JP2008235624A - Wiring circuit board and manufacturing method therefor - Google Patents

Wiring circuit board and manufacturing method therefor Download PDF

Info

Publication number
JP2008235624A
JP2008235624A JP2007073966A JP2007073966A JP2008235624A JP 2008235624 A JP2008235624 A JP 2008235624A JP 2007073966 A JP2007073966 A JP 2007073966A JP 2007073966 A JP2007073966 A JP 2007073966A JP 2008235624 A JP2008235624 A JP 2008235624A
Authority
JP
Japan
Prior art keywords
plating layer
metal plating
insulating resin
wiring conductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007073966A
Other languages
Japanese (ja)
Other versions
JP5221887B2 (en
Inventor
Koichi Osumi
孝一 大隅
Hiroichi Yamada
博一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera SLC Technologies Corp
Original Assignee
Kyocera SLC Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera SLC Technologies Corp filed Critical Kyocera SLC Technologies Corp
Priority to JP2007073966A priority Critical patent/JP5221887B2/en
Publication of JP2008235624A publication Critical patent/JP2008235624A/en
Application granted granted Critical
Publication of JP5221887B2 publication Critical patent/JP5221887B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring circuit board which has an insulating resin layer and a wiring conductor firmly bonded to each other and has superior connection reliability, among wiring conductors in a via hole with high wiring density and less warpage or deformation, and to provide a method of manufacturing the wiring circuit board. <P>SOLUTION: The wiring circuit board comprises a lower insulating resin layer and a lower wiring conductor, an upper insulating resin layer laminated on the lower insulating resin layer and the lower wiring conductor, while having a via hole 9 reaching the lower wiring conductor, and an upper wiring conductor as a metal-plated layer formed so as to cover from the lower wiring conductor within the via hole 9 to the upper insulating resin layer. The metal-plated layer includes a first metal-plated layer 5A, formed so as to fill a lower part in the interior of the via hole 9 and a second metal-plated layer 5B formed so as to cover from the first metal-plated layer 5A to the upper insulating resin layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、配線基板およびその製造方法に関し、より詳細には、例えば半導体集積回路素子等の電子部品を搭載するのに好適な高密度多層配線基板およびその製造方法に関する。   The present invention relates to a wiring board and a manufacturing method thereof, and more particularly to a high-density multilayer wiring board suitable for mounting electronic components such as semiconductor integrated circuit elements and a manufacturing method thereof.

従来から、電子部品である半導体集積回路素子として、多数の電極端子を、その一方の主面の外周に沿って配設した、いわゆるペリフェラル型の半導体集積回路素子がある。また、このような半導体集積回路素子を配線基板に搭載する方法として、フリップチップ接続により接続する方法がある。   2. Description of the Related Art Conventionally, as a semiconductor integrated circuit element that is an electronic component, there is a so-called peripheral type semiconductor integrated circuit element in which a large number of electrode terminals are arranged along the outer periphery of one main surface thereof. As a method for mounting such a semiconductor integrated circuit element on a wiring board, there is a method of connecting by flip chip connection.

フリップチップ接続とは、配線基板上に設けた電子部品接続用の配線導体の一部を電子部品の電極端子の配置に対応した並びに露出させ、この電子部品接続用の配線導体の露出部と前記電子部品の電極端子とを対向させ、これらを半田や金等からなる導電バンプを介して電気的に接続する方法である。   The flip-chip connection means that a part of the wiring conductor for connecting the electronic component provided on the wiring board is exposed corresponding to the arrangement of the electrode terminals of the electronic component, and the exposed portion of the wiring conductor for connecting the electronic component and the above-mentioned In this method, the electrode terminals of the electronic component are opposed to each other, and these are electrically connected via conductive bumps made of solder, gold or the like.

近時は、このようなフリップチップ接続により第一の電子部品を配線基板上に搭載し、さらにその上に別の第二電子部品を半田ボール接続またはワイヤボンド接続により搭載して、配線基板への電子部品の搭載密度を高めることが行われている。   Recently, the first electronic component is mounted on the wiring board by such flip-chip connection, and another second electronic component is mounted thereon by solder ball connection or wire bond connection to the wiring board. Increasing the mounting density of electronic components.

図8は、第一の電子部品としてのペリフェラル型の半導体集積回路素子をフリップチップ接続により搭載し、さらにその上に第二電子部品しての半導体素子搭載基板を半田ボール接続した従来の配線基板の一例を示す概略断面図であり、図9は、図8の配線基板を示す平面図である。   FIG. 8 shows a conventional wiring board in which a peripheral type semiconductor integrated circuit element as a first electronic component is mounted by flip-chip connection, and a semiconductor element mounting substrate as a second electronic component is further soldered to the substrate. FIG. 9 is a plan view showing the wiring board of FIG. 8.

図8および図9に示すように、従来の配線基板110は、上面から下面にかけてコア用の配線導体102が配設されたコア用の絶縁基板103の上下面に、複数のビルドアップ用の絶縁樹脂層104とビルドアップ用の配線導体105とが交互に積層され、さらに、その最表面には保護用のソルダーレジスト層106が被着されている。   As shown in FIGS. 8 and 9, the conventional wiring board 110 has a plurality of build-up insulations on the upper and lower surfaces of the core insulating substrate 103 in which the core wiring conductors 102 are arranged from the upper surface to the lower surface. Resin layers 104 and build-up wiring conductors 105 are alternately stacked, and a protective solder resist layer 106 is deposited on the outermost surface.

コア用の絶縁基板103の上面から下面にかけては複数のスルーホール107が形成されており、絶縁基板103の上下面およびスルーホール107の内面にはコア用の配線導体102が被着され、スルーホール107の内部には埋め込み樹脂108が充填されている。ビルドアップ用の絶縁樹脂層104には、それぞれに複数のビアホール109が形成されており、各絶縁樹脂層104の表面およびビアホール109の内面には、ビルドアップ用の配線導体105が被着形成されている。   A plurality of through holes 107 are formed from the upper surface to the lower surface of the core insulating substrate 103, and the core wiring conductor 102 is attached to the upper and lower surfaces of the insulating substrate 103 and the inner surface of the through hole 107. An embedding resin 108 is filled in the inside 107. A plurality of via holes 109 are formed in each of the build-up insulating resin layers 104, and a build-up wiring conductor 105 is formed on the surface of each insulating resin layer 104 and the inner surface of the via holes 109. ing.

この配線導体105のうち、配線基板110の上面側における最外層の絶縁樹脂層104上に被着された一部は、第一の電子部品としての半導体集積回路素子E1の電極端子に導電バンプB1を介してフリップチップ接続により電気的に接続される第一接続部105aを有する第一配線パターン部105Aであり、この第一配線パターン部105Aは複数並んで帯状に形成されている。さらに、配線導体105のうち、配線基板110の上面側における最外層の絶縁樹脂層104上に被着された他の一部は、第二電子部品としての半導体素子搭載基板E2の電極端子に半田ボールB2を介して半田ボール接続により電気的に接続される第二接続部105bを有する第二配線パターン部105Bであり、この第二配線パターン部105Bは複数並んで形成されている。   A part of the wiring conductor 105 deposited on the outermost insulating resin layer 104 on the upper surface side of the wiring substrate 110 is electrically conductive bump B1 on the electrode terminal of the semiconductor integrated circuit element E1 as the first electronic component. A first wiring pattern portion 105A having a first connection portion 105a that is electrically connected via flip-chip connection, and a plurality of the first wiring pattern portions 105A are formed side by side. Further, the other part of the wiring conductor 105 deposited on the outermost insulating resin layer 104 on the upper surface side of the wiring substrate 110 is soldered to the electrode terminal of the semiconductor element mounting substrate E2 as the second electronic component. A second wiring pattern portion 105B having a second connection portion 105b electrically connected by solder ball connection via a ball B2, and a plurality of the second wiring pattern portions 105B are formed side by side.

これら第一配線パターン部105Aおよび第二配線パターン部105Bのうち、第一接続部105aおよび第二接続部105bがソルダーレジスト層106から露出しており、第一接続部105aに半導体集積回路素子E1の電極端子が半田や金等から成る導電バンプB1を介して電気的に接続され、第二接続部105bに半導体素子搭載基板E2の電極端子が半田ボールB2を介して電気的に接続される。   Of the first wiring pattern portion 105A and the second wiring pattern portion 105B, the first connection portion 105a and the second connection portion 105b are exposed from the solder resist layer 106, and the semiconductor integrated circuit element E1 is exposed to the first connection portion 105a. The electrode terminals of the semiconductor element mounting substrate E2 are electrically connected to the second connection portion 105b via the solder balls B2, and the electrode terminals are electrically connected via the conductive bumps B1 made of solder, gold, or the like.

一方、配線導体105のうち、配線基板110の下面側における最外層の絶縁樹脂層104上に被着された一部は、外部電気回路基板の配線導体に電気的に接続される外部接続用の第三接続部105cを有する第三配線パターン部105Cであり、この第三配線パターン部105Cは複数並んで形成されている。この第三配線パターン部105Cのうち、第三接続部105cがソルダーレジスト層106から露出しており、第三接続部105cに、外部電気回路基板の配線導体が半田ボールB3を介して電気的に接続される。   On the other hand, a part of the wiring conductor 105 deposited on the outermost insulating resin layer 104 on the lower surface side of the wiring board 110 is for external connection that is electrically connected to the wiring conductor of the external electric circuit board. A third wiring pattern portion 105C having a third connection portion 105c, and a plurality of the third wiring pattern portions 105C are formed side by side. Of the third wiring pattern portion 105C, the third connection portion 105c is exposed from the solder resist layer 106, and the wiring conductor of the external electric circuit board is electrically connected to the third connection portion 105c via the solder ball B3. Connected.

そして、半導体集積回路素子E1の電極端子と第一接続部105aとを導電バンプB1を介して電気的に接続した後、半導体集積回路素子E1と配線基板110との間の隙間にエポキシ樹脂等の熱硬化性樹脂から成るアンダーフィルと呼ばれる充填樹脂U1を充填し、半導体集積回路素子E1が配線基板110上に実装される。さらに、その上に半導体素子搭載基板E2の電極端子と第二接続部105bとを半田ボールB2を介して電気的に接続することにより半導体素子搭載基板E2が配線基板110上に実装され、これにより配線基板110上に複数の電子部品が高密度に実装されることとなる。なお、このような配線基板110は、例えば下記の方法により製作される。   Then, after electrically connecting the electrode terminal of the semiconductor integrated circuit element E1 and the first connection portion 105a via the conductive bump B1, the gap between the semiconductor integrated circuit element E1 and the wiring substrate 110 is made of epoxy resin or the like. Filling resin U <b> 1 called underfill made of thermosetting resin is filled, and semiconductor integrated circuit element E <b> 1 is mounted on wiring substrate 110. Furthermore, the semiconductor element mounting board E2 is mounted on the wiring board 110 by electrically connecting the electrode terminal of the semiconductor element mounting board E2 and the second connection portion 105b thereon via the solder ball B2. A plurality of electronic components are mounted on the wiring board 110 with high density. Such a wiring board 110 is manufactured by, for example, the following method.

まず、ガラスクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させた絶縁基板103用の絶縁シートを準備する。次に、この絶縁シートの両面に銅箔を張着するとともに、絶縁シート中の熱硬化性樹脂を熱硬化させて両面銅張り板を得る。この両面銅張り板に、その上下面を貫通するスルーホール107を穿孔するとともに、スルーホール107内を過マンガン酸アルカリ水溶液でデスミア処理する。なお、前記デスミア処理とは、不要な樹脂残渣を除去する処理のことを意味する。   First, an insulating sheet for the insulating substrate 103 in which a glass cloth is impregnated with a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin is prepared. Next, copper foil is stuck on both sides of the insulating sheet, and the thermosetting resin in the insulating sheet is thermoset to obtain a double-sided copper-clad plate. A through-hole 107 penetrating the upper and lower surfaces of the double-sided copper-clad plate is drilled, and the inside of the through-hole 107 is desmeared with an aqueous permanganate solution. The desmear process means a process for removing unnecessary resin residues.

上記のようにしてデスミア処理した後、前記スルーホール107内壁および前記銅箔表面に無電解銅めっきおよび電解銅めっきから成る銅めっき層を被着させて、上下面の銅箔同士をスルーホール107内の銅めっき層で電気的に接続する。そして、スルーホール107内を埋め込み樹脂108で充填した後、上下面の銅箔および銅めっき層を所定パターンにエッチングすることにより、コア用の絶縁基板103の上下両面およびスルーホール107内壁に銅箔や銅めっき層から成るコア用の配線導体102を形成する。   After the desmear treatment as described above, a copper plating layer made of electroless copper plating and electrolytic copper plating is deposited on the inner wall of the through hole 107 and the surface of the copper foil, and the upper and lower copper foils are connected to each other through the through hole 107. It is electrically connected with the copper plating layer inside. Then, after filling the inside of the through hole 107 with the embedding resin 108, the copper foil and the copper plating layer on the upper and lower surfaces are etched into a predetermined pattern, whereby the copper foil is formed on the upper and lower surfaces of the core insulating substrate 103 and the inner wall of the through hole 107. A core wiring conductor 102 made of copper or a copper plating layer is formed.

次に、コア用の絶縁基板103および配線導体102上にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂に無機絶縁性フィラーを分散させた絶縁樹脂層104用の樹脂フィルムを張着するとともに、樹脂フィルム中の熱硬化性樹脂を熱硬化させて絶縁樹脂層104を形成する。この絶縁樹脂層104にレーザ加工によりビアホール109を穿孔するとともに、ビアホール109内を過マンガン酸アルカリ水溶液でデスミア処理した後、ビアホール109内を含む絶縁樹脂層104の表面にセミアディティブ法で無電解銅めっきおよび電解銅めっきから成る配線導体105を上下面同時に形成する。   Next, a resin film for the insulating resin layer 104 in which an inorganic insulating filler is dispersed in a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin is stuck on the insulating substrate 103 for the core and the wiring conductor 102. The insulating resin layer 104 is formed by thermosetting the thermosetting resin in the resin film. A via hole 109 is drilled in the insulating resin layer 104 by laser processing, and the inside of the via hole 109 is desmeared with an alkali permanganate aqueous solution. Wiring conductors 105 made of plating and electrolytic copper plating are formed simultaneously on the upper and lower surfaces.

このとき、絶縁樹脂層104の表面は予め粗化処理しておくか、あるいはビアホール109のデスミア処理により粗化処理しておくと、粗化処理された絶縁樹脂層104表面の微小凹凸とその上に被着される無電解銅めっきおよび電解銅めっきから成る配線導体105とが良好に係合され、絶縁樹脂層104と配線導体105とが強固に密着する。   At this time, if the surface of the insulating resin layer 104 is roughened in advance or is roughened by desmearing of the via holes 109, the fine irregularities on the surface of the insulating resin layer 104 subjected to the roughening treatment and over The insulating conductor layer 104 and the wiring conductor 105 are firmly attached to each other, so that the electroless copper plating and the wiring conductor 105 made of electrolytic copper plating are satisfactorily engaged with each other.

そして、次層の絶縁樹脂層104や配線導体105の形成を複数回繰り返すことによりビルドアップ部を形成し、最後に感光性を有する熱硬化性樹脂ペーストまたはフィルムを配線導体105が形成された最外層の絶縁樹脂層104上に積層した後、電子部品接続用の第一接続部105aおよび第二接続部105bや外部接続用の第三接続部105cを露出させる開口を有するように露光および現像し、硬化させることによりソルダーレジスト層106形成し、それにより上面から下面にかけてコア用の配線導体102が配設されたコア用の絶縁基板103の上下面に、複数のビルドアップ用の絶縁樹脂層104とビルドアップ用の配線導体105とが交互に積層され、さらに、その最表面には保護用のソルダーレジスト層106が被着されて成るビルドアップ多層配線基板110が製作される。   Then, the build-up portion is formed by repeating the formation of the next insulating resin layer 104 and the wiring conductor 105 a plurality of times, and finally, the thermosetting resin paste or film having photosensitivity is formed on the wiring conductor 105. After being laminated on the outer insulating resin layer 104, exposure and development are performed so as to have openings that expose the first connection part 105a and second connection part 105b for connecting electronic components and the third connection part 105c for external connection. The solder resist layer 106 is formed by curing, whereby a plurality of build-up insulating resin layers 104 are formed on the upper and lower surfaces of the core insulating substrate 103 on which the core wiring conductors 102 are disposed from the upper surface to the lower surface. And build-up wiring conductors 105 are alternately laminated, and a protective solder resist layer 106 is deposited on the outermost surface. Build-up multilayer wiring board 110 made is manufactured.

近時、このようなビルドアップ多層配線基板110は、その薄型化および配線の高密度化が益々求められているとともに、これに搭載される半導体集積回路素子E1や半導体素子搭載基板E2あるいは外部電気回路基板との電気的接続信頼性を良好に維持する上で、半導体集積回路素子E1や半導体素子搭載基板E2の実装後の反りや変形を小さく抑えることが求められている。   In recent years, such a build-up multilayer wiring board 110 has been increasingly required to have a thinner thickness and a higher wiring density, and the semiconductor integrated circuit element E1 and the semiconductor element mounting board E2 mounted thereon or an external electric circuit. In order to maintain good electrical connection reliability with the circuit board, it is required to suppress warping and deformation after mounting of the semiconductor integrated circuit element E1 and the semiconductor element mounting board E2.

ビルドアップ配線基板110の実装後の反りや変形は、主にビルドアップ配線基板110とこれに搭載される半導体集積回路素子E1との熱膨張係数の差に起因して発生する熱応力によりもたらされる。一般的なビルドアップ配線基板110を構成する絶縁基板103や絶縁樹脂層104は、その熱膨張係数(XY方向)が20〜100ppm/℃程度であるのに対して半導体集積回路素子E1の熱膨張係数は3〜7ppm/℃程度と小さい。そこで、絶縁基板103や絶縁樹脂層104を構成する熱硬化性樹脂の中に例えば溶融シリカ(熱膨張係数0.5ppm/℃)等の低熱膨張材料の無機絶縁性フィラーを多量に充填させることにより、絶縁基板103や絶縁樹脂層104の熱膨張係数(XY方向)を8〜17ppm/℃程度に低くすることが行なわれている。   Warpage and deformation after mounting of the build-up wiring board 110 are mainly caused by thermal stress generated due to a difference in thermal expansion coefficient between the build-up wiring board 110 and the semiconductor integrated circuit element E1 mounted thereon. . The insulating substrate 103 and the insulating resin layer 104 constituting the general build-up wiring board 110 have a thermal expansion coefficient (XY direction) of about 20 to 100 ppm / ° C., whereas the thermal expansion of the semiconductor integrated circuit element E1. The coefficient is as small as about 3-7 ppm / ° C. Therefore, a large amount of an inorganic insulating filler of a low thermal expansion material such as fused silica (thermal expansion coefficient 0.5 ppm / ° C.) is filled in the thermosetting resin constituting the insulating substrate 103 and the insulating resin layer 104. The thermal expansion coefficient (XY direction) of the insulating substrate 103 and the insulating resin layer 104 is lowered to about 8 to 17 ppm / ° C.

しかしながら、このように無機絶縁性フィラーを多量に充填させた熱硬化性樹脂をビルドアップ用の絶縁樹脂層104に適用すると、以下のような問題点がある。すなわち、この熱硬化性樹脂を硬化させた絶縁樹脂層104にビアホールを形成した後にビアホール内を過マンガン酸アルカリ水溶液でデスミア処理すると、熱硬化性樹脂中に多量に充填させた無機絶縁性フィラーが絶縁樹脂層104の表面から脱粒して絶縁樹脂層104表面の微小な凹凸形状が崩れてしまい、その結果、この上に形成される配線導体102と絶縁樹脂層104表面の微小凹凸との係合が弱くなり配線導体102が絶縁樹脂層104から容易に剥離してしまうという問題点がある。   However, when the thermosetting resin filled with a large amount of the inorganic insulating filler is applied to the insulating resin layer 104 for build-up, there are the following problems. That is, when a via hole is formed in the insulating resin layer 104 obtained by curing the thermosetting resin, and the inside of the via hole is desmeared with an alkaline permanganate aqueous solution, an inorganic insulating filler filled in a large amount in the thermosetting resin is obtained. Grain from the surface of the insulating resin layer 104 breaks down the fine irregular shape on the surface of the insulating resin layer 104. As a result, the wiring conductor 102 formed on the surface and the minute irregularities on the surface of the insulating resin layer 104 are engaged. And the wiring conductor 102 easily peels off from the insulating resin layer 104.

そこで、特許文献1では、粗化処理されたビルドアップ用の絶縁樹脂層表面に例えば無電解銅めっきから成る粗化レジスト層を形成した後に、この粗化レジスト層が形成された絶縁樹脂層にビアホールを形成し、次にビアホール内をデスミア処理した後、粗化レジスト層をエッチングで除去して、あるいはエッチングせずに残した状態でビアホール内と絶縁樹脂層あるいは残した粗化レジスト層上とにセミアディティブ法で配線層を形成する方法が開示されている。   Therefore, in Patent Document 1, after forming a roughened resist layer made of, for example, electroless copper plating on the surface of the roughened insulating resin layer for buildup, the insulating resin layer on which the roughened resist layer is formed is formed. After forming the via hole and then desmearing the inside of the via hole, the roughened resist layer is removed by etching or left without being etched, and in the via hole and the insulating resin layer or the remaining roughened resist layer. Discloses a method of forming a wiring layer by a semi-additive method.

この方法によると、ビアホール内をデスミア処理する際にビルドアップ用の絶縁樹脂層の表面は粗化レジスト層により保護されているので、ビルドアップ用の絶縁樹脂層の表面がデスミア処理によるダメージを受けることがなく、良好な粗化面が維持される。したがって、ビルドアップ用の絶縁樹脂層とビルドアップ用の配線層とが強固に密着した配線基板が得られる。   According to this method, since the surface of the insulating resin layer for buildup is protected by the roughened resist layer when the desmear treatment is performed in the via hole, the surface of the insulating resin layer for buildup is damaged by the desmear treatment. And a good roughened surface is maintained. Therefore, a wiring board in which the insulating resin layer for buildup and the wiring layer for buildup are firmly adhered can be obtained.

しかしながら、この特許文献1の方法によると、無電解銅めっきから成る粗化レジスト層をエッチングで除去した後、ビアホール内と絶縁樹脂層上とにセミアディティブ法で配線層を形成する場合、ビアホール形成後に無電解銅めっきから成る粗化レジスト層をエッチングで除去する際に、ビアホール底面に露出する下位の配線層が過剰にエッチングされてしまう危険がある。このような過剰なエッチングはビアホール内における配線層同士の接続信頼性を損ねる原因になりやすい。   However, according to the method of Patent Document 1, when the wiring layer is formed by semi-additive method in the via hole and on the insulating resin layer after the roughened resist layer made of electroless copper plating is removed by etching, via hole formation When the roughened resist layer made of electroless copper plating is later removed by etching, the lower wiring layer exposed on the bottom surface of the via hole may be excessively etched. Such excessive etching is liable to deteriorate the connection reliability between the wiring layers in the via hole.

また、無電解銅めっきから成る粗化レジスト層をエッチング除去せずに残した状態でビアホール内と粗化レジスト層上とにセミアディティブ法により配線層を形成する場合、絶縁樹脂層上には粗化レジスト層としての無電解銅めっき層とセミアディティブの下地導電層としての無電解銅めっき層とが2層重なって存在することとなり、絶縁樹脂層上における無電解銅めっき層の厚みが厚いものとなってしまう。よって、この無電解銅めっき層上に電解銅めっき層を所定パターンに被着させた後、露出する無電解銅めっき層をエッチング除去する際には、電解銅めっき層のパターンも同時に大きくエッチングされて配線層のパターンが細くなりやすいとともに、無電解銅めっきの方が電解銅めっきよりもエッチングされやすいので、電解銅めっきの下に位置する無電解銅めっき層が大きくえぐれてしまい、絶縁樹脂層と配線層との接合強度を弱める原因となる。   In addition, when a wiring layer is formed by a semi-additive method in the via hole and on the roughened resist layer in a state where the roughened resist layer made of electroless copper plating is left without being etched away, the roughened resist layer on the insulating resin layer is formed. The electroless copper plating layer as the resist layer and the electroless copper plating layer as the semi-additive underlying conductive layer are overlapped, and the electroless copper plating layer on the insulating resin layer is thick. End up. Therefore, after the electrolytic copper plating layer is deposited on the electroless copper plating layer in a predetermined pattern, when the exposed electroless copper plating layer is removed by etching, the pattern of the electrolytic copper plating layer is also greatly etched at the same time. The pattern of the wiring layer tends to be thin, and the electroless copper plating is easier to etch than the electrolytic copper plating, so the electroless copper plating layer located under the electrolytic copper plating is greatly swept away, and the insulating resin layer As a result, the bonding strength between the wiring layer and the wiring layer is weakened.

さらに、ビアホール内を一回のセミアディティブ工程により充填するので、ビアホールのアスペクト比が大きい場合やビアホールの直径が大きな場合等にはビアホール内を配線層で良好に充填することができず、ビアホール上の配線導体に大きな凹みが形成されやすい。このようにビアホール上の配線導体に大きな凹みがあると、下位のビアホール上に上位のビアホールを重ねて設ける場合に上下のビアホール間において配線導体同士の電気的な接続信頼性が大きく低下する原因となる。   Furthermore, since the via hole is filled by a single semi-additive process, the via hole cannot be satisfactorily filled with the wiring layer when the aspect ratio of the via hole is large or the diameter of the via hole is large. A large dent is easily formed in the wiring conductor. If there is a large dent in the wiring conductor on the via hole in this way, when the upper via hole is provided on the lower via hole, the electrical connection reliability between the wiring conductors is greatly reduced between the upper and lower via holes. Become.

特開2005−251894号公報JP 2005-251894 A

本発明の課題は、低熱膨張材料の無機絶縁性フィラーを多量に充填させた絶縁樹脂をビルドアップ部の絶縁樹脂層に用いた場合であっても、絶縁樹脂層と配線導体とが強固に密着するとともにビアホールにおける配線導体同士の接続信頼性に優れる高密度配線で薄型の反りや変形の少ない配線基板およびその製造方法を提供することである。   The problem of the present invention is that even when an insulating resin filled with a large amount of an inorganic insulating filler of a low thermal expansion material is used for the insulating resin layer of the build-up portion, the insulating resin layer and the wiring conductor are firmly adhered. In addition, it is to provide a thin wiring board with low warpage and deformation, and a method for manufacturing the same, with high density wiring excellent in connection reliability between wiring conductors in via holes.

本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、以下の知見を得た。すなわち、ビルドアップ用の絶縁樹脂層の表面に金属箔を残した状態でその絶縁樹脂層にビアホールを形成し、ついで金属箔上およびビアホール内に第一の金属めっき層を所定の厚みに被着させた後、ビアホール内に第一の金属めっき層の一部が残存するようにして絶縁樹脂層上の金属箔およびその上の第一の金属めっき層をエッチング除去し、しかる後、ビアホール内および絶縁樹脂層上に第二の金属めっき層から成る配線導体を形成する場合には、ビアホール内の下位の配線導体が過剰にエッチングされてしまう危険性がなく、ビアホール内における上位の配線導体と下位の配線導体との電気的な接続信頼性を良好とすることができる。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has obtained the following knowledge. That is, a via hole is formed in the insulating resin layer with the metal foil remaining on the surface of the insulating resin layer for build-up, and then the first metal plating layer is deposited on the metal foil and in the via hole to a predetermined thickness. Then, the metal foil on the insulating resin layer and the first metal plating layer thereon are removed by etching so that a part of the first metal plating layer remains in the via hole, and then in the via hole and When forming a wiring conductor consisting of the second metal plating layer on the insulating resin layer, there is no risk that the lower wiring conductor in the via hole will be excessively etched, and the upper wiring conductor and the lower wiring in the via hole. The electrical connection reliability with the wiring conductor can be improved.

しかも、絶縁樹脂層上に第二の金属めっき層から成る配線導体を形成する際に絶縁樹脂層上に厚みの厚い無電解金属めっき層が形成されることがなく、したがって所定幅の正確な形状の配線導体を絶縁樹脂層との接合強度を十分に保ったままで形成することができる。さらに、ビアホールの下部が第一の金属めっき層で充填され、その上に第二の金属めっき層から成る配線導体が形成されるので、ビアホール内を第一の金属めっき層およびその上の第二の金属めっき層で良好に充填することができ、よってビアホール上の配線導体に大きな凹部が形成されることがなく、下位のビアホール上に上位のビアホールを重ねて設けた場合であっても、上下のビアホール間における配線導体同士の電気的な接続信頼性に優れる高密度配線が可能で薄型の反りや変形の少ない配線基板が得られる。   In addition, when forming a wiring conductor composed of the second metal plating layer on the insulating resin layer, a thick electroless metal plating layer is not formed on the insulating resin layer, and therefore an accurate shape with a predetermined width is provided. These wiring conductors can be formed while maintaining sufficient bonding strength with the insulating resin layer. Further, the lower portion of the via hole is filled with the first metal plating layer, and the wiring conductor composed of the second metal plating layer is formed thereon, so that the first metal plating layer and the second metal plating layer thereon are formed in the via hole. The metal plating layer can be satisfactorily filled, so that no large recess is formed in the wiring conductor on the via hole, and even when the upper via hole is provided on the lower via hole, High-density wiring with excellent electrical connection reliability between the wiring conductors between the via holes can be obtained, and a thin wiring board with less warpage and deformation can be obtained.

すなわち、本発明における配線基板およびその製造方法は、以下の構成からなる。
(1)下位絶縁樹脂層と、該下位絶縁樹脂層の表面に形成された下位配線導体と、前記下位絶縁樹脂層および下位配線導体の上に積層され、前記下位配線導体に達するビアホールを有する上位絶縁樹脂層と、前記ビアホール内の前記下位配線導体の上から前記上位絶縁樹脂層の表面にかけて被着形成された金属めっき層から成る上位配線導体と、を備えた配線基板であって、前記金属めっき層が、前記ビアホール内の前記下位配線導体の上に前記ビアホールの下部を充填するように被着形成された第一の金属めっき層と、該第一の金属めっき層から前記上位絶縁樹脂層の表面にかけて被着形成された第二の金属めっき層とから成ることを特徴とする配線基板。
(2)前記第一の金属めっき層が無電解金属めっき層と、該無電解金属めっき層の上に被着形成された電解金属めっき層とから成る前記(1)に記載の配線基板。
(3)前記第二の金属めっき層が無電解金属めっき層と、該無電解金属めっき層の上に被着形成された電解金属めっき層とから成る前記(1)または(2)に記載の配線基板。
That is, the wiring board and the manufacturing method thereof according to the present invention have the following configurations.
(1) A lower insulating resin layer, a lower wiring conductor formed on the surface of the lower insulating resin layer, and an upper layer having a via hole stacked on the lower insulating resin layer and the lower wiring conductor and reaching the lower wiring conductor A wiring board comprising: an insulating resin layer; and an upper wiring conductor composed of a metal plating layer deposited on the surface of the upper insulating resin layer from above the lower wiring conductor in the via hole, A first metal plating layer deposited on the lower wiring conductor in the via hole so as to fill a lower portion of the via hole; and the upper insulating resin layer from the first metal plating layer. And a second metal plating layer deposited on the surface of the wiring board.
(2) The wiring board according to (1), wherein the first metal plating layer includes an electroless metal plating layer and an electrolytic metal plating layer deposited on the electroless metal plating layer.
(3) The second metal plating layer according to (1) or (2), wherein the second metal plating layer includes an electroless metal plating layer and an electrolytic metal plating layer deposited on the electroless metal plating layer. Wiring board.

(4)絶縁樹脂層と配線導体とを交互に積層する工程を含む配線基板の製造方法であって、以下の工程(a)〜(e)を順に含むことを特徴とする配線基板の製造方法。
(a)表面に下位配線導体を有する下位絶縁樹脂層上に、表面に金属箔が被着された上位絶縁樹脂層を積層する工程
(b)前記金属箔の前記下位配線導体と対向する一部を除去するとともに、該除去部内の前記上位絶縁樹脂層に、前記下位配線導体に達するビアホールを形成する工程
(c)前記金属箔、前記上位絶縁樹脂層および前記ビアホール内に露出する下位配線導体の表面に、第一の金属めっき層を、前記下位配線導体上に位置する第一の金属めっき層の厚みをT1、前記金属箔および該金属箔上に位置する第一の金属めっき層の合計厚みをT2としたとき、前記T1およびT2がT1>T2の関係を満足するように被着形成する工程
(d)前記第一の金属めっき層および前記金属箔をエッチングすることにより、前記下位配線導体上に前記第一の金属めっき層の一部を残存させたまま前記金属箔を除去する工程
(e)前記第一の金属めっき層および前記上位絶縁樹脂層の露出する表面に前記ビアホールを介して前記下位配線導体に電気的に接続された第二の金属めっき層から成る上位配線導体を被着形成する工程
(4) A method of manufacturing a wiring board including a step of alternately laminating insulating resin layers and wiring conductors, the method including the following steps (a) to (e) in order: .
(A) A step of laminating an upper insulating resin layer having a metal foil on the surface thereof on a lower insulating resin layer having a lower wiring conductor on the surface (b) A part of the metal foil facing the lower wiring conductor (C) forming a via hole reaching the lower wiring conductor in the upper insulating resin layer in the removal portion (c) the metal foil, the upper insulating resin layer, and the lower wiring conductor exposed in the via hole On the surface, the first metal plating layer, the thickness of the first metal plating layer located on the lower wiring conductor is T1, the total thickness of the metal foil and the first metal plating layer located on the metal foil (2) The lower wiring conductor is formed by etching the first metal plating layer and the metal foil so that T1 and T2 satisfy the relationship of T1> T2. Up (E) removing the metal foil while leaving a part of the first metal plating layer remaining (e) the lower surface through the via hole on the exposed surface of the first metal plating layer and the upper insulating resin layer A process of depositing and forming an upper wiring conductor composed of a second metal plating layer electrically connected to the wiring conductor

(5)前記工程(a)の後でかつ前記工程(b)の前に、前記金属箔の厚みを化学的エッチングまたは物理的研磨により減少させる工程を含む前記(4)に記載の配線基板の製造方法。
(6)前記工程(b)において、前記金属箔の前記下位配線導体と対向する一部を、エッチングにより除去する前記(4)または(5)に記載の配線基板の製造方法。
(7)前記工程(b)において、前記金属箔の前記下位配線導体と対向する一部を、レーザ加工により除去する前記(4)または(5)に記載の配線基板の製造方法。
(8)前記工程(b)の後でかつ前記工程(c)の前に、前記ビアホール内のデスミア処理を行なう(4)〜(7)のいずれかに記載の配線基板の製造方法。
(9)前記第一の金属めっき層が無電解金属めっき層と、該無電解金属めっき層の上に被着形成された電解金属めっき層とから成る前記(4)〜(8)のいずれかに記載の配線基板の製造方法。
(10)前記第二の金属めっき層が無電解金属めっき層と、該無電解金属めっき層の上に被着形成された電解金属めっき層とから成る前記(4)〜(9)のいずれかに記載の配線基板の製造方法。
(5) The wiring board according to (4), including a step of reducing the thickness of the metal foil by chemical etching or physical polishing after the step (a) and before the step (b). Production method.
(6) The method for manufacturing a wiring board according to (4) or (5), wherein in the step (b), a part of the metal foil facing the lower wiring conductor is removed by etching.
(7) The method for manufacturing a wiring board according to (4) or (5), wherein in the step (b), a part of the metal foil facing the lower wiring conductor is removed by laser processing.
(8) The method for manufacturing a wiring board according to any one of (4) to (7), wherein a desmear treatment in the via hole is performed after the step (b) and before the step (c).
(9) Any one of (4) to (8), wherein the first metal plating layer includes an electroless metal plating layer and an electrolytic metal plating layer deposited on the electroless metal plating layer. The manufacturing method of the wiring board as described in 2 ..
(10) Any one of (4) to (9), wherein the second metal plating layer includes an electroless metal plating layer and an electrolytic metal plating layer deposited on the electroless metal plating layer. The manufacturing method of the wiring board as described in 2 ..

本発明によれば、低熱膨張材料の無機絶縁性フィラーを多量に充填させた絶縁樹脂をビルドアップ部の絶縁樹脂層に用いた場合であっても、絶縁樹脂層と配線導体とが強固に密着するとともにビアホールにおける配線導体同士の接続信頼性に優れる高密度配線で薄型の反りや変形の少ない配線基板が得られるという効果がある。   According to the present invention, even when an insulating resin filled with a large amount of an inorganic insulating filler of a low thermal expansion material is used for the insulating resin layer of the build-up portion, the insulating resin layer and the wiring conductor are firmly adhered. In addition, there is an effect that a thin wiring board with low warpage and deformation can be obtained with high-density wiring excellent in connection reliability between wiring conductors in via holes.

以下、本発明にかかる配線基板およびその製造方法の一実施形態について図面を参照して詳細に説明する。図1は、第一の電子部品としてペリフェラル型の半導体集積回路素子をフリップチップ接続により搭載し、さらにその上に第二電子部品としての半導体素子搭載基板を半田ボール接続により搭載した本実施形態にかかる配線基板を示す概略断面図である。図2は、図1の配線基板を示す平面図である。図3は、本実施形態にかかるビアホール内の配線導体付近を示す部分拡大断面図である。   Hereinafter, an embodiment of a wiring board and a manufacturing method thereof according to the present invention will be described in detail with reference to the drawings. FIG. 1 shows an embodiment in which a peripheral type semiconductor integrated circuit element is mounted as a first electronic component by flip chip connection, and a semiconductor element mounting substrate as a second electronic component is mounted thereon by solder ball connection. It is a schematic sectional drawing which shows this wiring board. FIG. 2 is a plan view showing the wiring board of FIG. FIG. 3 is a partially enlarged sectional view showing the vicinity of the wiring conductor in the via hole according to the present embodiment.

図1および図2に示すように、本実施形態にかかる配線基板10は、上面から下面にかけてコア用の配線導体2が配設されたコア用の絶縁基板3の上下面に、ビルドアップ用の絶縁樹脂層4とビルドアップ用の配線導体5とが交互に積層され、さらに、その最表面に保護用のソルダーレジスト層6が被着されて成る。   As shown in FIGS. 1 and 2, the wiring board 10 according to the present embodiment has a build-up structure on the upper and lower surfaces of the core insulating board 3 in which the core wiring conductors 2 are arranged from the upper surface to the lower surface. Insulating resin layers 4 and build-up wiring conductors 5 are alternately laminated, and a protective solder resist layer 6 is further deposited on the outermost surface.

コア用の絶縁基板3は、厚みが0.05〜1.5mm程度であり、例えばガラス繊維束を縦横に織ったガラスクロスにビスマレイミドトリアジン樹脂やエポキシ樹脂等の熱硬化性樹脂を含浸させた電気絶縁材料から成る。絶縁基板3は、配線基板10のコア部材として機能する。この絶縁基板3を構成する熱硬化性樹脂には、溶融シリカ等の低熱膨張係数の無機絶縁物フィラーを50〜70質量%程度の高密度で充填させておくことが好ましい。これにより、絶縁基板3の熱膨張係数(XY方向)を8〜17ppm/℃程度に低いものとすることができ、配線基板10が半導体集積回路素子E1との熱膨張係数の相違に起因して大きく反ることを有効に防止することができる。   The core insulating substrate 3 has a thickness of about 0.05 to 1.5 mm. For example, a glass cloth in which a glass fiber bundle is woven vertically and horizontally is impregnated with a thermosetting resin such as a bismaleimide triazine resin or an epoxy resin. Made of electrically insulating material. The insulating substrate 3 functions as a core member of the wiring substrate 10. The thermosetting resin constituting the insulating substrate 3 is preferably filled with an inorganic insulating filler having a low thermal expansion coefficient such as fused silica at a high density of about 50 to 70% by mass. Thereby, the thermal expansion coefficient (XY direction) of the insulating substrate 3 can be lowered to about 8 to 17 ppm / ° C., and the wiring substrate 10 is caused by the difference in thermal expansion coefficient from the semiconductor integrated circuit element E1. Large warping can be effectively prevented.

コア用の絶縁基板3には、その上面から下面にかけて直径が0.05〜0.3mm程度の複数のスルーホール7が形成されており、絶縁基板3の上下面およびスルーホール7の内面には、配線導体2が被着されている。コア用の配線導体2は、絶縁基板3の上下面では、主として銅箔あるいは無電解銅めっきおよびその上の電解銅めっきから形成されており、スルーホール7の内面では、無電解銅めっきおよびその上の電解銅めっきから形成されている。   A plurality of through holes 7 having a diameter of about 0.05 to 0.3 mm are formed in the core insulating substrate 3 from the upper surface to the lower surface, and the upper and lower surfaces of the insulating substrate 3 and the inner surface of the through hole 7 are formed on the inner surface of the through hole 7. The wiring conductor 2 is attached. The core wiring conductor 2 is mainly formed of copper foil or electroless copper plating and electrolytic copper plating thereon on the upper and lower surfaces of the insulating substrate 3, and the electroless copper plating and its inner surface on the inner surface of the through hole 7. It is formed from the above electrolytic copper plating.

また、スルーホール7の内部には、エポキシ樹脂等の熱硬化性樹脂から成る埋め込み樹脂8が充填されており、絶縁基板3の上下面に形成された配線導体2同士がスルーホール7内の配線導体2を介して電気的に接続されている。この埋め込み樹脂8を構成する熱硬化性樹脂にも、前記した絶縁基板3を構成する熱硬化性樹脂と同様に、溶融シリカ等の低熱膨張係数の無機絶縁物フィラーを40〜60質量%程度の高密度で充填させておくことが好ましい。これにより、埋め込み樹脂8の熱膨張係数(Z方向)を30〜40ppm/℃程度に低いものとすることができ、絶縁基板3との熱膨張係数(Z方向)の相違に起因して埋め込み樹脂に剥離やクラック、変形等が起こることを有効に防止することができる。   The through hole 7 is filled with an embedded resin 8 made of a thermosetting resin such as an epoxy resin, and the wiring conductors 2 formed on the upper and lower surfaces of the insulating substrate 3 are connected to each other in the through hole 7. It is electrically connected through the conductor 2. The thermosetting resin constituting the embedded resin 8 is also made of about 40 to 60% by mass of a low thermal expansion coefficient inorganic insulating filler such as fused silica as in the thermosetting resin constituting the insulating substrate 3 described above. It is preferable to fill with high density. As a result, the thermal expansion coefficient (Z direction) of the embedded resin 8 can be as low as about 30 to 40 ppm / ° C., and the embedded resin is caused by the difference in thermal expansion coefficient (Z direction) from the insulating substrate 3. It is possible to effectively prevent peeling, cracking, deformation and the like from occurring.

このような絶縁基板3は、ガラス織物に未硬化の熱硬化性樹脂を含浸させたシートの上下面に配線導体2用の銅箔を張着した後、そのシートを熱硬化させ、これに上面から下面にかけてスルーホール7用のドリル加工等を施すことにより作製される。   Such an insulating substrate 3 is formed by attaching a copper foil for the wiring conductor 2 on the upper and lower surfaces of a sheet of glass fabric impregnated with an uncured thermosetting resin, and then thermally curing the sheet, It is produced by performing drilling for the through hole 7 from the bottom to the bottom.

配線導体2は、絶縁基板3用の前記シートの上下全面に、厚みが3〜18μm程度の銅箔を上述のように張着しておくとともに、これらの銅箔および絶縁基板3にスルーホール7を穿孔した後、このスルーホール7の内面および銅箔表面に無電解銅めっきおよび電解銅めっきを順次施し、次いで、スルーホール7内を埋め込み樹脂8で充填した後、この上下面の銅箔および銅めっきをフォトリソグラフィ技術を用いて所定のパターンにエッチング加工することにより、絶縁基板3の上下面およびスルーホール7の内面に形成される。あるいは、絶縁基板3用の前記シートの上下全面に、厚みが3〜18μm程度の銅箔を上述のように張着しておくとともに、これらの銅箔および絶縁基板3にスルーホール7を穿孔した後、一旦前記銅箔を剥離し、次にスルーホール7の内面および絶縁基板3の上下面に無電解銅めっきおよび電解銅めっきをセミアディティブ法により所定パターンに被着形成することにより、絶縁基板3の上下面およびスルーホール7の内面に形成される。この場合、セミアディティブ法により微細な配線導体2を形成可能である。   In the wiring conductor 2, copper foil having a thickness of about 3 to 18 μm is stuck on the entire upper and lower surfaces of the sheet for the insulating substrate 3 as described above, and through holes 7 are formed in these copper foil and the insulating substrate 3. Then, electroless copper plating and electrolytic copper plating are sequentially applied to the inner surface of the through hole 7 and the surface of the copper foil, and then the inside of the through hole 7 is filled with the embedded resin 8. The copper plating is etched into a predetermined pattern using a photolithography technique, so that the upper and lower surfaces of the insulating substrate 3 and the inner surface of the through hole 7 are formed. Alternatively, copper foil having a thickness of about 3 to 18 μm is stuck on the entire upper and lower surfaces of the sheet for the insulating substrate 3 as described above, and through holes 7 are drilled in the copper foil and the insulating substrate 3. Thereafter, the copper foil is once peeled off, and then an electroless copper plating and an electrolytic copper plating are deposited on the inner surface of the through hole 7 and the upper and lower surfaces of the insulating substrate 3 in a predetermined pattern by a semi-additive method. 3 and the inner surface of the through hole 7. In this case, the fine wiring conductor 2 can be formed by a semi-additive method.

埋め込み樹脂8は、スルーホール7を塞ぐことによりスルーホール7の直上および直下にビルドアップ用の絶縁樹脂層4を形成可能とするためのものであり、未硬化のペースト状の熱硬化性樹脂を無電解銅めっきおよび電解銅めっきが施されたスルーホール7内にスクリーン印刷法により充填し、これを熱硬化させた後、その上下面を略平坦に研磨することにより形成される。あるいは、スルーホール7の内面および絶縁基板3の上下面に所定パターンの配線導体2を形成した後、絶縁基板3上に絶縁樹脂層4を形成する際に絶縁樹脂層4用の樹脂の一部をスルーホール7内に流入させることによって形成される。   The embedding resin 8 is for making it possible to form the insulating resin layer 4 for buildup directly above and below the through-hole 7 by closing the through-hole 7, and an uncured paste-like thermosetting resin is used. The through-holes 7 subjected to electroless copper plating and electrolytic copper plating are filled by screen printing, thermally cured, and then the upper and lower surfaces thereof are polished substantially flatly. Alternatively, after forming the wiring conductor 2 having a predetermined pattern on the inner surface of the through hole 7 and the upper and lower surfaces of the insulating substrate 3, a part of the resin for the insulating resin layer 4 is formed when the insulating resin layer 4 is formed on the insulating substrate 3. Is made to flow into the through hole 7.

絶縁基板3の上下面に積層されたビルドアップ用の絶縁樹脂層4は、それぞれの厚みが20〜60μm程度であり、絶縁基板3と同様にガラスクロスに熱硬化性樹脂を含浸させた電気絶縁材料や、あるいはエポキシ樹脂等の熱硬化性樹脂に無機絶縁物フィラーを充填させた電気絶縁材料から成る。この絶縁樹脂層4を構成する熱硬化性樹脂にも、前記した絶縁基板3,埋め込み樹脂8を構成する各熱硬化性樹脂と同様に、溶融シリカ等の低熱膨張係数の無機絶縁物フィラーを50〜70質量%程度の高密度で充填させておくことが好ましい。これにより、絶縁樹脂層4の熱膨張係数(XY方向)を8〜17ppm/℃程度に低いものとすることができ、配線基板10が半導体集積回路素子E1との熱膨張係数の相違に起因して大きく反ることを有効に防止することができる。なお、絶縁樹脂層4と絶縁基板3とは必ずしもその全ての層に熱膨張係数(XY方向)が8〜17ppm/℃の低いものを用いる必要はなく、例えば絶縁樹脂層4のみに熱膨張係数(XY方向)が8〜17ppm/℃程度の低いものを用いても良い。あるいは絶縁樹脂層4の一部の層のみに熱膨張係数(XY方向)が8〜17ppm/℃程度の低いものを用いても良い。ただし、これらの場合、配線基板10における熱膨張係数の異なる層が上下対称となるように配置することが好ましい。   The insulating resin layers 4 for buildup laminated on the upper and lower surfaces of the insulating substrate 3 each have a thickness of about 20 to 60 μm. Similarly to the insulating substrate 3, electrical insulation in which a glass cloth is impregnated with a thermosetting resin. It consists of an electrically insulating material in which an inorganic insulating filler is filled in a material or a thermosetting resin such as an epoxy resin. The thermosetting resin constituting the insulating resin layer 4 is also made of 50% of an inorganic insulating filler having a low thermal expansion coefficient such as fused silica as in the case of the thermosetting resins constituting the insulating substrate 3 and the embedded resin 8 described above. It is preferable to fill with a high density of about 70% by mass. Thereby, the thermal expansion coefficient (XY direction) of the insulating resin layer 4 can be made as low as about 8 to 17 ppm / ° C., and the wiring board 10 is caused by the difference in thermal expansion coefficient from the semiconductor integrated circuit element E1. Can be effectively prevented. The insulating resin layer 4 and the insulating substrate 3 do not necessarily have to have a low coefficient of thermal expansion (XY direction) of 8 to 17 ppm / ° C. for all layers. For example, only the insulating resin layer 4 has a thermal expansion coefficient. A low (XY direction) of about 8-17 ppm / ° C. may be used. Alternatively, only a part of the insulating resin layer 4 having a low thermal expansion coefficient (XY direction) of about 8 to 17 ppm / ° C. may be used. However, in these cases, it is preferable to arrange the layers having different thermal expansion coefficients in the wiring substrate 10 so as to be vertically symmetrical.

また、各絶縁樹脂層4には、直径が30〜100μm程度の複数のビアホール9が形成されている。ビアホール9は、後述するようにレーザ加工やフォトリソグラフィ加工等によって形成される。   Each insulating resin layer 4 is formed with a plurality of via holes 9 having a diameter of about 30 to 100 μm. The via hole 9 is formed by laser processing, photolithography processing or the like as will be described later.

各絶縁樹脂層4の表面およびビアホール9の内面には、無電解銅めっきおよびその上の電解銅めっきから成るビルドアップ用の配線導体5が被着形成されている。そして、絶縁樹脂層4を挟んで上層に位置する配線導体5と下層に位置する配線導体5とをビアホール9内の配線導体5を介して電気的に接続することにより、高密度配線が立体的に形成される。   A build-up wiring conductor 5 made of electroless copper plating and electrolytic copper plating thereon is deposited on the surface of each insulating resin layer 4 and the inner surface of the via hole 9. Then, the wiring conductor 5 located in the upper layer and the wiring conductor 5 located in the lower layer are electrically connected via the wiring conductor 5 in the via hole 9 with the insulating resin layer 4 interposed therebetween, so that the high-density wiring is three-dimensional. Formed.

ここで、ビルドアップ用の配線導体5のうち、ビアホール内9の配線導体5は、第一の金属めっき層と第二の金属めっき層との二層構造から成る。具体的には、図3に示すように、ビアホール9内の配線導体5が、ビアホール9内の下位の配線導体2(5)上に、ビアホール9の下部を充填するように被着形成された第一の銅めっき層5Aと、この第一の銅めっき層5Aの上から絶縁樹脂層4の表面にかけてビアホール9の上部を充填するように披着形成された第二の銅めっき層5Bとから成る。これにより、例えばビアホール9のアスペクト比が大きい場合やビアホール9の直径が大きい場合等であっても第一の銅めっき層5Aでビアホール9の下部を、その上の第二の銅めっき層5Bでビアホール9の上部を良好に充填することができる。したがって、ビアホール9上の配線導体5に大きな凹みが形成されることはなく、下位のビアホール9上に上位のビアホール9を重ねて設けた場合であっても上下のビアホール9間において配線導体5同士が高い信頼性で電気的に接続される。下位のビアホール9上に上位のビアホール9を重ねて設ける場合、下位のビアホール9と上位のビアホール9とを互いにずらして上下の配線導体5同士を接続する場合と比較して、配線導体5の配線密度をより高いものとすることができる。   Here, among the wiring conductors 5 for buildup, the wiring conductor 5 in the via hole 9 has a two-layer structure of a first metal plating layer and a second metal plating layer. Specifically, as shown in FIG. 3, the wiring conductor 5 in the via hole 9 is deposited on the lower wiring conductor 2 (5) in the via hole 9 so as to fill the lower portion of the via hole 9. From the first copper plating layer 5A and the second copper plating layer 5B formed so as to fill the upper portion of the via hole 9 from the top of the first copper plating layer 5A to the surface of the insulating resin layer 4 Become. Thereby, for example, even when the aspect ratio of the via hole 9 is large or the diameter of the via hole 9 is large, the lower portion of the via hole 9 is covered with the first copper plating layer 5A and the second copper plating layer 5B thereon. The upper part of the via hole 9 can be filled well. Therefore, a large depression is not formed in the wiring conductor 5 on the via hole 9, and even when the upper via hole 9 is provided on the lower via hole 9, the wiring conductors 5 are arranged between the upper and lower via holes 9. Are electrically connected with high reliability. When the upper via hole 9 is provided on the lower via hole 9, the wiring of the wiring conductor 5 is compared with the case where the lower via hole 9 and the upper via hole 9 are shifted from each other and the upper and lower wiring conductors 5 are connected to each other. The density can be higher.

ビアホール9内の配線導体5が、第一の銅めっき層5Aと第二の銅めっき層5Bとから成るように構成されているか否かを確認するには、例えばビアホール9の断面を走査型電子顕微鏡(SEM)を用いて観察すること等によって確認することができる。   In order to confirm whether or not the wiring conductor 5 in the via hole 9 is composed of the first copper plating layer 5A and the second copper plating layer 5B, for example, the cross section of the via hole 9 is scanned with a scanning electron. It can confirm by observing using a microscope (SEM).

第一の銅めっき層5Aおよび第二の銅めっき層5Bは、それぞれ無電解銅めっき層とその上に被着された電解銅めっき層とから成ることが好ましい。そのような構成にすることにより、ビアホール9内を短時間に効率よく充填することができる。   Each of the first copper plating layer 5A and the second copper plating layer 5B preferably comprises an electroless copper plating layer and an electrolytic copper plating layer deposited thereon. With such a configuration, the via hole 9 can be efficiently filled in a short time.

ビルドアップ用の配線導体5のうち、配線基板10の上面側における最外層の絶縁樹脂層4上に被着された一部は、半導体集積回路素子E1の電極に半田等の導電バンプB1を介して電気的に接続される第一接続部5aを形成しており、別の一部は、半導体素子搭載基板E2の電極端子に半田ボールB2を介して半田ボール接続により電気的に接続される第二接続部5bを形成している。また、配線基板10の下面側における最外層の絶縁樹脂層4上に被着された一部は、外部電気回路基板の配線導体に半田ボールB3を介して電気的に接続される外部接続用の第三接続部5cを形成している。   A part of the build-up wiring conductor 5 deposited on the outermost insulating resin layer 4 on the upper surface side of the wiring substrate 10 is connected to the electrode of the semiconductor integrated circuit element E1 via a conductive bump B1 such as solder. First part 5a to be electrically connected is formed, and another part is electrically connected to the electrode terminal of semiconductor element mounting substrate E2 by solder ball connection via solder ball B2. Two connecting portions 5b are formed. Further, a part of the lower surface of the wiring board 10 deposited on the outermost insulating resin layer 4 is electrically connected to the wiring conductor of the external electric circuit board via the solder balls B3. A third connection portion 5c is formed.

このようなビルドアップ用の配線導体5は、後述するセミアディティブ法を利用した本発明独自の方法により形成される。セミアディティブ法は、例えばビアホール9が形成されたビルドアップ用の絶縁樹脂層4の表面に、電解めっき用の下地金属層を無電解銅めっきにより形成し、その上に配線導体5に対応した開口を有するめっきレジスト層を形成し、次に、下地金属層を給電用の電極として開口から露出する下地金属層上に電解銅めっきを施すことで配線導体5を形成し、めっきレジストを剥離した後、露出する下地金属層をエッチング除去することによって、各配線導体5を電気的に独立させる方法である。   Such a build-up wiring conductor 5 is formed by a method unique to the present invention using a semi-additive method described later. In the semi-additive method, for example, a base metal layer for electrolytic plating is formed on the surface of the build-up insulating resin layer 4 in which the via holes 9 are formed by electroless copper plating, and openings corresponding to the wiring conductors 5 are formed thereon. After forming a wiring resist 5 by performing electrolytic copper plating on the base metal layer exposed from the opening using the base metal layer as an electrode for power feeding, and then peeling off the plating resist This is a method in which each wiring conductor 5 is electrically independent by etching away the exposed base metal layer.

さらに、配線導体5上および該配線導体5が形成された部分以外の最外層の絶縁樹脂層4上には、ソルダーレジスト層6が被着されている。ソルダーレジスト層6は、最外層の配線導体5を熱や外部環境から保護するための保護膜であり、上面側のソルダーレジスト層6は、第一接続部5aの上面および第二接続部5bの上面を露出させるようにして被着されている。また、下面側のソルダーレジスト層6は、外部接続用の第三の接続部5cを露出させるようにして被着されている。   Furthermore, a solder resist layer 6 is deposited on the wiring conductor 5 and on the outermost insulating resin layer 4 other than the portion where the wiring conductor 5 is formed. The solder resist layer 6 is a protective film for protecting the outermost wiring conductor 5 from heat and the external environment. The solder resist layer 6 on the upper surface side includes the upper surface of the first connection portion 5a and the second connection portion 5b. It is applied so that the upper surface is exposed. Further, the solder resist layer 6 on the lower surface side is applied so as to expose the third connection portion 5c for external connection.

ソルダーレジスト層6としては、例えばエポキシ樹脂等に溶融シリカやタルク等の無機物粉末フィラーを30〜70質量%程度分散させた絶縁材料から成る熱硬化性樹脂が好ましい。このようなソルダーレジスト6となる感光性を有する熱硬化性樹脂ペーストまたはフィルムを、第一配線接続部5aおよび第二接続部5bを有する配線導体5が形成された最外層の絶縁樹脂層4上に積層した後、第一接続部5aおよび第二接続部5bあるいは第三接続部5cを露出させる開口を有するように露光および現像し、硬化させればよい。   The solder resist layer 6 is preferably a thermosetting resin made of an insulating material in which an inorganic powder filler such as fused silica or talc is dispersed in an epoxy resin or the like in an amount of about 30 to 70% by mass. On the outermost insulating resin layer 4 on which the wiring conductor 5 having the first wiring connection portion 5a and the second connection portion 5b is formed with the photosensitive thermosetting resin paste or film to be the solder resist 6 After being laminated, the first connection portion 5a and the second connection portion 5b or the third connection portion 5c may be exposed, developed and cured so as to have an opening for exposing.

なお、ソルダーレジスト層6から露出する第一接続部5aの上面および第二接続部5bの上面には、第一接続部5aおよび第二接続部5bが酸化腐食するのを防止するとともに、導電バンプB1や半田ボールB2との接続を良好とするために、ニッケルめっきおよび金めっきを無電解めっき法や電解めっき法により順次被着させておくか、あるいは半田層を被着させておいてもよい。   The upper surface of the first connection portion 5a and the upper surface of the second connection portion 5b exposed from the solder resist layer 6 prevent the first connection portion 5a and the second connection portion 5b from being oxidatively corroded, and conductive bumps. In order to improve the connection with B1 and solder ball B2, nickel plating and gold plating may be sequentially applied by an electroless plating method or an electrolytic plating method, or a solder layer may be attached. .

次に、ビルドアップ用の配線導体5をセミアディティブ法により形成する方法について、上述のコア用の絶縁基板3およびコア用の配線導体2上に一層目のビルドアップ用の絶縁層4および一層目のビルドアップ用の配線導体5を形成する場合を例に挙げて図面を参照して詳細に説明する。   Next, regarding a method of forming the buildup wiring conductor 5 by the semi-additive method, the first buildup insulating layer 4 and the first layer are formed on the core insulating substrate 3 and the core wiring conductor 2. An example of forming the buildup wiring conductor 5 will be described in detail with reference to the drawings.

図4〜図7は、本実施形態にかかるビルドアップ用の配線導体を形成する工程を説明する要部概略断面図である。これらの図面のうち、図4(a)〜(c)は、コア用の絶縁基板およびコア用の配線導体上に表面に銅箔が被着されたビルドアップ用の絶縁樹脂層を積層する工程を示す図であり、図5(d)〜(f)は、積層された銅箔付きの絶縁樹脂層にビアホールを形成するとともにビアホール内に第一の銅めっき層を被着させる工程を示す図であり、図6(g)〜(i)および図7(j)〜(l)は、第一の銅めっき層および銅箔をエッチングしてコア用の配線導体上に第一銅めっき層の一部を残存させたままビルドアップ用の絶縁樹脂層の銅箔を完全に除去した後、第二の銅めっき層から成るビルドアップ用の配線導体をセミアディティブ法により形成する工程を示す図である。   4 to 7 are schematic cross-sectional views of the relevant part for explaining the process of forming the build-up wiring conductor according to the present embodiment. Among these drawings, FIGS. 4A to 4C show a process of laminating an insulating resin layer for build-up having a copper foil deposited on the surface of the core insulating substrate and the core wiring conductor. FIGS. 5D to 5F are views showing a process of forming a via hole in the laminated insulating resin layer with copper foil and depositing a first copper plating layer in the via hole. 6 (g) to (i) and FIGS. 7 (j) to (l), the first copper plating layer and the copper foil are etched to form the first copper plating layer on the core wiring conductor. The figure which shows the process of forming the wiring conductor for buildup which consists of a 2nd copper plating layer by a semi-additive method, after removing copper foil of the insulating resin layer for buildup completely, leaving a part remaining is there.

[工程(a)]
まず、図4(a)に示すように、コア用の絶縁基板3およびコア用の配線導体2の上に表面に銅箔11が被着されたビルドアップ用の絶縁樹脂層4を積層する。絶縁樹脂層4としては、例えばガラスクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂、アリル変性ポリフェニレンエーテル樹脂等の熱硬化性樹脂を含浸させた電気絶縁材料が好ましく、さらには前記した理由から熱硬化性樹脂中に溶融シリカ等の低熱膨張係数を有する無機絶縁物フィラーを50〜70質量%程度充填してその熱膨張係数(XY方向)を8〜17ppm/℃程度としたものが好ましい。なお、本発明はこれに限定されるものではなく、ガラスクロスを含まず、熱硬化性樹脂と無機絶縁物フィラーとから成る電気絶縁材料であってもよい。絶縁樹脂層4の厚みとしては、20〜50μm程度が好ましい。
[Step (a)]
First, as shown in FIG. 4A, a build-up insulating resin layer 4 having a copper foil 11 deposited on the surface thereof is laminated on the core insulating substrate 3 and the core wiring conductor 2. As the insulating resin layer 4, for example, an electrically insulating material in which a glass cloth is impregnated with a thermosetting resin such as an epoxy resin, a bismaleimide triazine resin, or an allyl-modified polyphenylene ether resin is preferable. It is preferable that about 50 to 70% by mass of an inorganic insulator filler having a low thermal expansion coefficient such as fused silica is filled therein and the thermal expansion coefficient (XY direction) is about 8 to 17 ppm / ° C. In addition, this invention is not limited to this, The electric insulation material which does not contain a glass cloth and consists of a thermosetting resin and an inorganic insulating filler may be sufficient. The thickness of the insulating resin layer 4 is preferably about 20 to 50 μm.

また、銅箔11としては、絶縁樹脂層4の側に微小な凹凸を有する電解銅箔が好ましい。電解銅箔はその製造工程において微小な凹凸を有する粗面であるマット面と、平滑な面であるシャイニー面とを有しており、そのマット面側を絶縁樹脂層4側として両者を張り合わせることが好ましい。銅箔11が絶縁樹脂層4の側に微小な凹凸を有することで、絶縁樹脂層4の銅箔11側の表面にも銅箔11の凹凸に対応した微小な凹凸が形成される。銅箔11の厚みとしては3〜18μm程度が好ましい。   The copper foil 11 is preferably an electrolytic copper foil having minute irregularities on the insulating resin layer 4 side. The electrolytic copper foil has a mat surface that is a rough surface having minute irregularities and a shiny surface that is a smooth surface in the manufacturing process, and the mat surface side is bonded to the insulating resin layer 4 side. It is preferable. Since the copper foil 11 has minute irregularities on the insulating resin layer 4 side, minute irregularities corresponding to the irregularities of the copper foil 11 are also formed on the surface of the insulating resin layer 4 on the copper foil 11 side. The thickness of the copper foil 11 is preferably about 3 to 18 μm.

なお、コア用の絶縁基板3およびコア用の配線導体2の上に表面に銅箔11が被着されたビルドアップ用の絶縁樹脂層4を積層するには、予め銅箔11が被着された半硬化状態の絶縁樹脂層4を、コア用の配線導体2が形成された絶縁基板3上に重ねて加熱しながらプレスし、絶縁樹脂層4を完全に熱硬化させればよい。   In order to laminate the insulating resin layer 4 for buildup having the copper foil 11 deposited on the surface thereof on the core insulating substrate 3 and the core wiring conductor 2, the copper foil 11 is deposited in advance. The insulating resin layer 4 in a semi-cured state is stacked on the insulating substrate 3 on which the core wiring conductor 2 is formed and pressed while being heated, so that the insulating resin layer 4 is completely thermoset.

[工程(b)]
次に、図4(b)に示すように、絶縁樹脂層4の表面に被着された銅箔11を機械的に研磨または化学的にエッチングして銅箔11の厚みを2〜8μm程度に薄くする。これにより、後述する図4(c)に示す工程において、銅箔11に形成するビアホール形成用の開口を正確な形状および大きさで形成しやすくなる。なお、銅箔11の厚みを2〜8μm程度に薄くする工程は必ずしも必要ではなく、最初から厚みが2〜8μmの薄い銅箔11を被着させておいてもよい。
[Step (b)]
Next, as shown in FIG. 4B, the copper foil 11 deposited on the surface of the insulating resin layer 4 is mechanically polished or chemically etched so that the thickness of the copper foil 11 is about 2 to 8 μm. make it thin. Thereby, it becomes easy to form an opening for forming a via hole formed in the copper foil 11 with an accurate shape and size in a process shown in FIG. Note that the step of reducing the thickness of the copper foil 11 to about 2 to 8 μm is not always necessary, and a thin copper foil 11 having a thickness of 2 to 8 μm may be deposited from the beginning.

次に、図4(c)に示すように、銅箔11にビアホール形成用の開口11aを形成する。開口11aの形成は、周知のフォトリソグラフィ技術を採用して行なえばよい。このとき、銅箔11の厚みが2〜8μmと薄いので、フォトリソグラフィ技術により正確な形状および大きさの開口11aを容易に形成することができる。なお、開口11aの形成は必ずしも必要ではなく、開口11aを設けないままであってもよい。   Next, as shown in FIG. 4C, an opening 11 a for forming a via hole is formed in the copper foil 11. The opening 11a may be formed using a well-known photolithography technique. At this time, since the thickness of the copper foil 11 is as thin as 2 to 8 μm, the opening 11a having an accurate shape and size can be easily formed by a photolithography technique. The opening 11a is not necessarily formed, and the opening 11a may not be provided.

次に、図5(d)に示すように、銅箔11に形成した開口11a内に露出する絶縁樹脂層4にレーザ加工やフォトリソグラフィ加工等によりビアホール9を形成する。このとき、銅箔11に開口11aを設けておくことによって絶縁樹脂層4へのビアホール9の形成が容易となる。なお、銅箔11に開口11aを設けないままの状態で銅箔11ごと絶縁樹脂層4にビアホール9を形成してもよい。   Next, as shown in FIG. 5D, via holes 9 are formed in the insulating resin layer 4 exposed in the openings 11a formed in the copper foil 11 by laser processing, photolithography processing, or the like. At this time, the formation of the via hole 9 in the insulating resin layer 4 is facilitated by providing the opening 11 a in the copper foil 11. The via hole 9 may be formed in the insulating resin layer 4 together with the copper foil 11 in a state where the opening 11 a is not provided in the copper foil 11.

絶縁樹脂層4にビアホール9を形成した後、ビアホール9内を例えば過酸化マンガンアルカリ水溶液等を用いてデスミア処理することが好ましい。デスミア処理によりビアホール9内に付着した不要な樹脂残渣を除去することができる。この場合、絶縁樹脂層4の表面は銅箔11により被覆されているので、デスミア処理により絶縁樹脂層4の表面がダメージを受けることがない。したがって、絶縁樹脂層4の表面に形成された微小な凹凸がそのままの形で維持される。   After forming the via hole 9 in the insulating resin layer 4, it is preferable to subject the inside of the via hole 9 to desmear treatment using, for example, an aqueous manganese peroxide solution. Undesirable resin residues adhering to the via holes 9 can be removed by the desmear process. In this case, since the surface of the insulating resin layer 4 is covered with the copper foil 11, the surface of the insulating resin layer 4 is not damaged by the desmear process. Therefore, the minute unevenness formed on the surface of the insulating resin layer 4 is maintained as it is.

[工程(c)]
次に、図5(e)に示すように、ビアホール9内に露出するコア用の配線導体2の表面からビアホール9の内壁および銅箔11の表面にかけて第一の無電解銅めっき層5A1を周知の無電解銅めっき法により0.3〜1.0μmの厚みに被着形成させ、引き続き、図5(f)に示すように、この第一の無電解銅めっき層5A1の表面に第一の電解銅めっき層5A2を、コア用の配線導体2の上に位置する第一の無電解銅めっき層5A1および第一の電解銅めっき層5A2の合計厚みT1が、銅箔11およびその上に位置する第一の無電解銅めっき層5A1および第一の電解銅めっき層5A2の合計厚みT2よりも厚くなるように、すなわちT1>T2の関係を満足するように被着形成させる。このような厚みの第一の電解銅めっき層5A2を被着させるには、例えば市販のフィルドビアめっき用の電解銅めっき液等を使用すればよい。
[Step (c)]
Next, as shown in FIG. 5E, the first electroless copper plating layer 5A1 is well known from the surface of the core wiring conductor 2 exposed in the via hole 9 to the inner wall of the via hole 9 and the surface of the copper foil 11. Then, the first electroless copper plating layer 5A1 is coated on the surface of the first electroless copper plating layer 5A1, as shown in FIG. 5 (f). The total thickness T1 of the first electroless copper plating layer 5A1 and the first electrolytic copper plating layer 5A2 positioned on the wiring conductor 2 for the core is placed on the copper foil 11 and on the copper foil 11A. The first electroless copper plating layer 5A1 and the first electrolytic copper plating layer 5A2 are deposited so as to be thicker than the total thickness T2, that is, satisfying the relationship of T1> T2. In order to deposit the first electrolytic copper plating layer 5A2 having such a thickness, for example, a commercially available electrolytic copper plating solution for filled via plating may be used.

[工程(d)]
次に、図6(g)に示すように、第一の電解銅めっき層5A2、第一の無電解銅めっき層5A1および銅箔11を周知の銅エッチング液でエッチングすることにより、コア用の配線導体2の上に第一の無電解銅めっき層5A1および第一の電解銅めっき5A2の一部を残存させたまま金属箔11を完全に除去する。このとき、前述のように、配線導体2の上に位置する第一の無電解銅めっき層5A1および第一の電解銅めっき層5A2の合計厚みT1が、銅箔11およびその上に位置する第一の無電解銅めっき層5A1および第一の電解銅めっき層5A2の合計厚みT2よりも厚くなるように被着形成させてあるので、第一の電解銅めっき層5A2、第一の無電解銅めっき層5A1および銅箔11を略均等にエッチングすると、配線導体2の上に第一の無電解銅めっき層5A1および第一の電解銅めっき5A2の一部を残存させたまま金属箔11を完全に除去することができる。これにより、ビアホール9内には第一の無電解銅めっき層5A1および第一の電解銅めっき層5A2から成る第一銅めっき層5Aがビアホール9の下部を充填する形で形成される。このとき、コア用の配線導体2の上には第一の銅めっき層5Aが残存したままなので、配線導体2が過剰にエッチングされるおそれはない。
[Step (d)]
Next, as shown in FIG. 6 (g), the first electrolytic copper plating layer 5A2, the first electroless copper plating layer 5A1 and the copper foil 11 are etched with a well-known copper etching solution, so that the core The metal foil 11 is completely removed while leaving a part of the first electroless copper plating layer 5A1 and the first electrolytic copper plating 5A2 on the wiring conductor 2. At this time, as described above, the total thickness T1 of the first electroless copper plating layer 5A1 and the first electrolytic copper plating layer 5A2 located on the wiring conductor 2 is the copper foil 11 and the first thickness located thereon. Since it is formed so as to be thicker than the total thickness T2 of the one electroless copper plating layer 5A1 and the first electrolytic copper plating layer 5A2, the first electrolytic copper plating layer 5A2, the first electroless copper When the plating layer 5A1 and the copper foil 11 are etched substantially evenly, the metal foil 11 is completely left on the wiring conductor 2 while leaving a part of the first electroless copper plating layer 5A1 and the first electrolytic copper plating 5A2. Can be removed. As a result, a first copper plating layer 5A composed of the first electroless copper plating layer 5A1 and the first electrolytic copper plating layer 5A2 is formed in the via hole 9 so as to fill the lower portion of the via hole 9. At this time, since the first copper plating layer 5A remains on the core wiring conductor 2, the wiring conductor 2 is not likely to be excessively etched.

ここで、金属箔11を除去した際に、ビアホール9内に露出する配線導体2の上に第一の無電解銅めっき層5A1および第一の電解銅めっき5A2の一部を確実に残存させる上で、前記T1とT2との比(T1/T2)が1.1以上、好ましくは1.1〜1.7にするのがよい。また、配線導体2の上に残存した第一の無電解銅めっき層5A1および第一の電解銅めっき5A2から成る第一銅めっき層5Aの厚みは10〜20μmであるのが好ましい。これにより、下記で説明する第二の無電解銅めっき層5B1および第二の電解銅めっき層5B2から成る第二の銅めっき層5Bを所定の位置に確実に被着形成することができる。   Here, when the metal foil 11 is removed, the first electroless copper plating layer 5A1 and part of the first electrolytic copper plating 5A2 are reliably left on the wiring conductor 2 exposed in the via hole 9. Therefore, the ratio of T1 and T2 (T1 / T2) is 1.1 or more, preferably 1.1 to 1.7. The thickness of the first copper plating layer 5A composed of the first electroless copper plating layer 5A1 and the first electrolytic copper plating 5A2 remaining on the wiring conductor 2 is preferably 10 to 20 μm. Thereby, the 2nd copper plating layer 5B which consists of 2nd electroless copper plating layer 5B1 and 2nd electrolytic copper plating layer 5B2 demonstrated below can be reliably adhere | attached and formed in a predetermined position.

[工程(e)]
次に、図6(h)に示すように、ビアホール9内に充填された第一の銅めっき層5Aの表面および絶縁樹脂層4の露出する表面に第二の無電解銅めっき層5B1を周知の無電解銅めっき法により0.3〜1.0μmの厚みに被着形成した後、図6(i)に示すように、絶縁樹脂4上に被着させた第二の無電解銅めっき層5B1の上に、めっきレジスト層12を形成する。
[Step (e)]
Next, as shown in FIG. 6 (h), the second electroless copper plating layer 5 </ b> B <b> 1 is well known on the surface of the first copper plating layer 5 </ b> A filled in the via hole 9 and the exposed surface of the insulating resin layer 4. The second electroless copper plating layer deposited on the insulating resin 4 as shown in FIG. 6 (i) after being deposited to a thickness of 0.3 to 1.0 μm by the electroless copper plating method. A plating resist layer 12 is formed on 5B1.

次に、図7(j)に示すように、めっきレジスト層12から露出する第二の無電解銅めっき層5B1の上に第二の電解銅めっき層5B2を周知の電解銅めっき法により10〜20μmの厚みに被着した後、図7(k)に示すように、めっきレジスト層12を剥離する。そして、図7(l)に示すように、第二の電解銅めっき層5B2から露出する第二の無電解銅めっき層5B1が消失するまで第二の無電解銅めっき層5B1および第二の電解銅めっき層5B2を周知の銅エッチング液によりエッチングすることにより、ビアホール9内の下位の配線導体2上に、ビアホール9の下部を充填するように被着形成された第一の銅めっき層5Aと、この第一の銅めっき層5Aの上から絶縁樹脂層4の表面にかけてビアホール9の上部を充填するように披着形成された第二の銅めっき層5Bとから成る配線導体5が形成される。このようにしてビルドアップ用の配線導体を形成すると、ビアホール上の配線導体に大きな凹部が形成されることがなく、下位のビアホール上に上位のビアホールを重ねて設けた場合であっても、上下のビアホール間における配線導体同士の電気的な接続信頼性に優れる高密度配線が可能で薄型の反りや変形の少ない配線基板が得られる。   Next, as shown in FIG. 7 (j), a second electrolytic copper plating layer 5B2 is formed on the second electroless copper plating layer 5B1 exposed from the plating resist layer 12 by a known electrolytic copper plating method. After depositing to a thickness of 20 μm, the plating resist layer 12 is peeled off as shown in FIG. Then, as shown in FIG. 7 (l), the second electroless copper plating layer 5B1 and the second electrolysis are removed until the second electroless copper plating layer 5B1 exposed from the second electrolytic copper plating layer 5B2 disappears. By etching the copper plating layer 5B2 with a well-known copper etchant, the first copper plating layer 5A deposited on the lower wiring conductor 2 in the via hole 9 so as to fill the lower portion of the via hole 9 and A wiring conductor 5 is formed comprising the second copper plating layer 5B formed so as to fill the upper portion of the via hole 9 from the top of the first copper plating layer 5A to the surface of the insulating resin layer 4. . When the wiring conductor for buildup is formed in this way, a large recess is not formed in the wiring conductor on the via hole, and even when the upper via hole is provided on the lower via hole, High-density wiring with excellent electrical connection reliability between the wiring conductors between the via holes can be obtained, and a thin wiring board with less warpage and deformation can be obtained.

上記で説明した配線基板10は、例えば半導体集積回路素子E1の電極端子と第一接続部5aとを導電バンプB1を介して電気的に接続した後、半導体集積回路素子E1と配線基板10との間の隙間にエポキシ樹脂等の熱硬化性樹脂から成るアンダーフィルと呼ばれる充填樹脂U1を充填し、半導体集積回路素子E1が配線基板10上に実装される。さらに、その上に半導体素子搭載基板E2の電極端子と第二接続部5bとを半田ボールB2を介して電気的に接続することにより半導体素子搭載基板E2が配線基板10上に実装され、これにより配線基板10上に複数の電子部品が高密度に実装される。実装後は、絶縁基板3,埋め込み樹脂8,絶縁樹脂層4を構成する各熱硬化性樹脂に低熱膨張係数の無機絶縁物フィラーを所定の割合で高密度充填しているので、配線基板10が半導体集積回路素子E1との熱膨張係数の相違に起因して大きく反ることを有効に防止することができる。   For example, the wiring substrate 10 described above is formed by electrically connecting the electrode terminal of the semiconductor integrated circuit element E1 and the first connection portion 5a via the conductive bump B1, and then connecting the semiconductor integrated circuit element E1 and the wiring substrate 10 to each other. A gap between them is filled with a filling resin U <b> 1 called an underfill made of a thermosetting resin such as an epoxy resin, and the semiconductor integrated circuit element E <b> 1 is mounted on the wiring substrate 10. Furthermore, the semiconductor element mounting board E2 is mounted on the wiring board 10 by electrically connecting the electrode terminal of the semiconductor element mounting board E2 and the second connection portion 5b via the solder ball B2 thereon, thereby A plurality of electronic components are mounted on the wiring board 10 with high density. After mounting, each thermosetting resin constituting the insulating substrate 3, the embedded resin 8, and the insulating resin layer 4 is filled with an inorganic insulating filler having a low thermal expansion coefficient at a high density in a predetermined ratio, so that the wiring substrate 10 is It is possible to effectively prevent warping due to a difference in thermal expansion coefficient from that of the semiconductor integrated circuit element E1.

本発明の一実施形態にかかる配線基板を示す概略断面図である。It is a schematic sectional drawing which shows the wiring board concerning one Embodiment of this invention. 図2は、図1の配線基板を示す平面図である。FIG. 2 is a plan view showing the wiring board of FIG. 本発明の一本実施形態にかかるビアホール内の配線導体付近を示す部分拡大断面図である。It is a partial expanded sectional view which shows the wiring conductor vicinity in the via hole concerning one embodiment of this invention. (a)〜(c)は、本発明の一本実施形態にかかるビルドアップ用の配線導体をセミアディティブ法により形成する工程を説明する要部概略断面図である。(A)-(c) is a principal part schematic sectional drawing explaining the process of forming the wiring conductor for buildup concerning one embodiment of this invention by a semi-additive method. (d)〜(f)は、本発明の一本実施形態にかかるビルドアップ用の配線導体をセミアディティブ法により形成する工程を説明する要部概略断面図である。(D)-(f) is principal part schematic sectional drawing explaining the process of forming the wiring conductor for buildup concerning one embodiment of this invention by a semi-additive method. (g)〜(i)は、本発明の一本実施形態にかかるビルドアップ用の配線導体をセミアディティブ法により形成する工程を説明する要部概略断面図である。(G)-(i) is a principal part schematic sectional drawing explaining the process of forming the wiring conductor for buildup concerning one embodiment of this invention by a semi-additive method. (j)〜(l)は、本発明の一本実施形態にかかるビルドアップ用の配線導体をセミアディティブ法により形成する工程を説明する要部概略断面図である。(J)-(l) is a principal part schematic sectional drawing explaining the process of forming the wiring conductor for buildup concerning one embodiment of this invention by a semi-additive method. 従来の配線基板の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the conventional wiring board. 図8の配線基板を示す平面図である。It is a top view which shows the wiring board of FIG.

符号の説明Explanation of symbols

2 コア用の配線導体
3 コア用の絶縁基板
4 ビルドアップ用の絶縁樹脂層
5 ビルドアップ用の配線導体
5A 第一の銅めっき層
5A1 第一の無電解銅めっき層
5A2 第一の電解銅めっき層
5B 第二の銅めっき層
5B1 第二の無電解銅めっき層
5B2 第二の電解銅めっき層
5a 第一接続部
5b 第二接続部
5c 第三接続部
6 ソルダーレジスト層
7 スルーホール
8 埋め込み樹脂
9 ビアホール
10 配線基板
11 銅箔
11a 開口
12 めっきレジスト層
2 Wiring conductor for core 3 Insulating substrate for core 4 Insulating resin layer for buildup 5 Wiring conductor for buildup 5A First copper plating layer 5A1 First electroless copper plating layer 5A2 First electrolytic copper plating Layer 5B Second copper plating layer 5B1 Second electroless copper plating layer 5B2 Second electrolytic copper plating layer 5a First connection portion 5b Second connection portion 5c Third connection portion 6 Solder resist layer 7 Through hole 8 Embedded resin 9 Via hole 10 Wiring board 11 Copper foil 11a Opening 12 Plating resist layer

Claims (10)

下位絶縁樹脂層と、
該下位絶縁樹脂層の表面に形成された下位配線導体と、
前記下位絶縁樹脂層および下位配線導体の上に積層され、前記下位配線導体に達するビアホールを有する上位絶縁樹脂層と、
前記ビアホール内の前記下位配線導体の上から前記上位絶縁樹脂層の表面にかけて被着形成された金属めっき層から成る上位配線導体と、を備えた配線基板であって、
前記金属めっき層が、
前記ビアホール内の前記下位配線導体の上に前記ビアホールの下部を充填するように被着形成された第一の金属めっき層と、
該第一の金属めっき層から前記上位絶縁樹脂層の表面にかけて被着形成された第二の金属めっき層とから成ることを特徴とする配線基板。
A lower insulating resin layer;
A lower wiring conductor formed on the surface of the lower insulating resin layer;
An upper insulating resin layer laminated on the lower insulating resin layer and the lower wiring conductor, and having a via hole reaching the lower wiring conductor;
An upper wiring conductor comprising a metal plating layer deposited on the surface of the upper insulating resin layer from above the lower wiring conductor in the via hole, and a wiring board comprising:
The metal plating layer is
A first metal plating layer deposited on the lower wiring conductor in the via hole so as to fill a lower portion of the via hole;
A wiring board comprising: a second metal plating layer deposited from the first metal plating layer to a surface of the upper insulating resin layer.
前記第一の金属めっき層が無電解金属めっき層と、該無電解金属めっき層の上に被着形成された電解金属めっき層とから成る請求項1に記載の配線基板。   The wiring board according to claim 1, wherein the first metal plating layer includes an electroless metal plating layer and an electrolytic metal plating layer deposited on the electroless metal plating layer. 前記第二の金属めっき層が無電解金属めっき層と、該無電解金属めっき層の上に被着形成された電解金属めっき層とから成る請求項1または2に記載の配線基板。   The wiring board according to claim 1 or 2, wherein the second metal plating layer includes an electroless metal plating layer and an electrolytic metal plating layer deposited on the electroless metal plating layer. 絶縁樹脂層と配線導体とを交互に積層する工程を含む配線基板の製造方法であって、以下の工程(a)〜(e)を順に含むことを特徴とする配線基板の製造方法。
(a)表面に下位配線導体を有する下位絶縁樹脂層上に、表面に金属箔が被着された上位絶縁樹脂層を積層する工程
(b)前記金属箔の前記下位配線導体と対向する一部を除去するとともに、該除去部内の前記上位絶縁樹脂層に、前記下位配線導体に達するビアホールを形成する工程
(c)前記金属箔、前記上位絶縁樹脂層および前記ビアホール内に露出する下位配線導体の表面に、第一の金属めっき層を、前記下位配線導体上に位置する第一の金属めっき層の厚みをT1、前記金属箔および該金属箔上に位置する第一の金属めっき層の合計厚みをT2としたとき、前記T1およびT2がT1>T2の関係を満足するように被着形成する工程
(d)前記第一の金属めっき層および前記金属箔をエッチングすることにより、前記下位配線導体上に前記第一の金属めっき層の一部を残存させたまま前記金属箔を除去する工程
(e)前記第一の金属めっき層および前記上位絶縁樹脂層の露出する表面に前記ビアホールを介して前記下位配線導体に電気的に接続された第二の金属めっき層から成る上位配線導体を被着形成する工程
A method of manufacturing a wiring board including a step of alternately laminating insulating resin layers and wiring conductors, the method including the following steps (a) to (e) in order:
(A) A step of laminating an upper insulating resin layer having a metal foil on the surface thereof on a lower insulating resin layer having a lower wiring conductor on the surface (b) A part of the metal foil facing the lower wiring conductor (C) forming a via hole reaching the lower wiring conductor in the upper insulating resin layer in the removal portion (c) the metal foil, the upper insulating resin layer, and the lower wiring conductor exposed in the via hole On the surface, the first metal plating layer, the thickness of the first metal plating layer located on the lower wiring conductor is T1, the total thickness of the metal foil and the first metal plating layer located on the metal foil (2) The lower wiring conductor is formed by etching the first metal plating layer and the metal foil so that T1 and T2 satisfy the relationship of T1> T2. Up (E) removing the metal foil while leaving a part of the first metal plating layer remaining (e) the lower surface through the via hole on the exposed surface of the first metal plating layer and the upper insulating resin layer A process of depositing and forming an upper wiring conductor composed of a second metal plating layer electrically connected to the wiring conductor
前記工程(a)の後でかつ前記工程(b)の前に、前記金属箔の厚みを化学的エッチングまたは物理的研磨により減少させる工程を含む請求項4に記載の配線基板の製造方法。   The method for manufacturing a wiring board according to claim 4, comprising a step of reducing the thickness of the metal foil by chemical etching or physical polishing after the step (a) and before the step (b). 前記工程(b)において、前記金属箔の前記下位配線導体と対向する一部を、エッチングにより除去する請求項4または5に記載の配線基板の製造方法。   The method for manufacturing a wiring board according to claim 4 or 5, wherein, in the step (b), a part of the metal foil facing the lower wiring conductor is removed by etching. 前記工程(b)において、前記金属箔の前記下位配線導体と対向する一部を、レーザ加工により除去する請求項4または5に記載の配線基板の製造方法。   The method for manufacturing a wiring board according to claim 4 or 5, wherein in the step (b), a part of the metal foil facing the lower wiring conductor is removed by laser processing. 前記工程(b)の後でかつ前記工程(c)の前に、前記ビアホール内のデスミア処理を行なう請求項4〜7のいずれかに記載の配線基板の製造方法。   The method for manufacturing a wiring board according to claim 4, wherein a desmear treatment in the via hole is performed after the step (b) and before the step (c). 前記第一の金属めっき層が無電解金属めっき層と、該無電解金属めっき層の上に被着形成された電解金属めっき層とから成る請求項4〜8のいずれかに記載の配線基板の製造方法。   The wiring board according to any one of claims 4 to 8, wherein the first metal plating layer includes an electroless metal plating layer and an electrolytic metal plating layer formed on the electroless metal plating layer. Production method. 前記第二の金属めっき層が無電解金属めっき層と、該無電解金属めっき層の上に被着形成された電解金属めっき層とから成る請求項4〜9のいずれかに記載の配線基板の製造方法。   The wiring board according to any one of claims 4 to 9, wherein the second metal plating layer includes an electroless metal plating layer and an electrolytic metal plating layer deposited on the electroless metal plating layer. Production method.
JP2007073966A 2007-03-22 2007-03-22 Wiring board manufacturing method Expired - Fee Related JP5221887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007073966A JP5221887B2 (en) 2007-03-22 2007-03-22 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007073966A JP5221887B2 (en) 2007-03-22 2007-03-22 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2008235624A true JP2008235624A (en) 2008-10-02
JP5221887B2 JP5221887B2 (en) 2013-06-26

Family

ID=39908062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007073966A Expired - Fee Related JP5221887B2 (en) 2007-03-22 2007-03-22 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP5221887B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009606A (en) * 2010-06-24 2012-01-12 Shinko Electric Ind Co Ltd Wiring board
JP2012044081A (en) * 2010-08-23 2012-03-01 Kyocer Slc Technologies Corp Wiring board manufacturing method
JP2012195465A (en) * 2011-03-17 2012-10-11 Canon Inc Through hole electrode substrate and manufacturing method of the same
JP2015012237A (en) * 2013-07-01 2015-01-19 新光電気工業株式会社 Wiring board, semiconductor device and wiring board manufacturing method
JP2015050343A (en) * 2013-09-02 2015-03-16 新光電気工業株式会社 Wiring board, semiconductor device and wiring board manufacturing method
JP2016111319A (en) * 2014-12-08 2016-06-20 旭徳科技股▲ふん▼有限公司 Package structure and manufacturing method of the same
KR101875943B1 (en) * 2011-10-24 2018-07-06 엘지이노텍 주식회사 Printed circuit board and manufacturing method therefor
WO2020027022A1 (en) * 2018-07-31 2020-02-06 京セラ株式会社 Printed-wiring board and method of manufacturing printed-wiring board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036661A (en) * 1998-07-17 2000-02-02 Hitachi Chem Co Ltd Manufacture of build-up multilayer interconnection board
JP2002151623A (en) * 2000-11-10 2002-05-24 Shigetaka Ooto Method for manufacturing two-metal layer tape bga(tbga) embedded in blind hole by plating
JP2002261440A (en) * 2001-03-01 2002-09-13 Sony Chem Corp Method of manufacturing flexible wiring board and the flexible wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036661A (en) * 1998-07-17 2000-02-02 Hitachi Chem Co Ltd Manufacture of build-up multilayer interconnection board
JP2002151623A (en) * 2000-11-10 2002-05-24 Shigetaka Ooto Method for manufacturing two-metal layer tape bga(tbga) embedded in blind hole by plating
JP2002261440A (en) * 2001-03-01 2002-09-13 Sony Chem Corp Method of manufacturing flexible wiring board and the flexible wiring board

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009606A (en) * 2010-06-24 2012-01-12 Shinko Electric Ind Co Ltd Wiring board
JP2012044081A (en) * 2010-08-23 2012-03-01 Kyocer Slc Technologies Corp Wiring board manufacturing method
JP2012195465A (en) * 2011-03-17 2012-10-11 Canon Inc Through hole electrode substrate and manufacturing method of the same
KR101875943B1 (en) * 2011-10-24 2018-07-06 엘지이노텍 주식회사 Printed circuit board and manufacturing method therefor
JP2015012237A (en) * 2013-07-01 2015-01-19 新光電気工業株式会社 Wiring board, semiconductor device and wiring board manufacturing method
JP2015050343A (en) * 2013-09-02 2015-03-16 新光電気工業株式会社 Wiring board, semiconductor device and wiring board manufacturing method
CN105990157A (en) * 2014-12-08 2016-10-05 旭德科技股份有限公司 Packaging structure and manufacturing method thereof
US9589942B2 (en) 2014-12-08 2017-03-07 Subtron Technology Co., Ltd. Package structure and manufacturing method thereof
JP2016111319A (en) * 2014-12-08 2016-06-20 旭徳科技股▲ふん▼有限公司 Package structure and manufacturing method of the same
WO2020027022A1 (en) * 2018-07-31 2020-02-06 京セラ株式会社 Printed-wiring board and method of manufacturing printed-wiring board
CN112514544A (en) * 2018-07-31 2021-03-16 京瓷株式会社 Printed wiring board and method for manufacturing printed wiring board
JPWO2020027022A1 (en) * 2018-07-31 2021-08-02 京セラ株式会社 Printing wiring board and manufacturing method of printed wiring board
US11540390B2 (en) 2018-07-31 2022-12-27 Kyocera Corporation Printed wiring board and method of manufacturing printed wiring board
JP7366025B2 (en) 2018-07-31 2023-10-20 京セラ株式会社 Printed wiring board and method for manufacturing printed wiring board
CN112514544B (en) * 2018-07-31 2024-04-19 京瓷株式会社 Printed wiring board and method for manufacturing printed wiring board

Also Published As

Publication number Publication date
JP5221887B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
TWI482542B (en) Multilayer wiring substrate
US9247644B2 (en) Wiring board and method for manufacturing the same
JP5662551B1 (en) WIRING BOARD, SEMICONDUCTOR DEVICE, AND WIRING BOARD MANUFACTURING METHOD
US8177577B2 (en) Printed wiring board having a substrate with higher conductor density inserted into a recess of another substrate with lower conductor density
JP5221887B2 (en) Wiring board manufacturing method
US9253897B2 (en) Wiring substrate and method for manufacturing the same
WO2004103039A1 (en) Double-sided wiring board, double-sided wiring board manufacturing method, and multilayer wiring board
JP2015122545A (en) Multilayer wiring board and manufacturing method of the same
JP2010135721A (en) Printed circuit board comprising metal bump and method of manufacturing the same
JP5576547B2 (en) Wiring board manufacturing method
JP2011077537A (en) Multilayer printed circuit board and method of manufacturing the same
JP2005236067A (en) Wiring substrate, its manufacturing method and semiconductor package
TW201444440A (en) Printed circuit board and fabricating method thereof
JP2010123829A (en) Printed wiring board and manufacturing method thereof
JP5432800B2 (en) Wiring board manufacturing method
JP2012209418A (en) Wiring board and method for manufacturing the same
JP2010040936A (en) Wiring board and method of manufacturing the same
JP5058929B2 (en) Wiring board and manufacturing method thereof
JP5289241B2 (en) Wiring board and manufacturing method thereof
JP5565951B2 (en) Wiring board and manufacturing method thereof
JP5419583B2 (en) Wiring board manufacturing method
JP2005072085A (en) Method of manufacturing wiring board and wiring board
JP2008124124A (en) Core board manufacturing method, and wiring board manufacturing method
JP5341796B2 (en) Wiring board manufacturing method
JP2007150111A (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5221887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees