JP2004158703A - Printed wiring board and method for manufacturing the same - Google Patents

Printed wiring board and method for manufacturing the same Download PDF

Info

Publication number
JP2004158703A
JP2004158703A JP2002324098A JP2002324098A JP2004158703A JP 2004158703 A JP2004158703 A JP 2004158703A JP 2002324098 A JP2002324098 A JP 2002324098A JP 2002324098 A JP2002324098 A JP 2002324098A JP 2004158703 A JP2004158703 A JP 2004158703A
Authority
JP
Japan
Prior art keywords
conductor
insulating layer
hole
opening
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002324098A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mori
裕幸 森
Yutaka Tsukada
裕 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to JP2002324098A priority Critical patent/JP2004158703A/en
Priority to TW092130223A priority patent/TWI228022B/en
Priority to KR1020057005970A priority patent/KR20050059246A/en
Priority to PCT/JP2003/014126 priority patent/WO2004043121A1/en
Priority to AU2003277566A priority patent/AU2003277566A1/en
Priority to CNA2003801016967A priority patent/CN1706230A/en
Priority to DE10393589T priority patent/DE10393589T5/en
Publication of JP2004158703A publication Critical patent/JP2004158703A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/421Blind plated via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09563Metal filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0353Making conductive layer thin, e.g. by etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits

Abstract

<P>PROBLEM TO BE SOLVED: To reduce electric connection failure between conductive layers generated due to the thermal expansion difference of an insulating layer and a conductor layer in the via hole of a printed wiring board. <P>SOLUTION: In this printed wiring board, the area of a joint face 18 of a first conductor 12 and a second conductor 15 at a via bottom part, and the second conductor 15 is provided with a fringe(collar) area 21 connected to a surface 17 of the second insulating layer at an outer peripheral part 20 of the opening of the second insulating layer 14 at the via bottom part. Therefore, the printed wiring board can be stabilized against a tensile stress generated due to the thermal expansion difference of the insulating layer and the conductor layer, and any electric connection failure between the conductor layers in the via can be prevented from being generated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、一般的には、プリント配線板とその製造方法に関し、より詳細には、絶縁層で離間された導体層間の電気的接続のためのビアホールを有する多層プリント配線板とその製造方法に関する。
【0002】
【従来の技術】
ビルドアップ法などの方法により作られる多層プリント配線板は、絶縁層で離間された導体層間の電気的接続のためのビアホールを有する。図1は、従来のビアホールの断面を示した図である。図1において、下地となる樹脂などからなる絶縁層1の上に、パターン化された一般に”ランド”と呼ばれる導体層2が設けられている。導体層2は、ビアの開口部3を除いて、樹脂などからなる絶縁層4で覆われている。ビアの開口3は、ウエットエッチングやレーザ等により、絶縁層4に対して導体層2に至る孔を空けることにより作られる。絶縁層4の開口3の内部はメッキ法などにより導体層5で覆われる。導体層5は、導体層2と接続するとともに、絶縁層4上の導体層(図示なし)にも接続する。導体層5により絶縁層4の上下の導体層間の電気的接続が図られる。
【0003】
プリント配線板では、温度に応じて、絶縁層と導体層の熱膨張係数の違いにより、その内部に熱応力が発生する。その熱応力は、図1のビアホールでは、矢印6で示される方向に働く。すなわち、図1のランドの導体層2とビアの導体層5の接合を引き離す方向に力が働く。その結果、接合面7が離れて、導体層2と導体層5の電気的接続が切れる事態(断線)が発生する。この現象は、ビアホールの径が小さくなる程顕著になる。その理由は、ビアホール底部の開口が小さくなることにより、開口に露出するランド導体2の面積も小さくなる結果、導体層2とビアの導体層5の接合面7(図1)の面積が小さくなってしまうからである。また、この現象は、温度変化が大きい環境において顕著になり、プリント配線板の信頼性を著しく低下させる。
【0004】
ビアホールにおける引き剥がし力に対する導体接続の信頼性を高めることを目的としたプリント配線板に係わる従来技術は、例えば日本国の公開特許公報、2001−24329に開示されている。しかし、この公報のプリント配線板は、熱応力によって、図1の接合面7が離れて、導体層2と導体層5の電気的接続が切れる事態(断線)を防ぐ技術ついて何ら開示していない。
【0005】
導体層2と導体層5の電気的接続が切れる事態(断線)を防ぐ技術ついて開示する従来例として、日本国の公開特許公報、特開平5−67882がある。この公報の技術は、レーザを用いてビア底部の孔径を大きくあるいはビアの深さを深くすることにより、導体層2と導体層5の接合面積を増加させるものである。したがって、この公報の技術は、設計上ビアの孔径や深さを大きくできない場合における問題を解決するものではない。言い換えれば、公報の技術は、現在および将来のプリント配線板に要求される微細なビアホール仕様(例えば、孔径:数十マイクロメータ以下)に対して有効ではない。
【0006】
【発明が解決しようとする課題】
本発明の目的は、プリント配線板のビアホールにおいて、絶縁層と導体層の熱膨張差に起因して発生する導体層間の電気的接続(断線)不良を無くすことである。
【0007】
本発明の目的は、温度変化に対するプリント配線板の信頼性を向上させることである。
【0008】
【課題を解決するための手段】
本発明は、第1の絶縁層上に形成された第1の導体と、第1の導体を含む第1の絶縁層上に形成された第2の絶縁層と、第1の導体上の第2の絶縁層に設けられ、第1の導体に達する孔と、少なくとも孔の内周面および孔の開口周辺の第2の絶縁層の表面を被覆して、第1の導体に接続する第2の導体とを含み、第1の導体と第2の導体は、孔の底部における第1の導体と第2の絶縁層の接触面よりも下方において接合し、その接合面の径は孔の底部における第2の絶縁層の開口径よりも大きいことを特徴とするビアホールを有するプリント配線板である。
【0009】
本発明のプリント配線板は、ビア底部における第1の導体と第2の導体の接合面積が大きく、さらに、第2の導体が、ビア底部における第2の絶縁層の開口の外周部において、第2の絶縁層の表面と接合するフリンジ領域を有するので、絶縁層と導体層の熱膨張差に起因して発生する引張り応力に対して安定であり、ビア内の導体層間の電気的接続不良が発生しない。
【0010】
本発明のプリント配線板の製造方法は、
(a)第1の絶縁層を準備するステップと、
(b)前記第1の絶縁層上に第1の導体層を設けるステップと、
(c)前記第1の導体層を含む前記第1の絶縁層上に第2の絶縁層を設けるステップと、
(d)前記第1の導体層上の第2の絶縁層に、前記第1の導体層に至る孔を設けるステップと、
(e)前記孔に面する前記第1の導体層に、前記孔の底部の開口径よりも大きな径を有する開口部を設けるステップと、
(f)前記開口部を充填するとともに、少なくとも前記孔の内周面および前記孔の開口周辺の前記第2の絶縁層の表面を被覆する第2の導体層を形成するステップとを含む製造方法である。
【0011】
本発明のプリント配線板の製造方法によって作られるプリント配線板は、ビア底部における第1の導体と第2の導体の接合面積が大きく、さらに第2の導体が、ビア底部における第2の絶縁層の開口の外周部において、第2の絶縁層の表面と接合するフリンジ領域を有するので、絶縁層と導体層の熱膨張差に起因して発生する引張り応力に対して安定であり、導体層間の電気的接続不良が発生しない。
【0012】
【発明の実施の形態】
本発明について以下に詳細に説明する。以下の説明は専ら本発明の特徴であるビアホールに関しておこなっている。プリント配線板の他の部分は従来からの一般的な製造方法で作れものでよいので、ここではその説明を省略している。なお、本発明のビアホール構造は、多層のビルドアップ基板を含む全てのプリント配線板に適用できるものであることは言うまでもない。
【0013】
図2は、本発明のプリント配線板のビアホール部の一つの実施の形態の断面を示した図である。絶縁層11上にランドとなる導体層12がある。導体層12を含む絶縁層11上に絶縁層14がある。導体層12上の絶縁層14はホール13を有する。導体層15は、孔13の内周面16および孔13の開口周辺の絶縁層14の表面17を被覆するとともに、導体層12と接合面18で接続する。接合面18は、孔13の底部における導体層12と絶縁層14の接触面を含む平面19よりも下方にある。接合面18の径Lは孔の底部における絶縁層14の開口径L1よりも大きい。
【0014】
導体15は、孔13の底部における絶縁層14の開口の外周部20において、絶縁層14の表面20と接合するフリンジ領域21を有する。導体15の平面19よりも下方にある部分22は、いわば釘やネジの頭のような形状を有する。この導体部分22の存在により、導体層12との接合面18の面積が、図1の従来の接合面7の面積よりも大きくなる。さらに、この導体部分22がネジの頭のような形状を有する(フリンジ領域21を有する)ので、これらの相乗効果により、絶縁層と導体層の熱膨張係数の差に起因して発生する引張り力(矢印23の方向)に対して強くなる。
【0015】
導体部分22は、最大で図2の点線24で示されるサイズまで大きくすることが可能である。すなわち、導体部分22の径(接合面24の径)Lは、最大で導体12の幅L2まで拡張できる。また、導体部分22の厚さHは、最大で導体12の厚さH1までで拡張できる。導体部分22の大きさが大きくなるにつれて、接合面18の面積が大きくなり、同時に絶縁層表面20と接するフリンジ領域21も大きくなるので、引張り力(矢印23の方向)に対してより強くなる。この場合、導体部分22との接合面18の面積に比例して引張り力に対して強くなる傾向がある。
【0016】
図3は、本発明のプリント配線板のビアホール部の別の一実施の形態の断面を示した図である。図3では、図2の孔13が導体15で充填された構造を示す。他の構成は全て図2の構成と同じである。図3のビア構造でも、図2の場合と同様に、点線19より下の導体部分22の存在により、引張り力(矢印23の方向)に対して強くなる。
【0017】
図4は、本発明のプリント配線板の製造方法のフローを示す図である。
ステップ(a)で、第1の絶縁層11を準備する。第1の絶縁層11は、基板上あるいは基板上の絶縁層の上に設けることができる。絶縁層としては例えば樹脂が使われる。ステップ(b)で、第1の絶縁層11上に第1の導体層12を設ける。導体層12は第1の絶縁層11上全体に設けられた導体層をフォトリソグラフィ技術によりパターン化(エッチング)して得る。あるいは、いわゆるパターンプレート工法により、パターン化した導体層12を得る。ステップ(c)で、第1の導体層12を含む第1の絶縁層11上に第2の絶縁層14を設ける。第2の絶縁層14は例えば樹脂フィルムを圧着した後、硬化させることにより得る。
【0018】
ステップ(d)で、第1の導体層12上の第2の絶縁層14に、第1の導体層12に至る孔13を設ける。孔13は、フォトリソグラフィ(エッチング)技術あるいはレーザ照射(除去)によって得る。ステップ(e)で、孔13に面する第1の導体層12に、孔の底部の開口径L1よりも大きな径Lを有する開口部30を設ける。開口部30は、いわゆるウエットエッチング法により、導体層12を除去(エッチング)する酸などの溶液を用いて形成する。開口部30の大きさ(幅Lと厚さH)は、エッチング液の濃度やエッチングの時間などにより制御する。ここで重要なことは、いわゆる異方性エッチングのように、導体層12を鉛直方向だけエッチングするのはなく、水平方向にもエッチングすることである。すなわち、いわゆる等方性エッチングをおこなう。このステップ(e)は、孔の底部における第2の絶縁層14の開口13の外周部20において、第2の絶縁層の表面20を露出させる。なお、後工程でメッキにより導体層を形成する場合は、ステップ(e)の前に、孔13内の絶縁層14の表面に細かい凹凸を作る”粗化ステップ”をおこなう。その理由は、メッキ金属と絶縁層14との密着力を向上させるためである。
【0019】
ステップ(f)で、開口部30を充填するとともに、少なくとも孔の内周面16および孔の開口13周辺の第2の絶縁層14の表面17を被覆する第2の導体層15を形成する。第2の導体層15は例えばメッキ法により形成される。絶縁層14上の導体層15は、フォトリソグラフィ(エッチング)技術により、所定のパターンにする。導体層15は絶縁層14上の他の導体層と接続する。その結果、導体層15を介して絶縁層の上下間の電気的接続がとられる。導体15は、孔13の底部における絶縁層14の開口の外周部20において、絶縁層14の表面20と接合するフリンジ領域21を有する。ステップ(f)により、図2と同様のビア構造を得る。なお、導体層15により孔13を点線32まで充填することにより、図3のビア構造を得ることができる。
【0020】
【実施例】
図5は本発明の製造方法により作られたビアホール部分の断面の拡大図である。なお、図5は実際のビア断面の顕微鏡写真を基に作成した図である。図5の符合は図2、図3の符合に対応している。図5で、ビアの上部の絶縁層14の開口の径は約48マイクロメータであり、ビア底部の絶縁層14の開口の径L1は約38マイクロメータである。導体層12の幅(径)L2は約95マイクロメータであり、その厚さH1は約13マイクロメータである。絶縁層14の厚さH2は約35マイクロメータである。さらに、導体層12の導体部分22の深さH5は約5マイクロメータであり、その径Lは約57マイクロメータである。なお、導体層12、15は銅メッキ層である。絶縁層14は樹脂層である。
【0021】
図5のビアについて、パターン・プレート工法を用いた製造工程を以下に示す。
(a)ランド導体のエッチング、あるいはパターン・プレート工法により、導体層12を含む回路パターンを形成する。
(b)絶縁層フィルムの圧着、硬化により絶縁層14を作る。
(c)レーザにより孔を形成する。この時点では、まだフランジ領域を含む開口は形成されない。
(d)後工程のメッキ銅の密着強度を上げるため、過マンガン酸により絶縁層樹脂表面を粗化する。この時点でもフランジはまだ形成されない。
(e)硫酸などの酸を含む混合溶液を使用して、ビアの底の導体層12をエッチングして開口部を形成する。
(f)絶縁層表面全体に無電解銅メッキを施す。この時、導体層12の開口部にも無電解銅メッキが付く。
(g)パターン・レジストをパネルに貼り、露光、現像を行う。
(h)上記(f)で形成した無電解銅をシード層として電解銅メッキを行い、パターンの形成を行う。形成は、パターン・プレート工法あるいはセミ・アディティブ工法による。この時、上記(e)で形成された開口部に銅メッキがなされ、開口部は完全に銅で埋まる。これによりビア底にフランジ領域(導体部分22)が形成される。
【0022】
図5の本発明のビアを含むプリント配線板について温度サイクル試験をした結果を以下に示す。比較のために、従来の図1のビアを含む基板についても同時に試験をした。
(a)試験条件:
下記の2つの温度サイクル(1000サイクル)試験1、2をおこなった。
1.試験1の条件:−55〜125℃、2サイクル/時間で1000サイクル、
2.試験2の条件:−55〜125℃、10サイクル/時間で1000サイクル
(b)サンプル:
1.図1の従来のビアを含む基板A:
試験1用に39基板(全部で103040個のビアを含む)、
試験2用に56基板(全部で173360個のビアを含む)
2.図2(図5)の本発明のビアを含む基板B
試験1用に20基板(全部で70000個のビアを含む)、
試験2用に41基板(全部で69216個のビアを含む)
(c)試験結果:
1.従来の基板A:
温度サイクル試験1用の39基板と温度サイクル試験2用の56基板の計95基板中11基板において、ビアの導通不良(断線)が発生した(不良発生割合:約12%)。
2.本発明の基板B:
温度サイクル試験1用の20基板と温度サイクル試験2用の41基板の計61基板中、ビアの導通不良(断線)が発生した基板はゼロだった。すなわち、計139216個のビアに対してビアの導通不良(断線)が発生したビアはゼロであったことを意味する(不良発生割合:0%)。
【0023】
【発明の効果】
本発明のプリント配線板の製造方法によって作られるプリント配線板は、ビア底部における第1の導体と第2の導体の接触面積を大きく、さらに第2の導体が、ビア底部における第2の絶縁層の開口の外周部において、第2の絶縁層の表面と接合するフリンジ(つば)領域を有するので、絶縁層と導体層の熱膨張差に起因して発生する引張り応力に対して安定であり、ビアの導体層間の電気的接続不良が発生しない。本発明のプリント配線板は熱応力に対して高い安定性、信頼性を有する。本発明は、特に現在および将来の微細なビアホールを有するプリント配線板における信頼性を著しく向上させる。
【図面の簡単な説明】
【図1】従来のビアホールの断面を示した図である。
【図2】本発明のプリント配線板のビアホール部の一つの実施の形態の断面を示した図である。
【図3】本発明のプリント配線板のビアホール部の別の一実施の形態の断面を示した図である。
【図4】本発明のプリント配線板の製造方法のフローを示す図である。
【図5】本発明の製造方法により作られたビアホール部分の断面の拡大図である。
【符号の説明】
1、4、11、14:絶縁層
2、5、12、15:導体層
3、13、30:開口部(孔)
16:内周面
18:接合面
17:絶縁層の表面
19:平面
20:外周部
21:フリンジ領域
22:導体部分
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention generally relates to a printed wiring board and a method for manufacturing the same, and more particularly, to a multilayer printed wiring board having via holes for electrical connection between conductor layers separated by an insulating layer and a method for manufacturing the same. .
[0002]
[Prior art]
A multilayer printed wiring board manufactured by a method such as a build-up method has via holes for electrical connection between conductor layers separated by an insulating layer. FIG. 1 is a diagram showing a cross section of a conventional via hole. In FIG. 1, a patterned conductor layer 2 generally called a "land" is provided on an insulating layer 1 made of a resin or the like serving as a base. The conductor layer 2 is covered with an insulating layer 4 made of resin or the like except for the opening 3 of the via. The via opening 3 is formed by making a hole to the conductor layer 2 in the insulating layer 4 by wet etching, laser, or the like. The inside of the opening 3 of the insulating layer 4 is covered with the conductor layer 5 by a plating method or the like. The conductor layer 5 is connected to the conductor layer 2 and also to a conductor layer (not shown) on the insulating layer 4. The electrical connection between the upper and lower conductive layers of the insulating layer 4 is achieved by the conductive layer 5.
[0003]
In a printed wiring board, a thermal stress is generated inside the printed wiring board due to a difference in thermal expansion coefficient between the insulating layer and the conductor layer. The thermal stress acts in a direction indicated by an arrow 6 in the via hole of FIG. That is, a force acts in a direction to separate the bonding between the conductor layer 2 of the land and the conductor layer 5 of the via in FIG. As a result, a situation (disconnection) occurs in which the bonding surface 7 is separated and the electrical connection between the conductor layer 2 and the conductor layer 5 is cut off. This phenomenon becomes more remarkable as the diameter of the via hole becomes smaller. The reason is that as the opening at the bottom of the via hole becomes smaller, the area of the land conductor 2 exposed to the opening also becomes smaller. As a result, the area of the joint surface 7 (FIG. 1) between the conductor layer 2 and the conductor layer 5 of the via becomes smaller. It is because. In addition, this phenomenon becomes remarkable in an environment where a temperature change is large, and significantly reduces the reliability of the printed wiring board.
[0004]
A conventional technique relating to a printed wiring board for the purpose of enhancing the reliability of conductor connection with respect to a peeling force in a via hole is disclosed in, for example, Japanese Patent Laid-Open Publication No. 2001-24329. However, the printed wiring board of this publication does not disclose any technique for preventing a situation (disconnection) in which the electrical connection between the conductor layer 2 and the conductor layer 5 is cut off due to the thermal stress separating the bonding surface 7 in FIG. .
[0005]
As a conventional example which discloses a technique for preventing a situation (disconnection) in which the electrical connection between the conductor layer 2 and the conductor layer 5 is cut off, there is Japanese Patent Laid-Open Publication No. Hei 5-67882. The technique disclosed in this publication increases the bonding area between the conductor layer 2 and the conductor layer 5 by increasing the hole diameter at the bottom of the via or increasing the depth of the via using a laser. Therefore, the technique disclosed in this publication does not solve the problem in the case where the hole diameter and the depth of the via cannot be increased due to the design. In other words, the technology disclosed in the publication is not effective for the fine via hole specification (for example, hole diameter: several tens of micrometers or less) required for the current and future printed wiring boards.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to eliminate electrical connection (disconnection) defects between conductor layers caused by a difference in thermal expansion between an insulating layer and a conductor layer in a via hole of a printed wiring board.
[0007]
An object of the present invention is to improve the reliability of a printed wiring board against temperature changes.
[0008]
[Means for Solving the Problems]
The present invention provides a first conductor formed on a first insulating layer, a second insulating layer formed on a first insulating layer including the first conductor, and a first conductor formed on the first conductor. A second hole provided in the second insulating layer and reaching the first conductor, and a second insulating layer covering at least the inner peripheral surface of the hole and the surface of the second insulating layer around the opening of the hole to be connected to the first conductor. Wherein the first conductor and the second conductor are joined below the contact surface between the first conductor and the second insulating layer at the bottom of the hole, and the diameter of the joint surface is at the bottom of the hole. A printed wiring board having a via hole, wherein the diameter is larger than the opening diameter of the second insulating layer.
[0009]
The printed wiring board of the present invention has a large bonding area between the first conductor and the second conductor at the bottom of the via, and furthermore, the second conductor is formed at the outer periphery of the opening of the second insulating layer at the bottom of the via. 2 has a fringe region joined to the surface of the insulating layer, so that it is stable against a tensile stress generated due to a difference in thermal expansion between the insulating layer and the conductive layer, and the electrical connection failure between the conductive layers in the via is reduced. Does not occur.
[0010]
The method for manufacturing a printed wiring board of the present invention includes:
(A) providing a first insulating layer;
(B) providing a first conductor layer on the first insulating layer;
(C) providing a second insulating layer on the first insulating layer including the first conductor layer;
(D) providing a hole to the first conductive layer in the second insulating layer on the first conductive layer;
(E) providing an opening having a diameter larger than the opening diameter at the bottom of the hole in the first conductor layer facing the hole;
(F) filling the opening and forming a second conductor layer covering at least the inner peripheral surface of the hole and the surface of the second insulating layer around the opening of the hole. It is.
[0011]
The printed wiring board manufactured by the method for manufacturing a printed wiring board according to the present invention has a large bonding area between the first conductor and the second conductor at the bottom of the via, and the second conductor has a second insulating layer at the bottom of the via. Has a fringe region that is joined to the surface of the second insulating layer in the outer peripheral portion of the opening, so that it is stable against tensile stress generated due to the difference in thermal expansion between the insulating layer and the conductor layer, and No electrical connection failure occurs.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described in detail below. The following description is made mainly with respect to a via hole which is a feature of the present invention. The other parts of the printed wiring board may be made by a conventional general manufacturing method, and a description thereof is omitted here. Needless to say, the via hole structure of the present invention can be applied to all printed wiring boards including a multi-layer build-up board.
[0013]
FIG. 2 is a diagram showing a cross section of one embodiment of the via hole portion of the printed wiring board of the present invention. On the insulating layer 11, there is a conductor layer 12 serving as a land. The insulating layer 14 is on the insulating layer 11 including the conductor layer 12. The insulating layer 14 on the conductor layer 12 has a hole 13. The conductor layer 15 covers the inner peripheral surface 16 of the hole 13 and the surface 17 of the insulating layer 14 around the opening of the hole 13, and is connected to the conductor layer 12 at the bonding surface 18. The bonding surface 18 is below a plane 19 including a contact surface between the conductor layer 12 and the insulating layer 14 at the bottom of the hole 13. The diameter L of the joining surface 18 is larger than the opening diameter L1 of the insulating layer 14 at the bottom of the hole.
[0014]
The conductor 15 has a fringe region 21 that is joined to the surface 20 of the insulating layer 14 at the outer periphery 20 of the opening of the insulating layer 14 at the bottom of the hole 13. The portion 22 of the conductor 15 below the plane 19 has a so-called nail or screw head shape. Due to the presence of the conductor portion 22, the area of the joint surface 18 with the conductor layer 12 becomes larger than the area of the conventional joint surface 7 of FIG. Further, since the conductor portion 22 has a shape like a screw head (having the fringe region 21), a tensile force generated due to a difference in thermal expansion coefficient between the insulating layer and the conductor layer due to a synergistic effect thereof. (Direction of arrow 23).
[0015]
The conductor portion 22 can be as large as the size indicated by the dotted line 24 in FIG. That is, the diameter L of the conductor portion 22 (the diameter of the joint surface 24) can be expanded up to the width L2 of the conductor 12. Further, the thickness H of the conductor portion 22 can be expanded up to the thickness H1 of the conductor 12. As the size of the conductor portion 22 increases, the area of the joint surface 18 increases, and at the same time, the fringe region 21 in contact with the insulating layer surface 20 also increases, so that it becomes stronger against the tensile force (in the direction of the arrow 23). In this case, there is a tendency that the resistance to the tensile force increases in proportion to the area of the joint surface 18 with the conductor portion 22.
[0016]
FIG. 3 is a diagram showing a cross section of another embodiment of the via hole portion of the printed wiring board of the present invention. FIG. 3 shows a structure in which the hole 13 of FIG. All other configurations are the same as the configuration in FIG. Also in the via structure of FIG. 3, as in the case of FIG. 2, the presence of the conductor portion 22 below the dotted line 19 increases the tensile force (in the direction of the arrow 23).
[0017]
FIG. 4 is a diagram showing a flow of the method for manufacturing a printed wiring board of the present invention.
In step (a), a first insulating layer 11 is prepared. The first insulating layer 11 can be provided over the substrate or over the insulating layer over the substrate. As the insulating layer, for example, resin is used. In step (b), a first conductor layer 12 is provided on the first insulating layer 11. The conductor layer 12 is obtained by patterning (etching) the conductor layer provided on the entire first insulating layer 11 by photolithography. Alternatively, the patterned conductor layer 12 is obtained by a so-called pattern plate method. In step (c), a second insulating layer 14 is provided on the first insulating layer 11 including the first conductor layer 12. The second insulating layer 14 is obtained by, for example, pressing a resin film and then curing the resin film.
[0018]
In step (d), a hole 13 reaching the first conductor layer 12 is provided in the second insulating layer 14 on the first conductor layer 12. The holes 13 are obtained by photolithography (etching) technology or laser irradiation (removal). In step (e), an opening 30 having a diameter L larger than the opening diameter L1 at the bottom of the hole is provided in the first conductor layer 12 facing the hole 13. The opening 30 is formed by a so-called wet etching method using a solution such as an acid for removing (etching) the conductive layer 12. The size (width L and thickness H) of the opening 30 is controlled by the concentration of the etchant, the etching time, and the like. What is important here is that the conductor layer 12 is etched not only in the vertical direction but also in the horizontal direction as in the so-called anisotropic etching. That is, so-called isotropic etching is performed. This step (e) exposes the surface 20 of the second insulating layer at the outer periphery 20 of the opening 13 of the second insulating layer 14 at the bottom of the hole. When the conductor layer is formed by plating in a later step, a “roughening step” for forming fine irregularities on the surface of the insulating layer 14 in the hole 13 is performed before step (e). The reason is to improve the adhesion between the plating metal and the insulating layer 14.
[0019]
In step (f), a second conductor layer 15 is formed to fill the opening 30 and at least cover the inner peripheral surface 16 of the hole and the surface 17 of the second insulating layer 14 around the opening 13 of the hole. The second conductor layer 15 is formed by, for example, a plating method. The conductor layer 15 on the insulating layer 14 is formed into a predetermined pattern by a photolithography (etching) technique. The conductor layer 15 is connected to another conductor layer on the insulating layer 14. As a result, electrical connection between the upper and lower sides of the insulating layer is established via the conductor layer 15. The conductor 15 has a fringe region 21 that is joined to the surface 20 of the insulating layer 14 at the outer periphery 20 of the opening of the insulating layer 14 at the bottom of the hole 13. By the step (f), a via structure similar to that of FIG. 2 is obtained. The via structure shown in FIG. 3 can be obtained by filling the hole 13 up to the dotted line 32 with the conductor layer 15.
[0020]
【Example】
FIG. 5 is an enlarged view of a cross section of a via hole portion formed by the manufacturing method of the present invention. FIG. 5 is a diagram created based on a photomicrograph of an actual via cross section. The reference numerals in FIG. 5 correspond to those in FIGS. In FIG. 5, the diameter of the opening in the insulating layer 14 above the via is about 48 micrometers, and the diameter L1 of the opening in the insulating layer 14 at the bottom of the via is about 38 micrometers. The width (diameter) L2 of the conductor layer 12 is about 95 micrometers, and its thickness H1 is about 13 micrometers. The thickness H2 of the insulating layer 14 is about 35 micrometers. Further, the depth H5 of the conductor portion 22 of the conductor layer 12 is about 5 micrometers, and the diameter L is about 57 micrometers. Note that the conductor layers 12 and 15 are copper plating layers. The insulating layer 14 is a resin layer.
[0021]
The manufacturing process of the via of FIG. 5 using the pattern plate method is described below.
(A) A circuit pattern including the conductor layer 12 is formed by etching a land conductor or a pattern plate method.
(B) The insulating layer 14 is formed by pressing and curing the insulating layer film.
(C) A hole is formed by a laser. At this point, the opening including the flange region has not yet been formed.
(D) The surface of the insulating layer resin is roughened with permanganic acid in order to increase the adhesion strength of the plated copper in the subsequent step. At this point, no flange has yet been formed.
(E) The conductive layer 12 at the bottom of the via is etched using a mixed solution containing an acid such as sulfuric acid to form an opening.
(F) Electroless copper plating is applied to the entire surface of the insulating layer. At this time, the opening of the conductor layer 12 is also plated with electroless copper.
(G) A pattern resist is applied to the panel, and exposure and development are performed.
(H) Electroless copper plating is performed using the electroless copper formed in (f) as a seed layer to form a pattern. The formation is performed by a pattern plate method or a semi-additive method. At this time, the opening formed in (e) is plated with copper, and the opening is completely filled with copper. As a result, a flange region (conductor portion 22) is formed at the bottom of the via.
[0022]
The results of a temperature cycle test of the printed wiring board including the via of the present invention shown in FIG. 5 are shown below. For comparison, a test was also performed on a conventional substrate including the via of FIG. 1 at the same time.
(A) Test conditions:
The following two temperature cycle (1000 cycle) tests 1 and 2 were performed.
1. Test 1 conditions: -55 to 125 ° C, 1000 cycles at 2 cycles / hour,
2. Test 2 conditions: -55 to 125 ° C, 1000 cycles at 10 cycles / hour (b) Sample:
1. Substrate A including the conventional via of FIG. 1:
39 substrates for test 1 (including a total of 103,040 vias),
56 substrates for test 2 (including a total of 173360 vias)
2. Substrate B including via of the present invention in FIG. 2 (FIG. 5)
20 substrates for test 1 (including a total of 70000 vias),
41 boards for test 2 (including a total of 69216 vias)
(C) Test results:
1. Conventional substrate A:
Via conduction failure (breakage) occurred in 11 out of 95 substrates of 39 substrates for the temperature cycle test 1 and 56 substrates for the temperature cycle test 2 (rate of occurrence: about 12%).
2. Substrate B of the present invention:
Out of a total of 61 substrates, 20 substrates for the temperature cycle test 1 and 41 substrates for the temperature cycle test 2, none of the substrates had via conduction failure (disconnection). In other words, this means that the number of vias in which via conduction failure (disconnection) has occurred is zero for a total of 139216 vias (failure occurrence ratio: 0%).
[0023]
【The invention's effect】
The printed wiring board manufactured by the method for manufacturing a printed wiring board of the present invention has a large contact area between the first conductor and the second conductor at the bottom of the via, and the second conductor has a second insulating layer at the bottom of the via. Has a fringe (collar) region joined to the surface of the second insulating layer at the outer peripheral portion of the opening, so that it is stable against tensile stress generated due to a difference in thermal expansion between the insulating layer and the conductor layer, No electrical connection failure occurs between the via conductor layers. The printed wiring board of the present invention has high stability and reliability against thermal stress. The present invention significantly improves the reliability, especially in printed wiring boards having current and future fine via holes.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross section of a conventional via hole.
FIG. 2 is a diagram showing a cross section of one embodiment of a via hole portion of the printed wiring board of the present invention.
FIG. 3 is a diagram showing a cross section of another embodiment of the via hole portion of the printed wiring board of the present invention.
FIG. 4 is a diagram showing a flow of a method for manufacturing a printed wiring board of the present invention.
FIG. 5 is an enlarged view of a cross section of a via hole portion formed by the manufacturing method of the present invention.
[Explanation of symbols]
1, 4, 11, 14: insulating layers 2, 5, 12, 15: conductor layers 3, 13, 30: openings (holes)
16: inner peripheral surface 18: bonding surface 17: insulating layer surface 19: flat surface 20: outer peripheral portion 21: fringe region 22: conductor portion

Claims (8)

第1の絶縁層上に形成された第1の導体と、
前記第1の導体を含む前記第1の絶縁層上に形成された第2の絶縁層と、
前記第1の導体上の第2の絶縁層に設けられ、前記第1の導体に達する孔と、
少なくとも前記孔の内周面および前記孔の開口周辺の前記第2の絶縁層の表面を被覆して、前記第1の導体に接続する第2の導体とを含み、
前記第1の導体と第2の導体は、前記孔の底部における前記第1の導体と第2の絶縁層の接触面よりも下方において接合し、その接合面の径は前記孔の底部における前記第2の絶縁層の開口径よりも大きいことを特徴とする、ビアホールを有するプリント配線板。
A first conductor formed on the first insulating layer;
A second insulating layer formed on the first insulating layer including the first conductor;
A hole provided in the second insulating layer on the first conductor and reaching the first conductor;
A second conductor that covers at least the inner peripheral surface of the hole and the surface of the second insulating layer around the opening of the hole, and that is connected to the first conductor;
The first conductor and the second conductor are joined below the contact surface between the first conductor and the second insulating layer at the bottom of the hole, and the diameter of the joint surface is the diameter at the bottom of the hole. A printed wiring board having a via hole, wherein the printed wiring board is larger than an opening diameter of the second insulating layer.
第1の絶縁層上に形成された第1の導体と、
前記第1の導体を含む前記第1の絶縁層上に形成された第2の絶縁層と、
前記第1の導体上の第2の絶縁層に設けられ、前記第1の導体に達する孔と、
少なくとも前記孔の内周面および前記孔の開口周辺の前記第2の絶縁層の表面を被覆して、前記第1の導体に接続する第2の導体とを含み、
前記第2の導体は、前記孔の底部における前記第2の絶縁層の開口の外周部において、前記第2の絶縁層の表面と接合するフリンジ領域を有することを特徴とする、ビアホールを有するプリント配線板。
A first conductor formed on the first insulating layer;
A second insulating layer formed on the first insulating layer including the first conductor;
A hole provided in the second insulating layer on the first conductor and reaching the first conductor;
A second conductor that covers at least the inner peripheral surface of the hole and the surface of the second insulating layer around the opening of the hole, and that is connected to the first conductor;
A print having a via hole, characterized in that the second conductor has a fringe region at the bottom of the hole at an outer peripheral portion of the opening of the second insulating layer, the fringe region being joined to a surface of the second insulating layer. Wiring board.
前記第1の導体と第2の導体の接合面の径は、前記第1の導体の幅よりも小さいことを特徴とする、請求項1のプリント配線板。2. The printed wiring board according to claim 1, wherein a diameter of a joint surface between the first conductor and the second conductor is smaller than a width of the first conductor. 3. 第1の絶縁層上に形成された第1の導体と、
前記第1の導体を含む前記第1の絶縁層上に形成された第2の絶縁層と、
前記第1の導体上の第2の絶縁層に設けられ、前記第1の導体に達する孔と、
前記孔を充填するとともに少なくとも前記孔の開口周辺の前記第2の絶縁層の表面を被覆して、前記第1の導体に接続する第2の導体とを含み、
前記第1の導体と第2の導体は、前記孔の底部における前記第1の導体と第2の絶縁層の接触面よりも下方において接合し、その接合面の径は前記孔の底部における前記第2の絶縁層の開口径よりも大きいことを特徴とする、ビアホールを有するプリント配線板。
A first conductor formed on the first insulating layer;
A second insulating layer formed on the first insulating layer including the first conductor;
A hole provided in the second insulating layer on the first conductor and reaching the first conductor;
A second conductor that fills the hole and covers at least the surface of the second insulating layer around the opening of the hole and connects to the first conductor;
The first conductor and the second conductor are joined below the contact surface between the first conductor and the second insulating layer at the bottom of the hole, and the diameter of the joint surface is the diameter at the bottom of the hole. A printed wiring board having a via hole, wherein the printed wiring board is larger than an opening diameter of the second insulating layer.
プリント配線板の製造方法であって、
(a)第1の絶縁層を準備するステップと、
(b)前記第1の絶縁層上に第1の導体層を設けるステップと、
(c)前記第1の導体層を含む前記第1の絶縁層上に第2の絶縁層を設けるステップと、
(d)前記第1の導体層上の第2の絶縁層に、前記第1の導体層に至る孔を設けるステップと、
(e)前記孔に面する前記第1の導体層に、前記孔の底部の開口径よりも大きな径を有する開口部を設けるステップと、
(f)前記開口部を充填するとともに、少なくとも前記孔の内周面および前記孔の開口周辺の前記第2の絶縁層の表面を被覆する第2の導体層を形成するステップと、
を含む製造方法。
A method for manufacturing a printed wiring board,
(A) providing a first insulating layer;
(B) providing a first conductor layer on the first insulating layer;
(C) providing a second insulating layer on the first insulating layer including the first conductor layer;
(D) providing a hole to the first conductive layer in the second insulating layer on the first conductive layer;
(E) providing an opening having a diameter larger than the opening diameter at the bottom of the hole in the first conductor layer facing the hole;
(F) forming a second conductor layer that fills the opening and covers at least the inner peripheral surface of the hole and the surface of the second insulating layer around the opening of the hole;
A manufacturing method including:
前記開口部に充填された第2の導体層は、前記孔の底部における前記第2の絶縁層の開口の外周部において、前記第2の絶縁層の表面と接合するフリンジ領域を有することを特徴とする、請求項5の製造方法。The second conductor layer filled in the opening has a fringe region joined to the surface of the second insulating layer at the bottom of the hole at the outer periphery of the opening of the second insulating layer. The manufacturing method according to claim 5, wherein 前記開口部を設けるステップ(e)は、前記孔の底部における前記第2の絶縁層の開口の外周部において、前記第2の絶縁層の表面を露出させるステップを含むことを特徴とする、請求項5の製造方法。The step (e) of providing the opening includes exposing a surface of the second insulating layer at an outer peripheral portion of the opening of the second insulating layer at a bottom of the hole. Item 5. The manufacturing method according to Item 5. 前記開口部を設けるステップ(e)は、ウエットエッチングにより、前記第1の導体層をエッチングするステップを含む、請求項5の製造方法。6. The method according to claim 5, wherein the step (e) of providing the opening includes a step of etching the first conductor layer by wet etching.
JP2002324098A 2002-11-07 2002-11-07 Printed wiring board and method for manufacturing the same Pending JP2004158703A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002324098A JP2004158703A (en) 2002-11-07 2002-11-07 Printed wiring board and method for manufacturing the same
TW092130223A TWI228022B (en) 2002-11-07 2003-10-30 Printed circuit board and manufacturing method thereof
KR1020057005970A KR20050059246A (en) 2002-11-07 2003-11-05 Printed wiring board and process for producing the same
PCT/JP2003/014126 WO2004043121A1 (en) 2002-11-07 2003-11-05 Printed wiring board and process for producing the same
AU2003277566A AU2003277566A1 (en) 2002-11-07 2003-11-05 Printed wiring board and process for producing the same
CNA2003801016967A CN1706230A (en) 2002-11-07 2003-11-05 Printed wiring board and process for producing the same
DE10393589T DE10393589T5 (en) 2002-11-07 2003-11-05 Printed circuit board and method for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324098A JP2004158703A (en) 2002-11-07 2002-11-07 Printed wiring board and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004158703A true JP2004158703A (en) 2004-06-03

Family

ID=32310434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324098A Pending JP2004158703A (en) 2002-11-07 2002-11-07 Printed wiring board and method for manufacturing the same

Country Status (7)

Country Link
JP (1) JP2004158703A (en)
KR (1) KR20050059246A (en)
CN (1) CN1706230A (en)
AU (1) AU2003277566A1 (en)
DE (1) DE10393589T5 (en)
TW (1) TWI228022B (en)
WO (1) WO2004043121A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101134A1 (en) * 2005-03-24 2006-09-28 Ibiden Co., Ltd. Multi-layer printed circuit board
JP2013021306A (en) * 2011-06-17 2013-01-31 Sumitomo Bakelite Co Ltd Printed wiring board and manufacturing method of the same
JP2016051756A (en) * 2014-08-29 2016-04-11 日本ゼオン株式会社 Multilayer printed wiring board and method of manufacturing the same
JP2019068047A (en) * 2017-09-29 2019-04-25 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component and method of manufacturing the same
WO2024071007A1 (en) * 2022-09-30 2024-04-04 京セラ株式会社 Wiring board and circuit structure obtained using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5826330A (en) * 1995-12-28 1998-10-27 Hitachi Aic Inc. Method of manufacturing multilayer printed wiring board
JPH09283933A (en) * 1996-04-10 1997-10-31 Cmk Corp Printed wiring board
JP2000244127A (en) * 1998-12-24 2000-09-08 Ngk Spark Plug Co Ltd Wiring board and its manufacture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101134A1 (en) * 2005-03-24 2006-09-28 Ibiden Co., Ltd. Multi-layer printed circuit board
JP4973494B2 (en) * 2005-03-24 2012-07-11 イビデン株式会社 Multilayer printed wiring board
JP2013021306A (en) * 2011-06-17 2013-01-31 Sumitomo Bakelite Co Ltd Printed wiring board and manufacturing method of the same
JP2016219848A (en) * 2011-06-17 2016-12-22 住友ベークライト株式会社 Printed wiring board and manufacturing method
JP2016051756A (en) * 2014-08-29 2016-04-11 日本ゼオン株式会社 Multilayer printed wiring board and method of manufacturing the same
JP2019068047A (en) * 2017-09-29 2019-04-25 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component and method of manufacturing the same
WO2024071007A1 (en) * 2022-09-30 2024-04-04 京セラ株式会社 Wiring board and circuit structure obtained using same

Also Published As

Publication number Publication date
DE10393589T5 (en) 2005-12-22
KR20050059246A (en) 2005-06-17
CN1706230A (en) 2005-12-07
TWI228022B (en) 2005-02-11
WO2004043121A1 (en) 2004-05-21
AU2003277566A1 (en) 2004-06-07
TW200420206A (en) 2004-10-01

Similar Documents

Publication Publication Date Title
JP4624217B2 (en) Circuit board manufacturing method
JP2008235624A (en) Wiring circuit board and manufacturing method therefor
JP4488187B2 (en) Method for manufacturing substrate having via hole
JP2004158703A (en) Printed wiring board and method for manufacturing the same
JP2007123622A (en) Flexible printed circuit and method of manufacturing same
JP2011040720A (en) Printed circuit board and manufacturing method thereof
JP2009076928A (en) Method for manufacturing circuit board
TWI691243B (en) Manufacturing method for printed circuit board
JP3874669B2 (en) Wiring board manufacturing method
JPH04320092A (en) Multilayer printed board
US20100193232A1 (en) Printed circuit board and method of manufacturing the same
JPH10326971A (en) Printed wiring board
JP2795475B2 (en) Printed wiring board and manufacturing method thereof
JP2002141440A (en) Method for manufacturing substrate
JP2005268593A (en) Printed-wiring board and manufacturing method thereof
JP2004072027A (en) Method of manufacturing wiring board with bump electrode
JP2003338684A (en) Method of manufacturing printed wiring board
JPH11214848A (en) Printed a wiring board and production thereof
JPH08186357A (en) Printed wiring board and manufacture thereof
JP2006108352A (en) Wiring board and manufacturing method thereof
KR100771352B1 (en) Fabricating method of printed circuit board
JP3812006B2 (en) Manufacturing method of multilayer printed wiring board
JPH0682928B2 (en) Manufacturing method of multilayer printed wiring board for mounting semiconductor device
JP2001053189A (en) Wiring board and manufacturing method thereof
JPH11186346A (en) Substrate for semiconductor device and manufacture thereof