JP2012209418A - Wiring board and method for manufacturing the same - Google Patents

Wiring board and method for manufacturing the same Download PDF

Info

Publication number
JP2012209418A
JP2012209418A JP2011073834A JP2011073834A JP2012209418A JP 2012209418 A JP2012209418 A JP 2012209418A JP 2011073834 A JP2011073834 A JP 2011073834A JP 2011073834 A JP2011073834 A JP 2011073834A JP 2012209418 A JP2012209418 A JP 2012209418A
Authority
JP
Japan
Prior art keywords
solder
connection pad
semiconductor element
resist layer
wiring conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011073834A
Other languages
Japanese (ja)
Inventor
Satoshi Kajita
智 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocer Slc Tech Corp
Kyocera SLC Technologies Corp
Original Assignee
Kyocer Slc Tech Corp
Kyocera SLC Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocer Slc Tech Corp, Kyocera SLC Technologies Corp filed Critical Kyocer Slc Tech Corp
Priority to JP2011073834A priority Critical patent/JP2012209418A/en
Publication of JP2012209418A publication Critical patent/JP2012209418A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a wiring board which can effectively prevent solder from permeating to get in between a wiring conductor forming a connection pad and a solder resist layer, in which a semiconductor element connection pad and an outer connection pad are satisfactorily wetted by a lead-free solder even if the lead-free solder is deposited on the semiconductor element connection pad and the outer connection pad, thereby the entire surfaces of the semiconductor element connection pad and the outer connection pad are covered with the solder having a sufficient thickness, and which has excellent reliability of mounting of the semiconductor element on the wiring board and excellent reliability of mounting of the wiring board on an external electric circuit substrate.SOLUTION: A wiring conductor 2 has a surface covered with a solder resist layer 5, having an arithmetic average roughness Ra of 0.5 μm or more, and a surface exposed from openings 5a, 5b of the solder resist layer 5, having an arithmetic average roughness Ra of 0.4 μm or less.

Description

本発明は、半導体素子を搭載するための配線基板およびその製造方法に関するものである。   The present invention relates to a wiring board for mounting a semiconductor element and a manufacturing method thereof.

半導体集積回路素子等の半導体素子を搭載するために用いられる配線基板には、ガラス基材および熱硬化性樹脂から成る絶縁板と銅箔等から成る配線導体とを交互に複数積層して成るプリント配線基板や、ガラス基材および熱硬化性樹脂から成る絶縁板上に熱硬化性樹脂およびフィラーから成る絶縁層と銅めっき層から成る配線導体とを複数積層して成るビルドアップ配線基板が用いられている。このような配線基板の上面には半導体素子の電極と接続するための配線導体から成る半導体素子接続パッドが格子状の並びに配列されているとともに、これらの半導体素子接続パッドの中央部を露出させる開口部を有する紫外線硬化型の感光性樹脂の硬化物から成るソルダーレジスト層が被着されている。また、このような配線基板の下面には外部の電気回路基板に接続するための配線導体から成る外部接続パッドが格子状の並びに配列されているとともに、これらの外部接続パッドの中央部を露出させる開口部を有する紫外線硬化型の感光性樹脂の硬化物から成るソルダーレジスト層が被着されている。さらに、ソルダーレジスト層の開口部から露出した半導体素子接続パッド上には半導体素子の電極と半導体素子接続パッドとを接合するための半田バンプが溶着されており、ソルダーレジスト層の開口部から露出した外部接続パッド上には、外部電気回路基板と接続するための半田層が溶着されている。   A printed circuit board that is used to mount semiconductor elements such as semiconductor integrated circuit elements, and that is composed of a plurality of laminated wiring conductors made of copper foil and other insulating plates made of glass substrate and thermosetting resin. A build-up wiring board is used, which consists of a wiring board and a plurality of insulating layers made of a thermosetting resin and filler and a wiring conductor made of a copper plating layer on an insulating board made of a glass substrate and a thermosetting resin. ing. On the upper surface of such a wiring board, semiconductor element connection pads made of wiring conductors for connecting to the electrodes of the semiconductor elements are arranged in a lattice pattern, and openings that expose the central portions of these semiconductor element connection pads are arranged. A solder resist layer made of a cured product of an ultraviolet curable photosensitive resin having a portion is applied. In addition, external connection pads made of wiring conductors for connection to an external electric circuit board are arranged in a lattice pattern on the lower surface of such a wiring board, and the central portion of these external connection pads is exposed. A solder resist layer made of a cured product of an ultraviolet curable photosensitive resin having an opening is applied. Furthermore, solder bumps for bonding the electrodes of the semiconductor element and the semiconductor element connection pads are welded onto the semiconductor element connection pads exposed from the openings of the solder resist layer, and are exposed from the openings of the solder resist layer. On the external connection pad, a solder layer for connection to an external electric circuit board is welded.

そして、このような配線基板においては、半導体素子をその各電極がそれぞれ対応する半田バンプに当接するようにして配線基板の上面に載置するとともに、これらを例えば電気炉等の加熱装置で約260℃程度に加熱して半田バンプを溶融させて半田バンプと半導体素子の電極とを接合させることによって、半導体素子が配線基板上に実装される。また、半導体素子が実装された配線基板は、外部接続パッドに溶着された半田層に半田ボールを溶着させるとともに、その半田ボールと外部電気回路基板の配線導体とを当接させた状態で半田ボールを溶融させることにより外部電気回路基板上に実装される。   In such a wiring board, the semiconductor element is placed on the upper surface of the wiring board such that each electrode thereof abuts a corresponding solder bump, and these are placed on a heating device such as an electric furnace for about 260. The semiconductor element is mounted on the wiring board by heating the solder bump to about 0 ° C. to melt the solder bump and bonding the solder bump and the electrode of the semiconductor element. In addition, the wiring board on which the semiconductor element is mounted has the solder ball welded to the solder layer welded to the external connection pad, and the solder ball is in contact with the wiring conductor of the external electric circuit board. It is mounted on an external electric circuit board by melting.

しかしながら、半導体素子を配線基板上に実装する際や配線基板を外部電気回路基板に実装する際に、溶融した半田の一部がソルダーレジスト層の開口部の縁から半導体素子接続パッドや外部接続パッドを形成する配線導体とソルダーレジスト層との間に滲入して潜り込んでしまうという現象が発生することがある。このような半田の潜り込みは、半田を溶融させる際の260℃の高温時におけるソルダーレジスト層の弾性率の低下が原因のひとつとして考えられており、そのためソルダーレジスト層の形成時に紫外線硬化と熱硬化とを併用してソルダーレジスト層の架橋密度を上げて高温時の弾性率を高めることがなされている。さらに、半導体素子接続パッドや外部接続パッドを形成する配線導体の表面の算術平均粗さRaをエッチングにより0.5μm以上とすることにより、配線導体とソルダーレジスト層との密着を強固なものとして半田の潜り込みを抑制することも提案されている。   However, when the semiconductor element is mounted on the wiring board or when the wiring board is mounted on the external electric circuit board, a part of the melted solder is exposed from the edge of the opening of the solder resist layer to the semiconductor element connection pad or the external connection pad. In some cases, a phenomenon may occur in which the film penetrates between the wiring conductor forming the solder and the solder resist layer and enters the solder resist layer. Such solder penetration is considered to be one of the causes of a decrease in the elastic modulus of the solder resist layer at a high temperature of 260 ° C. when melting the solder. Therefore, ultraviolet curing and thermal curing are performed during the formation of the solder resist layer. Is used in combination to increase the crosslink density of the solder resist layer and increase the elastic modulus at high temperatures. Furthermore, by making the arithmetic mean roughness Ra of the surface of the wiring conductor forming the semiconductor element connection pad and the external connection pad 0.5 μm or more by etching, the adhesion between the wiring conductor and the solder resist layer is strengthened and soldered. It has also been proposed to suppress the sneaking in.

特開2008−244000号公報JP 2008-244000 A

しかしながら、半導体素子接続パッドや外部接続パッドを形成する配線導体表面の算術平均粗さRaをエッチングにより0.5μm以上と粗いものにすると、この半導体素子接続パッドや外部接続パッドの表面に半田バンプや半田層を溶着させる際に、その半田が鉛フリー半田である場合、鉛フリー半田は銅に対する濡れ性が劣るため半導体素子接続パッドや外部接続パッドと半田とが良好に濡れずに十分な厚みの半田で覆われない箇所が部分的に発生してしまうという現象が起きやすい。このような箇所が発生すると、半導体素子接続パッドと半導体素子や外部接続パッドと外部電気回路基板とを強固に接合することができずに、これらの間に半田の破断等が発生し、配線基板に対する半導体素子の実装信頼性や外部電気回路基板に対する配線基板の実装信頼性が低いものとなってしまう。   However, if the arithmetic mean roughness Ra of the surface of the wiring conductor forming the semiconductor element connection pad or the external connection pad is roughened to 0.5 μm or more by etching, solder bumps or When the solder layer is deposited, if the solder is lead-free solder, the lead-free solder has poor wettability with respect to copper, so that the semiconductor element connection pad and the external connection pad do not get wet well and the solder has sufficient thickness. Phenomenon that a part that is not covered with solder occurs partially. When such a portion occurs, the semiconductor element connection pad and the semiconductor element or the external connection pad and the external electric circuit board cannot be firmly bonded, and solder breakage or the like occurs between them, and the wiring board Therefore, the mounting reliability of the semiconductor element with respect to the above and the mounting reliability of the wiring board with respect to the external electric circuit board become low.

本願発明者は、鋭意研究の結果、半導体素子接続パッドや外部接続パッドを形成する配線導体表面の算術平均粗さRaをエッチングにより0.5μm以上の粗いものとした場合、配線導体表面のエッチングされた粗化面における微小な凸部の高さが高くなるとともに凸部が細くなり、この粗化面に鉛フリー半田を溶着させると、高さが高くかつ細くなった凸部が鉛フリー半田中に大きく溶け込んで所謂半田食われが部分的に発生し、その場所にボイドが形成され、そのボイド部分において半導体素子接続パッドや外部接続パッドに半田が良好に濡れずに十分な厚みの半田で覆われない箇所が発生することをつきとめ本発明を完成するに至った。   As a result of earnest research, the inventor of the present application has etched the wiring conductor surface when the arithmetic average roughness Ra of the surface of the wiring conductor forming the semiconductor element connection pad and the external connection pad is 0.5 μm or more by etching. The height of the minute protrusions on the roughened surface increases and the protrusions become thin. When lead-free solder is welded to this roughened surface, the high and thin protrusions appear in the lead-free solder. So-called solder erosion occurs partially and a void is formed at the location, and the semiconductor element connection pad and the external connection pad are not sufficiently wetted with the solder and covered with a sufficient thickness of solder. The present invention has been completed by ascertaining the occurrence of unidentified parts.

本発明は、かかる知見に基づき案出されたものであり、その課題は、半導体素子接続パッドや外部接続パッドを形成する配線導体の表面の算術平均粗さRaを0.5μm以上と粗いものとすることによりソルダーレジスト層と配線導体との密着を強固なものとして、溶融した半田の一部がソルダーレジスト層の開口部の縁から半導体素子接続パッドや外部接続パッドを形成する配線導体とソルダーレジスト層との間に滲入して潜り込むのを有効に防止するとともに、半導体素子接続パッドや外部接続パッドに鉛フリー半田を溶着させたとしても半導体素子接続パッドや外部接続パッドに鉛フリー半田が良好に濡れ、それにより半導体素子接続パッドや外部接続パッドの全面が十分な厚みの半田で覆われ、配線基板に対する半導体素子の実装信頼性や外部電気回路基板に対する配線基板の実装信頼性に優れる配線基板を提供することにある。   The present invention has been devised based on such knowledge, and the problem is that the arithmetic average roughness Ra of the surface of the wiring conductor forming the semiconductor element connection pad and the external connection pad is as rough as 0.5 μm or more. By doing so, the adhesion between the solder resist layer and the wiring conductor is strengthened, and a part of the melted solder forms a semiconductor element connection pad and an external connection pad from the edge of the opening of the solder resist layer. Effectively prevent penetration and penetration into the layer, and lead-free solder is good for semiconductor element connection pads and external connection pads even if lead-free solder is welded to semiconductor element connection pads and external connection pads As a result, the entire surface of the semiconductor element connection pads and external connection pads are covered with a sufficiently thick solder, and the semiconductor element mounting signal on the wiring board is covered. It is to provide a wiring board having excellent mounting reliability of the wiring board on sexual and external electric circuit board.

本発明の配線基板は、絶縁基板の上面に複数の接続パッド有する銅から成る配線導体と、前記接続パッドの外周部を覆い、且つ該接続パッドの中央部を露出させる開口部を有するソルダーレジスト層とが順次被着されて成るとともに、前記開口部から露出する前記接続パッドに鉛フリー半田を溶着させて成る配線基板であって、前記配線導体は、前記ソルダーレジスト層で覆われた面が算術平均粗さRaで0.5μm以上であり、かつ前記開口部から露出する面が算術平均粗さRaで0.4μm以下であることを特徴とするものである。   The wiring board of the present invention includes a wiring conductor made of copper having a plurality of connection pads on the upper surface of an insulating substrate, and a solder resist layer having an opening that covers the outer periphery of the connection pad and exposes the center of the connection pad And a wiring board in which lead-free solder is welded to the connection pad exposed from the opening, and the surface of the wiring conductor covered with the solder resist layer is arithmetic The average roughness Ra is 0.5 μm or more, and the surface exposed from the opening is an arithmetic average roughness Ra of 0.4 μm or less.

本発明の配線基板の製造方法は、絶縁基板の上面に複数の接続パッドを有する銅から成る配線導体を形成する工程と、前記配線導体の露出する表面を化学的にエッチングして算術平均粗さRaが0.5μm以上の粗化面とする工程と、前記絶縁基板および前記配線導体の上に前記接続パッドの外周部を覆い、且つ該接続パッドの中央部を露出させる開口部を有するソルダーレジスト層を形成する工程と、前記開口部から露出する前記接続パッドの表面をウエットブラストおよび該ウエットブラストの後の化学的エッチングにより算術平均粗さRaが0.4μm以下となるように平滑化する工程と、前記開口部から露出する前記接続パッドに鉛フリー半田を溶着する工程と、有することを特徴とするものである。   The method of manufacturing a wiring board according to the present invention includes a step of forming a wiring conductor made of copper having a plurality of connection pads on an upper surface of an insulating substrate, and an arithmetic average roughness by chemically etching the exposed surface of the wiring conductor. A solder resist having a roughened surface with Ra of 0.5 μm or more, and an opening that covers an outer peripheral portion of the connection pad on the insulating substrate and the wiring conductor and exposes a central portion of the connection pad A step of forming a layer, and a step of smoothing the surface of the connection pad exposed from the opening by wet blasting and chemical etching after the wet blasting so that the arithmetic average roughness Ra is 0.4 μm or less. And a step of welding lead-free solder to the connection pad exposed from the opening.

本発明の配線基板によれば、接続パッドを形成する配線導体は、ソルダーレジスト層で覆われた面が算術平均粗さRaで0.5μmであることから、この粗化面を介して配線導体とソルダーレジスト層とが強固に密着するとともに配線導体の粗化面が半田の滲入を防止するための障壁として作用する。また、ソルダーレジスト層の開口部から露出する接続パッドの面が算術平均粗さRaで0.4μm以下であることから、この露出面の凸部が半田中に大きく溶け込むことがなく、したがってボイドの発生もなく接続パッドと半田とが良好に濡れるので、接続パッドの全面が十分な厚み半田で覆われ、配線基板に対する半導体素子の実装信頼性や外部電気回路基板に対する配線基板の実装信頼性に優れる配線基板となる。   According to the wiring board of the present invention, since the surface covered with the solder resist layer is 0.5 μm in arithmetic mean roughness Ra, the wiring conductor forming the connection pad is connected to the wiring conductor via this roughened surface. And the solder resist layer firmly adhere to each other, and the roughened surface of the wiring conductor acts as a barrier for preventing the penetration of solder. In addition, since the surface of the connection pad exposed from the opening of the solder resist layer has an arithmetic average roughness Ra of 0.4 μm or less, the convex portion of the exposed surface does not greatly dissolve in the solder, and therefore the void Since the connection pad and the solder get wet well without any occurrence, the entire surface of the connection pad is covered with a sufficient thickness of solder, and the mounting reliability of the semiconductor element to the wiring board and the mounting reliability of the wiring board to the external electric circuit board are excellent. It becomes a wiring board.

また、本発明の配線基板の製造方法によれば、接続パッドを形成する配線導体の露出する表面を化学的にエッチングして算術平均粗さRaが0.5μmの粗化面とした後、ソルダーレジスト層を形成することから、配線導体とソルダーレジスト層とが粗化面を介して強固に密着するとともに配線導体の粗化面を半田の滲入を防止するための障壁とすることができる。また、ソルダーレジスト層の開口部から露出する接続パッドの表面をウエットブラストおよび該ウエットブラストの後の化学的エッチングにより算術平均粗さRaが0.4μm以下となるように平滑化することから、この露出面の凸部が半田中に大きく溶け込むことがなく、したがってボイドの発生もなく接続パッドと半田とが良好に濡れるので、接続パッドの全面が十分な厚み半田で覆われ、配線基板に対する半導体素子の実装信頼性や外部電気回路基板に対する配線基板の実装信頼性に優れる配線基板を提供することができる。   Further, according to the method for manufacturing a wiring board of the present invention, after the exposed surface of the wiring conductor forming the connection pad is chemically etched to obtain a roughened surface having an arithmetic average roughness Ra of 0.5 μm, the solder Since the resist layer is formed, the wiring conductor and the solder resist layer can be firmly adhered to each other through the roughened surface, and the roughened surface of the wiring conductor can be used as a barrier for preventing the penetration of solder. Further, since the surface of the connection pad exposed from the opening of the solder resist layer is smoothed so that the arithmetic average roughness Ra is 0.4 μm or less by wet blasting and chemical etching after the wet blasting, Since the convex part of the exposed surface does not melt into the solder significantly, the connection pad and the solder get wet well without the generation of voids, and the entire surface of the connection pad is covered with a sufficiently thick solder, so that the semiconductor element for the wiring board It is possible to provide a wiring board excellent in mounting reliability and mounting reliability of the wiring board with respect to the external electric circuit board.

図1は、本発明の配線基板の実施形態の一例を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a wiring board according to the present invention. 図2は、図1に示す配線基板の要部拡大断面模式図である。FIG. 2 is an enlarged schematic cross-sectional view of a main part of the wiring board shown in FIG. 図3(a)〜(d)は、本発明の配線基板の製造方法を説明するための工程毎の断面模式図である。3A to 3D are schematic cross-sectional views for each process for explaining the method for manufacturing a wiring board according to the present invention.

次に、本発明の配線基板の実施形態の一例を図1および図2を基にして詳細に説明する。図1は本発明の配線基板10の実施形態の一例を示す断面模式図であり、図2は図1に示す配線基板10の要部拡大断面模式図である。これらの図中、1は絶縁基板、2は配線導体、3は半導体素子接続パッド、4は外部接続パッド、5はソルダーレジスト層、6は半田バンプ、7は半田層であり、主としてこれらにより本発明の配線基板10が構成される。   Next, an example of an embodiment of the wiring board of the present invention will be described in detail with reference to FIGS. FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a wiring board 10 of the present invention, and FIG. 2 is an enlarged schematic cross-sectional view of a main part of the wiring board 10 shown in FIG. In these drawings, 1 is an insulating substrate, 2 is a wiring conductor, 3 is a semiconductor element connection pad, 4 is an external connection pad, 5 is a solder resist layer, 6 is a solder bump, and 7 is a solder layer. The wiring board 10 of the invention is configured.

なお、本例の配線基板10では、ガラス織物に熱硬化性樹脂を含浸させて成る絶縁板1aの上下面に熱硬化性樹脂から成る絶縁層1bを2層ずつ積層して絶縁基板1を形成しており、最表層の絶縁層1b上にソルダーレジスト層5が積層されている。また絶縁基板1の上面中央部には半導体素子Sが搭載される搭載部Aが形成されており、この搭載部Aにはそれぞれ半導体素子Sの電極Tが電気的に接続される半導体素子接続パッド3が形成されている。また、絶縁基板1の下面には外部電気回路基板に電気的に接続される外部接続パッド4が形成されており、絶縁基板1の上面から下面にかけてはそれぞれ対応する半導体素子パッド3と外部接続パッド4とを互いに電気的に接続する配線導体2が配設されている。さらに、半導体素子接続パッド3には半田バンプ6が溶着されている。また、外部接続パッド4には半田層7が溶着されている。   In the wiring substrate 10 of this example, the insulating substrate 1 is formed by laminating two insulating layers 1b made of thermosetting resin on the upper and lower surfaces of the insulating plate 1a made by impregnating glass fabric with thermosetting resin. The solder resist layer 5 is laminated on the outermost insulating layer 1b. A mounting portion A on which the semiconductor element S is mounted is formed at the center of the upper surface of the insulating substrate 1, and a semiconductor element connection pad to which the electrode T of the semiconductor element S is electrically connected is mounted on the mounting portion A. 3 is formed. Further, external connection pads 4 that are electrically connected to the external electric circuit board are formed on the lower surface of the insulating substrate 1, and the corresponding semiconductor element pads 3 and external connection pads are respectively provided from the upper surface to the lower surface of the insulating substrate 1. Wiring conductors 2 are disposed to electrically connect 4 to each other. Further, solder bumps 6 are welded to the semiconductor element connection pads 3. A solder layer 7 is welded to the external connection pad 4.

そして、この配線基板10においては、半導体素子Sをその各電極Tがそれぞれ対応する半田バンプ6に当接するようにして配線基板10の上面に載置するとともに、これらを例えば電気炉等の加熱装置で約260℃程度に加熱して半田バンプ6を溶融させて半田バンプ6と半導体素子Sの電極Tとを接合させることによって、半導体素子Sが配線基板10上に実装される。また、半導体素子Sが実装された配線基板10は、外部接続パッド4に溶着された半田層7に半田ボールBを溶着させるととともに、その半田ボールBと外部電気回路基板の配線導体とを当接させた状態で半田ボールBを溶融させることにより外部電気回路基板上に実装される。   In this wiring board 10, the semiconductor element S is placed on the upper surface of the wiring board 10 so that the electrodes T are in contact with the corresponding solder bumps 6, and these are mounted on a heating device such as an electric furnace. The semiconductor element S is mounted on the wiring board 10 by heating to about 260 ° C. to melt the solder bump 6 and bonding the solder bump 6 and the electrode T of the semiconductor element S together. Further, the wiring board 10 on which the semiconductor element S is mounted has the solder ball B welded to the solder layer 7 welded to the external connection pad 4, and the solder ball B and the wiring conductor of the external electric circuit board are contacted. The solder balls B are melted in the contact state, and mounted on the external electric circuit board.

絶縁板1aは、本例の配線基板10におけるコア部材であり、例えばガラス繊維束を縦横に織り込んだガラス織物にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させて成る。この絶縁板1aは、例えば厚みが0.3〜1.5mm程度であり、その上面から下面にかけて直径が0.1〜1mm程度の複数のスルーホール8を有している。そして、その上下面および各スルーホール8の内面には配線導体2の一部が被着されており、上下面の配線導体2がスルーホール8を介して電気的に接続されている。   The insulating plate 1a is a core member in the wiring board 10 of the present example, and is formed by impregnating a glass fabric in which glass fiber bundles are woven vertically and horizontally with a thermosetting resin such as epoxy resin or bismaleimide triazine resin. The insulating plate 1a has, for example, a plurality of through holes 8 having a thickness of about 0.3 to 1.5 mm and a diameter of about 0.1 to 1 mm from the upper surface to the lower surface. A part of the wiring conductor 2 is attached to the upper and lower surfaces and the inner surfaces of the through holes 8, and the upper and lower wiring conductors 2 are electrically connected via the through holes 8.

このような絶縁板1aは、ガラス織物に未硬化の熱硬化性樹脂を含浸させた絶縁シートを熱硬化させた後、これに上面から下面にかけてドリル加工を施すことにより製作される。なお、絶縁板1a上下面の配線導体2は、絶縁板1a用の絶縁シートの上下全面に厚みが3〜50μm程度の銅箔を貼着しておくとともにこの銅箔をシートの硬化後にエッチング加工することにより所定のパターンに形成される。また、スルーホール8内面の配線導体2は、絶縁板1aにスルーホール8を設けた後に、このスルーホール8内面に無電解めっき法および電解めっき法により厚みが3〜50μm程度の銅めっき膜を析出させることにより形成される。   Such an insulating plate 1a is manufactured by thermally curing an insulating sheet in which a glass fabric is impregnated with an uncured thermosetting resin, and then drilling the insulating sheet from the upper surface to the lower surface. The wiring conductors 2 on the upper and lower surfaces of the insulating plate 1a have a copper foil having a thickness of about 3 to 50 μm attached to the entire upper and lower surfaces of the insulating sheet for the insulating plate 1a, and the copper foil is etched after the sheet is cured. By doing so, a predetermined pattern is formed. The wiring conductor 2 on the inner surface of the through hole 8 is provided with a copper plating film having a thickness of about 3 to 50 μm by an electroless plating method and an electrolytic plating method on the inner surface of the through hole 8 after the through hole 8 is provided in the insulating plate 1a. Formed by precipitation.

さらに、絶縁板1aは、そのスルーホール8の内部にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂から成る孔埋め樹脂9が充填されている。孔埋め樹脂9は、スルーホール8を塞ぐことによりスルーホール8の直上および直下に配線導体2および各絶縁層1bを形成可能とするためのものであり、未硬化のペースト状の熱硬化性樹脂をスルーホール8内にスクリーン印刷法により充填し、それを熱硬化させた後、その上下面を略平坦に研磨することにより形成される。そして、この孔埋め樹脂9を含む絶縁板1aの上下面に絶縁層1bがそれぞれ2層ずつ積層されている。   Furthermore, the insulating plate 1 a is filled with a hole filling resin 9 made of a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin in the through hole 8. The hole-filling resin 9 is used to form the wiring conductor 2 and each insulating layer 1b directly above and below the through-hole 8 by closing the through-hole 8, and is an uncured paste-like thermosetting resin. Is filled in the through-hole 8 by screen printing and thermally cured, and then the upper and lower surfaces thereof are polished to be substantially flat. Then, two insulating layers 1b are laminated on the upper and lower surfaces of the insulating plate 1a including the hole filling resin 9, respectively.

絶縁板1aの上下面に積層された各絶縁層1bは、エポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂から成り、それぞれの厚みが20〜60μm程度であり、各層の上面から下面にかけて直径が30〜100μm程度の複数のビアホール11を有している。これらの各絶縁層1bは、配線導体2を高密度に配線するための絶縁間隔を提供するためのものである。そして、上層の配線導体2と下層の配線導体2とをビアホール11を介して電気的に接続することにより高密度配線が立体的に形成可能となっている。このような各絶縁層1bは、厚みが20〜60μm程度の未硬化の熱硬化性樹脂から成る絶縁フィルムを絶縁板1aの上下面に貼着し、これを熱硬化させるとともにレーザ加工によりビアホール11を穿孔し、さらにその上に同様にして次の絶縁層1bを順次積み重ねることによって形成される。なお、各絶縁層1bの表面およびビアホール11内に被着された配線導体2は、各絶縁層1bを形成する毎に各絶縁層1bの表面およびビアホール11内に5〜50μm程度の厚みの銅めっき膜を周知のセミアディティブ法等のパターン形成法により所定のパターンに被着させることによって形成される。   Each insulating layer 1b laminated on the upper and lower surfaces of the insulating plate 1a is made of a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin, and has a thickness of about 20 to 60 μm. Has a plurality of via holes 11 of about 30 to 100 μm. Each of these insulating layers 1b is for providing an insulating interval for wiring the wiring conductor 2 with high density. A high-density wiring can be three-dimensionally formed by electrically connecting the upper wiring conductor 2 and the lower wiring conductor 2 via the via hole 11. Each of the insulating layers 1b has an insulating film made of an uncured thermosetting resin having a thickness of about 20 to 60 μm attached to the upper and lower surfaces of the insulating plate 1a. And the next insulating layer 1b is sequentially stacked thereon in the same manner. In addition, the wiring conductor 2 deposited in the surface of each insulating layer 1b and the via hole 11 is made of copper having a thickness of about 5 to 50 μm in the surface of each insulating layer 1b and in the via hole 11 every time each insulating layer 1b is formed. It is formed by depositing a plating film on a predetermined pattern by a known pattern forming method such as a semi-additive method.

絶縁基板1の上面の搭載部Aに形成された半導体素子接続パッド3は、ソルダーレジスト層5から露出する直径が50〜150μm程度の円形であり、搭載部A内の領域にピッチが100〜250μm程度の格子状の並びに多数配列形成されている。このような半導体素子接続パッド3は、半導体素子Sの電極Tを配線導体2に電気的に接続するための端子部として機能し、最上層の絶縁層1b上に形成された配線導体2の一部を、ソルダーレジスト層5に設けた直径が50〜150μm程度の円形の開口部5a内に露出させることにより形成されている。   The semiconductor element connection pad 3 formed on the mounting portion A on the upper surface of the insulating substrate 1 has a circular shape with a diameter of about 50 to 150 μm exposed from the solder resist layer 5, and the pitch in the region within the mounting portion A is 100 to 250 μm. A large number of lattice-like arrays are formed. Such a semiconductor element connection pad 3 functions as a terminal portion for electrically connecting the electrode T of the semiconductor element S to the wiring conductor 2, and is one of the wiring conductors 2 formed on the uppermost insulating layer 1b. The part is formed by exposing the part in a circular opening 5 a having a diameter of about 50 to 150 μm provided in the solder resist layer 5.

また、絶縁基板1の下面に形成された外部接続パッド4は、ソルダーレジスト層5から露出する直径が300〜500μm程度の円形であり、絶縁基板1下面の略全領域にピッチが600〜1000μm程度の格子状の並びに多数配列形成されている。外部接続パッド4は、配線導体2を外部電気回路基板に電気的に接続するための端子部として機能し、最下層の絶縁層1b上に形成された配線導体2の一部を、ソルダーレジスト層5に設けた直径が300〜500μmの円形の開口部5b内に露出させることにより形成されている。   The external connection pads 4 formed on the lower surface of the insulating substrate 1 are circular with a diameter of about 300 to 500 μm exposed from the solder resist layer 5, and the pitch is about 600 to 1000 μm in almost the entire area of the lower surface of the insulating substrate 1. A large number of lattice-like arrays are formed. The external connection pad 4 functions as a terminal portion for electrically connecting the wiring conductor 2 to the external electric circuit board, and a part of the wiring conductor 2 formed on the lowermost insulating layer 1b is used as a solder resist layer. 5 is exposed by being exposed in a circular opening 5b having a diameter of 300 to 500 μm.

ソルダーレジスト層5は、アクリル変性エポキシ樹脂等の感光性を有する熱硬化性の樹脂から成り、その厚みが10〜30μm程度であり、上述したように半導体素子接続パッド3を露出させる開口部5aや外部接続パッド4を露出させる開口部5bを有している。それにより最表層における配線導体2を保護するとともに、開口部5aや5bを介して半導体素子接続パッド3や外部接続パッド4と半導体素子Sや外部電気回路基板との接続を可能としている。このようなソルダーレジスト層5は、感光性を有する樹脂ペーストまたは樹脂フィルムを最上層および最下層の絶縁層1bの表面に塗布または貼着するとともにフォトリソグラフィー技術を採用して開口部5aや5bを有するパターンに露光および現像した後、紫外線硬化および熱硬化させることにより形成される。   The solder resist layer 5 is made of a thermosetting resin having photosensitivity, such as an acrylic-modified epoxy resin, and has a thickness of about 10 to 30 μm. As described above, the opening 5a that exposes the semiconductor element connection pad 3 or An opening 5b for exposing the external connection pad 4 is provided. Thereby, the wiring conductor 2 in the outermost layer is protected, and the semiconductor element connection pad 3 and the external connection pad 4 can be connected to the semiconductor element S and the external electric circuit board through the openings 5a and 5b. Such a solder resist layer 5 is formed by applying or sticking a photosensitive resin paste or resin film to the surfaces of the uppermost layer and the lowermost insulating layer 1b and adopting a photolithography technique to form the openings 5a and 5b. It is formed by exposing and developing the pattern having it, followed by ultraviolet curing and heat curing.

半導体素子接続パッド3に溶着された半田バンプ6は、例えば錫−銀合金や錫−銀−銅合金等の鉛フリー半田から成り、半導体素子接続パッド3と半導体素子Sの電極Tとを電気的に接続するための接続部材として機能する。そして、半導体素子Sの電極Tを半田バンプ6に接触させた状態で半田バンプ6を加熱溶融させることにより半導体素子接続パッド3と半導体素子Sの電極Tとが半田バンプ6を介して電気的に接続されることとなる。このように半田バンプ6を半導体素子接続パッド3に予め溶着させておくことにより半導体素子接続パッド3への電極Tの接続の作業性が極めて良好なものとなる。なお、半導体素子Sの電極Tを半田バンプ6に接触させるのに先立って、半田バンプ6の上端部をプレスして平坦にしておくと、半導体素子Sの電極Tと半田バンプ6とを接触させることが容易かつ確実なものとなる。従って、半導体素子Sの電極Tを半田バンプ6に接触させるのに先立って、半田バンプ5の上端部をプレスして平坦にしておくことが好ましい。   The solder bump 6 welded to the semiconductor element connection pad 3 is made of lead-free solder such as tin-silver alloy or tin-silver-copper alloy, and electrically connects the semiconductor element connection pad 3 and the electrode T of the semiconductor element S. It functions as a connection member for connecting to. Then, the solder bump 6 is heated and melted while the electrode T of the semiconductor element S is in contact with the solder bump 6, whereby the semiconductor element connection pad 3 and the electrode T of the semiconductor element S are electrically connected via the solder bump 6. Will be connected. Thus, by soldering the solder bump 6 to the semiconductor element connection pad 3 in advance, the workability of the connection of the electrode T to the semiconductor element connection pad 3 becomes very good. Prior to bringing the electrode T of the semiconductor element S into contact with the solder bump 6, if the upper end portion of the solder bump 6 is pressed and flattened, the electrode T of the semiconductor element S and the solder bump 6 are brought into contact with each other. Is easy and reliable. Therefore, prior to bringing the electrode T of the semiconductor element S into contact with the solder bump 6, it is preferable to press and flatten the upper end portion of the solder bump 5.

また、外部接続パッド4に溶着された半田層7は、半田バンプ6と同様に、例えば錫−銀合金や錫−銀−銅合金等の鉛フリー半田から成り、外部接続パッド4に半田ボールBを溶着させるための予備半田として機能する。そして、半田ボールBを半田層7に接触させた状態で半田層7および半田ボールBを加熱溶融させることより半田ボールBが外部接続パッド4に溶着されることとなる。   The solder layer 7 welded to the external connection pad 4 is made of lead-free solder such as tin-silver alloy or tin-silver-copper alloy, for example, like the solder bump 6. It functions as a spare solder for welding. The solder ball B is welded to the external connection pad 4 by heating and melting the solder layer 7 and the solder ball B in a state where the solder ball B is in contact with the solder layer 7.

なお、半田バンプ6は、各半導体素子接続パッド3に対応する位置に格子状の並びに配列形成された開口部を有する印刷マスクを用いて半田バンプ6用の半田ペーストを各半導体素子接続パッド3上に印刷塗布するとともに印刷された半田ペースト中の半田を加熱溶融させることにより各半導体素子接続パッド3上に溶着される。また、半田層7は、各外部接続パッド4に対応する位置に格子状の並びに配列形成された開口部を有する印刷マスクを用いて半田層7用の半田ペーストを各外部接続パッド7上に印刷塗布するとともに印刷された半田ペースト中の半田を加熱溶融させることにより各外部接続パッド4上に溶着される。   The solder bumps 6 are formed on the respective semiconductor element connection pads 3 by using a print mask having openings arranged in a grid and arranged at positions corresponding to the respective semiconductor element connection pads 3. The solder in the printed solder paste is heated and melted to be welded onto each semiconductor element connection pad 3. In addition, the solder layer 7 is printed with solder paste for the solder layer 7 on each external connection pad 7 by using a print mask having openings arranged in a grid and arranged at positions corresponding to the respective external connection pads 4. The solder in the solder paste that has been applied and printed is melted on the external connection pads 4 by heating and melting.

なお、本例の配線基板10においては、図2に(a),(b)示すように、最表層の絶縁層1b上に被着された配線導体2は、ソルダーレジスト層5で覆われた面が、算術平均粗さRaで0.5μm以上であるとともに、ソルダーレジスト層5の開口部5a,5bから露出する面が算術平均粗さRaで0.4μm以下となっている。このように、半導体素子接続パッド3および外部接続パッド4を形成する配線導体2は、ソルダーレジスト層5で覆われた面が算術平均粗さRaで0.5μm以上の粗化面であることから、この粗化面を介して配線導体2とソルダーレジスト層5とが強固に密着するとともに配線導体2の粗化面が半田の滲入を防止するための障壁として機能する。したがって、本例の配線基板10によれば、配線導体2とソルダーレジスト層5との間に半田が滲入して潜り込むことを有効に防止することができる。   In the wiring board 10 of this example, as shown in FIGS. 2A and 2B, the wiring conductor 2 deposited on the outermost insulating layer 1 b was covered with the solder resist layer 5. The surface has an arithmetic average roughness Ra of 0.5 μm or more, and the surface exposed from the openings 5a and 5b of the solder resist layer 5 has an arithmetic average roughness Ra of 0.4 μm or less. As described above, the wiring conductor 2 forming the semiconductor element connection pad 3 and the external connection pad 4 has a surface covered with the solder resist layer 5 as a roughened surface with an arithmetic average roughness Ra of 0.5 μm or more. The wiring conductor 2 and the solder resist layer 5 are firmly adhered to each other through the roughened surface, and the roughened surface of the wiring conductor 2 functions as a barrier for preventing the penetration of solder. Therefore, according to the wiring board 10 of the present example, it is possible to effectively prevent the solder from entering and sinking between the wiring conductor 2 and the solder resist layer 5.

また、ソルダーレジスト層5の開口部5a,5bから露出する半導体素子接続パッド3および外部接続パッド4の露出面が算術平均粗さRaで0.4μm以下の面となっていることから、この露出面における微小な凸部の高さが高くなることはなくかつ凸部が細くなることがない。したがって、本例の配線基板10によれば、半導体素子接続パッド3および外部接続パッド4の露出面に鉛フリー半田から成る半田バンプ6や半田層7を溶融させた際に、この露出面の凸部が半田中に大きく溶け込むことがなく、ボイドの発生もなく半導体素子接続パッド3および外部接続パッド4と半田とが良好に濡れるので半導体素子接続パッド3および外部接続パッド4の全面が十分な厚み半田で覆われ、半導体素子Sの実装信頼性や外部電気回路基板に対する実装信頼性に優れる配線基板10となる。   Further, since the exposed surfaces of the semiconductor element connection pads 3 and the external connection pads 4 exposed from the openings 5a and 5b of the solder resist layer 5 are surfaces having an arithmetic average roughness Ra of 0.4 μm or less, this exposure is performed. The height of the minute convex part on the surface does not increase and the convex part does not become thin. Therefore, according to the wiring board 10 of this example, when the solder bumps 6 and the solder layer 7 made of lead-free solder are melted on the exposed surfaces of the semiconductor element connection pads 3 and the external connection pads 4, the protrusions of the exposed surfaces are formed. Therefore, the semiconductor element connection pad 3 and the external connection pad 4 and the solder are wetted satisfactorily, and the entire surface of the semiconductor element connection pad 3 and the external connection pad 4 has a sufficient thickness. The wiring substrate 10 is covered with solder and has excellent mounting reliability of the semiconductor element S and mounting reliability with respect to the external electric circuit board.

なお、最表層の絶縁層1b上に被着された配線導体2におけるソルダーレジスト層5で覆われた粗化面の算術平均粗さRaが0.5μm未満であると、配線導体2とソルダーレジスト層5との密着が弱いとともに粗化面の凹凸が半田の滲入を防止するための障壁としての機能が低いものとなる傾向にあり、逆に0.8μmを超えると、粗化が過剰となり、そのような過剰な粗化を行なうため配線導体2を所定の形状や寸法に形成することが困難となる。したがって、最表層の絶縁層1b上に被着された配線導体2におけるソルダーレジスト層5で覆われた粗化面の算術平均粗さRaは、0.5〜0.8μmの範囲が好ましい。   When the arithmetic mean roughness Ra of the roughened surface covered with the solder resist layer 5 in the wiring conductor 2 deposited on the outermost insulating layer 1b is less than 0.5 μm, the wiring conductor 2 and the solder resist The adhesion with the layer 5 is weak and the roughness of the roughened surface tends to have a low function as a barrier for preventing the penetration of solder. Conversely, when it exceeds 0.8 μm, the roughening becomes excessive, Such excessive roughening makes it difficult to form the wiring conductor 2 in a predetermined shape and size. Accordingly, the arithmetic average roughness Ra of the roughened surface covered with the solder resist layer 5 in the wiring conductor 2 deposited on the outermost insulating layer 1b is preferably in the range of 0.5 to 0.8 μm.

また、ソルダーレジスト層5の開口部5a,5bから露出する半導体素子接続パッド3および外部接続パッド4の露出面が算術平均粗さRaで0.4μmを超えると、この露出面における微小な凸部の高さが高くなるとともに凸部が細くなり、この露出面の凸部が半田中に大きく溶け込んでその場所にボイドが発生し、その結果、半導体素子接続パッド3および外部接続パッド4の全面が十分な厚み半田で覆われずに、配線基板10に対する半導体素子Sの実装信頼性や外部電気回路基板に対する配線基板10の実装信頼性が低下してしまう危険が大きくなる。したがって、ソルダーレジスト層5の開口部5a,5bから露出する半導体素子接続パッド3および外部接続パッド4の露出面が算術平均粗さRaで0.4μm以下であることが好ましい。   Further, if the exposed surface of the semiconductor element connection pad 3 and the external connection pad 4 exposed from the openings 5a and 5b of the solder resist layer 5 exceeds 0.4 μm in arithmetic average roughness Ra, minute protrusions on the exposed surface As the height of the protrusion increases, the protrusion becomes thinner, and the protrusion on the exposed surface greatly dissolves in the solder and a void is generated at the location. As a result, the entire surface of the semiconductor element connection pad 3 and the external connection pad 4 are exposed. Without being covered with a sufficient thickness of solder, there is a greater risk that the mounting reliability of the semiconductor element S with respect to the wiring board 10 and the mounting reliability of the wiring board 10 with respect to the external electric circuit board will be reduced. Therefore, it is preferable that the exposed surfaces of the semiconductor element connection pads 3 and the external connection pads 4 exposed from the openings 5a and 5b of the solder resist layer 5 have an arithmetic average roughness Ra of 0.4 μm or less.

次に、本発明の配線基板の製造方法における実施形態の一例を図3(a)〜(d)を基に説明する。なお、図3(a)〜(d)において、前述した配線基板10と同様の部分には同様の符号を付し、その詳細な説明は省略する。   Next, an example of an embodiment of the method for manufacturing a wiring board according to the present invention will be described with reference to FIGS. 3A to 3D, parts similar to those of the wiring board 10 described above are denoted by the same reference numerals, and detailed description thereof is omitted.

先ず、図3(a)に示すように、最表層の絶縁層1b上に配線導体2により半導体素子接続パッド3および外部接続パッド4を形成する。この配線導体2は上述した配線基板の実施形態の一例において説明したように、周知のセミアディティブ法等のパターン形成法を用いることにより形成される。なお、図3(a)〜(d)においては、図が煩雑に成るのを避けるため、半導体素子接続パッド3と外部接続パッド4とを同一のパターンにて代表して示している。   First, as shown in FIG. 3A, the semiconductor element connection pads 3 and the external connection pads 4 are formed by the wiring conductors 2 on the outermost insulating layer 1b. The wiring conductor 2 is formed by using a known pattern forming method such as a semi-additive method, as described in the above-described example of the embodiment of the wiring board. In FIGS. 3A to 3D, the semiconductor element connection pads 3 and the external connection pads 4 are representatively shown in the same pattern in order to avoid making the figure complicated.

次に、図3(b)に示すように、半導体素子接続パッド3および外部接続パッド4を形成する配線導体2の表面を例えば蟻酸を含む粗化液でエッチングすることにより算術平均粗さRaが0.5μm以上となるように粗化する。なお、配線導体2の表面における算術平均粗さRaの大きさは、粗化液で配線導体2の表面をエッチングする際のエッチング時間により調整すればよい。すなわち、配線導体2の表面を粗化液でエッチングする時間が短ければ、配線導体2の表面における算術平均粗さRaの値は小さくなり、逆にエッチングする時間が長ければ、Raの値が大きくなる。   Next, as shown in FIG. 3B, the arithmetic mean roughness Ra is obtained by etching the surface of the wiring conductor 2 forming the semiconductor element connection pad 3 and the external connection pad 4 with a roughening solution containing formic acid, for example. It roughens so that it may become 0.5 micrometer or more. The arithmetic mean roughness Ra on the surface of the wiring conductor 2 may be adjusted by the etching time when the surface of the wiring conductor 2 is etched with the roughening solution. That is, if the time for etching the surface of the wiring conductor 2 with the roughening solution is short, the value of the arithmetic average roughness Ra on the surface of the wiring conductor 2 is small. Conversely, if the time for etching is long, the value of Ra is large. Become.

次に、図3(c)に示すように、最表層の絶縁層1b上および配線導体2の上に半導体素子接続パッド3,外部接続パッド4の外周部を覆うとともに半導体素子接続パッド3,外部接続パッド4の中央部を露出させる開口部5a,5bを有するソルダーレジスト層5を形成する。このようなソルダーレジスト層5は、上述した配線基板の実施形態の一例において説明したように、感光性を有する樹脂ペーストまたは樹脂フィルムを最表層の絶縁層1bの表面に塗布または貼着するとともにフォトリソグラフィー技術を採用して開口部5a,5bを有するパターンに露光および現像した後、紫外線硬化および熱硬化させることにより形成される。このとき、配線導体2は、ソルダーレジスト層5で覆われた面が算術平均粗さRaで0.5μm以上の粗化面となっていることから、この粗化面を介して配線導体2とソルダーレジスト層5とが強固に密着するとともに、配線導体2の粗化面が半田の侵入を防止するための障壁として機能する。この場合、最表層の絶縁層1b上に被着された配線導体2におけるソルダーレジスト層5で覆われた粗化面の算術平均粗さRaが0.5μm未満であると、配線導体2とソルダーレジスト層5との密着が弱いとともに粗化面の凹凸が半田の滲入を防止するための障壁としての機能が低いものとなる傾向にあり、逆に0.8μmを超えると、粗化が過剰となり、そのような過剰な粗化を行なうため配線導体2を所定の形状や寸法に形成することが困難となる。したがって、最表層の絶縁層1b上に被着された配線導体2におけるソルダーレジスト層5で覆われた粗化面の算術平均粗さRaは、0.5〜0.8μmの範囲とすることが好ましい。   Next, as shown in FIG. 3C, the outer periphery of the semiconductor element connection pad 3 and the external connection pad 4 are covered on the outermost insulating layer 1b and the wiring conductor 2, and the semiconductor element connection pad 3 and the outside A solder resist layer 5 having openings 5a and 5b that expose the central portion of the connection pad 4 is formed. Such a solder resist layer 5 is formed by applying or sticking a photosensitive resin paste or resin film to the surface of the outermost insulating layer 1b as described in the embodiment of the wiring board described above. It is formed by exposing and developing a pattern having openings 5a and 5b using a lithography technique, followed by ultraviolet curing and thermal curing. At this time, since the surface covered with the solder resist layer 5 is a roughened surface having an arithmetic average roughness Ra of 0.5 μm or more, the wiring conductor 2 is connected to the wiring conductor 2 via the roughened surface. The solder resist layer 5 is firmly adhered, and the roughened surface of the wiring conductor 2 functions as a barrier for preventing solder from entering. In this case, if the arithmetic average roughness Ra of the roughened surface covered with the solder resist layer 5 in the wiring conductor 2 deposited on the outermost insulating layer 1b is less than 0.5 μm, the wiring conductor 2 and the solder The adhesion with the resist layer 5 is weak and the unevenness of the roughened surface tends to have a low function as a barrier to prevent the penetration of solder. Conversely, when the thickness exceeds 0.8 μm, the roughening becomes excessive. Such excessive roughening makes it difficult to form the wiring conductor 2 in a predetermined shape and size. Therefore, the arithmetic average roughness Ra of the roughened surface covered with the solder resist layer 5 in the wiring conductor 2 deposited on the outermost insulating layer 1b should be in the range of 0.5 to 0.8 μm. preferable.

次に、図3(d)に示すように、ソルダーレジスト層5の開口部5a,5bから露出する半導体素子接続パッド3,外部接続パッド4の表面を、機械的および化学的に研磨して
算術平均粗さRaで0.4μm以下となるように平坦化する。このような平坦化は、先ず開口部5aから露出する半導体素子接続パッド3,外部接続パッド4の表面をウエットブラスト法を採用して研磨することにより粗化面を潰して滑らかにし、次にこの潰れて滑らかになった面を過酸化水素水および硫酸を含むソフトエッチング液により0.5〜2μm程度エッチングすることにより平坦化する方法が採用される。
Next, as shown in FIG. 3D, the surfaces of the semiconductor element connection pads 3 and the external connection pads 4 exposed from the openings 5a and 5b of the solder resist layer 5 are mechanically and chemically polished to perform arithmetic. Planarization is performed so that the average roughness Ra is 0.4 μm or less. Such flattening is performed by first polishing the surfaces of the semiconductor element connection pads 3 and the external connection pads 4 exposed from the openings 5a by using a wet blasting method, thereby crushing and smoothing the roughened surfaces. A method is adopted in which the crushed and smooth surface is planarized by etching about 0.5 to 2 μm with a soft etching solution containing hydrogen peroxide and sulfuric acid.

そして、最後に開口部5a,5bから露出する半導体素子接続パッド3,外部接続パッド4上に半田バンプ6,半田層7を溶着することにより図1および図2に示した本発明による配線基板10が完成する。このとき、ソルダーレジスト層5の開口部5a,5bから露出する半導体素子接続パッド3および外部接続パッド4の露出面が算術平均粗さRaで0.4μm以下の面となっていることから、この露出面における微小な凸部の高さが高くなることはなくかつ凸部が細くなることがない。したがって、本例の配線基板の製造方法によれば、半導体素子接続パッド3および外部接続パッド4の露出面に鉛フリー半田から成る半田バンプ6や半田層7を溶融させた際に、この露出面の凸部が半田中に大きく溶け込むことがなく、ボイドの発生もなく半導体素子接続パッド3および外部接続パッド4と半田とが良好に濡れるので半導体素子接続パッド3および外部接続パッド4の全面が十分な厚みの半田で覆われ、半導体素子Sの実装信頼性や外部電気回路基板に対する実装信頼性に優れる配線基板10を提供することができる。なお、半導体素子接続パッド3,外部接続パッド4上に半田バンプ6,半田層7を溶着するには、上述した配線基板10の実施形態の一例において説明したように、各半導体素子接続パッド3,外部接続パッド4に対応する位置に格子状の並びに配列形成された開口部を有する印刷マスクを用いて半田ペーストを各半導体素子接続パッド3上,外部接続パッド4上に印刷塗布するとともに印刷された半田ペースト中の半田を加熱溶融させればよい。   Finally, solder bumps 6 and a solder layer 7 are welded onto the semiconductor element connection pads 3 and the external connection pads 4 exposed from the openings 5a and 5b, whereby the wiring board 10 according to the present invention shown in FIGS. Is completed. At this time, the exposed surface of the semiconductor element connection pad 3 and the external connection pad 4 exposed from the openings 5a and 5b of the solder resist layer 5 is a surface having an arithmetic average roughness Ra of 0.4 μm or less. The height of the minute convex portion on the exposed surface does not increase and the convex portion does not become thin. Therefore, according to the method of manufacturing the wiring board of this example, when the solder bumps 6 and the solder layer 7 made of lead-free solder are melted on the exposed surfaces of the semiconductor element connection pads 3 and the external connection pads 4, The semiconductor element connection pad 3 and the external connection pad 4 and the solder are wetted satisfactorily without the generation of voids and the formation of voids in the solder. It is possible to provide the wiring substrate 10 that is covered with a solder having a sufficient thickness and has excellent mounting reliability of the semiconductor element S and mounting reliability with respect to an external electric circuit substrate. In order to weld the solder bumps 6 and the solder layer 7 on the semiconductor element connection pads 3 and the external connection pads 4, as described in the example of the embodiment of the wiring substrate 10, each of the semiconductor element connection pads 3 and 3. Solder paste was printed on each of the semiconductor element connection pads 3 and the external connection pads 4 using a printing mask having openings arranged in a grid and arranged at positions corresponding to the external connection pads 4 and printed. What is necessary is just to heat-melt the solder in a solder paste.

次に、本発明の実施例を説明する。先ず、ガラス織物にビスマレイミドトリアジン樹脂を含浸させて成る厚みが0.4mmの絶縁板に厚みが5μmの銅箔が張着されて成る両面銅張り板に直径が200μmのスルーホールを500μmピッチで穿孔した。次に、スルーホール内を過マンガン酸カリウム溶液でデスミア処理した後、スルーホール内および銅箔の表面に厚みが1μmの無電解銅めっきを被着し、次いで無電解銅めっき層上に厚みが10μmの電解めっき層を被着させた。次に、スルーホール内にエポキシ樹脂およびシリカフィラーを含有するペーストを充填するとともに熱硬化させてスルーホール内を孔埋め樹脂で埋めた後、この両面銅張り板の上下面をロール研磨機により研磨して平坦とした。次に孔埋め樹脂上を含む両面銅張り板の上下面に無電解銅めっきを1μmの厚みに被着させた後、次いで電解銅めっき層を10μmの厚みに被着させた。次にサブトラクティブ法を用いて両面銅張り板上の銅箔および銅めっき層をエッチングして絶縁板の両面に配線導体を形成してコア基板を作製した。   Next, examples of the present invention will be described. First, through holes having a diameter of 200 μm are formed at a pitch of 500 μm on a double-sided copper-clad plate in which a glass fabric is impregnated with a bismaleimide triazine resin and a thickness of 0.4 μm is attached to a 0.4 mm thick insulating plate. Perforated. Next, after the inside of the through hole is desmeared with a potassium permanganate solution, electroless copper plating having a thickness of 1 μm is applied to the inside of the through hole and the surface of the copper foil, and then the thickness is formed on the electroless copper plating layer. A 10 μm electrolytic plating layer was applied. Next, a paste containing an epoxy resin and a silica filler is filled in the through hole and thermally cured to fill the through hole with a hole filling resin, and then the upper and lower surfaces of the double-sided copper-clad plate are polished by a roll grinder. And flattened. Next, after electroless copper plating was applied to a thickness of 1 μm on the upper and lower surfaces of the double-sided copper-clad plate including the hole-filling resin, an electrolytic copper plating layer was then applied to a thickness of 10 μm. Next, using a subtractive method, the copper foil and the copper plating layer on the double-sided copper-clad plate were etched to form wiring conductors on both sides of the insulating plate to produce a core substrate.

次に、コア基板の両面に厚みが35μmのエポキシ樹脂およびシリカフィラーを含有す未硬化の樹脂フィルムを貼着するとともに熱硬化させて絶縁層を形成した後、この絶縁層にレーザ加工により直径が70μmのビアホールを穿孔した。次に樹脂層の表面およびビアホール内を過マンガン酸カリウム水溶液でデスミア処理した後、絶縁層の表面およびビアホール内に厚みが1μmの無電解銅めっきを被着させた。次に、上面側の無電解めっき層上に直径が190μmの半導体素子接続パッド形成用の開口を含む配線導体形成用の開口パターンを有する厚みが25μmのめっきレジスト層を被着させるとともに、下面側の無電解銅めっき層上に直径が700μmの外部接続パッド形成用の開口を含む配線導体形成用の開口パターンを有する厚みが25μmのめっきレジスト層を被着させ、開口パターンから露出する無電解めっき層上に厚みが15μmの電解銅めっき層を被着させた。次に無電解銅めっき層上からめっきレジスト層を剥離して除去するとともに、めっきレジスト層の剥離により露出した無電解銅めっき層を過酸化水素水と硫酸を含有するエッチング液で除去することにより上面側に直径が190μmの半導体素子接続パッドを250μmのピッチで有し、下面側に直径が700μmの外部接続パッドを1000μmのピッチで有する最表層の配線導体を形成した。   Next, an uncured resin film containing an epoxy resin having a thickness of 35 μm and a silica filler is pasted on both surfaces of the core substrate and thermally cured to form an insulating layer. A 70 μm via hole was drilled. Next, after desmearing the surface of the resin layer and the inside of the via hole with an aqueous potassium permanganate solution, electroless copper plating having a thickness of 1 μm was deposited on the surface of the insulating layer and inside the via hole. Next, a plating resist layer having a thickness of 25 μm having an opening pattern for forming a wiring conductor including an opening for forming a semiconductor element connection pad having a diameter of 190 μm is deposited on the electroless plating layer on the upper surface side, and the lower surface side A plating resist layer having a thickness of 25 μm having an opening pattern for forming a wiring conductor including an opening for forming an external connection pad having a diameter of 700 μm is deposited on the electroless copper plating layer, and the electroless plating exposed from the opening pattern An electrolytic copper plating layer having a thickness of 15 μm was deposited on the layer. Next, the plating resist layer is peeled off and removed from the electroless copper plating layer, and the electroless copper plating layer exposed by peeling of the plating resist layer is removed with an etching solution containing hydrogen peroxide and sulfuric acid. A wiring conductor of the outermost layer having semiconductor element connection pads having a diameter of 190 μm on the upper surface side at a pitch of 250 μm and external connection pads having a diameter of 700 μm on the lower surface side at a pitch of 1000 μm was formed.

次に、最表層の配線導体の表面を蟻酸を含有するエッチング液によりその算術平均粗さRaが0.5μm以上となるようエッチングして粗化した。次に最表層の絶縁層および配線導体の上にアクリル変性エポキシ樹脂とシリカフィラーとを含有するソルダーレジスト用の感光性樹脂ペーストを配線導体上での厚みが20μmとなるようにスクリーン印刷により塗布するとともに半導体素子接続パッドの中央部に直径が130μmの開口部を有するとともに外部接続パッドの中央部に500μmの開口部を有するように露光および現像した後、紫外線硬化および熱硬化を行いソルダーレジスト層を形成した。   Next, the surface of the outermost wiring conductor was roughened by etching with an etching solution containing formic acid so that the arithmetic average roughness Ra was 0.5 μm or more. Next, a photosensitive resin paste for solder resist containing an acrylic-modified epoxy resin and a silica filler is applied on the outermost insulating layer and the wiring conductor by screen printing so that the thickness on the wiring conductor is 20 μm. In addition, after exposing and developing so as to have an opening having a diameter of 130 μm in the center of the semiconductor element connection pad and having an opening of 500 μm in the center of the external connection pad, ultraviolet soldering and heat curing are performed to form a solder resist layer. Formed.

次に、ソルダーレジスト層から露出する半導体素子接続パッドおよび外部接続パッドの表面をウエットブラスト法により物理的に研磨した。この研磨により半導体素子接続パッドおよび外部接続パッドの露出面の凹凸が潰れてその算術平均粗さRaが0.4〜0.5μm程度となった。さらに、このウエットブラストにより凹凸が潰れた半導体素子接続パッドおよび外部接続パッドの表面を過酸化水素水と硫酸を含むエッチング液でエッチングすることによりその算術平均粗さを0.3〜0.4μmとした。   Next, the surfaces of the semiconductor element connection pads and the external connection pads exposed from the solder resist layer were physically polished by a wet blast method. By this polishing, the unevenness of the exposed surfaces of the semiconductor element connection pad and the external connection pad was crushed, and the arithmetic average roughness Ra became about 0.4 to 0.5 μm. Further, by etching the surfaces of the semiconductor element connection pad and the external connection pad whose irregularities are crushed by this wet blasting with an etching solution containing hydrogen peroxide and sulfuric acid, the arithmetic average roughness is 0.3 to 0.4 μm. did.

次に、半導体素子接続パッドおよび外部接続パッドの上にスクリーン印刷法により鉛フリー半田の半田ペーストを印刷塗布した後、半田ペースト中の半田を約260℃の温度で加熱溶融して半導体素子接続パッドに半田バンプを溶着させるとともに外部接続パッドに半田層を溶着させて本発明の試料(試料No.2,3,4)を得た。   Next, a solder paste of lead-free solder is printed and applied onto the semiconductor element connection pad and the external connection pad by screen printing, and then the solder in the solder paste is heated and melted at a temperature of about 260 ° C. Solder bumps were welded to each other and a solder layer was welded to the external connection pads to obtain samples of the present invention (Sample Nos. 2, 3, and 4).

また、比較のためにソルダーレジスト層で覆われた配線導体の算術平均粗さRaを0.4μmとした試料(試料No.1)および半導体素子接続パッドおよび外部接続パッドの露出面の算術平均粗さRaを0.45μmとした試料(試料No.5)を準備し、同様にして半田バンプおよび半田層を溶着した。   For comparison, the arithmetic average roughness of the exposed surfaces of the sample (sample No. 1), the semiconductor element connection pad, and the external connection pad, in which the arithmetic average roughness Ra of the wiring conductor covered with the solder resist layer is 0.4 μm. A sample (sample No. 5) having a thickness Ra of 0.45 μm was prepared, and solder bumps and solder layers were welded in the same manner.

次に、この時点で、40倍の光学式顕微鏡で検査して半導体素子接続パッドにおける半田潜りの有無および外部接続パッドにおける半田の濡れ不良の有無を確認し、さらに半田バンプおよび半田層が溶着された試料を250℃で5分間加熱して1回目の熱負荷を与えた後、再度250℃で4分間加熱して2回目の熱負荷を与え、更に再度250℃で4分間加熱して3回目の熱負荷を与えた後、40倍の光学式顕微鏡で検査して半田潜りの有無を確認した後、クロスセクションした断面を1000倍のSEM写真により観察し、パッドと半田との界面におけるボイドの有無を確認した。その結果を表1に示す。   Next, at this point, inspection is performed with a 40 × optical microscope to check for the presence of solder diving in the semiconductor element connection pads and the presence of solder wetting defects in the external connection pads. Further, the solder bumps and solder layers are welded. The sample was heated at 250 ° C. for 5 minutes to give the first heat load, then again heated at 250 ° C. for 4 minutes to give the second heat load, and then again heated at 250 ° C. for 4 minutes and the third time. After inspecting with a 40 × optical microscope to check for the presence of solder diving, the cross section was observed with a 1000 × SEM photograph, and voids at the interface between the pad and the solder were observed. The presence or absence was confirmed. The results are shown in Table 1.

Figure 2012209418
Figure 2012209418

表1に示すように、本発明の範囲内である試料(試料No.2,3,4)では半田溶着直後にも3回目の熱負荷後にも半田潜りは見られなかった。それに対し、比較のための試料(試料No.1)では、半田バンプ形成直後には半田潜りは見られないものの、熱負荷後に半田もぐりが確認された。また、比較のための試料(試料No.5)では熱負荷後にも半田潜りは見られなかったものの、半田の濡れ不良およびボイドが確認された。   As shown in Table 1, in the samples within the scope of the present invention (Sample Nos. 2, 3 and 4), no solder dive was observed immediately after solder welding or after the third thermal load. On the other hand, in the sample for comparison (sample No. 1), solder dipping was not observed immediately after the formation of the solder bumps, but solder peeling was confirmed after the thermal load. Further, in the sample for comparison (sample No. 5), no solder dive was observed even after heat load, but solder wetting failure and voids were confirmed.

1 絶縁基板
2 配線導体
3 半導体素子接続パッド
4 外部接続パッド
5 ソルダーレジスト層
5a,5b ソルダーレジスト層の開口部
6 半田バンプ
7 半田層
10 配線基板
DESCRIPTION OF SYMBOLS 1 Insulation board | substrate 2 Wiring conductor 3 Semiconductor element connection pad 4 External connection pad 5 Solder resist layer 5a, 5b Opening part of solder resist layer 6 Solder bump 7 Solder layer 10 Wiring board

Claims (2)

絶縁基板の上面に、複数の接続パッド有する銅から成る配線導体と、前記接続パッドの外周部を覆い、且つ該接続パッドの中央部を露出させる開口部を有するソルダーレジスト層とが順次被着されて成るとともに、前記開口部から露出する前記接続パッドに鉛フリー半田を溶着させて成る配線基板であって、前記配線導体は、前記ソルダーレジスト層で覆われた面が算術平均粗さRaで0.5μm以上であり、かつ前記開口部から露出する面が算術平均粗さRaで0.4μm以下であることを特徴とする配線基板。   A wiring conductor made of copper having a plurality of connection pads and a solder resist layer covering the outer periphery of the connection pads and having an opening exposing the center of the connection pads are sequentially deposited on the upper surface of the insulating substrate. And a wiring board formed by welding lead-free solder to the connection pad exposed from the opening, wherein the surface of the wiring conductor covered with the solder resist layer has an arithmetic average roughness Ra of 0. A wiring board characterized in that the surface exposed from the opening is 0.5 μm or more and the arithmetic average roughness Ra is 0.4 μm or less. 絶縁基板の上面に、複数の接続パッドを有する銅から成る配線導体を形成する工程と、前記配線導体の露出する表面を化学的にエッチングして算術平均粗さRaが0.5μm以上の粗化面とする工程と、前記絶縁基板および前記配線導体の上に前記接続パッドの外周部を覆い、且つ該接続パッドの中央部を露出させる開口部を有するソルダーレジスト層を形成する工程と、前記開口部から露出する前記接続パッドの表面をウエットブラストおよび該ウエットブラストの後の化学的エッチングにより算術平均粗さRaが0.4μm以下となるように平滑化する工程と、前記開口部から露出する前記接続パッドに鉛フリー半田を溶着する工程と、有することを特徴とする配線基板の製造方法。   A process of forming a wiring conductor made of copper having a plurality of connection pads on the upper surface of an insulating substrate, and a roughening with an arithmetic average roughness Ra of 0.5 μm or more by chemically etching the exposed surface of the wiring conductor Forming a solder resist layer having an opening that covers an outer periphery of the connection pad and exposes a central portion of the connection pad on the insulating substrate and the wiring conductor; and the opening. Smoothing the surface of the connection pad exposed from the portion by wet blasting and chemical etching after the wet blasting so that the arithmetic average roughness Ra is 0.4 μm or less, and the surface exposed from the opening A method of manufacturing a wiring board, comprising the step of welding lead-free solder to a connection pad.
JP2011073834A 2011-03-30 2011-03-30 Wiring board and method for manufacturing the same Withdrawn JP2012209418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011073834A JP2012209418A (en) 2011-03-30 2011-03-30 Wiring board and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011073834A JP2012209418A (en) 2011-03-30 2011-03-30 Wiring board and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012209418A true JP2012209418A (en) 2012-10-25

Family

ID=47188922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011073834A Withdrawn JP2012209418A (en) 2011-03-30 2011-03-30 Wiring board and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012209418A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216563A (en) * 2013-04-26 2014-11-17 株式会社デンソー Method for manufacturing electronic equipment and multilayer substrate used for the same
JP2015035588A (en) * 2013-07-11 2015-02-19 新光電気工業株式会社 Wiring board and manufacturing method thereof
US11264314B2 (en) 2019-09-27 2022-03-01 International Business Machines Corporation Interconnection with side connection to substrate
US11735529B2 (en) 2021-05-21 2023-08-22 International Business Machines Corporation Side pad anchored by next adjacent via
WO2023195174A1 (en) * 2022-04-08 2023-10-12 株式会社レゾナック Printed circuit board and method for manufacturing same, and semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216563A (en) * 2013-04-26 2014-11-17 株式会社デンソー Method for manufacturing electronic equipment and multilayer substrate used for the same
JP2015035588A (en) * 2013-07-11 2015-02-19 新光電気工業株式会社 Wiring board and manufacturing method thereof
US11264314B2 (en) 2019-09-27 2022-03-01 International Business Machines Corporation Interconnection with side connection to substrate
US11735529B2 (en) 2021-05-21 2023-08-22 International Business Machines Corporation Side pad anchored by next adjacent via
WO2023195174A1 (en) * 2022-04-08 2023-10-12 株式会社レゾナック Printed circuit board and method for manufacturing same, and semiconductor device

Similar Documents

Publication Publication Date Title
JP5010737B2 (en) Printed wiring board
US9253897B2 (en) Wiring substrate and method for manufacturing the same
WO2004103039A1 (en) Double-sided wiring board, double-sided wiring board manufacturing method, and multilayer wiring board
JP2009290135A (en) Manufacturing method of printed wiring board, and conductive cement
JP5221887B2 (en) Wiring board manufacturing method
JP2012209418A (en) Wiring board and method for manufacturing the same
JP2006286724A (en) Wiring board and its manufacturing method
JP2010123829A (en) Printed wiring board and manufacturing method thereof
JP5058929B2 (en) Wiring board and manufacturing method thereof
JP2018032661A (en) Printed wiring board and method for manufacturing the same
JP2011181629A (en) Wiring board and method of manufacturing the same
JP2009212160A (en) Wiring board and manufacturing method therefor
JP2007059588A (en) Method of manufacturing wiring board, and wiring board
JP2005229138A (en) Wiring substrate
JP5311656B2 (en) Wiring board
JP2004207338A (en) Wiring board
TWI454201B (en) Method for manufacturing printed wiring board, printed wiring board, and electronic device
JP5106351B2 (en) Wiring board and manufacturing method thereof
JP2007273896A (en) Wiring board
JP4891578B2 (en) Wiring board and manufacturing method thereof
JP2009123757A (en) Wiring board and manufacturing method thereof
JP2014192363A (en) Wiring board and method of manufacturing the same
JP4238235B2 (en) Wiring board
JP2008251869A (en) Wiring board, and manufacturing method thereof
JP2007115952A (en) Interposer substrate and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603