачи газа, сопряженный с первым штуцером, установленным в герметичном колпаке.
Существует также вариант, в котором в устройство введен блок откачки газа, сопряженный со вторым штуцером, установленным в герметичном колпаке.
Существует также вариант, в котором в устройство введен второй сканер-зеркало, расположенный во второй системе ввода/вывода излучения, обеспечивающий возможность прецизионного перемещения и сканирования сфокусированным лазерным пятном по поверхности образца.
Существует также вариант, в котором в устройство введена вторая система визуализации, расположенная во второй системе ввода/вывода излучения, оптически сопряженная со вторым объективом.
Существует также вариант, в котором в устройство введен модуль оптической развязки, оптически сопряженный с конфокальным микроскопом, первой системой ввода/вывода излучения и второй системой ввода/вывода излучения.
На фиг. 1 изображена схема сканирующего зондового микроскопа для оптической спектрометрии.
На фиг. 2 изображена схема жидкостной ячейки.
На фиг. 3 изображена схема механизма прецизионной установки оптической системы регистрации.
Сканирующий зондовый микроскоп для оптической спектрометрии содержит основание прибора 1 (фиг. 1), измерительную головку 2, зондовый датчик 3, по меньшей мере, один держатель зондового датчика 4, сканирующее основание 5 с держателем образца 6, первый объектив 7 и первую систему визуализации 9, оптически сопряженную с первым объективом 7 и образцом 10. В качестве отличительных признаков независимого пункта формулы изобретения в него введена первая система ввода/вывода излучения 8, расположенная со стороны измерительной головки 2 относительно основания прибора 1. Первая система ввода/вывода излучения 8 представляет собой оптико-механическую конструкцию с подвижными или зафиксированными оптическими элементами. Введен также конфокальный микроскоп 11, оптически сопряженный с, по меньшей мере, одним источником излучения 12 и оптически сопряженный с первой системой ввода/вывода излучения 8. В качестве конфокального микроскопа можно использовать конфокальный микроскоп «Confotec» производства фирмы «Sol Instruments». В качестве источника излучения 12 может использоваться лазер видимого, ультрафиолетового или ближнего инфракрасного диапазона, работающий как в непрерывном, так и в импульсном режиме. Введен также спектрометр 13, содержащий, по меньшей мере, один детектор 14 и оптически сопряженный с первой системой ввода/вывода излучения 8. В качестве спектрометра 13 можно использовать монохроматор-спектрометр серии «MS520» производства фирмы «Sol Instruments». В качестве детектора 14 можно использовать линейный детектор в виде ПЗС камеры или точечный детектор, такой как ФЭУ, лавинный фотодиод. При этом зондовый датчик 3 оптически открыт для доступа источника излучения 12, оптически сопряжен посредством первого объектива 7 с первой системой ввода/вывода излучения 8 и содержит оптически активную зону 15. В качестве зондового датчика 3 можно использовать заостренную металлическую проволоку или кварцевый резонатор с закрепленным заостренным зондом на основе металлической проволоки или кремниевой структуры. Оптически активная зона 15 представляет собой область зондового датчика 3, расположенную на острие 16 (фиг. 2), которая, например, посредством эффекта плазменного резонанса при взаимодействии со светом источника излучения 12 трансформирует падающее распространяющееся электромагнитное излучение в локализованное ближнее поле, и, таким образом, локально усиливает взаимодействие света источника излучения 12 с образцом 10. Подробнее механизмы усиления оптического сигнала смотри в [Основы нанооптики / Л. Новотный, Б. Хехт; пер. с англ. А.А. Коновко, О.А. Шутовой, под ред. В.В. Самарцева. - М.: Физматлит, 2011. - 482 с.]. Острие 16, обеспечивающее создание оптически активной зоны 15 может представлять собой металлическую или диэлектрическую наноструктуру (наночастицу, вискер, нанотрубку). Также оптически активную зону 15 на острие 16 зондового датчика 3 может создавать металлическое напыление на острие зондового датчика 3 или выполнение острия 16 из благородных металлов, например, золота или серебра. Подробнее различные типы зондов с оптически активной зоной описаны в [Krasnok А.Е. et al. Optical nanoantennas // Physics-Uspekhi. 2013. Vol. 56, №6. P. 539-564].
Существует вариант, в котором в первую систему ввода/вывода излучения 8 введен первый сканер-зеркало 17, обеспечивающий возможность прецизионного перемещения и сканирования сфокусированным лазерным пятном по поверхности образца 10. Первый сканер-зеркало 17 может представлять собой гальванозеркало или пьезотрубку с закрепленным на нем зеркалом. Гальванозеркало или пьезотрубка могут быть оснащены датчиками смещения, к примеру емкостными датчиками смещения. [Патент US 6262827 B1, Galvano-mirror].
Существует также вариант, в котором в устройство введена оптическая система регистрации 20 отклонения зондового датчика 3, оптически связанная с зондовым датчиком 3. Оптическая система регистрации 20 представляет собой оптомеханическую конструкцию, например, включающую в себя, источник излучения, обычно, лазер или суперлюминесцентный диод, и детектор, выполненный, в виде четырехсекционного фотодиода [Патент RU 2279151, Способ регистрации отклонения консоли зонда сканирующего микроскопа с оптическим объективом].
Существует также вариант, в котором первая система ввода/вывода излучения 8 содержит подвижку 23 с фильтрами 24. Подвижка 23 с фильтрами 24 может быть выполнена в виде вращающейся вокруг оси турели с несколькими позициями или в виде сдвиговой подвижки, содержащей несколько положений. Фильтры могут быть как нейтральной оптической плотности, отражающих одинаково во всем оптическом диапазоне, так и обладающие спектральными особенностями, например, отражающими диапазон длин волн источника излучения 12 и пропускающими в прочих диапазонах.
Существует также вариант, в котором держатель зондового датчика 4 оснащен механизмом поворота 27 зондового датчика 3. Механизм поворота 27 зондового датчика 3 может представлять собой механическую конструкцию, состоящую, например, из привода, системы передаточного механизма, на основе шестерн и механизм фиксации зондового датчика [Патент RU 2244256, Многозондовый датчик контурного типа для сканирующего зондового микроскопа].
Существует также вариант, в котором сканирующее основание 5 со стороны, противоположной от первого объектива 7, оснащено вторым объективом 28 и фокусирующим механизмом 29. Фокусирующий механизм 29 может быть выполнен в виде рычажного механизма, соединенного с приводом либо ручным винтом фокусировки.
Существует также вариант, в котором измерительная головка 2 оснащена блоком плоскопараллельного подвода, состоящим из трех опор 35, сопряженных с тремя приводами 32. В качестве опор 35 и приводов 32 можно использовать винтовые или иные моторизированные шаговые двигатели с шагом перемещения не более 1 мкм. Они могут быть оснащены датчиками перемещения [Патент RU 2347300, Инерционный шаговый двигатель].
Существует также вариант, в котором держатель образца 6 оснащен прецизионным механизмом 36 установки на сканирующее основание 5. Прецизионный механизм 36 может быть выполнен в виде трех шариков на держателе образца и лунки, канавки и плоскости в ответных позициях на сканирующем основании. Также механизм может быть оснащен магнитами для лучшей фиксации держателя образца 6 на сканирующем основании 5. Подробно такие механизмы описаны в [Патент RU 2254640, Координатный стол].
Существует также вариант, в котором держатель образца 6 оснащен жидкостной ячейкой 40 (фиг. 2), выполненной из непрозрачного материала, в качестве которого может быть использован фторопласт, пластмассы или сплавы металлов.
Существует также вариант, в котором держатель образца 6 оснащен жидкостной ячейкой 40 выполненной из прозрачного материала и с оптическим доступом со стороны сканирующего основания 5. В качестве прозрачного материала можно использовать стекло, кварц или прозрачный пластик.
Существует также вариант, в котором в устройство введен герметичный колпак 42 с первым оптическим окном 43 и фланец 44 со вторым оптическим окном 45, обеспечивающие оптический доступ к образцу 10. Герметичный колпак 42 может быть изготовлен из металла, с использованием резиновых уплотнителей в местах установки на основание прибора 1 и в местах установки первого оптического окна 43. Фланец 44 может быть изготовлен из металла с использованием резиновых уплотнителей в месте стыка с основанием прибора 1. Первое оптическое окно 43 и второе оптическое окно 45 может быть выполнено из кварца. Поверхность оптического окна расположена под небольшим углом (от 1 до 10 градусов) к оптической оси для исключения возможности возникновения бликов на оптическом окне.
Существует также вариант, в котором первый объектив 7 установлен в измерительной головке 2 и оптически сопряжен с оптической системой регистрации 20. В этом случае для оптического разделения излучения от источника излучения 12 и излучения оптической системы регистрации 20 в апертуру 41 оптической системы регистрации 20 может устанавливаться дихроичный фильтр 46, имеющий полосу отражения, покрывающую оптический диапазон излучения оптической системы регистрации 20.
Существует также вариант, в котором в устройство введен механизм прецизионной установки оптической системы регистрации 20 (фиг. 3) на измерительную головку 2, состоящий из установочной части 48 и базовой части 49, обеспечивающий возможность быстрого съема и замены оптической системы регистрации 20. Установочная часть 48 может представлять собой механическую конструкцию, состоящую из заостренных штифтов 51 такого диаметра, чтобы установка штифтов 51 в посадочные отверстия 50 происходила по плотной посадке. Базовая часть 49 может включать в себя посадочные отверстия 50. Точное конечное расположение штифтов определяется по посадке и фиксируется.
Существует также вариант, в котором в устройство введена вторая система ввода/вывода излучения 53, расположенная со стороны, противоположной измерительной головке 2 относительно образца 10. Вторая система ввода/вывода излучения 53 может представлять собой механическую конструкцию, включающую фильтр 24, обеспечивающий разделение полезного сигнала и передачу его в конфокальный микроскоп 11 и получение оптического изображения при помощи второй системы визуализации 75. Фильтр 24 может быть как нейтральной оптической плотности, отражающий одинаково во всем оптическом диапазоне, так и обладающим спектральными особенностями, например, отражающим диапазон длин волн источника излучения 12 и пропускающим в прочих диапазонах.
Существует также вариант, в котором жидкостная ячейка 40 оснащена первым электродом 55 и вторым электродом 56, электрически сопряженными с блоком управления потенциалами 57. В качестве материалов первого электрода 55 и второго электрода 56 можно использовать металл или углерод. Блок управления потенциалами 57 может представлять собой гальваностат или потенциостат.
Существует также вариант, в котором жидкостная ячейка 40 оснащена модулем изменения температуры образца 58 и первым датчиком температуры 59. В качестве модуля изменения температуры 58 можно использовать одиночный или каскадный элемент Пельтье или нагревательную спираль. В качестве первого датчика температуры 59 можно использовать терморезистивный датчик или термопару.
Существует также вариант, в котором в устройство введен элемент нагрева/охлаждения 60 (фиг. 1) со вторым датчиком температуры 61, расположенный внутри герметичного колпака 42. В качестве элемента нагрева/охлаждения 60 можно использовать элемент Пельтье или нагревательную спираль. В качестве второго датчика температуры 61 можно использовать терморезистивный датчик или термопару.
Существует также вариант, в котором в устройство введен датчик влажности атмосферы 62, расположенный внутри герметичного колпака 42. В качестве датчика влажности атмосферы 62 может быть использован электронный датчик влажности, на основе кварцевого резонатора или полимерных пленок [Патент RU 296988, Пьезокварцевый адсорбционный датчик влажности газов].
Существует также вариант, в котором в устройство введен блок подачи газа 64, сопряженный с первым штуцером 65, установленным в герметичном колпаке 42. В качестве блока подачи газа 64 может быть использован насос или газовый баллон высокого давления с редуктором и расходомером.
Существует также вариант, в котором в устройство введен блок откачки газа 67, сопряженный со вторым штуцером 66, установленным в герметичном колпаке 42. В качестве блока откачки газа 67 может быть использован форвакуумный насос, сорбционный насос и другие вакуумные насосы.
Существует также вариант, в котором в устройство введен второй сканер-зеркало 72, расположенный во второй системе ввода/вывода излучения 53, обеспечивающий возможность прецизионного перемещения и сканирования сфокусированным лазерным пятном по поверхности образца 10. Второй сканер-зеркало 72 может представлять собой гальванозеркало или пьезотрубку с закрепленным на нем зеркалом. Гальванозеркало или пьезотрубка могут быть оснащены датчиками смещения, к примеру емкостными датчиками смещения [Патент RU 2472106, Емкостной датчик для измерения линейных перемещений].
Существует также вариант, в котором в устройство введена вторая система визуализации 75, расположенная во второй системе ввода/вывода излучения 53, оптически сопряженная со вторым объективом 28. Вторая система визуализации 75 может представлять собой оптический микроскоп, сопряженный со вторым объективом 28 и оснащенный видеокамерой и модулем освещения.
Существует также вариант, в котором в устройство введен модуль оптической развязки 80, оптически сопряженный с конфокальным микроскопом 11, первой системой ввода/вывода излучения 8 и второй системой ввода/вывода излучения 53. Модуль оптической развязки 80 может представлять собой оптико-механическую конструкцию, которая может в себя включать, например, зеркало 21 и оптический фильтр 24.
То, что в устройство введены первая система ввода/вывода излучения 8, расположенная со стороны измерительной головки 2 относительно основания прибора 1, конфокальный микроскоп 11, оптически сопряженный с, по меньшей мере, одним источником излучения 12 и оптически сопряженный с первой системой ввода/вывода излучения 8, спектрометр 13, содержащий, по меньшей мере, один детектор 14 и оптически сопряженный с первой системой ввода/вывода излучения 8, а зондовый датчик 3 оптически открыт для доступа источника излучения 12, оптически сопряжен посредством первого объектива 7 с первой системой ввода/вывода излучения 8 и содержит оптически активную зону 15, расположенную на острие 16, позволяет перемещать пятно сфокусированного света от источника излучения 12 по поверхности образца 10 за счет изменения угла падения лучей от источника излучения 12, сохраняя при этом точку падения на входном зрачке первого объектива 7. Это позволяет совместить сфокусированное на поверхности образца 10 пятно с оптически активной зоной 15. Также это позволяет детектировать оптический спектр излучения образца посредством спектрометра 13 и детектора 14. Анализ спектров излучения образца 10 позволяет получить информацию о физико-химическом строении образца 10, что расширяет функциональные возможности устройства. Активная зона 15 локально усиливает излучение образца 10. Это улучшает соотношение сигнал/шум и снижает общее время измерения и, как следствие, приводит к уменьшению накопленных дрейфов и уменьшению погрешности измерения. Так как усиление излучения образца происходит области активной зоны 15, пространственное разрешение определяется размером активной зоны 15 и области усиления, а не дифракционным пределом и, таким образом, это повышает пространственное разрешение оптической микроскопии и спектроскопии.
То, что в первую систему ввода/вывода излучения 8 введен первый сканер-зеркало 17, обеспечивающий возможность прецизионного перемещения и сканирования сфокусированным лазерным пятном по поверхности образца 10, позволяет сканировать сфокусированным лазерным пятном излучения от источника излучения 12 и повышает точность совмещения пятна с оптически активной зоной 15 по сравнению с ручной юстировкой. Сканирование выполняется для определения области наибольшего усиления сигнала образца 10, возникающего в результате взаимодействия сфокусированного излучения и образца в активной зоне 15. Расположение сфокусированного лазерного пятна по окончании сканирования в области наибольшего усиления сигнала образца 10 приводит к увеличению ближнепольной составляющей в результирующем сигнале, а следовательно повышает пространственное разрешение оптической спектроскопии. Датчики углового смещения позволяют снизить дрейф пятна сфокусированного излучения от источника излучения 12 относительно оптической оси первого объектива 7 в процессе сканирования посредством сканирующего основания 5.
То, что в устройство введена оптическая система регистрации 20 отклонения зондового датчика 3, позволяет использовать в качестве зондовых датчиков 3 датчики на основе кантилеверов. Это позволяет применять методы атомно-силовой микроскопии для удержания обратной связи, что расширяет функциональные возможности устройства и расширяет класс используемых зондовых датчиков 3 с оптически активной зоной 15.
То, что первая система ввода/вывода излучения 8 содержит подвижку 23 с фильтрами 24, позволяет переключаться между фильтрами 24, соответствующим различным оптическим диапазонам источника излучения 12. Фильтры 24 позволяют получить оптическое изображение поверхности образца 10, зондового датчика 3, его острия 16 и пятна сфокусированного света от выбранного источника излучения 12. Это расширяет функциональные возможности устройства.
То, что держатель зондового датчика 4 оснащен механизмом поворота 27 зондового датчика 3, позволяет производить смену зондового датчика 3 без снятия/установки держателя зондового датчика 4, что повышает производительность устройства, особенно в случае измерения в вакууме или контролируемой атмосфере, а также позволяет менять зондовые датчики с различными активными зонами 15, например, оптимизированными для различного диапазона оптических частот. Это расширяет функциональные возможности устройства и повышает пространственное разрешение в расширенном диапазоне частот.
То, что сканирующее основание 5 со стороны противоположной от первого объектива 7 оснащено вторым объективом 28 и фокусирующим механизмом 29, позволяет фокусировать излучение посредством второго объектива 28 с высокой числовой апертурой вплоть до 1.45 на основе масляной иммерсии, что позволяет фокусировать свет от источника излучения 12 в меньшую область, а, следовательно, обеспечить больший вклад усиленного в оптически активной зоне 15 сигнала от образца 10 в общий спектр. Это повышает чувствительность и пространственное разрешение устройства. Кроме того, фокусировка вторым объективом 28 со стороны сканирующего основания 5 позволяет получить оптический доступ к активной зоне 15 зондовых датчиков 3, которые не имеют оптического доступа со стороны первого объектива 7, тем самым расширяется класс типа зондовых датчиков с активной зоной 15, которые могут быть использованы в устройстве.
То, что измерительная головка 2 оснащена блоком плоскопараллельного подвода, состоящим из трех опор 35, сопряженных с тремя приводами 32 позволяет автоматически сближать зондовый датчик и образец с сохранением угла оси первого объектива 7. Таким образом, угол оси первого объектива 7 не зависит от высоты образца 10 и типа зондового датчика 3. Это позволяет использовать образцы 10 различной высоты и зондовые датчики 3 различного типа без необходимости выполнять юстировку измерительной головки.
То, что держатель образца 6 оснащен прецизионным механизмом 36 установки на сканирующее основание 5 обеспечивает повторяемость положения образца 10 при снятии/установки держателя образца 6 с закрепленным на нем образцом 10.
То, что держатель образца 6 оснащен жидкостной ячейкой 40, выполненной из непрозрачного материала, позволяет измерять образец 10 в жидкой среде. Кроме того, жидкость повышает фотохимическую и термическую стабильность образца 10 при высокой плотности мощности излучения в области оптически активной зоне 15. Кроме того, жидкость имеет показатель преломления, отличный от показателя преломления воздуха, и позволяет возбудить плазмонный резонанс в оптически активной зоне 15 на иных частотах, чем в воздушной или газовой среде. Таким образом, это приводит к расширению функциональных возможностей устройства, а также к повышению пространственного разрешения за счет эффекта плазменного резонанса в области оптически активной зоны 15 для иных, чем на воздухе, оптических диапазонах.
То, что держатель образца 6 оснащен жидкостной ячейкой 40 выполненной из прозрачного материала и с оптическим доступом со стороны сканирующего основания 5 позволяет измерять образец 10 в жидкой среде. Кроме того жидкость повышает фотохимическую и термическую стабильность образца 10 при высокой плотности мощности излучения в оптически активной зоны 15. Кроме того жидкость имеет показатель преломления, отличный от показателя преломления воздуха и позволяет возбудить плазмонный резонанс в оптически активной зоне 15 на иных частотах, чем в газовой или воздушной среде. Таким образом, это приводит к расширению функциональных возможностей устройства и к повышению пространственного разрешения за счет эффекта плазмонного резонанса в оптически активной зоне 15 для иных, чем на воздухе оптических диапазонах.
То, что жидкостная ячейка 40 имеет оптический доступ со стороны сканирующего основания 5, позволяет использовать второй объектив 28 с числовой апертурой вплоть до 1.45 и фокусировать свет от источника излучения 12 в меньшую область, а, следовательно, обеспечить больший вклад усиленного в оптически активной зоне 15 сигнала от образца 10 в общий спектр. Это повышает чувствительность и пространственное разрешение устройства
То, что в устройство введен герметичный колпак 42 с первым оптическим окном 43 и фланец 44 со вторым оптическим окном 45, обеспечивающие оптический доступ к образцу 10, снижает помехи, вызванные акустикой, а также уменьшает дрейфы положения зондового датчика 3 и острия 16 относительно образца 10 и относительно пятна сфокусированного света от источника излучения 12, связанные с потоками воздуха различной температуры, уменьшая, таким образом, погрешность измерений.
То, что первый объектив 7 установлен в измерительной головке 2 и оптически сопряжен с оптической системой регистрации 20, позволяет повысить чувствительность к изгибу зондового датчика 3 при использовании высокоапертурного первого объектива 7. Высокая числовая апертура первого объектива 7 приводит к уменьшению размера пятна, в которое фокусируется свет источника излучения 12 и тем самым увеличивает вклад усиленного в оптически активной зоне 15 сигнала в общую интенсивность сигнала. Кроме того, это позволяет использовать первый объектив 7 с водной иммерсией, что расширяет функциональные возможности устройства.
То, что в устройство введен механизм прецизионной установки оптической системы регистрации 20 на измерительную головку 2, состоящий из установочной части 48 и базовой части 49, обеспечивающий возможность быстрого съема и замены оптической системы регистрации 20, позволяет использовать с одной измерительной головкой 2 разные оптические системы регистрации 20, которые оптимизированы для разного типа первых объективов 7 или для различного оптического диапазона источника излучения 12, что позволяет исследовать одну и ту же область образца в разном спектральном диапазоне, что расширяет функциональные возможности инструмента.
То, что в устройство введена вторая система ввода/вывода излучения 53, расположенная со стороны, противоположной измерительной головке 2 относительно образца 10, позволяет перемещать пятно сфокусированного света от источника излучения 12 по поверхности образца 10 за счет изменения угла падения лучей от источника излучения 12, сохраняя при этом точку падения на входном зрачке второго объектива 28. Это позволяет совместить сфокусированное на поверхности образца 10 пятно с оптически активной зоной 15 зондового датчика 3.
То, что жидкостная ячейка 40 оснащена первым электродом 55, вторым электродом 56, электрически сопряженными с блоком управления потенциалами 57, позволяет выполнять электрохимические исследования, воздействуя на образец. Также с помощью электрохимической реакций возможно восстановить или удалить старое покрытие с острия 16 зондового датчика 3 и/или осадить новое покрытие на острие 16, у которого оптические свойства могут отличаться от изначальных свойств оптически активной зоны 15. При этом в реальном времени можно контролировать оптические свойства оптически активной зоны 15. Это расширяет функциональные возможности устройства и приводит к увеличению времени жизни оптически активной зоны 15.
То, что жидкостная ячейка 40 оснащена модулем изменения температуры образца 58 и первым датчиком температуры 59, позволяет выполнять измерения при контролируемой температуре жидкости, что требуется, например, для исследования биологических объектов. Это расширяет функциональные возможности устройства.
То, что в устройство введен элемент нагрева/охлаждения 60 со вторым датчиком температуры 61, расположенный внутри герметичного колпака 42, позволяет удерживать постоянной температуру газовой атмосферы внутри герметичного колпака 42, что в свою очередь повышает стабильность системы и снижает дрейфы, вызванные изменением температуры окружающей среды. Это приводит к повышению технических характеристик устройства и снижает дрейфы положения зондового датчика.
То, что в устройство введен датчик влажности атмосферы 62, расположенный внутри герметичного колпака 42, позволяет контролировать влажность внутри герметичного колпака при изменении температуры и избегать нежелательного выпадения росы, например на первом объективе 7 или на острие 16. Это расширяет функциональные возможности устройства и повышает стабильность оптических измерений.
То, что введен блок подачи газа 64, сопряженный с первым штуцером 65, установленным в герметичном колпаке 42, позволяет выполнять измерения в контролируемой газовой атмосфере, например, в среде инертного газ, что исключает фотохимическую реакцию окисления и повышает стабильность оптического сигнала с образца. Это расширяет класс исследуемых образцов, что повышает функционал инструмента. Также инертная атмосфера позволяет повысить время жизни оптически активной зоны 15, которая со временем теряет свои свойства, из-за реакций окисления или сульфидирования, происходящих на поверхности зондового датчика 3.
То, что в устройство введен блок откачки газа 67, сопряженный со вторым штуцером 66, установленным в герметичном колпаке 42, позволяет проводить измерения в вакууме, что повышает добротность колебаний зондового датчика 3 и повышает его чувствительность к дальнодействующим силам, например, к магнитным силам. Также вакуум позволяет повысить время жизни оптически активной зоны 15, которая со временем теряет свои свойства, из-за реакций окисления или сульфидирования, происходящих на острие 16 зондового датчика 3.
То, что в устройство введен второй сканер-зеркало 72, расположенный во второй системе ввода/вывода излучения 53, обеспечивающий возможность прецизионного перемещения и сканирования сфокусированным лазерным пятном по поверхности образца 10, позволяет сканировать пятном сфокусированного излучения от источника излучения 12 и повышает точность совмещения пятна с оптически активной зоной 15 по сравнению с ручной юстировкой. Сканирование выполняется для определения области наибольшего усиления сигнала образца 10, возникающего в результате взаимодействия сфокусированного света от источника излучения 12 и образца 10 в оптически активной зоне 15. Расположение сфокусированного лазерного пятна по окончании сканирования в области наибольшего усиления сигнала образца 10 приводит к увеличению ближнепольной составляющей в результирующем сигнале, а, следовательно, повышает пространственное разрешение оптической спектроскопии. Датчики углового смещения позволяют снизить дрейф пятна сфокусированного излучения от источника излучения 12 относительно оптической оси второго объектива 28 в процессе сканирования посредством сканирующего основания 5.
То, что в устройство введена вторая система визуализации 75, расположенная во второй системе ввода/вывода излучения 53, оптически сопряженная со вторым объективом 28, позволяет визуализировать положение острия зондового датчика 3 на поверхности образца 10, определять положение сфокусированного вторым объективом 28 лазерного луча относительно острия зондового датчика 3.
То, что в устройство введен модуль оптической развязки 80, оптически сопряженный с конфокальным микроскопом 11, первой системой ввода/вывода излучения 8 и второй системой ввода/вывода излучения 53 позволяет выбирать оптический путь света от источника излучения 12, используя первую систему ввода/вывода излучения 8 излучения для возбуждения и/или сбора излучения и/или вторую систему ввода/вывода излучения для сбора и/или возбуждения излучения. Это приводит к расширению функциональных возможностей устройства. Одновременное использование первого объектива 7 и второго объектива 28 для фокусирования света от источника излучения 12 позволяет реализовать схему 4pi микроскопа [Hell S., Stelzer Е.Н.K. Properties of a 4Pi confocal fluorescence microscope // J. Opt. Soc. Am. A. 1992. Vol. 9, №12. P. 2159.] и существенно увеличить пространственное разрешение как в плоскости, так и по оси Z. Это повышает пространственное разрешение и приводит к улучшению технических характеристик устройства.

Claims (23)

1. Сканирующий зондовый микроскоп для оптической спектрометрии, содержащий основание прибора (1), измерительную головку (2), зондовый датчик (3), по меньшей мере, один держатель зондового датчика (4), сканирующее основание (5) с держателем образца (6) и первый объектив (7), отличающийся тем, что в него введены первая система ввода/вывода излучения (8), расположенная со стороны измерительной головки (2) относительно основания прибора (1), первая система визуализации (9), оптически сопряженная с первым объективом (7) и образцом (10), конфокальный микроскоп (11), оптически сопряженный с, по меньшей мере, одним источником излучения (12) и оптически сопряженный с первой системой ввода/вывода излучения (8), спектрометр (13), содержащий, по меньшей мере, один детектор (14) и оптически сопряженный с первой системой ввода/вывода излучения (8), а зондовый датчик (3) при этом оптически открыт для доступа источника излучения (12), оптически сопряжен посредством первого объектива (7) с первой системой ввода/вывода излучения (8) и содержит оптически активную зону (15), расположенную на острие (16).
2. Устройство по п. 1, отличающееся тем, что в первую систему ввода/вывода излучения (8) введен первый сканер-зеркало (17), обеспечивающий возможность прецизионного перемещения и сканирования сфокусированным лазерным пятном по поверхности образца (10).
3. Устройство по п. 1, отличающееся тем, что в него введена оптическая система регистрации (20) отклонения зондового датчика (3).
4. Устройство по п. 1, отличающееся тем, что первая система ввода/вывода излучения (8) содержит подвижку (23) с фильтрами (24).
5. Устройство по п. 1, отличающееся тем, что держатель зондового датчика (4) оснащен механизмом поворота (27) зондового датчика (3).
6. Устройство по п. 1, отличающееся тем, что сканирующее основание (5) со стороны противоположной от первого объектива (7) оснащено вторым объективом (28) и фокусирующим механизмом (29).
7. Устройство по п. 1, отличающееся тем, что измерительная головка (2) оснащена блоком плоскопараллельного подвода, состоящим из трех опор (35), сопряженных с тремя приводами (32).
8. Устройство по п. 1, отличающееся тем, что держатель образца (6) оснащен прецизионным механизмом (36) установки на сканирующее основание (5).
9. Устройство по п. 1, отличающееся тем, что держатель образца (6) оснащен жидкостной ячейкой (40), выполненной из непрозрачного материала.
10. Устройство по п. 1, отличающееся тем, что держатель образца (6) оснащен жидкостной ячейкой (40), выполненной из прозрачного материала и с оптическим доступом со стороны сканирующего основания (5).
11. Устройство по п. 1, отличающееся тем, что в него введен герметичный колпак (42) с первым оптическим окном (43) и фланец (44) со вторым оптическим окном (45), обеспечивающие оптический доступ к образцу (10).
12. Устройство по п. 3, отличающееся тем, что первый объектив (7) установлен в измерительной головке (2) и оптически сопряжен с оптической системой регистрации (20).
13. Устройство по п. 3, отличающееся тем, в него введен механизм прецизионной установки оптической системы регистрации (20) на измерительную головку (2), состоящий из установочной части (48) и базовой части (49), обеспечивающий возможность быстрого съема и замены оптической системы регистрации (20).
14. Устройство по п. 6, отличающееся тем, что в него введена вторая система ввода/вывода излучения (53), расположенная со стороны, противоположной измерительной головке (2) относительно образца (10).
15. Устройство по п. 9, п. 10, отличающееся тем, что жидкостная ячейка (40) оснащена первым электродом (55), вторым электродом (56) электрически сопряженными с блоком управления потенциалами (57).
16. Устройство по п. 9, п. 10, отличающееся тем, что жидкостная ячейка (40) оснащена модулем изменения температуры образца (58) и первым датчиком температуры (59).
17. Устройство по п. 11, отличающееся тем, что в него введен элемент нагрева/охлаждения (60) со вторым датчиком температуры (61), расположенный внутри герметичного колпака (42).
18. Устройство по п. 11, отличающееся тем, что в него введен датчик влажности атмосферы (62), расположенный внутри герметичного колпака (42).
19. Устройство по п. 11, отличающееся тем, что в него введен блок подачи газа (64), сопряженный с первым штуцером (65), установленным в герметичном колпаке (42).
20. Устройство по п. 11, отличающееся тем, что в него введен блок откачки газа (67), сопряженный со вторым штуцером (66), установленным в герметичном колпаке (42).
21. Устройство по п. 14, отличающееся тем, что в него введен второй сканер-зеркало (72), расположенный во второй системе ввода/вывода излучения (53), обеспечивающий возможность прецизионного перемещения и сканирования сфокусированным лазерным пятном по поверхности образца (10).
22. Устройство по п. 21, отличающееся тем, что в него введена вторая система визуализации (75), расположенная во второй системе ввода/вывода излучения (53), оптически сопряженная со вторым объективом (28).
23. Устройство по п. 21, отличающееся тем, что в него введен модуль оптической развязки (80), оптически сопряженный с конфокальным микроскопом (11), первой системой ввода/вывода излучения (8) и второй системой ввода/вывода излучения (53).
RU2015141511A 2015-09-30 2015-09-30 Сканирующий зондовый микроскоп для оптической спектрометрии RU2616854C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015141511A RU2616854C2 (ru) 2015-09-30 2015-09-30 Сканирующий зондовый микроскоп для оптической спектрометрии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015141511A RU2616854C2 (ru) 2015-09-30 2015-09-30 Сканирующий зондовый микроскоп для оптической спектрометрии

Publications (2)

Publication Number Publication Date
RU2015141511A RU2015141511A (ru) 2017-04-07
RU2616854C2 true RU2616854C2 (ru) 2017-04-18

Family

ID=58505201

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015141511A RU2616854C2 (ru) 2015-09-30 2015-09-30 Сканирующий зондовый микроскоп для оптической спектрометрии

Country Status (1)

Country Link
RU (1) RU2616854C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2715082C1 (ru) * 2019-03-29 2020-02-25 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" Свч-головка сканирующего спектрометра ферромагнитного резонанса
RU2816116C1 (ru) * 2024-01-09 2024-03-26 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" СВЧ-детектор спектрометра ферромагнитного резонанса

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144028A (en) * 1994-07-28 2000-11-07 General Nanotechnology, L.L.C. Scanning probe microscope assembly and method for making confocal, spectrophotometric, Near-Field, and Scanning probe measurements and associated images
JP2004245694A (ja) * 2003-02-13 2004-09-02 Tokyo Instruments Inc 走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置
RU2244332C2 (ru) * 2002-08-13 2005-01-10 Зао "Нт-Мдт" Сканирующий зондовый микроскоп, совмещенный с оптическим микроскопом
US8997260B2 (en) * 2011-02-23 2015-03-31 Ryan Murdick Integrated microscope and related methods and devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144028A (en) * 1994-07-28 2000-11-07 General Nanotechnology, L.L.C. Scanning probe microscope assembly and method for making confocal, spectrophotometric, Near-Field, and Scanning probe measurements and associated images
RU2244332C2 (ru) * 2002-08-13 2005-01-10 Зао "Нт-Мдт" Сканирующий зондовый микроскоп, совмещенный с оптическим микроскопом
JP2004245694A (ja) * 2003-02-13 2004-09-02 Tokyo Instruments Inc 走査型プローブ顕微鏡像及びレーザ励起発光分布像測定装置
US8997260B2 (en) * 2011-02-23 2015-03-31 Ryan Murdick Integrated microscope and related methods and devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2715082C1 (ru) * 2019-03-29 2020-02-25 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" Свч-головка сканирующего спектрометра ферромагнитного резонанса
RU2816116C1 (ru) * 2024-01-09 2024-03-26 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" СВЧ-детектор спектрометра ферромагнитного резонанса

Also Published As

Publication number Publication date
RU2015141511A (ru) 2017-04-07

Similar Documents

Publication Publication Date Title
US11592391B2 (en) Photothermal imaging device and system
US4917462A (en) Near field scanning optical microscopy
KR100995450B1 (ko) 오염을 고려한 광학 소자 검사기구 및 검사방법
JP5168168B2 (ja) 屈折率測定装置
US20130162990A1 (en) Spectrometry device and spectrometry method
US8424111B2 (en) Near-field optical microscope, near-field optical probe, and sample observation method
JP5226481B2 (ja) 自己変位検出型カンチレバーおよび走査型プローブ顕微鏡
CN105556280A (zh) 用于3d多尺度显微术的具有集成微镜的微构造表面
US8767293B2 (en) Microscope measurement system
GB2162961A (en) Sample cell for spectrometry
US20170023611A1 (en) Atomic force microscope measuring device
EP1160611A2 (en) Probe opening forming apparatus and near-field optical microscope using the same
US20210011266A1 (en) Improved scanning optical microscope
JP6215677B2 (ja) 顕微ラマン分光装置および顕微ラマン分光システム
JP6025074B2 (ja) 被測定対象の熱輻射測定装置、及び被測定対象の熱輻射測定方法
RU2616854C2 (ru) Сканирующий зондовый микроскоп для оптической спектрометрии
JP4498081B2 (ja) 散乱型近接場顕微鏡およびその測定方法
CN219122022U (zh) 测量微量分光光度计的光路长度的设备及微量分光光度计
CN113390789A (zh) 用于低温超导磁体的腔内显微拉曼光谱测试系统、其测试方法和应用
JPH095237A (ja) ラマンスペクトル測定装置及び測定方法
JP3121902U (ja) 赤外顕微鏡
KR100978600B1 (ko) 초고분해능 주사 광학 측정 장치
WO2023021867A1 (ja) 走査プローブ顕微鏡とそれに使用される試料
CN218239827U (zh) 一种基于超透镜的光片成像系统和pcr荧光检测光片系统
JP2010038868A (ja) 光学的粘度測定システム

Legal Events

Date Code Title Description
RH4A Copy of patent granted that was duplicated for the russian federation

Effective date: 20180828