JP2004226095A - 電流測定回路 - Google Patents

電流測定回路 Download PDF

Info

Publication number
JP2004226095A
JP2004226095A JP2003010980A JP2003010980A JP2004226095A JP 2004226095 A JP2004226095 A JP 2004226095A JP 2003010980 A JP2003010980 A JP 2003010980A JP 2003010980 A JP2003010980 A JP 2003010980A JP 2004226095 A JP2004226095 A JP 2004226095A
Authority
JP
Japan
Prior art keywords
current
terminal
transistor
type
pnp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003010980A
Other languages
English (en)
Inventor
Isao Nishino
功 西野
Seiichiro Mori
成一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003010980A priority Critical patent/JP2004226095A/ja
Priority to US10/607,296 priority patent/US6968249B2/en
Publication of JP2004226095A publication Critical patent/JP2004226095A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/30Marginal testing, e.g. by varying supply voltage
    • G01R31/3004Current or voltage test
    • G01R31/3008Quiescent current [IDDQ] test or leakage current test

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】印加電圧に応じて負荷に駆動される電流を、負荷に影響を与えることなく、正確かつ容易に測定することができる電流測定回路を提供する。
【解決手段】電圧供給端子3から演算増幅器4の非反転入力端子に電圧が供給されると、該供給電圧に等しい電圧が反転入力端子に入力されるとともに、負荷1への電圧印加端子2に入力される。カレントミラーを構成するPNPトランジスタQ1,Q2が印加電圧に応答してオンされると、PNPトランジスタQ1を介して負荷1にソース電流I1が流れるとともに、ソース電流I1のミラー電流I2がPNPトランジスタQ2を介して電流測定端子8へと流れる。ミラー電流I2を電流計6にて測定することにより、負荷1に駆動される電流I1を求めることができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、電流測定回路に関し、より特定的には、直流または交流電源によって負荷に駆動された電流を測定するための電流測定回路に関する。
【0002】
【従来の技術】
従来から、被測定ICの電流測定試験に用いる電流測定回路においては、被測定ICで構成される負荷に流れる電流を精度良く測定するために、さまざまな方法が提案されている(例えば、特許文献1参照)。
【0003】
図18は、特許文献1に提案される従来の電流測定回路の一例の構成を示す図である。
【0004】
図18を参照して、従来の電流測定回路は、負荷1と、負荷1に印加電圧を印加するための電圧印加端子2と、負荷1の印加電圧を決定する第1の電圧V1を供給するための電圧供給端子3と、演算増幅器4と、NPNトランジスタQ9,Q10と、抵抗R1,R2と、第2の電圧V2を供給して流れる電流を電流計6にて測定する電圧供給電流測定端子5とを含む。
【0005】
負荷1は、電圧印加端子2と接地電位との間に接続され、電圧印加端子2の印加電圧に応じて電流を駆動する。
【0006】
NPNトランジスタQ9,Q10は、NPNトランジスタQ9のベースがNPNトランジスタQ9のコレクタおよびNPNトランジスタQ10のベースに接続され、カレントミラー回路を構成する。NPNトランジスタQ9のベースおよびコレクタとNPNトランジスタQ10のベースとは、さらに演算増幅器4の出力端子に接続される。NPNトランジスタQ10のコレクタは外部電源端子VCCに接続される。
【0007】
抵抗R1は、一端がNPNトランジスタQ9のエミッタに接続され、他端が演算増幅器4の反転入力端子に接続されるとともに、負荷1の電圧印加端子2に接続される。
【0008】
一方、抵抗R2は、一端がNPNトランジスタQ10のエミッタに接続され、他端が電圧供給電流測定端子5に接続される。電圧供給電流測定端子5は、電流計6と、電流計6と接地電位との間に接続され、電圧V2を供給する電圧源7とで構成される。
【0009】
以上の構成において、電圧供給端子3に供給される第1の電圧V1が演算増幅器4の非反転入力端子に入力されると、差動利得が十分に大きい演算増幅器4の差動入力は近似的にゼロであることから、反転入力端子の入力電圧は、電圧V1に等しいとみなすことができる。よって、反転入力端子に接続される負荷1の電圧印加端子2には、電圧V1に等しい電圧が印加されることとなる。
【0010】
また、負荷1を流れる電流は、演算増幅器4の出力端子からNPNトランジスタQ9および抵抗R1を経由して電圧印加端子2に流れ込む電流I9となる。ここで、NPNトランジスタQ9,Q10は、カレントミラー回路を構成していることから、NPNトランジスタQ9を流れる電流I9のミラー電流I10が、NPNトランジスタQ10および抵抗R2を介して流れる。
【0011】
ここで、電圧供給電流測定端子5において電圧源7の電圧V2を第1の電圧V1と等しく設定してやることによって、負荷1の電流I9とミラー電流I10とは、抵抗R1,R2の逆数の比に比例し、I10=(R1/R2)・I9と表わすことができる。したがって、ミラー電流I10を電圧供給電流測定端子5内部の電流計6で測定してやれば、負荷1に流れる電流I9を求めることができる。
【0012】
【特許文献1】
特開平11−23664号公報(第1図)
【0013】
【発明が解決しようとする課題】
このように、図18に示す従来の電流測定回路においては、カレントミラー構成を採用し、負荷1に電圧を印加する端子と負荷1を流れる電流を測定する端子とを別々に設けたことにより、電流測定レンジを切り換えても電圧の供給は途切れることがなく維持されるため、電圧印加端子2を流れる様々なレベルの電流を適性な電流測定レンジで測定でき、高精度の測定が可能となる。
【0014】
しかしながら、一方で、従来の電流測定回路においては、負荷1の電流I9の測定は、負荷1の印加電圧V1と電圧供給電流測定端子5内部の電圧源7の電圧V2とが等しいことが前提とされることから、負荷1の印加電圧V1を変更する場合は、これに伴なって電圧源7の電圧V2をも変更する必要が生じ、測定に手間が掛かるという問題があった。
【0015】
また、負荷1の印加電圧V1が交流電圧の場合、または負荷1が容量性の場合は、たとえ演算増幅器4の接地電圧端子VEEを負電源に変更しても、電圧印加端子2から負荷1に流れ込む電流(以下、ソース電流と称す)は測定できるが、負荷1から流れ出す電流(以下、シンク電流と称す)については、NPNトランジスタQ9,Q10がオフとなって電流を流し得ないことから測定できないという不具合が生じていた。
【0016】
それゆえ、この発明の目的は、負荷に影響を与えることなく、負荷を流れる電流を正確かつ容易に測定することができる電流測定回路を提供することにある。
【0017】
【課題を解決するための手段】
この発明に係る電流測定回路は、電圧印加端子からの印加電圧によって負荷に駆動される電流を測定する電流測定回路であって、第1の入力端子に供給される電圧に等しい電圧を前記負荷に印加するために、第2の入力端子と電圧印加端子とが接続された演算増幅器と、演算増幅器の出力端子と電圧印加端子との間に電気的に結合されるPNP型の第1のトランジスタと、演算増幅器の出力端子と電流測定端子との間に電気的に結合され、PNP型の第1のトランジスタとカレントミラーを構成するPNP型の第2のトランジスタとを備える。PNP型の第1および第2のトランジスタは、ベースが演算増幅器の第2の入力端子および電圧印加端子に接続され、印加電圧に応答して活性化すると、PNP型の第1のトランジスタは、電圧印加端子を介して負荷に電流を駆動し、PNP型の第2のトランジスタは、PNP型の第1のトランジスタの駆動電流のミラー電流を電流測定端子に駆動する。
【0018】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一符号は同一または相当部分を示す。
【0019】
[実施の形態1]
図1は、この発明の実施の形態1に従う電流測定回路の構成を示す図である。
【0020】
図1を参照して、電流測定回路は、負荷1と、負荷1に電圧を印加するための電圧印加端子2と、負荷1の印加電圧を決定する電圧を供給するための電圧供給端子3と、演算増幅器4と、PNPトランジスタQ1,Q2と、電流測定端子8と、電流計6とを含む。
【0021】
本実施の形態の電流測定回路は、図18に示す従来の電流測定回路に対して、NPNトランジスタQ9,Q10がPNPトランジスタQ1,Q2からなるカレントミラー回路に置き換えられた点と、抵抗R1,R2および電圧源7が削除された点とで異なっており、共通する部分については説明を省略する。なお、電圧源7が削除されたことから、図18の電流測定回路の電圧供給電流測定端子5は、電流測定端子8に置き換えられる。
【0022】
負荷1は、電圧印加端子2と接地電位との間に接続され、被測定ICで構成される。
【0023】
PNPトランジスタQ1,Q2は、PNPトランジスタQ1のベースがPNPトランジスタQ1のコレクタおよびPNPトランジスタQ2のベースに接続され、カレントミラー回路を構成する。さらに、PNPトランジスタQ1のベースとコレクタおよびPNPトランジスタQ2のベースの接続ノードは、演算増幅器2の反転入力端子に接続される。PNPトランジスタQ1,Q2のエミッタは、いずれも演算増幅器4の出力端子に接続される。
【0024】
PNPトランジスタQ1のコレクタは、電圧印加端子2に接続されるとともに、演算増幅器4の反転入力端子に接続される。一方、PNPトランジスタQ2のコレクタは、電流測定端子8と接地電位との間に設けられた電流計6に接続される。
【0025】
図1の構成において、演算増幅器4の差動入力はゼロとみなすことができることから、電圧供給端子3から非反転入力端子に供給される電圧に等しい電圧が反転入力端子に入力されるとともに、電圧印加端子2に入力される。すなわち、負荷1への印加電圧は、電圧供給端子3の電圧によって決定される。
【0026】
次に、印加電圧がPNPトランジスタQ1,Q2のベースに入力されると、PNPトランジスタQ1,Q2はオンされ、PNPトランジスタQ1を介して負荷1にソース電流I1が流れるとともに、ソース電流I1のミラー電流I2がPNPトランジスタQ2を介して電流測定端子8へと流れる。ここで、ミラー電流I2は、カレントミラー回路を構成するPNPトランジスタQ1,Q2のトランジスタサイズによってその大きさが決まるが、両者のトランジスタサイズを同じくすることによって、ソース電流I1と同じ電流を得ることができる。
【0027】
したがって、ミラー電流I2を電流計6にて測定することにより、負荷1に流れる電流I1を求めることができる。
【0028】
[変更例]
図2は、この発明の実施の形態1の変更例に従う電流測定回路の構成を示す図である。
【0029】
図2を参照して、電流測定回路は、図1の実施の形態1の電流測定回路における電流計6を、電流測定端子8と接地電位との間に接続される電流−電圧変換用の抵抗9に置き換えた点で異なっており、共通する部分については、説明を省略する。
【0030】
この構成において、PNPトランジスタQ2を流れるミラー電流I2は、電流測定端子8と接地電位との間の電圧を計測し、計測した電圧値を抵抗9の抵抗値で割ったときの商として求めることができる。したがって、負荷1の電流I1は、この商と等しいことから、容易に求めることができる。
【0031】
なお、電流測定端子8と接地電位との間に図示しないオシロスコープを接続し、これらの間の電流波形を観測することによっても、負荷1を流れる電流I1の波形を求めることができる。
【0032】
以上のように、この発明の実施の形態1の電流測定回路に従えば、カレントミラー回路を構成するPNPトランジスタのミラー電流を測定することで、負荷を流れる電流を容易に求めることができる。従来の電流測定回路のように変化する印加電圧に追随して電圧源への同一電圧を供給することを必要としないことから、より簡易に負荷電流を測定することが可能となる。
【0033】
また、PNPトランジスタのミラー電流は、コレクタ出力であるので、従来の電流測定回路に含まれる測定端子と接地電位との間の抵抗および電圧源が不要となる。よって、従来の電流測定回路よりも部品点数を少なく抑えることができることから、回路規模を小型化でき、コスト面においても有利である。
【0034】
[実施の形態2]
図3は、この発明の実施の形態2に従う電流測定回路の構成を示す図である。
【0035】
図3を参照して、電流測定回路は、負荷1と、電圧印加端子2と、電圧供給端子3と、演算増幅器4と、PNPトランジスタQ1,Q2と、NPNトランジスタQ3,Q4と、電流計6,11と、ダイオード14とを含む。
【0036】
本実施の形態の電流測定回路は、図1の実施の形態1の電流測定回路に対して、NPNトランジスタQ3,Q4と、電流計11と、ダイオード14とが付加された構成となっており、共通する部分については説明を省略する。
【0037】
NPNトランジスタQ3,Q4は、いずれもエミッタが演算増幅器4の出力端子に接続される。NPNトランジスタQ3は、ベースがNPNトランジスタQ3のコレクタおよびNPNトランジスタQ4のベースに接続されており、NPNトランジスタQ4とカレントミラー回路を構成する。NPNトランジスタQ3のベースおよびコレクタとNPNトランジスタQ4のベースとは、さらに、演算増幅器4の反転入力端子に接続される。NPNトランジスタQ4のコレクタと外部電源端子VCCとの間には電流測定端子10を介して電流計11が接続されており、NPNトランジスタQ4に流れる電流I4を計測することができる。
【0038】
ダイオード14は、カソードが電流測定端子8に接続され、アノードがPNPトランジスタQ2のコレクタに接続される。接地電位から電流計6を介してPNPトランジスタQ2のコレクタへ、さらに、コレクタからベースへと電流が流れ込むのを阻止するためにある。
【0039】
以上の構成において、電圧供給端子3に正の電圧が供給されたときには、電圧印加端子2から負荷1に該正電圧が印加される。この場合は、実施の形態1で述べたように、カレントミラー回路を構成するPNPトランジスタQ1,Q2において、PNPトランジスタQ2を流れるミラー電流I2を電流計6でモニタすることにより、負荷1のソース電流I1を求めることができる。
【0040】
一方、電圧供給端子3に負電圧が供給されたときには、電圧印加端子2から負荷1に該負電圧が印加される。負荷1からは、これに応じて、シンク電流が流れ出すこととなるが、PNPトランジスタQ1,Q2はいずれもベース−エミッタ間電圧が逆バイアスとなってオンされないことから、電流計6においては負荷1の電流量を求めることができない。
【0041】
そこで、この場合は、同じくカレントミラー回路を構成するNPNトランジスタQ3,Q4によって負荷1のシンク電流を求めることができる。すなわち、NPNトランジスタQ3,Q4が負電圧の印加によってベース−エミッタ間電圧が順バイアスとなって、ともにオンされると、NPNトランジスタQ3を流れる負荷1のシンク電流I3に等しいミラー電流I4がNPNトランジスタQ4を流れる。したがって、このミラー電流I4を電流計11でモニタすれば、負荷1のシンク電流を求めることができる。
【0042】
このように、正/負電圧のそれぞれに応じて駆動されるカレントミラー回路を備えた図3の構成とすることによって、交流電圧印加時の負荷1の電流を正確かつ容易に求めることができる。
【0043】
また、負荷1への印加電圧が正のみであっても、電圧が高電位と低電位との間を変化する場合は、負荷1が容量性であれば、印加電圧が高電位から低電位に変化したことによって、放電電流としてのシンク電流が負荷1から流れ出すこととなる。図3の構成の電流測定回路において、このシンク電流は、PNPトランジスタQ1,Q2を流れ得ず、NPNトランジスタQ3,Q4を流れることから、電流計11をモニタすることによって、このシンク電流を容易に求めることができる。
【0044】
[変更例]
図4は、この発明の実施の形態2の変更例に従う電流測定回路の構成を示す図である。
【0045】
図4を参照して、電流測定回路は、図3の実施の形態2の電流測定回路に対して、NPNトランジスタQ4のコレクタに電流測定端子10を介して接続される電流計11が、カレントミラー回路を構成するPNPトランジスタQ5,Q6に置き換えられた点および電流測定端子10と接地電位との間に電流−電圧変換用の抵抗12が配設された点で異なる。さらに、PNPトランジスタQ2のコレクタに電流測定端子8を介して接続される電流計6が電流−電圧変換用の抵抗9に置き換えられた点で異なり、共通する部分については説明を省略する。
【0046】
PNPトランジスタQ5,Q6は、PNPトランジスタQ5のベースがPNPトランジスタQ5のコレクタおよびPNPトランジスタQ6のベースに接続され、カレントミラー回路を構成する。PNPトランジスタQ5のコレクタは、さらに、NPNトランジスタQ4のコレクタに接続される。PNPトランジスタQ5,Q6のエミッタはいずれも外部電源端子VCCに接続される。
【0047】
以上の構成において、電圧供給端子3から演算増幅器4の非反転入力端子に供給される電圧が正電圧のときには、図2の実施の形態1の変更例で示したのと同様に、PNPトランジスタQ1から負荷1へと流れるソース電流I1に等しいミラー電流I2がPNPトランジスタQ2を介して抵抗9に流れる。したがって、電流測定端子8と接地電位との間の電圧と、抵抗9の抵抗値からミラー電流I2を求めることができ、負荷1のソース電流I1を得ることができる。
【0048】
一方、電圧供給端子3に供給される電圧が負電圧のときには、図3の実施の形態2と同様に、負荷1からのシンク電流I3がNPNトランジスタQ3を流れると、カレントミラー対をなすNPNトランジスタQ4にこれと等しいミラー電流I4が流れる。さらに、NPNトランジスタQ4を流れるミラー電流I4は、PNPトランジスタQ5を流れる電流I5となる。したがって、PNPトランジスタQ5とカレントミラー対をなすPNPトランジスタQ6には、ミラー電流I4に等しい電流I6が流れ、抵抗12へと流れることとなる。すなわち、NPNトランジスタQ3を流れる負荷1のシンク電流I3に等しい電流I6がPNPトランジスタQ6を介して抵抗12を流れることとなり、電流I6を求めることによってシンク電流を得ることができる。
【0049】
なお、電流測定端子10と接地電位との間に図示しないオシロスコープを設けることによって、シンク電流の電流波形を観測することができる。
【0050】
図5は、負荷1が容量性であるときに、電圧供給端子3の電圧変化に応じて、電流測定端子8,10と接地電位との間に設けたオシロスコープで観測される電流波形である。
【0051】
図5(a)に示すように、電圧供給端子3に供給される電圧は、高電位と低電位との間を遷移する。これに応じて電流測定端子8で観測される電流波形は、図5(b)に示すように、供給電圧が高電位となったことに応答して所定の期間ソース電流が検出される。一方、電流測定端子10で観測される電流波形は、図5(c)に示すように、供給電圧が低電圧となったことに応答して負荷1が放電し、シンク電流が検出される。このようにして、負荷1を流れるソース電流とシンク電流とを分別して測定することができる。
【0052】
以上のように、この発明の実施の形態2に従えば、正/負電圧で駆動されるカレントミラー回路を備えた簡易な構成からなる電流測定回路によって、交流電圧印加時における負荷の電流特性を容易に求めることができる。
【0053】
また、交流電圧印加時や負荷が容量性であるときの電流特性を、負荷を流れるソース電流とシンク電流とを分別して測定することができる。
【0054】
[実施の形態3]
図6は、この発明の実施の形態3に従う電流測定回路の構成を示す図である。
【0055】
図6を参照して、電流測定回路は、図4の実施の形態2の変更例の電流測定回路に対して、カレントミラー回路を構成するPNPトランジスタQ5,Q6のうちのPNPトランジスタQ6のコレクタを電流測定端子8に接続した点で異なり、共通する部分については説明を省略する。
【0056】
この構成において、電圧供給端子3に供給される電圧が正電圧のときには、図3,4に示す実施の形態2と同様に、PNPトランジスタQ1を介して負荷1に流れるソース電流I1のミラー電流I2がカレントミラー対をなすPNPトランジスタQ2を介して電流測定端子8に流れることとなる。したがって、ミラー電流I2を電流計6をモニタすることで、負荷1のソース電流I1を求めることができる。
【0057】
一方、電圧供給端子3に供給される電圧が負電圧のときには、図4の実施の形態2の変更例に示すように、負荷1から流れ出すシンク電流I3がNPNトランジスタQ3に流れると、カレントミラー対をなすNPNトランジスタQ4にシンク電流I3に等しいミラー電流I4が流れる。さらに、NPNトランジスタQ4を流れるミラー電流I4がPNPトランジスタQ5を流れる電流I5となり、電流I5のミラー電流I6がPNPトランジスタQ6を流れる。すなわち、負荷1のシンク電流I3に等しい電流がPNPトランジスタQ6を流れることとなる。さらに、電流I6は、電流測定端子8を介して電流計6を流れることから、電流計6をモニタすればシンク電流I3を求めることができる。
【0058】
なお、本実施の形態の電流測定回路は、電流計6にソース電流およびシンク電流のいずれもが流れる構成としたことから、電流計6をモニタして得られる電流は、負荷1のソース電流およびシンク電流の絶対値の和となる。
【0059】
[変更例]
図7は、この発明の実施の形態3の変更例に従う電流測定回路の構成を示す図である。
【0060】
図7を参照して、電流測定回路は、図6の実施の形態3の電流測定回路における電流計6を電流−電圧変換用の抵抗9に置き換えたものであり、共通する部分については、説明を省略する。
【0061】
すなわち、図7の構成とすることにより、抵抗9には、PNPトランジスタQ2よりソース電流I1のミラー電流I2が流れ、かつNPNトランジスタQ6よりシンク電流I3に等しい電流I6が流れることとなる。
【0062】
したがって、負荷1の電流は、電流測定端子10の電圧と抵抗9の抵抗値とから求めることができる。なお、求めた電流値は、負荷1のソース電流とシンク電流との絶対値の和に相当する。
【0063】
以上のように、この発明の実施の形態3に従えば、負荷への印加電圧が交流電圧のとき、または負荷が容量性であるときにおいて、負荷を流れるソース電流およびシンク電流の絶対値の和を正確かつ容易に求めることができる。
【0064】
[実施の形態4]
図8は、実施の形態4に従う電流測定回路の構成を示す図である。
【0065】
図8を参照して、電流測定回路は、図1の実施の形態1の電流測定回路に対して、カレントミラー回路を構成するPNPトランジスタQ1,Q2のベースと演算増幅器4の出力端子との間に接続されたダイオード13と、PNPトランジスタQ2のコレクタと電流測定端子8との間に接続されたダイオード14とが付加された構成であり、共通する部分については説明を省略する。
【0066】
ダイオード13は、カソードが演算増幅器4の出力端子に接続され、アノードがPNPトランジスタQ1,Q2のベースに接続される。これによって、電圧供給端子3に供給される電圧が負電圧となったときに、負荷1から電圧印加端子2を介して流れ出すシンク電流は、演算増幅器4の出力端子へと流れることから、シンク電流のパスが形成される。
【0067】
ダイオード14は、カソードが電流測定端子8に接続され、アノードがPNPトランジスタQ2のコレクタに接続される。接地電位から電流計6を介してPNPトランジスタQ2のコレクタへ、さらにコレクタからベースへと電流が流れ込むのを阻止するためにある。
【0068】
このような構成とすることにより、負荷1のシンク電流を測定する必要のない場合は、図3,4に示すNPNトランジスタQ3,Q4およびPNPトランジスタQ5,Q6を用いることなく、ダイオード13,14のみを設けることによって、ソース電流のみを容易に測定することができる。
【0069】
[変更例]
図9は、この発明の実施の形態4の変更例に従う電流測定回路の構成を示す図である。
【0070】
図9を参照して、電流測定回路は、図8の実施の形態4の電流測定回路における電流計6を電流−電圧変換用の抵抗9に置き換えたものであり、共通する部分については、説明を省略する。
【0071】
この構成においても、ダイオード13,14を配設することによって、負荷1を流れるソース電流のみを容易に測定できる。ソース電流の測定については、図2の実施の形態1の変更例と同様に、電流測定端子8と接地電位間の電圧と抵抗9の抵抗値とから容易に求めることができる。
【0072】
以上のように、この発明の実施の形態4に従えば、負荷への印加電圧が交流電圧のとき、または負荷が容量性であるときにおいても、簡単な構成からなる電流測定回路によって、負荷を流れるソース電流のみを容易に求めることができる。
【0073】
[実施の形態5]
図10は、この発明の実施の形態5に従う電流測定回路の構成を示す図である。
【0074】
図10を参照して、電流測定回路は、図1の実施の形態1の電流測定回路において、カレントミラー回路を構成するPNPトランジスタQ1,Q2のエミッタと演算増幅器4の出力端子との間に抵抗15,16を挿入した構成であり、共通する部分については説明を省略する。
【0075】
PNPトランジスタQ1,Q2は、カレントミラー回路を構成することから、同じトランジスタサイズとすることで、PNPトランジスタQ2には、PNPトランジスタQ1の電流I1に等しいミラー電流I2を流すことができる。しかしながら、PNPトランジスタQ1,Q2のベース−エミッタ間電圧は、プロセスばらつき等に起因して必ずしも同電位になるとは限らないことから、PNPトランジスタQ1,Q2のコレクタ電流に不一致が生じうる。この場合は、負荷1の電流の正確な測定が保証されないこととなる。
【0076】
そこで、図10のように、演算増幅器4の出力端子とPNPトランジスタQ1,Q2のエミッタとの間にそれぞれ抵抗15,16を配設し、かつ、これらの抵抗による電圧降下を無視できない抵抗値に設定することにより、ベース−エミッタ間の電圧差によるコレクタ電流の差を小さくすることができる。
【0077】
[変更例]
図11は、この発明の実施の形態5の変更例に従う電流測定回路の構成を示す図である。
【0078】
図11を参照して、電流測定回路は、図10の実施の形態5の電流測定回路における電流計6を電流−電圧変換用の抵抗9に置き換えた構成であり、共通する部分については説明を省略する。
【0079】
本構成においても、PNPトランジスタQ1,Q2と演算増幅器4との間に接続された抵抗15,16によってPNPトランジスタQ1,Q2を流れる電流の差を低減して、負荷1のソース電流I1を正確に測定することができる。ソース電流I1の測定については、電流測定端子8と接地電位との間の電圧と抵抗9の抵抗値とから容易に求めることができる。
【0080】
以上のように、この発明の実施の形態5に従えば、カレントミラー回路を構成するトランジスタ間でのベース−エミッタ間電圧差によるコレクタ電流の差を低減することができ、負荷の電流特性をより正確に測定することができる。
【0081】
[実施の形態6]
図12は、この発明の実施の形態6に従う電流測定回路の構成を示す図である。
【0082】
図12を参照して、電流測定回路は、図1の実施の形態1の電流測定回路において、演算増幅器4の出力端子とPNPトランジスタQ1,Q2のエミッタとの間にNPNトランジスタQ7を配設した構成であり、共通する部分については、説明を省略する。
【0083】
NPNトランジスタQ7は、ベースが演算増幅器4の出力端子に接続され、コレクタが外部電源端子VCCに接続され、エミッタがPNPトランジスタQ1,Q2のエミッタに接続される。この構成において、NPNトランジスタQ7は、ベースに演算増幅器4の出力を受けると、エミッタに接続されるカレントミラー回路に駆動される電流を増幅するエミッタフォロワとして機能する。
【0084】
すなわち、エミッタフォロワは電流駆動能力が高いことから、演算増幅器4の出力電流は、エミッタフォロワであるNPNトランジスタQ7で電流増幅されてPNPトランジスタQ1を流れ、カレントミラー対をなすPNPトランジスタQ2にも、これに等しいミラー電流I2が流れる。したがって、ミラー電流I2を電流計6にて測定することによって、負荷1のソース電流を求めることができる。これは、負荷1のソース電流I1に対して演算増幅器4の電流駆動能力が低いときにおいて有効である。
【0085】
[変更例1]
図13は、この発明の実施の形態6の変更例1に従う電流測定回路の構成を示す図である。
【0086】
図13を参照して、電流測定回路は、図12に示す電流測定回路に対して、負荷1のシンク電流を測定するためのNPNトランジスタQ3,Q4および電流計11と、NPNトランジスタQ3,Q4のエミッタと演算増幅器4との間に接続されたエミッタフォロワとしてのPNPトランジスタQ8とが付加された構成であり、共通する部分については説明を省略する。
【0087】
この構成において、カレントミラー回路を構成するNPNトランジスタQ3,Q4およびNPNトランジスタQ4のコレクタと外部電源端子VCCとの間に接続された電流計11は、図3に示す実施の形態2の電流測定回路と同様の構成である。負荷1からのシンク電流I3がNPNトランジスタQ3に流れると、これに等しいミラー電流I4がNPNトランジスタQ4を流れ、この電流値を電流計11で測定することによって、シンク電流を求めることができる。
【0088】
本実施の形態では、さらに、NPNトランジスタQ3,Q4のエミッタと演算増幅器4の出力端子との間にエミッタフォロワとしてのPNPトランジスタQ8を挿入することにより、演算増幅器4の電流駆動能力が負荷1の駆動能力より低い場合であっても、PNPトランジスタQ8にて電流増幅されることから、負荷1のシンク電流を正確に測定することができる。
【0089】
[変更例2]
図14は、この発明の実施の形態6の変更例2に従う電流測定回路の構成を示す図である。
【0090】
図14を参照して、電流測定回路は、図13に示す実施の形態6の変更例1の電流測定回路において、電流計6,11をそれぞれ電流−電圧変換用の抵抗9,12に置き換えたものであり、共通する部分については説明を省略する。なお、抵抗12については、NPNトランジスタQ4を流れるミラー電流をさらに抵抗12を介して接地電位に流すためのPNPトランジスタQ5,Q6とが配設される。詳細な構成については、図4の実施の形態2の変更例と同様である。
【0091】
本実施の形態の電流測定装置においても、PNPトランジスタQ1,Q2のエミッタと演算増幅器4の出力端子との間、およびNPNトランジスタQ3,Q4のエミッタと演算増幅器4の出力端子との間には、それぞれエミッタフォロワとしてのNPNトランジスタQ7およびPNPトランジスタQ8が接続されており、演算増幅器4の電流駆動能力が負荷1の電流駆動能力よりも劣る場合において、演算増幅器4の出力電流を増幅する働きをする。
【0092】
これによって、PNPトランジスタQ2には、エミッタフォロワによって増幅されたミラー電流I2が流れる。この電流量は、電流測定端子8と接地電位との間の電圧および抵抗9の抵抗値から容易に求めることができる。
【0093】
同様に、PNPトランジスタQ6には、エミッタフォロワによって増幅されたシンク電流I3に等しい電流I6が流れる。この電流量についても、電流測定端子10と接地電位との間の電圧と抵抗12の抵抗値とから求めることができる。
【0094】
[変更例3]
図15は、この発明の実施の形態6の変更例3に従う電流測定回路の構成を示す図である。
【0095】
図15を参照して、電流測定回路は、図14に示す実施の形態6の変更例2の電流測定回路に対して、PNPトランジスタQ6のコレクタが電流測定端子8に接続される点で異なり、共通する部分については説明を省略する。
【0096】
このような構成とすることにより、PNPトランジスタQ6には、エミッタフォロワによって増幅された負荷1のシンク電流に等しい電流が流れ、さらに電流測定端子8を介して電流計6に流れることとなる。電流計6には、さらに、PNPトランジスタQ2からのソース電流に等しい電流が流れることから、負荷1のソース電流およびシンク電流の絶対値の総和に相当する電流を測定することができる。
【0097】
[変更例4]
図16は、この発明の実施の形態6の変更例4に従う電流測定回路の構成を示す図である。
【0098】
図16を参照して、電流測定回路は、図15の実施の形態6の変更例3の電流測定回路において、負荷1のソース電流およびシンク電流の絶対値の和を計測する電流計6を電流−電圧変換用の抵抗9とした点で異なり、共通する部分については説明を省略する。
【0099】
このような構成とすることにより、図15において電流計6で測定されていた負荷1のソース電流およびシンク電流の総和は、電流測定端子8と接地電位との間の電圧と、抵抗9の抵抗値とから容易に求めることができる。また、電流測定端子8にオシロスコープを設けることにより、電流波形を容易に観測することができる。
【0100】
以上のように、この発明の実施の形態6に従えば、負荷の電流駆動能力が電流測定回路の演算増幅器の電流駆動能力よりも大きい場合において、エミッタフォロワによって演算増幅器の電流駆動能力を高めてやることにより、負荷の電流を正確に測定することができる。
【0101】
[実施の形態7]
図17は、この発明の実施の形態7に従う電流測定回路の構成を示す図である。
【0102】
図17を参照して、電流測定回路は、図12に示す実施の形態6の電流測定回路において、ダイオード13,14を挿入した構成であり、共通する部分については説明を省略する。
【0103】
ダイオード13は、演算増幅器4の出力端子と電圧印加端子2と間に接続され、負荷1のシンク電流を演算増幅器4の出力端子に流すパスを形成している。一方、ダイオード14は、PNPトランジスタQ2のエミッタと電流測定端子8との間に接続され、抵抗9からPNPトランジスタQ2への逆方向電流を阻止する働きをする。これによって、負荷1のソース電流のみを測定することが可能となる。
【0104】
また、実施の形態6と同様に、エミッタフォロワであるNPNトランジスタQ7を設けたことから、PNPトランジスタQ2には、電流増幅されたミラー電流I2が流れることとなり、電流測定端子8と接地電位との間の電圧と抵抗9の抵抗値とからその電流値を求めることができる。
【0105】
以上のように、この発明の実施の形態7に従えば、負荷1の電流駆動能力が演算増幅器4の電流駆動能力よりも高い場合においても、エミッタフォロワであるPNPトランジスタQ7で電流増幅されたソース電流に等しいミラー電流が抵抗9を流れることとなり、正確なソース電流を測定できる。
【0106】
また、ダイオード13,14を配設した簡易な構成によって、シンク電流は抵抗9には流れないことから、負荷1のソース電流のみを容易に測定することができる。
【0107】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0108】
【発明の効果】
以上のように、この発明に従う電流測定回路によれば、カレントミラー回路を基本とする簡易な構成によって、負荷を流れる電流を負荷への影響を与えることなく正確かつ容易に測定することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1に従う電流測定装置の構成を示す図である。
【図2】この発明の実施の形態1の変更例に従う電流測定回路の構成を示す図である。
【図3】この発明の実施の形態2に従う電流測定回路の構成を示す図である。
【図4】この発明の実施の形態2の変更例に従う電流測定回路の構成を示す図である。
【図5】図4の電流測定回路において観測される負荷電流の波形図である。
【図6】この発明の実施の形態3に従う電流測定回路の構成を示す図である。
【図7】この発明の実施の形態3の変更例に従う電流測定回路の構成を示す図である。
【図8】この発明の実施の形態4に従う電流測定回路の構成を示す図である。
【図9】この発明の実施の形態4の変更例に従う電流測定回路の構成を示す図である。
【図10】この発明の実施の形態5に従う電流測定回路の構成を示す図である。
【図11】この発明の実施の形態5の変更例に従う電流測定回路の構成を示す図である。
【図12】この発明の実施の形態6に従う電流測定回路の構成を示す図である。
【図13】この発明の実施の形態6の変更例1に従う電流測定回路の構成を示す図である。
【図14】この発明の実施の形態6の変更例2に従う電流測定回路の構成を示す図である。
【図15】この発明の実施の形態6の変更例3に従う電流測定回路の構成を示す図である。
【図16】この発明の実施の形態6の変更例4に従う電流測定回路の構成を示す図である。
【図17】この発明の実施の形態7に従う電流測定回路の構成を示す図である。
【図18】従来の電流測定回路の構成の一例を示す図である。
【符号の説明】
1 負荷、2 電圧印加端子、3 電圧供給端子、4 演算増幅器、5 電圧供給電流測定端子、6 電流計、7 電圧源、8 電流測定端子、9 抵抗、10 電流測定端子、11 電流計、12 抵抗、13,14 ダイオード、15,16 抵抗、Q1,Q2,Q5,Q6,Q8 PNPトランジスタ、Q3,Q4,Q7,Q9,Q10 NPNトランジスタ。

Claims (10)

  1. 電圧印加端子からの印加電圧によって負荷に駆動される電流を測定する電流測定回路であって、
    第1の入力端子に供給される電圧に等しい電圧を前記負荷に印加するために、第2の入力端子と前記電圧印加端子とが接続された演算増幅器と、
    前記演算増幅器の出力端子と前記電圧印加端子との間に電気的に結合されるPNP型の第1のトランジスタと、
    前記演算増幅器の出力端子と電流測定端子との間に電気的に結合され、前記PNP型の第1のトランジスタとカレントミラーを構成するPNP型の第2のトランジスタとを備え、
    前記PNP型の第1および第2のトランジスタは、ベースが前記演算増幅器の前記第2の入力端子および前記電圧印加端子に接続され、前記印加電圧に応答して活性化すると、
    前記PNP型の第1のトランジスタは、前記電圧印加端子を介して前記負荷に電流を駆動し、
    前記PNP型の第2のトランジスタは、前記PNP型の第1のトランジスタの駆動電流のミラー電流を前記電流測定端子に駆動する、電流測定回路。
  2. 前記電圧印加端子にアノードが接続され、前記演算増幅器の出力端子にカソードが接続される第1のダイオード素子と、
    前記電流測定端子にカソードが接続され、前記PNP型の第2のトランジスタにアノードが接続される第2のダイオード素子とをさらに備える、請求項1に記載の電流測定回路。
  3. 前記演算増幅器の出力端子と前記PNP型の第1および第2のトランジスタのエミッタとの間にそれぞれ接続される抵抗をさらに備え、
    前記抵抗での電圧降下は、前記PNP型の第1および第2のトランジスタのベース−エミッタ間電圧よりも大きいとする、請求項1に記載の電流測定回路。
  4. 前記演算増幅器の出力端子にベースが接続され、外部電源端子と前記PNP型の第1および第2のトランジスタとの間に電気的に結合されるエミッタフォロワをさらに備える、請求項1〜3のいずれかに記載の電流測定回路。
  5. 前記電流測定端子と接地電位との間に接続される抵抗または電流計をさらに備える、請求項1〜4のいずれかに記載の電流測定回路。
  6. 電圧印加端子からの印加電圧によって負荷に駆動される電流を測定する電流測定回路であって、
    第1の入力端子に供給される電圧に等しい電圧を第2の入力端子から前記電圧印加端子を介して前記負荷に印加するための演算増幅器と、
    前記演算増幅器の出力端子と前記電圧印加端子との間に電気的に結合されるPNP型の第1のトランジスタと、
    前記演算増幅器の出力端子と第1の電流測定端子との間に電気的に結合され、前記PNP型の第1のトランジスタとカレントミラーを構成するPNP型の第2のトランジスタと、
    前記演算増幅器の出力端子と前記電圧印加端子との間に電気的に結合されるNPN型の第1のトランジスタと、
    前記演算増幅器の出力端子と第2の電流測定端子との間に電気的に結合され、前記NPN型の第1のトランジスタとカレントミラーを構成するNPN型の第2のトランジスタとを備え、
    前記PNP型の第1および第2のトランジスタおよび前記NPN型の第1および第2のトランジスタは、ベースが前記演算増幅器の前記第2の入力端子および前記電圧印加端子に接続され、
    前記PNP型の第1のトランジスタは、第1の電圧レベルの前記印加電圧に応答して活性化すると、前記電圧印加端子を介して前記負荷に電流を駆動し、
    前記PNP型の第2のトランジスタは、前記PNP型の第1のトランジスタの駆動電流のミラー電流を前記第1の電流測定端子に駆動し、
    前記NPN型の第1のトランジスタは、第2の電圧レベルの前記印加電圧に応答して活性化すると、前記電圧印加端子を介して前記負荷に電流を駆動し、
    前記NPN型の第2のトランジスタは、前記NPN型の第1のトランジスタの駆動電流のミラー電流を前記第2の電流測定端子に駆動する、電流測定回路。
  7. 前記第1の電流測定端子と接地電位との間に接続される第1の抵抗と、
    前記第2の電流測定端子と接地電位との間に接続される第2の抵抗と、
    前記NPN型の第2のトランジスタのコレクタと外部電源端子との間に電気的に結合されるPNP型の第3のトランジスタと、
    前記第2の電流測定端子と前記外部電源端子との間に電気的に結合され、前記PNP型の第3のトランジスタとカレントミラーを構成するPNP型の第4のトランジスタとをさらに備え、
    前記NPN型の第1のトランジスタは、第2の電圧レベルの前記印加電圧に応答して活性化すると、前記電圧印加端子を介して前記負荷に電流を駆動し、
    前記NPN型の第2のトランジスタは、前記NPN型の第1のトランジスタの駆動電流のミラー電流を前記PNP型の第3のトランジスタに駆動し、
    前記PNP型の第4のトランジスタは、前記PNP型の第3のトランジスタの駆動電流のミラー電流を前記第2の電流測定端子に駆動する、請求項6に記載の電流測定回路。
  8. 前記第2の電流測定端子は、前記第1の電流測定端子に結合され、
    前記NPN型の第2のトランジスタのコレクタと外部電源端子との間に電気的に結合されるPNP型の第3のトランジスタと、
    前記第2の電流測定端子と前記外部電源端子との間に電気的に結合され、前記PNP型の第3のトランジスタとカレントミラーを構成するPNP型の第4のトランジスタとをさらに備え、
    前記PNP型の第1のトランジスタは、第1の電圧レベルの前記印加電圧に応答して活性化すると、前記電圧印加端子を介して前記負荷に電流を駆動し、
    前記PNP型の第2のトランジスタは、前記PNP型の第1のトランジスタの駆動電流のミラー電流を前記第1の電流測定端子に駆動し、
    前記NPN型の第1のトランジスタは、第2の電圧レベルの前記印加電圧に応答して活性化すると、前記電圧印加端子を介して前記負荷に電流を駆動し、
    前記NPN型の第2のトランジスタは、前記NPN型の第1のトランジスタの駆動電流のミラー電流を前記PNP型の第3のトランジスタに駆動し、
    前記PNP型の第4のトランジスタは、前記PNP型の第3のトランジスタの駆動電流のミラー電流を前記第1の電流測定端子に駆動する、請求項6に記載の電流測定回路。
  9. 前記第1の電流測定端子と接地電位との間に接続される抵抗または電流計をさらに備える、請求項8に記載の電流測定回路。
  10. 前記演算増幅器の出力端子にベースが接続され、前記外部電源端子と前記PNP型の第1および第2のトランジスタとの間に電気的に結合される第1のエミッタフォロワと、
    前記演算増幅器の出力端子にベースが接続され、接地電位と前記NPN型の第1および第2のトランジスタとの間に電気的に結合される第2のエミッタフォロワとをさらに備える、請求項6〜9のいずれかに記載の電流測定回路。
JP2003010980A 2003-01-20 2003-01-20 電流測定回路 Withdrawn JP2004226095A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003010980A JP2004226095A (ja) 2003-01-20 2003-01-20 電流測定回路
US10/607,296 US6968249B2 (en) 2003-01-20 2003-06-27 Current measuring circuit for measuring drive current to load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003010980A JP2004226095A (ja) 2003-01-20 2003-01-20 電流測定回路

Publications (1)

Publication Number Publication Date
JP2004226095A true JP2004226095A (ja) 2004-08-12

Family

ID=32709215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003010980A Withdrawn JP2004226095A (ja) 2003-01-20 2003-01-20 電流測定回路

Country Status (2)

Country Link
US (1) US6968249B2 (ja)
JP (1) JP2004226095A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508260A (ja) * 2007-12-21 2011-03-10 グローバル オーエルイーディー テクノロジー リミティド ライアビリティ カンパニー アナログトランジスタ駆動信号により補償されるエレクトロルミネセント・ディスプレイ
JP2014032169A (ja) * 2012-07-31 2014-02-20 Samsung Electro-Mechanics Co Ltd 電流検出機能を有する駆動装置及び電流検出機能を有するモータ駆動装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3881336B2 (ja) * 2003-12-09 2007-02-14 ローム株式会社 光受信装置及びそれを備えるデータ通信装置
EP1607754A1 (en) * 2004-06-14 2005-12-21 Dialog Semiconductor GmbH Circuit for monitoring a load current
US7847534B2 (en) * 2007-03-26 2010-12-07 Panasonic Corporation Reference current circuit
US8624610B2 (en) * 2011-02-23 2014-01-07 Texas Instruments Incorporated Synthesized current sense resistor for wide current sense range
CN108226609B (zh) * 2017-12-27 2020-02-07 上海贝岭股份有限公司 用于直流-直流变换器的电流检测电路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661408A (en) * 1995-03-01 1997-08-26 Qc Solutions, Inc. Real-time in-line testing of semiconductor wafers
JPH1123664A (ja) 1997-07-03 1999-01-29 Matsushita Electron Corp 半導体デバイスの測定回路
US6859058B2 (en) * 1999-05-11 2005-02-22 Interuniversitair Microelektronica Centrum (Imec Uzw) Method and apparatus for testing electronic devices
JP3720271B2 (ja) * 2001-03-22 2005-11-24 株式会社ルネサステクノロジ 半導体集積回路装置
DE10120524B4 (de) * 2001-04-26 2015-08-20 Infineon Technologies Ag Vorrichtung zur Ermittlung des Stromes durch ein Leistungs-Halbleiterbauelement
DE10142021A1 (de) * 2001-08-28 2003-03-20 Philips Corp Intellectual Pty Verfahren und Anordnung zur Ermittlung des Hochfrequenzverhaltens von aktiven Schaltungselementen
DE10145021C1 (de) * 2001-09-13 2003-04-30 Infineon Technologies Ag Integrierte Schaltung mit einer Strommesseinheit und ein Verfahren zum Messen eines Stromes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508260A (ja) * 2007-12-21 2011-03-10 グローバル オーエルイーディー テクノロジー リミティド ライアビリティ カンパニー アナログトランジスタ駆動信号により補償されるエレクトロルミネセント・ディスプレイ
JP2014032169A (ja) * 2012-07-31 2014-02-20 Samsung Electro-Mechanics Co Ltd 電流検出機能を有する駆動装置及び電流検出機能を有するモータ駆動装置

Also Published As

Publication number Publication date
US20040140817A1 (en) 2004-07-22
US6968249B2 (en) 2005-11-22

Similar Documents

Publication Publication Date Title
US6492845B1 (en) Low voltage current sense amplifier circuit
US8502549B2 (en) Test apparatus and driver circuit
TWI487277B (zh) 最小化電阻平坦度及改善音訊性能之固定切換vgs電路
JP2004146576A (ja) 半導体温度測定回路
US10078016B2 (en) On-die temperature sensor for integrated circuit
JP2004226095A (ja) 電流測定回路
TWI394939B (zh) 溫度量測系統及方法
JP2007040771A (ja) ノイズ測定用半導体装置
US20040217783A1 (en) Temperature sensor apparatus
JP2010021786A (ja) 増幅回路
JPH07229928A (ja) 電流検出装置
JP3600187B2 (ja) エミッタフォロワ回路
US6545539B1 (en) Amplifier for use in a mobile phone
JP2665285B2 (ja) 半導体集積回路
JPH11304877A (ja) 電圧印加電流測定回路
JP3105716B2 (ja) カレントミラー回路
JP2000292478A (ja) Ic試験方法及びic試験装置
WO1997020220A1 (en) Method and apparatus for determining electrical impedance
JP3484922B2 (ja) アーリー効果補正回路
JP2000293244A (ja) 直流安定化電源装置
JP2003185685A (ja) 検出装置
JP2004301709A (ja) コンパレータ回路
JP4258837B2 (ja) 2線式伝送回路
JP5350889B2 (ja) 抵抗増倍回路
JP5350882B2 (ja) 容量増倍回路

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404