JP2004140407A - 薄膜トランジスタの製造方法 - Google Patents

薄膜トランジスタの製造方法 Download PDF

Info

Publication number
JP2004140407A
JP2004140407A JP2004005520A JP2004005520A JP2004140407A JP 2004140407 A JP2004140407 A JP 2004140407A JP 2004005520 A JP2004005520 A JP 2004005520A JP 2004005520 A JP2004005520 A JP 2004005520A JP 2004140407 A JP2004140407 A JP 2004140407A
Authority
JP
Japan
Prior art keywords
insulating film
substrate
film
gate insulating
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004005520A
Other languages
English (en)
Other versions
JP4211609B2 (ja
Inventor
Mitsutoshi Miyasaka
宮坂 光敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004005520A priority Critical patent/JP4211609B2/ja
Publication of JP2004140407A publication Critical patent/JP2004140407A/ja
Application granted granted Critical
Publication of JP4211609B2 publication Critical patent/JP4211609B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】 TFTの下地保護膜やゲート絶縁膜などといった絶縁膜から固定電荷を除去することが可能なTFTの製造方法を提供することにある。
【解決手段】 下地保護膜形成工程ST11、半導体膜形成工程ST12、ゲート絶縁膜形成工程ST13・・・を行ってTFTを製造する際には、下地保護膜やゲート絶縁膜をプラズマCVD法やスパッタ法などにより形成した後に、これらの絶縁膜を硫酸水溶液や炭酸水溶液などといった酸性水溶液、中性水溶液、あるいはアンモニア水溶液などといったアルカリ水溶液に浸漬し、次に基板を純水中に浸漬して基板から上記の電解液を洗い落す固定電荷除去工程ST21、22を行う。また、固定電荷除去工程ST21、22を行った後には、絶縁膜を酸素ガスや水蒸気などといった酸化性ガスを含有する雰囲気中で加熱する熱処理工程ST31、32を行う。
【選択図】 図2

Description

 本発明は、液晶ディスプレイのアクティブマトリクス基板などに構成する薄膜トランジスタの製造方法に関するものである。更に詳しくは、本発明は、薄膜トランジスタの下地保護膜やゲート絶縁膜から固定電荷を除去するための技術に関するものである。
 薄膜トランジスタ(以下、TFTという。)を用いた薄膜装置などでは基板の表面側に絶縁膜を形成する工程が何度かある。たとえば液晶ディスプレイのアクティブマトリクス基板の製造工程では、基板上に下地保護膜や薄膜トランジスタのゲート絶縁膜をプラズマCVD法(プラズマ化学気相堆積法)やスパッタ法などで形成する。
 しかし、半導体膜に接する下地保護膜やゲート絶縁膜などをプラズマCVD法やスパッタ法などで形成すると、これらの絶縁膜中に固定電荷が生じやすく、このような固定電荷の存在はTFTの電気的特性を低下させるという問題点がある。たとえば図7に示すように、基板10上の下地保護膜11に固定電荷が存在すると、その表面に形成したチャネル領域17では下地保護膜11と接する部分に余分なチャネル170(いわゆるバックチャネル)が形成され、オフリーク電流が増大する原因となる。このような現象はチャネル領域17が薄い程顕著である。また、TFTのソース・ドレイン領域16から注入された電荷が下地保護膜11やゲート絶縁膜13の固定電荷と結合することがあるが、このような挙動は時間的に変化するため、TFTの電気的特性に経時的変化が現れてしまう。
 そこで、本発明の課題は、TFTの下地保護膜やゲート絶縁膜などといった絶縁膜から固定電荷を除去することが可能なTFTの製造方法を提供することにある。
 上記課題を解決するため、本発明に係るTFTの製造方法では、基板の表面側に下地保護膜としての絶縁膜を形成する絶縁膜形成工程と、該絶縁膜を液中に浸漬して前記絶縁膜から固定電荷を除去する固定電荷除去工程と、該絶縁膜の表面に薄膜トランジスタを構成するための半導体膜を形成する半導体膜形成工程とを有することを特徴とする。
 また、本発明に係るTFTの製造方法では、基板の表面側に薄膜トランジスタを構成するための半導体膜を形成する半導体膜形成工程と、該半導体膜の表面にゲート絶縁膜としての絶縁膜を形成する絶縁膜形成工程と、該絶縁膜を液中に浸漬して前記絶縁膜から固定電荷を除去する固定電荷除去工程とを有することを特徴とする。
 本発明では絶縁膜形成工程において形成した絶縁膜を液中に浸漬することによって絶縁膜から固定電荷を除去しているため、この絶縁膜をTFTの下地保護膜やゲート絶縁膜に用いた場合には絶縁膜中への電荷の注入が起こりにくい分、TFTの電気的特性において経時的な安定性が向上する。また、固定電荷を除去した絶縁膜をTFTの下地保護膜に用いた場合にはチャネル領域にバックチャネルが形成されることがないので、オフリーク電流を低減できる。一方、固定電荷を除去した絶縁膜をTFTのゲート絶縁膜に用いた場合には、ドレイン端への電子などの注入がない分、絶縁耐圧が向上する。よって、TFTの初期的な電気的特性も向上する。さらに、固定電荷を除去する方法として液中への浸漬という方法を採用しているので、基板に形成した絶縁膜全体を一括して処理でき、簡単な工程で済むという利点もある。
 本発明では前記固定電荷除去工程を行った後に、酸化性ガス含有雰囲気中で前記絶縁膜に熱処理を行うことが好ましい。このような熱処理を行うと、絶縁膜は焼き締めされて緻密化し、かつシリコン原子と酸素原子との結合は弱くて不安定な状態から強くて安定な状態となる。また、絶縁膜中では禁制帯中の電子やホールに対するトラップ準位が減少する。それ故、TFTの電気的特性は初期的および経時的の双方においてさらに向上する。
 本発明において前記固定電荷除去工程では、前記絶縁膜を電解液中または純水中のいずれかに浸漬する。また、前記固定電荷除去工程では前記絶縁膜を電解液中に浸漬した後、純水中に浸漬してもよい。この場合に前記液中には気体を吹き込んで該液をバブリングしながら前記絶縁膜を浸漬することが好ましい。
 本発明において前記絶縁膜形成工程では、前記絶縁膜をプラズマCVD法やスパッタ法により形成する。このようなプラズマを利用して絶縁膜を形成する成膜方法では低圧CVD法などに比較して絶縁膜中に固定電荷が生じやすい分、本発明を適用したときの効果が顕著である。
 以上説明したように、本発明に係るTFTの製造方法では、絶縁膜を液中に浸漬することによって絶縁膜から固定電荷を除去することに特徴を有する。従って、本発明によれば、固定電荷を除去した絶縁膜をTFTの下地保護膜やゲート絶縁膜に用いているので、絶縁膜中への電荷の注入が起こりにくい分、TFTの電気的特性において経時的な安定性が向上する。また、固定電荷を除去した絶縁膜をTFTの下地保護膜に用いているので、チャネル領域にバックチャネルが形成されることがない。また、固定電荷を除去した絶縁膜をTFTのゲート絶縁膜に用いているので、ドレイン端への電子などの注入がない分、絶縁耐圧が高い。よって、TFTの初期的な電気的特性も向上する。さらに、固定電荷を除去する方法として液中への浸漬という方法を採用しているので、基板に形成した絶縁膜全体を一括して処理でき、簡単な工程で済むという利点もある。
 本発明において固定電荷除去工程を行った後に酸化性ガス含有雰囲気中で絶縁膜に熱処理を行うと、絶縁膜は焼き締めされて緻密化し、かつシリコン原子と酸素原子との結合は弱くて不安定な状態から強くて安定な状態となる。また、絶縁膜では禁制帯中の電子やホールに対するトラップ準位が減少する。それ故、TFTの初期的な電気的特性、およびその経時的な安定性がさらに向上する。
発明の実施の形態
 図1、2を参照して本発明の実施の形態を説明する。図1は請求項1、2に係る発明の工程図であり、図1は請求項3、4に係る発明の工程図である。
 [第1の実施の形態]
 ガラス基板などの表面にTFTを製造する場合には、一般に図1に示すように、ガラス基板などの上にシリコン酸化膜などからなる下地保護膜を形成する下地保護膜形成工程ST11、少なくともチャネル領域を構成するシリコン膜を形成する半導体膜形成工程ST12、チャネル領域の表面にシリコン酸化膜などからなるゲート絶縁膜を形成するゲート絶縁膜形成工程ST13、ゲート絶縁膜の上にタンタル膜などのゲート電極を形成するゲート電極形成工程ST14、半導体膜に不純物イオンを導入する不純物導入工程ST15、それらの表面を覆うシリコン酸化膜などの層間絶縁膜を形成する層間絶縁膜形成工程ST16、層間絶縁膜にコンタクトホールを開けるコンタクトホール形成工程ST17、これらのコンタクトホールを介してソース・ドレイン領域に電極を接続させるソース・ドレイン電極形成工程ST18をこの順に行う。
 これらの工程によって形成される各薄膜のうち、本発明では下地保護膜およびゲート絶縁膜の膜質を向上させることに特徴を有する。
 本発明において下地保護膜の膜質を向上させる場合には、基板の表面に下地保護膜(絶縁膜)をプラズマCVD法やスパッタ法などにより形成した後に(下地保護膜形成工程ST11/絶縁膜形成工程)、この下地保護膜を所定の温度に設定した液中に浸漬してこの絶縁膜から固定電荷を除去する固定電荷除去工程ST21を行う。
 この固定電荷除去工程ST21では、下地保護膜を形成した後の基板を硫酸水溶液や炭酸水溶液などといった酸性水溶液、中性水溶液、あるいはアンモニア水溶液などといったアルカリ水溶液に浸漬し(電解液浸漬処理T211)、次に基板を純水中に浸漬して基板から上記の電解液を洗い落した後に(純水浸漬処理ST212)、基板に対する乾燥を行う(乾燥処理ST213)。この固定電荷除去工程ST21では、下地保護膜を形成した後の基板を電解液に浸漬せずに基板をそのまま純水に浸漬し(純水浸漬処理ST212)、その後に基板に対する乾燥を行ってもよい(乾燥処理ST213)。いずれの場合でも、基板を浸漬する液には水蒸気や炭酸ガスなどを吹き込んで液をバブリングしながら基板の浸漬を行うことが好ましい。
 そして、下地保護膜の表面に非晶質、結晶質、或いはそれらの混晶質のシリコン膜などといった半導体膜を形成する(半導体膜形成工程ST12)。続いてレーザアニールなどを行い、半導体膜を結晶化させる場合がある(結晶化工程ST20)。
 次に半導体膜の表面に、プラズマCVD法やスパッタ法などによりゲート絶縁膜を形成する(ゲート絶縁膜形成工程ST13/絶縁膜形成工程)。
 本発明においてゲート絶縁膜の膜質を向上させるときには、このゲート絶縁膜を所定の温度に設定した液中に浸漬してこの絶縁膜から固定電荷を除去する固定電荷除去工程ST22を行う。
この固定電荷除去工程ST22でも、ゲート絶縁膜を形成した後の基板を硫酸水溶液や炭酸水溶液などといった酸性水溶液、中性水溶液、あるいはアンモニア水溶液などといったアルカリ水溶液に浸漬し(電解液浸漬処理ST221)、次に基板を純水中に浸漬して基板から上記の電解液を洗い落した後に(純水浸漬処理ST222)、基板に対する乾燥を行う(乾燥処理ST223)。この固定電荷除去工程ST22では、下地保護膜を形成した後の基板を電解液に浸漬せずに基板をそのまま純水に浸漬し(純水浸漬処理ST222)、その後に基板に対する乾燥を行ってもよい(乾燥処理ST223)。いずれの場合でも、基板を浸漬する液には水蒸気や炭酸ガスなどを吹き込んで液をバブリングしながら基板の浸漬を行うことが好ましい。
しかる後にゲート絶縁膜の表面にゲート電極を形成する(ゲート電極形成工程ST14)。
 このような工程を経て製造したTFTでは、下地保護膜およびゲート絶縁膜を固定電荷除去工程ST21、ST22において液中に浸漬することによって、これらの絶縁膜から固定電荷を除去しているので、TFTを動作させたときに下地保護膜やゲート絶縁膜への電荷の注入が起こりにくい分、TFTの電気的特性は、経時的な安定性が高い。また、固定電荷を除去した絶縁膜をTFTの下地保護膜に用いているので、チャネル領域にバックチャネルが形成されない。それ故、TFTのオフリーク電流を低減できる。また、固定電荷を除去した絶縁膜をゲート絶縁膜に用いているので、ドレイン端への電子などの注入がない分、絶縁耐圧が高い。よって、TFTの初期的な電気的特性も向上する。さらに、固定電荷を除去する方法として液中への浸漬という方法を採用しているので、基板に形成した絶縁膜全体を一括して処理でき、簡単な工程で済むという利点もある。特に本発明では、プラズマCVD法やスパッタ法により形成した下地保護膜やゲート絶縁膜に対して上記の固定電荷除去工程ST21、ST22を行っているため、その効果が顕著である。すなわち、プラズマCVD法やスパッタ法により形成した絶縁膜は、低圧CVD法などといった他の成膜法に比較して固定電荷が生じやすい傾向にある分、このような絶縁膜に本発明を適用すると、その効果が顕著である。
 [第2の実施の形態]
 本発明でも、図2に示すように、下地保護膜形成工程ST11、半導体膜形成工程ST12、ゲート絶縁膜形成工程ST13、ゲート電極形成工程ST14、不純物導入工程ST15、層間絶縁膜形成工程ST16、コンタクトホール形成工程ST17、ソース・ドレイン電極形成工程ST18をこの順に行う。
 本発明において下地保護膜の膜質を向上させるときには、基板の表面に下地保護膜をプラズマCVD法やスパッタ法などにより形成した後に(下地保護膜形成工程ST11/絶縁膜形成工程)、この下地保護膜を所定の温度に設定した液中に浸漬してこの絶縁膜から固定電荷を除去する固定電荷除去工程ST21を行う。
 この固定電荷除去工程ST21では、下地保護膜を形成した後の基板を硫酸水溶液や炭酸水溶液などといった酸性水溶液、中性水溶液、あるいはアンモニア水溶液などといったアルカリ水溶液に浸漬し(電解液浸漬処理T211)、次に基板を純水中に浸漬して基板から上記の電解液を洗い落した後に(純水浸漬処理ST212)、基板に対する乾燥を行う(乾燥処理ST213)。この固定電荷除去工程ST21では、下地保護膜を形成した後の基板を電解液に浸漬せずに、基板をそのまま純水に浸漬し(純水浸漬処理ST212)、その後に基板に対する乾燥を行ってもよい(乾燥処理ST213)。いずれの場合でも、基板を浸漬する液には水蒸気や炭酸ガスなどを吹き込んで液をバブリングしながら基板の浸漬を行うことが好ましい。
 次に本発明では、固定電荷除去工程ST21を行った後の下地保護膜を酸素ガスや水蒸気などといった酸化性ガスを含有する雰囲気中で加熱する熱処理工程ST31を行う。
そして下地保護膜の表面に、非晶質、結晶質、或いはそれらの混晶質のシリコン膜などといった半導体膜を形成する(半導体膜形成工程ST12)。続いてレーザアニールなどを行い、半導体膜を結晶化させる場合がある(結晶化工程ST20)。
次に半導体膜の表面にプラズマCVD法やスパッタ法などによりゲート絶縁膜を形成する(ゲート絶縁膜形成工程ST13/絶縁膜形成工程)。
 ここで、ゲート絶縁膜の膜質を向上させるときには、このゲート絶縁膜を所定の温度に設定した液中に浸漬してこの絶縁膜から固定電荷を除去する固定電荷除去工程ST22を行う。
この固定電荷除去工程ST22でも、ゲート絶縁膜を形成した後の基板を硫酸水溶液や炭酸水溶液などといった酸性水溶液、中性水溶液、あるいはアンモニア水溶液などといったアルカリ水溶液に浸漬し(電解液浸漬処理ST221)、次に基板を純水中に浸漬して基板から上記の電解液を洗い落した後に(純水浸漬処理ST222)、基板に対する乾燥を行う(乾燥処理ST223)。この固定電荷除去工程ST22では、下地保護膜を形成した後の基板を電解液に浸漬せずに、基板をそのまま純水に浸漬し(純水浸漬処理ST222)、その後に基板に対する乾燥を行ってもよい(乾燥処理ST223)。いずれの場合でも、基板を浸漬する液には水蒸気や炭酸ガスなどを吹き込んで液をバブリングしながら基板の浸漬を行うことが好ましい。
 次に本発明では、固定電荷除去工程ST22を行った後のゲー絶縁膜を酸素ガスや水蒸気などといった酸化性ガスを含有する雰囲気中で加熱する熱処理工程ST32を行う。
しかる後に基板に形成したゲート絶縁膜の表面にゲート電極を形成する(ゲート電極形成工程ST14)。
 このような工程を経て製造したTFTでは、先に説明したように、固定電荷除去工程ST22、ST23で固定電荷を除去した下地保護膜およびゲート絶縁膜を用いてTFTを形成したので、TFTの電気的特性は初期的および経時的の双方において向上する。また、固定電荷を除去する方法として液中への浸漬という方法を採用しているので、基板に形成した絶縁膜全体を一括して処理でき、簡単な工程で済むという利点もある。特に、プラズマCVD法やスパッタ法により形成した下地保護膜やゲート絶縁膜に対して上記の固定電荷除去工程ST21、22を行っているため、固定電荷除去工程ST21、22を行った効果が顕著である。すなわち、プラズマCVD法やスパッタ法により形成した絶縁膜は、低圧CVD法などといった他の成膜法に比較して固定電荷が生じやすい傾向にある分、このような絶縁膜に本発明を適用すると、その効果が顕著である。
 また、本発明では固定電荷除去工程ST21、22を行った後に酸化性ガス含有雰囲気中で熱処理工程ST31、32を行っているため、下地保護膜やゲート絶縁膜は焼き締めされて緻密化し、かつシリコン原子と酸素原子との結合は弱くて不安定な状態から強くて安定な状態となる。また、絶縁膜では禁制帯中の電子やホールに対するトラップ準位が減少する。それ故、TFTの電気的特性については、初期的な特性および経時的な安定性の双方が向上する。
さらに熱処理工程ST32では、結晶化工程ST20で予め結晶化した半導体膜、およびゲート絶縁膜の双方に熱処理を行うことになる。このため、半導体膜において各シリコン原子が格子点からわずかにずれていても、このような微小なずれはこの熱処理工程ST32で補正される。すなわち、先の結晶化工程ST20の際に生じた半導体膜のストレスを解放することになって結晶の完全性が高まる。併せて結晶粒と結晶粒との間にわずかに存在する非結晶部分を結晶化させるため、半導体膜の結晶化率が高まる。また、微小結晶は再結晶化して大きな結晶に成長し、結晶粒界を減少させる。それ故、良質の半導体膜を得ることができる。
 [実施例]
 (プラズマCVD装置の構成)
本発明の実施例に係るTFTの製造方法に用いる薄膜形成装置として、プラズマ化学気相堆積装置(PECVD装置)の構成を図3および図4を参照して説明する。図3はプラズマCVD装置の反応室付近の概略平面図、図4は、そのA−A′線における断面図である。
 これらの図において、本例のプラズマCVD装置200は容量結合型であり、プラズマは、高周波電源を用いて平行平板電極間に発生させるようになっている。
 プラズマCVD装置200において、反応室201は反応容器202によって外気から隔絶され、成膜中には約5mtorrから約5torrまでの減圧状態とされる。反応容器202の内部には下部平板電極203と上部平板電極204が互いに平行に配置されており、これらの2枚の電極が平行平板電極を構成している。下部平板電極203と上部平板電極204とからなる平行平板電極の間が反応室201である。本例では、410mm×510mmの平行平板電極を用い、電極間距離は可変である。反応室201の容積も電極間距離の変更にともなって2091cm3 から10455cm3 までの範囲で可変である。電極間距離の変更は下部平板電極203の位置を上下させることにより行うことができ、任意の距離に設定できる。電極間距離をある値に設定したときの平行平板電極の面内における電極間距離の偏差はわずか0.1mmである。従って、電極間に生じる電界強度の偏差は平行平板電極の面内において1.0%以下であり、プラズマは反応室201において均質に発生する。
 下部平板電極203の上には、薄膜を堆積すべきガラス製の大型の基板205が置かれ、基板205の縁辺部2mmがシャドーフレーム206により押さえつけられる。なお、図3では、装置の構成をわかりやすいようにシャドーフレーム206を省略してある。
 下部平板電極203の内部には、基板205を加熱するためのヒータ207(加熱手段)が設けられており、下部平板電極203の温度は25℃から400℃までの間で任意に設定できる。電極の温度をある値に設定したとき、周辺5mmを除く下部平板電極203の面内における温度分布は設定温度に対して±1.0℃以内であり、基板205の大きさを400mm×500mmに設定しても、基板205の面内における温度偏差を2.0℃以下に保つことができる。
 シャドーフレーム206は、例えば基板205として汎用のガラス基板(例えば、コーニングジャパン株式会社製♯7059、日本電気硝子株式会社製OA−2、またはNHテクノグラス株式会社製NA35等)を用いたとき、基板205がヒータ207からの熱によって凹形に変形するのを防ぐとともに、基板のエッジ部、裏面に不要な薄膜が形成されないように基板205を押さえている。
 原料となる気体と、必要に応じて追加の気体とからなる原料ガスは、配管208を通して上部平板電極204の内部に導入され、さらに上部平板電極204の内部に設けられたガス拡散板209の間をすり抜けて上部平板電極204の全面から略均一な圧力で反応室201の流れ出る。成膜中であれば、原料ガスの一部は上部平板電極204から出たところで電離し、平行平板電極間にプラズマを発生させる。原料ガスの一部ないし全部は成膜に関与する。これに対し、成膜に関与しなかった残留原料ガス、および成膜の化学反応の結果として生じた生成ガスは、排気ガスとして反応容器202の周辺上部に設けられた排気穴210から排出される。
 排気穴210のコンダクタンスは平行平板電極間のコンダクタンスの100倍以上であることが好ましい。さらに、平行平板電極間のコンダクタンスはガス拡散板209のコンダクタンスよりも十分に大きく、やはり、その値はガス拡散板209のコンダクタンスの100倍以上であることが好ましい。このように構成することにより、410mm×510mmの大型の上部平板電極204の全面より略均一な圧力で原料ガスが反応室201に導入され、同時に排気ガスが反応室201から全ての方向に均等な流量で排出される。
 各種の原料ガスの流量は、配管208に導入される前に後述するマスフローコントローラーにより所定の値に調整される。また、反応室201の内部の圧力は、排気穴の出口に設けられたコンダクタンス・バルブ211により所定の値に調整される。コンダクタンス・バルブ211の排気側にはターボ分子ポンプ等の真空排気装置(図示せず。)が設けられている。本例では、オイル・フリーの磁気浮上型ターボ分子ポンプが真空排気装置(真空排気手段)の一部として用いられ、反応室内の背景真空度を10-7torr台としている。
 このように構成したPECVD装置200において、図4に示すように、配管208から反応室201内に原料ガスを供給するためのガス供給部250(ガス供給手段)には、TEOS(テトラエトキシシラン)などといった原料ガスを充填したガスボンベ2501と、これらのガスボンベ2501から原料ガスを反応室201に供給するためのガス供給経路2504と、この経路に介挿されたマスフローコントローラ2505とが構成されている。また、ガス供給部250には、酸素ガスなどといった原料ガスを充填したガスボンベ2601と、これらのガスボンベ2601から原料ガスを反応室201に供給するためのガス供給経路2604と、この経路に介挿されたマスフローコントローラ2605とが構成されている。
 なお、図3および図4には、ガスの流れを矢印で示してある。反応容器202および下部平板電極203は、接地電位にあり、これらと上部平板電極204とは、絶縁リング212により電気的な絶縁状態が保たれる。プラズマ発生時には、発振源213(電源)から出力されたRF波が増幅器214にて増幅された後、マッチング回路215を介して上部平板電極204に印加される。
本例で用いたプラズマCVD装置200は、上述のとおり、電極間距離およびガス流に極めて精巧な制御を実現したことにより、400mm×500mmの大型の基板にも対応できる薄膜形成装置として構成されている。これらの基本的な設計思想され踏襲すれば、さらに大型の基板にも容易に対応でき、550mm×650mmほどの大型の基板にも十分に対応し得る装置を構成できる。
 本例では、RF電源を用いているが、マイクロ波やVHF波を発する電源を用いてもよい。また、RF電源では、工業用RF周波数(13.56MHz)の整数倍である27.12MHz、40.6MHz、54.24MHz、67.8MHz等、いずれの周波数に設定してもよい。かかる周波数の変更は、発振源213、増幅器214、およびマッチング回路215を交換することにより容易に行うことができる。なお、電磁波プラズマでは周波数を上げると、プラズマ中の電子温度が上がり、ラジカルの発生が容易になる。
 (TFTの製造方法)
 本発明に係るTFTの製造方法ではいくつかの絶縁膜形成工程があるが、いずれの絶縁膜形成工程も、図3および図4を参照して説明したPECVD装置200を用いる。以下に、図2に示した工程順序に沿って本例のTFTの製造方法を説明する。
本例では図5(A)に示すように、液晶表示パネルのアクティブマトリクス基板用の基板10として大型の汎用の無アリカリガラスを用いる。
 まず、基板10を清浄化した後、図5(B)に示すように基板10の上にプラズマCVD法によりシリコン酸化膜からなる下地保護膜11(絶縁膜)を形成する(下地保護膜形成工程ST11/絶縁膜形成工程)。
 次に図5(C)に示すように、下地保護膜11から固定電荷を除去するために下地保護膜11を液中に浸漬する(下地保護膜に対する固定電荷除去工程ST21)。すなわち、下地保護膜11を形成した後の基板10を、まず、硫酸水溶液や炭酸水溶液などといった酸性水溶液、中性水溶液、あるいはアンモニア水溶液などといったアルカリ水溶液に浸漬する(電解液41への浸漬処理ST211)。このときの電解液41の温度は95℃〜100℃であり、電解液41は沸騰状態にある。この際には電解液41に水蒸気や炭酸ガスなどを吹き込んで電解液41をバブリングしながら基板10の浸漬を行う。次に図5(D)に示すように、基板10を純水42中に浸漬し、基板10から上記の電解液を洗い落とす(純水への浸漬処理ST212)。このときの純水42の温度は95℃〜100℃であり、純水42は沸騰状態にある。この際にも純水42に水蒸気などを吹き込んで純水41をバブリングしながら基板10の浸漬を行う。しかる後に基板10を乾燥させる(乾燥処理ST213)。
 次に本発明では、図5(E)に示すように、固定電荷除去工程を行った後の下地保護膜11を酸化性ガス含有雰囲気中で炉内での熱処理や急速加熱処理を行う(下地保護膜に対する熱処理工程ST31)。この酸化性ガスとしては、酸素ガスを含んだ窒素ガスやアルゴンガス、水蒸気を含んだ窒素ガスやアルゴンガスを用いる。ここで、水蒸気を含む雰囲気中で熱処理を行う場合には、雰囲気温度250℃〜350℃に対して水蒸気が露結しないように、露点が100℃位になるようなガスを用いる。このような酸化性ガス含有雰囲気中で熱処理を行うと、下地保護膜11は焼き締めされて緻密化し、かつシリコン原子と酸素原子との結合は弱くて不安定な状態から強くて安定な状態となる。また、下地保護膜11では禁制帯中の電子やホールに対するトラップ準位が減少する。
 次に図5(F)に示すように、薄膜トランジスタの能動層となるべき真性のシリコン膜などの半導体膜12を約1500オングストロームの膜厚で形成する(半導体膜形成工程ST12)。この半導体膜12はCVD法やPVD法により形成できる。このようにして得られる半導体膜12は、そのままas−deposited膜として薄膜トランジスタのチャネル領域などの半導体層として用いることができる。
 また半導体膜12は、図5(G)に示すようにレーザ光などの光学エネルギーまたは電磁エネルギーを短時間照射して結晶化を進めてもよい(結晶化工程ST20)。最初に形成した半導体膜12が非晶質、または非晶質と微結晶とが混在する混晶質であれば、この工程は結晶化工程と称せられる。これに対して、最初に形成した半導体膜12が多結晶質であれば、この工程は再結晶化工程と称せられる。この工程においてレーザ光などのエネルギー強度が高ければ、結晶化の際に半導体膜12は一度溶融し冷却固化過程を経て結晶化(溶融結晶化)する。これに対して半導体膜12の結晶化を溶融せずに固相にて進める方法を固相成長法(SPC法)と称する。固相成長法は、550℃程度から650℃程度の温度で数時間から数十時間をかけて結晶化をすすめる熱処理法(Furnance−SPC法)と、一秒未満から一分程度の短時間で700℃から1000℃の温度で結晶化をすすめる急速加熱処理法(RTA法)と、およびレーザ光等のエネルギー強度が低いときに生じる極短時間固相成長法(VST−SPC法)との三者に主として分類される。いずれの方法も適用可能であるが、溶融結晶化、RTA法、VST−SPC法では、照射時間が非常に短時間であり、かつ、照射領域が基板10全体からみると局所的であるため、半導体膜12の結晶化に際して基板10全体が高温に熱せられることがない。それ故、基板10には熱による変形や割れなどが生じないので、大型の基板10を高い生産性をもって製造するのに適している。
 次に図5(H)に示すように、所定のパターンをもつレジストマスク22を形成した後、このレジストマスク22を用いて、図5(I)に示すように半導体膜12をパターニングし、島状の半導体膜12とする。
 半導体膜12をパターニングした後は図6(A)に示すように、プラズマCVD法によりシリコン酸化膜からなるゲート絶縁膜13を形成する(ゲート絶縁膜形成工程ST13/絶縁膜形成工程)。ゲート絶縁膜13の形成にあたっても様々な方法が考えられるが、ゲート絶縁膜13の形成温度は350℃以下であることが好ましい。これは、MOS界面やゲート絶縁膜13が熱劣化するのを防ぐためである。同じことは以下の全ての工程に対してもいえる。ゲート絶縁膜13形成後の全ての工程温度は350℃以下に抑えなければならない。このように条件設定することにより、高性能の薄膜トランジスタを容易に、かつ安定的に製造できる。
 次にゲート絶縁膜13から固定電荷を除去するために、図6(B)に示すようにゲート絶縁膜13を液中に浸漬する(ゲート絶縁膜に対する固定電荷除去工程ST22)。すなわち、ゲート絶縁膜13を形成した後の基板10を硫酸水溶液や炭酸水溶液などといった酸性水溶液、中性水溶液、あるいはアンモニア水溶液などといったアルカリ水溶液に浸漬する(電解液43への浸漬処理ST221)。このときの電解液43の温度は95℃〜100℃であり、電解液43は沸騰状態にある。この際には電解液43に水蒸気や炭酸ガスなどを吹き込んで電解液43をバブリングしながら基板10の浸漬を行う。次に図6(C)に示すように、基板10を純水44中に浸漬し、基板10から上記の電解液を洗い落とす(純水への浸漬処理ST222)。このときの純水44の温度は95℃〜100℃であり、純水44は沸騰状態にある。この際にも純水44に水蒸気などを吹き込んで純水44をバブリングしながら基板10の浸漬を行う。しかる後に基板10を乾燥させる(乾燥処理ST223)。
 次に本発明では、次に図6(D)に示すように、固定電荷除去工程を行った後のゲート絶縁膜13を酸化性ガス含有雰囲気中で加熱する(ゲート絶縁膜に対する熱処理工程ST32)。この酸化性ガスとしては、酸素ガスを含んだ窒素ガスやアルゴンガス、水蒸気を含んだ窒素ガスやアルゴンガスを用いる。ここで、水蒸気を含む雰囲気中で熱処理を行う場合には、雰囲気温度250℃〜350℃に対して水蒸気が露結しないように、露点が100℃位になるようなガスを用いる。このような酸化性ガス含有雰囲気中で熱処理を行うと、絶縁膜は焼き締めされて緻密化し、かつシリコン原子と酸素原子との結合は弱くて不安定な状態から強くて安定な状態となる。また、絶縁膜では禁制帯中の電子やホールに対するトラップ準位が減少する。さらにこの熱処理工程では、半導体膜12およびゲート絶縁膜13の双方に熱処理を行うことになる。このため、各シリコン原子が格子点からわずかにずれていても、このような微小なずれはこの熱処理工程で補正される。すなわち、先の結晶化の工程の際に生じた半導体膜12のストレスを解放することになって結晶の完全性が高まる。併せて結晶粒と結晶粒との間にわずかに存在する非結晶部分を結晶化させるため、半導体膜12の結晶化率が高まる。また、微小結晶は再結晶化して大きな結晶に成長し、結晶粒界を減少させる。それ故、良質の半導体膜12を得ることができる。
ここで行う熱処理としては炉内での熱処理でもよいが、急速加熱処理を行うと、高温になる分、熱処理の効果が高い。しかも、急速加熱処理によればスループットもよい。
 次に図6(E)に示すように、ゲート電極となる薄膜21をCVD法やPVD法などで堆積する。通常はゲート電極とゲート配線とは、同一の材料で同一の工程により形成される。このため、電極材料としては、電気抵抗が低く、かつ350℃程度の熱処理工程に対して安定であることが求められる。ゲート電極となる薄膜21を堆積した後、図6(F)に示すようにパターニングを行い、ゲート電極15を形成する(ゲート電極形成工程ST14)。次に半導体膜12に対して不純物イオンを導入し、ソース・ドレイン領域16およびチャネル領域17を形成する(不純物導入工程ST15)。
 このとき、ゲート電極15がイオン注入のマスクとなるため、チャネル領域17は、ゲート電極15下のみに形成される自己整合構造となる。不純物イオンの導入は、質量非分離型イオン注入装置を用いて注入不純物元素の水素化合物と水素とを注入するイオン・ドーピング法と、質量分離型イオン注入装置を用いて所望の不純物イオンのみを注入するイオン打ち込み法との二種類が適用され得る。
イオン・ドーピング法の原料ガスとしては、水素中に希釈された濃度が0.1%程度のホスフィン(PH3 )やジボラン(B2 H6 )などの注入不純物の水素化物を用いる。イオン打ち込み法では、所望の不純物元素のみを注入した後に引き続いて水素イオン(プロトンや水素分子イオン)を注入する。前述のとおり、MOS界面やゲート絶縁膜13を安定に保つにはイオン・ドーピング法あるいはイオン打ち込み法のいずれの方法であってもイオン注入時の基板温度は350℃以下でなければならない。一方、注入不純物の活性化を350℃以下の低温で常に安定的に行うには、イオン注入時の基板10の温度は200℃以上であることが好ましい。トランジスタのしきい値電圧を調整するためにチャネルドープを行う場合、あるいはLDD構造を作成するといったように低濃度に注入された不純物イオンを低温で確実に活性化するには、イオン注入時の基板10の温度は250℃以上であることが必要となる。このように、基板10の温度が高い状態でイオン注入を行うと、半導体膜12のイオン注入に伴う結晶破壊の際に再結晶化も同時に生じるので、結果的にはイオン注入部の非晶質化を防ぐことができる。すなわち、イオン注入された領域は注入後も依然として結晶質として残り、その後の活性化温度が350℃程度以下と低温であっても注入イオンの活性化が可能になる。CMOS構造となるように薄膜トランジスタを製造するときには、ポリイミド樹脂などの適当なマスク材を用いてNMOSまたはPMOSの一方を交互にマスクで覆い、上述の方法にてそれぞれのイオン注入を行う。
 次に、図6(G)に示すように、層間絶縁膜18をCVD法あるいはPVD法で形成する(層間絶縁膜形成工程ST16)。イオン注入と層間絶縁膜18の形成後、350℃程度以下の適当な熱環境下にて数十分から数時間の熱処理を施して注入イオンの活性化及び層間絶縁膜18の焼き締めを行う。この熱処理温度は注入イオンを確実に活性化する為にも250℃程度以上が好ましい。ゲート絶縁膜13と層間絶縁膜18とではその膜品質が異なっている。このため、層間絶縁膜18を形成した後、二つの絶縁膜にコンタクトホール19を開ける際、絶縁膜のエッチング速度が違っているのが普通である。このような条件下ではコンタクトホール19の形状が下方程広い逆テーパー状になったり或いは庇が発生してしまい、その後にソース・ドレイン電極26を形成した時に電気的な導通がうまく取れない原因(接続不良の原因)となる。このような接続不良は層間絶縁膜18を焼き締めることによって効果的に防止できる。
 なお、層間絶縁膜18を形成した後にソース・ドレイン領域16上にコンタクトホール19を開孔し(コンタクトホール形成工程ST17)、しかる後にソース・ドレイン電極26を形成する(ソース・ドレイン電極形成工程ST18)。
 この際にはPVD法やCVD法などを用いる。このようにしてTFT30が形成される。
このように形成したTFTでは、絶縁膜を液中に浸漬することによって絶縁膜から固定電荷を除去しているため、この絶縁膜をTFTの下地保護膜11やゲート絶縁膜13に用いた場合には絶縁膜中への電荷の注入が起こりにくい分、TFTの電気的特性において経時的な安定性が向上する。また、固定電荷を除去した絶縁膜をTFTの下地保護膜11に用いているので、チャネル領域17にバックチャネルが形成されることがない。一方、固定電荷を除去した絶縁膜をTFTのゲート絶縁膜13に用いているので、ドレイン端への電子などの注入がない分、絶縁耐圧が向上する。よって、TFTの初期的な電気的特性も向上する。さらに、固定電荷を除去する方法として液中への浸漬という方法を採用しているので、基板に形成した絶縁膜全体を一括して処理でき、簡単な工程で済むという利点もある。
 [その他の実施例]
 本発明のTFTの製造方法において、スパッタ法により成膜した絶縁膜にも固定電荷が発生しやすいので、この絶縁膜にも本発明を適用してもよい。すなわち、スパッタ装置では、反応室内のターゲットと基板とによって構成された平行平板電極に高周波電界を形成するとともに、反応室内に供給されたスパッタガスを用いてプラズマを形成し、ターゲットからスパッタ蒸発させた原子または分子と、反応室内に供給した酸素ガスなどとによって基板上にシリコン酸化膜を形成する。また、スパッタ法あるいはプラズマCVD法に限らず、その他の成膜方法で形成した絶縁膜(下地保護膜やゲート絶縁膜)に本発明を適用してもよいことは勿論である。






本発明を適用したTFTの製造方法を示す工程図である。 本発明を適用したTFTの別の製造方法を示す工程図である。 プラズマCVD装置の反応室付近の概略平面図である。 図3のA−A′線における断面図である。 本発明の実施例に係るTFTの製造方法を示す工程断面図である。 図5に続いて行う工程の断面図である。 TFTの断面図である。
符号の説明
10 基板
11 下地保護膜
12 半導体膜
13 ゲート絶縁膜
ST11 下地保護膜形成工程
ST12 半導体膜形成工程
ST13 ゲート絶縁膜形成工程
ST14 ゲート電極形成工程
ST15 不純物導入工程
ST16 層間絶縁膜形成工程
ST17 コンタクトホール形成工程
ST18 ソース・ドレイン電極形成工程
ST21、ST22 固定電荷除去工程
ST31、ST32 熱処理工程

Claims (3)

  1.  薄膜トランジスタの製造方法において、
     基板上に半導体膜を形成する工程と、
     前記半導体膜上にゲート絶縁膜を形成する工程と、
     前記ゲート絶縁膜を電解液中に浸漬した後、純水中に浸漬することによって前記ゲート絶縁膜から固定電荷を除去する工程と、
     を有することを特徴とする薄膜トランジスタの製造方法。
  2.  請求項1において、前記ゲート絶縁膜から前記固定電荷を除去した後、前記絶縁膜を酸化性ガス含有雰囲気中で熱処理する工程を有することを特徴とする薄膜トランジスタの製造方法。
  3.  請求項1又は請求項2において、前記ゲート絶縁膜から前記固定電荷を除去する工程では、前記電解液中に気体を吹き込んで前記電解液をバブリングしながら前記ゲート絶縁膜を浸漬することを特徴とする薄膜トランジスタの製造方法。
JP2004005520A 2004-01-13 2004-01-13 薄膜トランジスタの製造方法 Expired - Fee Related JP4211609B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004005520A JP4211609B2 (ja) 2004-01-13 2004-01-13 薄膜トランジスタの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004005520A JP4211609B2 (ja) 2004-01-13 2004-01-13 薄膜トランジスタの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18250796A Division JP3533830B2 (ja) 1996-07-11 1996-07-11 薄膜トランジスタの製造方法

Publications (2)

Publication Number Publication Date
JP2004140407A true JP2004140407A (ja) 2004-05-13
JP4211609B2 JP4211609B2 (ja) 2009-01-21

Family

ID=32464160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004005520A Expired - Fee Related JP4211609B2 (ja) 2004-01-13 2004-01-13 薄膜トランジスタの製造方法

Country Status (1)

Country Link
JP (1) JP4211609B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479416B2 (en) 2005-01-18 2009-01-20 Samsung Electronics Co., Ltd. Thin film transistor array panel and manufacturing method thereof
CN100459169C (zh) * 2005-07-12 2009-02-04 日本电气株式会社 半导体器件及其制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9709082D0 (en) * 1997-05-06 1997-06-25 Ciba Geigy Ag Organic compositions
CN101032481B (zh) * 2006-03-07 2011-06-08 杨美华 中药爵床木脂素部位作为制备抗肿瘤药物的应用
JP5925028B2 (ja) * 2011-09-01 2016-05-25 花王株式会社 皮膚美白剤
CN108456200B (zh) * 2017-06-22 2021-11-09 贵州省中国科学院天然产物化学重点实验室 一种高纯度6′-羟基-爵床定b的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479416B2 (en) 2005-01-18 2009-01-20 Samsung Electronics Co., Ltd. Thin film transistor array panel and manufacturing method thereof
US8164097B2 (en) 2005-01-18 2012-04-24 Samsung Electronics Co., Ltd. Thin film transistor array panel and manufacturing method thereof
CN100459169C (zh) * 2005-07-12 2009-02-04 日本电气株式会社 半导体器件及其制造方法
US7582933B2 (en) 2005-07-12 2009-09-01 Nec Corporation Transistor with electrode-protecting insulating film
US7981811B2 (en) 2005-07-12 2011-07-19 Nec Corporation Semiconductor device and method for manufacturing same

Also Published As

Publication number Publication date
JP4211609B2 (ja) 2009-01-21

Similar Documents

Publication Publication Date Title
KR100222319B1 (ko) 박막 트랜지스터 및 그의 제작방법
KR100279217B1 (ko) 반도체 장치 형성 방법, 결정성 반도체 막 형성 방법, 박막 트랜지스터 형성 방법 및 반도체 장치 제조 방법
JP4211609B2 (ja) 薄膜トランジスタの製造方法
JPH10149984A (ja) 多結晶シリコンの形成方法及び形成装置
KR100624427B1 (ko) 다결정 실리콘 제조방법 및 이를 이용하는 반도체 소자의제조방법
JP3533830B2 (ja) 薄膜トランジスタの製造方法
JP3844526B2 (ja) 結晶性珪素膜作製方法
JP2001244266A (ja) 電子素子用基板およびその製造装置
US6730368B1 (en) Method of preparing a poly-crystalline silicon film
JP2005340827A (ja) 多結晶シリコン薄膜構造体及びその製造方法、並びにそれを用いるtftの製造方法
JP2840802B2 (ja) 半導体材料の製造方法および製造装置
JP4737366B2 (ja) 半導体装置の製造方法
JP2002359192A (ja) 半導体装置の作製方法
JPH11102861A (ja) 多結晶シリコン薄膜の製造方法
JP4200530B2 (ja) 薄膜トランジスタの製造方法
US6974763B1 (en) Method of forming semiconductor device by crystallizing amorphous silicon and forming crystallization promoting material in the same chamber
JPH1041513A (ja) 半導体素子の製造方法およびその装置
JP2000243721A (ja) 半導体装置の製造装置
JP4254661B2 (ja) 半導体装置の製造方法
JP2002208707A (ja) 薄膜トランジスタの製造方法
JP2000031081A (ja) 半導体装置の製造方法
JPH10135136A (ja) 結晶性半導体作製方法
WO2010024278A1 (ja) 薄膜トランジスタの製造方法及び薄膜トランジスタ
JPH0487340A (ja) 薄膜トランジスタの製造方法
JP2002237598A (ja) 薄膜トランジスタの製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20081007

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20081020

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20121107

LAPS Cancellation because of no payment of annual fees