JP2004133184A - 光導波路の製造方法およびプラズマcvd装置 - Google Patents
光導波路の製造方法およびプラズマcvd装置 Download PDFInfo
- Publication number
- JP2004133184A JP2004133184A JP2002297498A JP2002297498A JP2004133184A JP 2004133184 A JP2004133184 A JP 2004133184A JP 2002297498 A JP2002297498 A JP 2002297498A JP 2002297498 A JP2002297498 A JP 2002297498A JP 2004133184 A JP2004133184 A JP 2004133184A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- optical waveguide
- reaction chamber
- frequency
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Integrated Circuits (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
【目的】コア間のクラッドの埋め込み性を向上させ、成膜速度の向上、生産効率の向上あるいは素子損失の低減を図る。
【解決手段】原料ガスが供給される反応室1と、反応室1の内部に配置された上部シャワー電極2と、反応室1の内部に上部シャワー電極2と対向する位置に配置された下部電極3と、を備えたプラズマCVD装置を用いて光導波路を製造する光導波路の製造方法であって、成膜時に上部シャワー電極2に第1の周波数(13.56MHz)を有する高周波電力を供給し、下部電極3に第2の周波数(380kHz)を有する高周波電力を供給する。
【選択図】 図1
【解決手段】原料ガスが供給される反応室1と、反応室1の内部に配置された上部シャワー電極2と、反応室1の内部に上部シャワー電極2と対向する位置に配置された下部電極3と、を備えたプラズマCVD装置を用いて光導波路を製造する光導波路の製造方法であって、成膜時に上部シャワー電極2に第1の周波数(13.56MHz)を有する高周波電力を供給し、下部電極3に第2の周波数(380kHz)を有する高周波電力を供給する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、光導波路の製造方法およびプラズマCVD装置に係り、特に石英系光導波路を製造するための技術に関する。
【0002】
【従来の技術】
平面な石英基板上にRFスパッタリング法、プラズマCVD法のいずれかにより厚さ4〜8μmのコア膜を形成する。次に、コア膜上に光回路のマスクとなる金属膜をスパッタリング法により形成し、フォトリソグラフィ及び反応性イオンエッチングにより矩形状コアを形成する。その後、矩形状コアを覆うようにプラズマCVD法によりクラッド膜を形成する。
【0003】
プラズマCVD法は、低温でガラス膜を形成できることから、基板に変形などが生じがたく設計値に近いデバイス特性を得ることができるため有効な成膜手法である。従来のプラズマCVD装置は、反応室を備えており、この反応室内に平行平板状に設置された一対の電極が、それぞれ上部電極および下部電極として設けられている。このようなプラズマCVD装置としては、例えば、特許文献1に開示されたものが挙げられる。
【0004】
そして、反応室内は、排気装置により真空に排気され、下部電極には、13.56MHzの高周波電力が電源装置により印加される。この状態で上部シャワー電極より導入されたTEOSとO2の混合ガスは下部電極付近において分解反応し基板にCVD膜が形成される。
【0005】
図8に凹凸のあるパターン上に形成したCVD膜の断面形状を示す。
【0006】
図8に示すように、コア51の角部にクラッド膜52によるオーバーハングが形成された形状となる。これは、基板付近で原料ガスが分解反応することから、基板53に対して斜め方向に入射する粒子の成分が多いためである。さらに成膜を行うと、コア間隔の狭いパターンでは、オーバーハング同士の接触によってボイド(空隙)が発生してしまうこととなる。
【0007】
このため、ある膜厚の膜を形成後、反応室内に導入するガスをArに切り替えスパッタリング効果によってオーバーハングをエッチングする。
【0008】
そして、成膜とエッチングを繰り返して行うことにより、クラッド膜52の形成を行っていた。
【0009】
【特許文献1】
特開平7−54153号公報
【0010】
【発明が解決しようとする課題】
上記従来のプラズマCVD装置では、13.56MHzの高周波電力が下部電極のみに印加されていたため、クラッド膜がオーバーハングの出来やすい形状となってしまうという問題点があった。
【0011】
このため、コア間のクラッドの埋め込み性が悪くなり、オーバーハングを除去するためにArプラズマによるエッチングを行っていたが、成膜速度が低下し、生産効率が低下し、素子損失が増大するという問題点があった。
【0012】
そこで、本発明の目的は、コア間のクラッドの埋め込み性を向上させ、成膜速度の向上、生産効率の向上あるいは素子損失の低減を図ることが可能な光導波路の製造方法およびプラズマCVD装置を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決するため、原料ガスが供給される反応室と、前記反応室の内部に配置された第1電極と、前記反応室の内部に前記第1電極と対向する位置に配置された第2電極と、を備えたプラズマCVD装置を用いて光導波路を製造する光導波路の製造方法は、成膜時に前記第1電極に第1の周波数を有する高周波電力を供給する第1電源供給過程と、記成膜時に前記第2電極に第2の周波数を有する高周波電力を供給する第2電源供給過程と、備えたことを特徴としている。
【0014】
この場合において、前記第1の周波数を、13.56MHzとし、前記第2の周波数を、380kHzとするようにしてもよい。
【0015】
また、前記原料ガスは、TEOSと酸素の混合ガスであり、前記TEOSの流量を5〜40sccmの範囲とする第1流量制御過程と、前記酸素の流量を100〜1500sccmの範囲とする第2流量制御過程と、備えるようにしてもよい。
【0016】
さらに、前記成膜時の前記反応室内のガス圧力を、100〜1000mTorrの範囲内とするガス圧制御過程を備えたことを特徴とする光導波路の製造方法。
【0017】
さらにまた、前記成膜時に前記第1電極に印加する高周波電力量を50〜300Wとする第1電力量制御過程と、前記成膜時に前記第2電極に印加する高周波電力量を50〜1000Wとする第2電力量制御過程と、を備えるようにしてもよい。
【0018】
また、前記プラズマCVD装置は、前記第1電極および前記第2電極を独立して加熱可能なヒータを備え、前記第1電極あるいは前記第2電極を200〜400℃とする加熱制御過程を備えるようにしてもよい。
【0019】
また、プラズマCVD装置は、原料ガスが供給される反応室と、記反応室の内部に配置された第1電極と、前記反応室の内部に前記第1電極と対向する位置に配置された第2電極と、前記第1電極に第1の周波数を有する高周波電力を供給する第1電源と、前記第2電極に第2の周波数を有する高周波電力を供給する第2電源と、を備えるようにしてもよい。
【0020】
この場合において、前記第1の周波数は、13.56MHzであり、前記第2の周波数は、380kHzであるようにしてもよい。
【0021】
【発明の実施の形態】
次に本発明の好適な実施の形態について説明する。
【0022】
図1は実施形態のプラズマCVD装置の概要構成ブロック図である。
【0023】
プラズマCVD装置100は、大別すると、反応室1と、第1電源4と、第2電源5と、排気装置6と、原料ガス供給装置7と、ヒータ8と、を備えている。
【0024】
ここで、反応室1内には、上部シャワー電極2と、下部電極3と、が設けられている。
【0025】
上部シャワー電極2は、第1電極として機能する平板状の電極として構成されている。
【0026】
下部電極3は、平板状の電極として構成され、上部シャワー電極2と平行に対向する位置に配置されている。ここで、下部電極3は、第2電極として機能している。
【0027】
第1電源4は、上部シャワー電極2に13.56MHz(第1の周波数)の高周波電力を印加する。このときの高周波電力量は、50〜300Wの範囲内とされる。
【0028】
第2電源5は、下部電極3に380kHz(第2の周波数)の高周波電力を印加する。このときの高周波電力量は、50〜1000Wの範囲内とされる。
【0029】
排気装置6は、反応室1内を所定の真空状態まで排気する。
【0030】
原料ガス供給装置7は、原料ガスを所定流量で反応室1内に供給する。このとき、反応室1内のガス圧力は、100〜1000mTorrの範囲内とされる。
【0031】
ヒータ8は、上部シャワー電極2を200℃〜400℃、好ましくは250℃に加熱する。また、ヒータ8は、下部電極3を200℃〜400℃、好ましくは250℃〜300℃に加熱する。
【0032】
次に概要動作を説明する。
【0033】
まず、反応室1内を排気装置6により排気を行い、プラズマを発生させるに十分な所定圧力の真空状態とする。
【0034】
続いて原料ガス供給装置7により、CVDに用いる複数種類のガスを所定の比率で所定量だけ反応室内1内に供給する。
【0035】
このとき、ヒータ8は、上部シャワー電極2および下部電極3をそれぞれ所定の温度に加熱する。
【0036】
そして、第1電源4は、上部シャワー電極2に13.56MHzの高周波電力を所定電力量だけ印加し、第2電源5は、下部電極3に380kHzの高周波電力を所定電力量だけ印加する。
【0037】
これらの結果、上部シャワー電極2と下部電極3との間には、プラズマが発生され、原料ガスが分解し、反応することにより平板状の基板上に所定の膜圧のクラッド膜が形成される。
【0038】
ここで、具体的な光導波路の製造工程について図2を参照して説明する。
【0039】
まず、平板形状を有する石英基板21にRFスパッタリング法あるいはプラズマCVD法により厚さ4〜8μmのコア膜22を形成させる(ステップS1)。
【0040】
次にコア膜22上にマスクとなる金属膜23をスパッタリング法により形成する(ステップS2)。
【0041】
続いて、フォトリソグラフィおよび反応性イオンエッチングにより矩形状のコア22Aを形成する(ステップS3)。
【0042】
そして本実施形態のプラズマCVD装置100により矩形状のコア22Aを覆うようにクラッド膜24を形成することとなる。
【0043】
以上の説明のように、本実施形態によれば、上部シャワー電極および下部電極に対し周波数の異なる高周波電源を供給してプラズマを励起する2周波励起プラズマ方式を用いることにより、ガスの分解率の向上、下部電極により、分解されたガス粒子の垂直方向成分が増加することから、埋め込み性能が改善される。また、2周波励起プラズマ方式によりプラズマ密度が高くなることから、高速成膜が可能となる。
【0044】
【実施例】
次に本発明のより具体的な実施例について説明する。
[1]第1実施例
本第1実施例のプラズマCVD装置は、図1に示したプラズマCVD装置と同様の構成であるので、装置構成については、図1を参照して説明するものとする。
【0045】
以下、第1実施例における石英系光導波路の製造方法について説明する。
【0046】
まず、排気装置6により反応室1内の排気を行い、プラズマを発生させるに十分な所定圧力、具体的には、反応室1内の圧力を5mTorr以下とする。
【0047】
続いて原料ガス供給装置7により、TEOS(テトラエトキシシラン;Si(OC2 H5)4)および酸素O2 を所定の比率(3:100)で、TEOSを5〜40sccm、より好ましくは、20〜35sccmを反応室1内に供給する。同様にO2 を100〜1500sccm、より好ましくは、333〜1000sccmを反応室1内に供給する。ここで、流量の単位sccmは、standard cc/minの意味であり、1分間あたりの流量(cc=cm3)を1atm(大気圧、 1,013hPa)、0℃において規格化した値である。
【0048】
このとき、ヒータ8は、上部シャワー電極2を250℃下部電極3を300℃に加熱する。
【0049】
そして、第1電源4により、上部シャワー電極2に13.56MHz、100Wの高周波電力を印加させ、第2電源5により、下部電極3に380kHz、200Wの高周波電力を印加させた。
【0050】
これらの結果、上部シャワー電極2と下部電極3との間には、プラズマが発生され、原料ガスであるTEOSおよびO2 が分解し、反応することにより平面基板上に形成された矩形状コア上に膜厚20μmの純粋SiO2 クラッド膜を形成した。
【0051】
この場合において、Arプラズマによるエッチングを行うことなく、コア間を埋め込むことが可能であった。
【0052】
図3に原料ガス流量に対する成膜速度の説明図を示す。
【0053】
図3に示すように、反応室1内にTEOSを30sccm、O2 を1000sccm導入した場合、成膜速度200nm/minが得られた。これは、従来の1周波励起プラズマ方式と比較して約4倍の成膜速度であった。
[2]第2実施例
本第2実施例のプラズマCVD装置も、図1に示したプラズマCVD装置と同様の構成であるので、装置構成については、図1を参照して説明するものとする。
【0054】
以下、第2実施例における石英系光導波路の製造方法について説明する。
【0055】
まず、排気装置6により反応室1内の排気を行い、プラズマを発生させるに十分な所定圧力、具体的には、反応室1内の圧力を5mTorr以下とする。
【0056】
続いて原料ガス供給装置7により、TEOSを30sccm、O2 を1000sccmを反応室1内に供給する。
【0057】
このとき、ヒータ8は、上部シャワー電極2を250℃下部電極3を300℃に加熱する。
【0058】
そして、第1電源4により、上部シャワー電極2に13.56MHzの高周波電力を100W印加させ、第2電源5により、下部電極3に380kHzの高周波電力を200ワット印加させた。
【0059】
このとき、ガス圧を100〜1000Torrの範囲で変化させた複数の条件でプラズマを発生させた。そして、平面基板上に形成された矩形状コア上に膜厚20μmの純粋SiO2 クラッド膜を形成した。
【0060】
この場合において、Arプラズマによるエッチングを行うことなく、コア間を埋め込むことが可能であった。
【0061】
図4に原料ガス圧力に対する成膜速度の説明図を示す。
【0062】
図4に示すように、反応室1内におけるガス圧力が400mTorrの場合、成膜速度200nm/minが得られた。これは、従来の1周波励起プラズマ方式と比較して約4倍の成膜速度であった。
[3]第3実施例
本第3実施例のプラズマCVD装置も、上記第1実施例および第2実施例と同様に、図1に示したプラズマCVD装置と同様の構成であるので、装置構成については、図1を参照して説明するものとする。
【0063】
以下、第3実施例における石英系光導波路の製造方法について説明する。
【0064】
まず、排気装置6により反応室1内の排気を行い、プラズマを発生させるに十分な所定圧力、具体的には、反応室1内の圧力を5mTorr以下とする。
【0065】
続いて原料ガス供給装置7により、TEOSを30sccm、O2 を1000sccmを反応室1内に供給し、反応室1内におけるガス圧力を400mTorrとした。
【0066】
このとき、ヒータ8は、上部シャワー電極2を250℃下部電極3を300℃に加熱する。
【0067】
そして、第1電源4により、上部シャワー電極2に13.56MHzの高周波電力を100W印加させた。
【0068】
このとき、第2電源5により、下部電極3に380kHzの高周波電力を100〜600Wの範囲で変化させた複数の条件で印加した。
【0069】
これにより、平面基板上に形成された矩形状コア上に膜厚20μmの純粋SiO2 クラッド膜を形成した。
【0070】
この場合において、Arプラズマによるエッチングを行うことなく、コア間を埋め込むことが可能であった。
【0071】
図5に下部電極に印加する高周波電力に対する成膜速度の説明図を示す。
【0072】
図5に示すように、下部電極に印加する高周波電力が200Wの場合、成膜速度200nm/minが得られた。これは、従来の1周波励起プラズマ方式と比較して約4倍の成膜速度であった。
[4]第4実施例
本第4実施例のプラズマCVD装置も、上記第1実施例および第2実施例と同様に、図1に示したプラズマCVD装置と同様の構成であるので、装置構成については、図1を参照して説明するものとする。
【0073】
以下、第3実施例における石英系光導波路の製造方法について説明する。
【0074】
まず、排気装置6により反応室1内の排気を行い、プラズマを発生させるに十分な所定圧力、具体的には、反応室1内の圧力を5mTorr以下とする。
【0075】
続いて原料ガス供給装置7により、TEOS(テトラエトキシシラン;Si(OC2 H5)4)および酸素O2 を所定の比率(3:100)で、TEOSを30sccm、O2 を1000sccmを反応室1内に供給し、反応室1内におけるガス圧力を400mTorrとした。
【0076】
このとき、ヒータ8は、上部シャワー電極2を250℃、下部電極3を300℃に加熱する。
【0077】
そして、第1電源4により、上部シャワー電極2に13.56MHzで高周波電力を50〜250Wの範囲で変化させた複数の条件で印加した。
【0078】
このとき、第2電源5により、下部電極3には、周波数380kHz、200Wで高周波電力を印加した。
【0079】
これにより、平面基板上に形成された矩形状コア上に膜厚20μmの純粋SiO2クラッド膜を形成した。
【0080】
この場合において、Arプラズマによるエッチングを行うことなく、コア間を埋め込むことが可能であった。
【0081】
図6に上部シャワー電極に印加する高周波電力の電力量に対する成膜速度の説明図を示す。
【0082】
図6に示すように、上部シャワー電極に印加する高周波電力が100Wの場合、成膜速度200nm/minが得られた。これは、従来の1周波励起プラズマ方式と比較して約4倍の成膜速度であった。
[5]第5実施例
本第5実施例のプラズマCVD装置も、上記各実施例と同様に、図1に示したプラズマCVD装置と同様の構成であるので、装置構成については、図1を参照して説明するものとする。
【0083】
以下、第5実施例における石英系光導波路の製造方法について説明する。
【0084】
まず、排気装置6により反応室1内の排気を行い、プラズマを発生させるに十分な所定圧力、具体的には、反応室1内の圧力を5mTorr以下とする。
【0085】
続いて原料ガス供給装置7によりTEOSを30sccm、O2 を1000sccmを反応室1内に供給し、反応室1内におけるガス圧力を400mTorrとした。
【0086】
このとき、ヒータ8は、上部シャワー電極2を250℃とし、下部電極3の温度を250℃〜300℃の範囲で変化させ、複数の温度条件で加熱した。
【0087】
そして、第1電源4により上部シャワー電極2に13.56MHz、100Wの高周波電力を印加し、第2電源5により下部電極3に380kHz、200Wの高周波電力を印加した。
【0088】
これにより、平面基板上に形成された矩形状コア上に膜厚20μmの純粋SiO2 クラッド膜を形成した。
【0089】
この場合においても、Arプラズマによるエッチングを行うことなく、コア間を埋め込むことが可能であった。
【0090】
図7は下部電極の温度に対する成膜速度の説明図である。
【0091】
図7に示すように、下部電極の温度が300℃の場合、成膜速度200nm/minが得られた。これは、従来の1周波励起プラズマ方式と比較して約4倍の成膜速度であった。
【0092】
【発明の効果】
本発明によれば、コア間のクラッドの埋め込み性を改善することにより、オーバーハングの発生を低減することができる。従って、オーバーハングを除去するためにArプラズマによるエッチングを行う必要がなく、製造工程の簡略化が図れる。
【0093】
また、成膜速度を向上させることができ、生産効率を向上できる。
【0094】
さらに、ボイドの発生を抑制し、素子損失を低減することができる。
【図面の簡単な説明】
【図1】実施形態のプラズマCVD装置の概要構成ブロック図である。
【図2】光導波路の製造工程の説明図である。
【図3】原料ガス流量に対する成膜速度の説明図である。
【図4】原料ガス圧力に対する成膜速度の説明図である。
【図5】下部電極に印加する高周波電力に対する成膜速度の説明図である。
【図6】上部シャワー電極に印加する高周波電力の電力量に対する成膜速度の説明図である。
【図7】下部電極の温度に対する成膜速度の説明図である。
【図8】凹凸のあるパターン上に形成したCVD膜の断面形状の説明図である。
【符号の説明】
100 プラズマCVD装置
1 反応室
2 上部シャワー電極
3 下部電極
4 第1電源
5 第2電源
6 排気装置
7 原料ガス供給装置
8 ヒータ
【発明の属する技術分野】
本発明は、光導波路の製造方法およびプラズマCVD装置に係り、特に石英系光導波路を製造するための技術に関する。
【0002】
【従来の技術】
平面な石英基板上にRFスパッタリング法、プラズマCVD法のいずれかにより厚さ4〜8μmのコア膜を形成する。次に、コア膜上に光回路のマスクとなる金属膜をスパッタリング法により形成し、フォトリソグラフィ及び反応性イオンエッチングにより矩形状コアを形成する。その後、矩形状コアを覆うようにプラズマCVD法によりクラッド膜を形成する。
【0003】
プラズマCVD法は、低温でガラス膜を形成できることから、基板に変形などが生じがたく設計値に近いデバイス特性を得ることができるため有効な成膜手法である。従来のプラズマCVD装置は、反応室を備えており、この反応室内に平行平板状に設置された一対の電極が、それぞれ上部電極および下部電極として設けられている。このようなプラズマCVD装置としては、例えば、特許文献1に開示されたものが挙げられる。
【0004】
そして、反応室内は、排気装置により真空に排気され、下部電極には、13.56MHzの高周波電力が電源装置により印加される。この状態で上部シャワー電極より導入されたTEOSとO2の混合ガスは下部電極付近において分解反応し基板にCVD膜が形成される。
【0005】
図8に凹凸のあるパターン上に形成したCVD膜の断面形状を示す。
【0006】
図8に示すように、コア51の角部にクラッド膜52によるオーバーハングが形成された形状となる。これは、基板付近で原料ガスが分解反応することから、基板53に対して斜め方向に入射する粒子の成分が多いためである。さらに成膜を行うと、コア間隔の狭いパターンでは、オーバーハング同士の接触によってボイド(空隙)が発生してしまうこととなる。
【0007】
このため、ある膜厚の膜を形成後、反応室内に導入するガスをArに切り替えスパッタリング効果によってオーバーハングをエッチングする。
【0008】
そして、成膜とエッチングを繰り返して行うことにより、クラッド膜52の形成を行っていた。
【0009】
【特許文献1】
特開平7−54153号公報
【0010】
【発明が解決しようとする課題】
上記従来のプラズマCVD装置では、13.56MHzの高周波電力が下部電極のみに印加されていたため、クラッド膜がオーバーハングの出来やすい形状となってしまうという問題点があった。
【0011】
このため、コア間のクラッドの埋め込み性が悪くなり、オーバーハングを除去するためにArプラズマによるエッチングを行っていたが、成膜速度が低下し、生産効率が低下し、素子損失が増大するという問題点があった。
【0012】
そこで、本発明の目的は、コア間のクラッドの埋め込み性を向上させ、成膜速度の向上、生産効率の向上あるいは素子損失の低減を図ることが可能な光導波路の製造方法およびプラズマCVD装置を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決するため、原料ガスが供給される反応室と、前記反応室の内部に配置された第1電極と、前記反応室の内部に前記第1電極と対向する位置に配置された第2電極と、を備えたプラズマCVD装置を用いて光導波路を製造する光導波路の製造方法は、成膜時に前記第1電極に第1の周波数を有する高周波電力を供給する第1電源供給過程と、記成膜時に前記第2電極に第2の周波数を有する高周波電力を供給する第2電源供給過程と、備えたことを特徴としている。
【0014】
この場合において、前記第1の周波数を、13.56MHzとし、前記第2の周波数を、380kHzとするようにしてもよい。
【0015】
また、前記原料ガスは、TEOSと酸素の混合ガスであり、前記TEOSの流量を5〜40sccmの範囲とする第1流量制御過程と、前記酸素の流量を100〜1500sccmの範囲とする第2流量制御過程と、備えるようにしてもよい。
【0016】
さらに、前記成膜時の前記反応室内のガス圧力を、100〜1000mTorrの範囲内とするガス圧制御過程を備えたことを特徴とする光導波路の製造方法。
【0017】
さらにまた、前記成膜時に前記第1電極に印加する高周波電力量を50〜300Wとする第1電力量制御過程と、前記成膜時に前記第2電極に印加する高周波電力量を50〜1000Wとする第2電力量制御過程と、を備えるようにしてもよい。
【0018】
また、前記プラズマCVD装置は、前記第1電極および前記第2電極を独立して加熱可能なヒータを備え、前記第1電極あるいは前記第2電極を200〜400℃とする加熱制御過程を備えるようにしてもよい。
【0019】
また、プラズマCVD装置は、原料ガスが供給される反応室と、記反応室の内部に配置された第1電極と、前記反応室の内部に前記第1電極と対向する位置に配置された第2電極と、前記第1電極に第1の周波数を有する高周波電力を供給する第1電源と、前記第2電極に第2の周波数を有する高周波電力を供給する第2電源と、を備えるようにしてもよい。
【0020】
この場合において、前記第1の周波数は、13.56MHzであり、前記第2の周波数は、380kHzであるようにしてもよい。
【0021】
【発明の実施の形態】
次に本発明の好適な実施の形態について説明する。
【0022】
図1は実施形態のプラズマCVD装置の概要構成ブロック図である。
【0023】
プラズマCVD装置100は、大別すると、反応室1と、第1電源4と、第2電源5と、排気装置6と、原料ガス供給装置7と、ヒータ8と、を備えている。
【0024】
ここで、反応室1内には、上部シャワー電極2と、下部電極3と、が設けられている。
【0025】
上部シャワー電極2は、第1電極として機能する平板状の電極として構成されている。
【0026】
下部電極3は、平板状の電極として構成され、上部シャワー電極2と平行に対向する位置に配置されている。ここで、下部電極3は、第2電極として機能している。
【0027】
第1電源4は、上部シャワー電極2に13.56MHz(第1の周波数)の高周波電力を印加する。このときの高周波電力量は、50〜300Wの範囲内とされる。
【0028】
第2電源5は、下部電極3に380kHz(第2の周波数)の高周波電力を印加する。このときの高周波電力量は、50〜1000Wの範囲内とされる。
【0029】
排気装置6は、反応室1内を所定の真空状態まで排気する。
【0030】
原料ガス供給装置7は、原料ガスを所定流量で反応室1内に供給する。このとき、反応室1内のガス圧力は、100〜1000mTorrの範囲内とされる。
【0031】
ヒータ8は、上部シャワー電極2を200℃〜400℃、好ましくは250℃に加熱する。また、ヒータ8は、下部電極3を200℃〜400℃、好ましくは250℃〜300℃に加熱する。
【0032】
次に概要動作を説明する。
【0033】
まず、反応室1内を排気装置6により排気を行い、プラズマを発生させるに十分な所定圧力の真空状態とする。
【0034】
続いて原料ガス供給装置7により、CVDに用いる複数種類のガスを所定の比率で所定量だけ反応室内1内に供給する。
【0035】
このとき、ヒータ8は、上部シャワー電極2および下部電極3をそれぞれ所定の温度に加熱する。
【0036】
そして、第1電源4は、上部シャワー電極2に13.56MHzの高周波電力を所定電力量だけ印加し、第2電源5は、下部電極3に380kHzの高周波電力を所定電力量だけ印加する。
【0037】
これらの結果、上部シャワー電極2と下部電極3との間には、プラズマが発生され、原料ガスが分解し、反応することにより平板状の基板上に所定の膜圧のクラッド膜が形成される。
【0038】
ここで、具体的な光導波路の製造工程について図2を参照して説明する。
【0039】
まず、平板形状を有する石英基板21にRFスパッタリング法あるいはプラズマCVD法により厚さ4〜8μmのコア膜22を形成させる(ステップS1)。
【0040】
次にコア膜22上にマスクとなる金属膜23をスパッタリング法により形成する(ステップS2)。
【0041】
続いて、フォトリソグラフィおよび反応性イオンエッチングにより矩形状のコア22Aを形成する(ステップS3)。
【0042】
そして本実施形態のプラズマCVD装置100により矩形状のコア22Aを覆うようにクラッド膜24を形成することとなる。
【0043】
以上の説明のように、本実施形態によれば、上部シャワー電極および下部電極に対し周波数の異なる高周波電源を供給してプラズマを励起する2周波励起プラズマ方式を用いることにより、ガスの分解率の向上、下部電極により、分解されたガス粒子の垂直方向成分が増加することから、埋め込み性能が改善される。また、2周波励起プラズマ方式によりプラズマ密度が高くなることから、高速成膜が可能となる。
【0044】
【実施例】
次に本発明のより具体的な実施例について説明する。
[1]第1実施例
本第1実施例のプラズマCVD装置は、図1に示したプラズマCVD装置と同様の構成であるので、装置構成については、図1を参照して説明するものとする。
【0045】
以下、第1実施例における石英系光導波路の製造方法について説明する。
【0046】
まず、排気装置6により反応室1内の排気を行い、プラズマを発生させるに十分な所定圧力、具体的には、反応室1内の圧力を5mTorr以下とする。
【0047】
続いて原料ガス供給装置7により、TEOS(テトラエトキシシラン;Si(OC2 H5)4)および酸素O2 を所定の比率(3:100)で、TEOSを5〜40sccm、より好ましくは、20〜35sccmを反応室1内に供給する。同様にO2 を100〜1500sccm、より好ましくは、333〜1000sccmを反応室1内に供給する。ここで、流量の単位sccmは、standard cc/minの意味であり、1分間あたりの流量(cc=cm3)を1atm(大気圧、 1,013hPa)、0℃において規格化した値である。
【0048】
このとき、ヒータ8は、上部シャワー電極2を250℃下部電極3を300℃に加熱する。
【0049】
そして、第1電源4により、上部シャワー電極2に13.56MHz、100Wの高周波電力を印加させ、第2電源5により、下部電極3に380kHz、200Wの高周波電力を印加させた。
【0050】
これらの結果、上部シャワー電極2と下部電極3との間には、プラズマが発生され、原料ガスであるTEOSおよびO2 が分解し、反応することにより平面基板上に形成された矩形状コア上に膜厚20μmの純粋SiO2 クラッド膜を形成した。
【0051】
この場合において、Arプラズマによるエッチングを行うことなく、コア間を埋め込むことが可能であった。
【0052】
図3に原料ガス流量に対する成膜速度の説明図を示す。
【0053】
図3に示すように、反応室1内にTEOSを30sccm、O2 を1000sccm導入した場合、成膜速度200nm/minが得られた。これは、従来の1周波励起プラズマ方式と比較して約4倍の成膜速度であった。
[2]第2実施例
本第2実施例のプラズマCVD装置も、図1に示したプラズマCVD装置と同様の構成であるので、装置構成については、図1を参照して説明するものとする。
【0054】
以下、第2実施例における石英系光導波路の製造方法について説明する。
【0055】
まず、排気装置6により反応室1内の排気を行い、プラズマを発生させるに十分な所定圧力、具体的には、反応室1内の圧力を5mTorr以下とする。
【0056】
続いて原料ガス供給装置7により、TEOSを30sccm、O2 を1000sccmを反応室1内に供給する。
【0057】
このとき、ヒータ8は、上部シャワー電極2を250℃下部電極3を300℃に加熱する。
【0058】
そして、第1電源4により、上部シャワー電極2に13.56MHzの高周波電力を100W印加させ、第2電源5により、下部電極3に380kHzの高周波電力を200ワット印加させた。
【0059】
このとき、ガス圧を100〜1000Torrの範囲で変化させた複数の条件でプラズマを発生させた。そして、平面基板上に形成された矩形状コア上に膜厚20μmの純粋SiO2 クラッド膜を形成した。
【0060】
この場合において、Arプラズマによるエッチングを行うことなく、コア間を埋め込むことが可能であった。
【0061】
図4に原料ガス圧力に対する成膜速度の説明図を示す。
【0062】
図4に示すように、反応室1内におけるガス圧力が400mTorrの場合、成膜速度200nm/minが得られた。これは、従来の1周波励起プラズマ方式と比較して約4倍の成膜速度であった。
[3]第3実施例
本第3実施例のプラズマCVD装置も、上記第1実施例および第2実施例と同様に、図1に示したプラズマCVD装置と同様の構成であるので、装置構成については、図1を参照して説明するものとする。
【0063】
以下、第3実施例における石英系光導波路の製造方法について説明する。
【0064】
まず、排気装置6により反応室1内の排気を行い、プラズマを発生させるに十分な所定圧力、具体的には、反応室1内の圧力を5mTorr以下とする。
【0065】
続いて原料ガス供給装置7により、TEOSを30sccm、O2 を1000sccmを反応室1内に供給し、反応室1内におけるガス圧力を400mTorrとした。
【0066】
このとき、ヒータ8は、上部シャワー電極2を250℃下部電極3を300℃に加熱する。
【0067】
そして、第1電源4により、上部シャワー電極2に13.56MHzの高周波電力を100W印加させた。
【0068】
このとき、第2電源5により、下部電極3に380kHzの高周波電力を100〜600Wの範囲で変化させた複数の条件で印加した。
【0069】
これにより、平面基板上に形成された矩形状コア上に膜厚20μmの純粋SiO2 クラッド膜を形成した。
【0070】
この場合において、Arプラズマによるエッチングを行うことなく、コア間を埋め込むことが可能であった。
【0071】
図5に下部電極に印加する高周波電力に対する成膜速度の説明図を示す。
【0072】
図5に示すように、下部電極に印加する高周波電力が200Wの場合、成膜速度200nm/minが得られた。これは、従来の1周波励起プラズマ方式と比較して約4倍の成膜速度であった。
[4]第4実施例
本第4実施例のプラズマCVD装置も、上記第1実施例および第2実施例と同様に、図1に示したプラズマCVD装置と同様の構成であるので、装置構成については、図1を参照して説明するものとする。
【0073】
以下、第3実施例における石英系光導波路の製造方法について説明する。
【0074】
まず、排気装置6により反応室1内の排気を行い、プラズマを発生させるに十分な所定圧力、具体的には、反応室1内の圧力を5mTorr以下とする。
【0075】
続いて原料ガス供給装置7により、TEOS(テトラエトキシシラン;Si(OC2 H5)4)および酸素O2 を所定の比率(3:100)で、TEOSを30sccm、O2 を1000sccmを反応室1内に供給し、反応室1内におけるガス圧力を400mTorrとした。
【0076】
このとき、ヒータ8は、上部シャワー電極2を250℃、下部電極3を300℃に加熱する。
【0077】
そして、第1電源4により、上部シャワー電極2に13.56MHzで高周波電力を50〜250Wの範囲で変化させた複数の条件で印加した。
【0078】
このとき、第2電源5により、下部電極3には、周波数380kHz、200Wで高周波電力を印加した。
【0079】
これにより、平面基板上に形成された矩形状コア上に膜厚20μmの純粋SiO2クラッド膜を形成した。
【0080】
この場合において、Arプラズマによるエッチングを行うことなく、コア間を埋め込むことが可能であった。
【0081】
図6に上部シャワー電極に印加する高周波電力の電力量に対する成膜速度の説明図を示す。
【0082】
図6に示すように、上部シャワー電極に印加する高周波電力が100Wの場合、成膜速度200nm/minが得られた。これは、従来の1周波励起プラズマ方式と比較して約4倍の成膜速度であった。
[5]第5実施例
本第5実施例のプラズマCVD装置も、上記各実施例と同様に、図1に示したプラズマCVD装置と同様の構成であるので、装置構成については、図1を参照して説明するものとする。
【0083】
以下、第5実施例における石英系光導波路の製造方法について説明する。
【0084】
まず、排気装置6により反応室1内の排気を行い、プラズマを発生させるに十分な所定圧力、具体的には、反応室1内の圧力を5mTorr以下とする。
【0085】
続いて原料ガス供給装置7によりTEOSを30sccm、O2 を1000sccmを反応室1内に供給し、反応室1内におけるガス圧力を400mTorrとした。
【0086】
このとき、ヒータ8は、上部シャワー電極2を250℃とし、下部電極3の温度を250℃〜300℃の範囲で変化させ、複数の温度条件で加熱した。
【0087】
そして、第1電源4により上部シャワー電極2に13.56MHz、100Wの高周波電力を印加し、第2電源5により下部電極3に380kHz、200Wの高周波電力を印加した。
【0088】
これにより、平面基板上に形成された矩形状コア上に膜厚20μmの純粋SiO2 クラッド膜を形成した。
【0089】
この場合においても、Arプラズマによるエッチングを行うことなく、コア間を埋め込むことが可能であった。
【0090】
図7は下部電極の温度に対する成膜速度の説明図である。
【0091】
図7に示すように、下部電極の温度が300℃の場合、成膜速度200nm/minが得られた。これは、従来の1周波励起プラズマ方式と比較して約4倍の成膜速度であった。
【0092】
【発明の効果】
本発明によれば、コア間のクラッドの埋め込み性を改善することにより、オーバーハングの発生を低減することができる。従って、オーバーハングを除去するためにArプラズマによるエッチングを行う必要がなく、製造工程の簡略化が図れる。
【0093】
また、成膜速度を向上させることができ、生産効率を向上できる。
【0094】
さらに、ボイドの発生を抑制し、素子損失を低減することができる。
【図面の簡単な説明】
【図1】実施形態のプラズマCVD装置の概要構成ブロック図である。
【図2】光導波路の製造工程の説明図である。
【図3】原料ガス流量に対する成膜速度の説明図である。
【図4】原料ガス圧力に対する成膜速度の説明図である。
【図5】下部電極に印加する高周波電力に対する成膜速度の説明図である。
【図6】上部シャワー電極に印加する高周波電力の電力量に対する成膜速度の説明図である。
【図7】下部電極の温度に対する成膜速度の説明図である。
【図8】凹凸のあるパターン上に形成したCVD膜の断面形状の説明図である。
【符号の説明】
100 プラズマCVD装置
1 反応室
2 上部シャワー電極
3 下部電極
4 第1電源
5 第2電源
6 排気装置
7 原料ガス供給装置
8 ヒータ
Claims (8)
- 原料ガスが供給される反応室と、前記反応室の内部に配置された第1電極と、前記反応室の内部に前記第1電極と対向する位置に配置された第2電極と、を備えたプラズマCVD装置を用いて光導波路を製造する光導波路の製造方法であって、
成膜時に前記第1電極に第1の周波数を有する高周波電力を供給する第1電源供給過程と、
前記成膜時に前記第2電極に第2の周波数を有する高周波電力を供給する第2電源供給過程と、
を備えたことを特徴とする光導波路の製造方法。 - 請求項1記載の光導波路の製造方法において、
前記第1の周波数を、13.56MHzとし、
前記第2の周波数を、380kHzとする、
ことを特徴とする光導波路の製造方法。 - 請求項1または請求項2のいずれかに記載の光導波路の製造方法において、
前記原料ガスは、TEOSと酸素の混合ガスであり、
前記TEOSの流量を5〜40sccmの範囲とする第1流量制御過程と、
前記酸素の流量を100〜1500sccmの範囲とする第2流量制御過程と、
を備えたことを特徴とする光導波路の製造方法。 - 請求項3記載の光導波路の製造方法において、
前記成膜時の前記反応室内のガス圧力を、100〜1000mTorrの範囲内とするガス圧制御過程を備えたことを特徴とする光導波路の製造方法。 - 請求項1ないし請求項4のいずれかに記載の光導波路の製造方法において、
前記成膜時に前記第1電極に印加する高周波電力量を50〜300Wとする第1電力量制御過程と、
前記成膜時に前記第2電極に印加する高周波電力量を50〜1000Wとする第2電力量制御過程と、
を備えたことを特徴とする - 請求項1ないし請求項5のいずれかに記載の光導波路の製造方法において、
前記プラズマCVD装置は、前記第1電極および前記第2電極を独立して加熱可能なヒータを備え、
前記第1電極あるいは前記第2電極を200〜400℃とする加熱制御過程を備えたことを特徴とする光導波路の製造方法。 - 原料ガスが供給される反応室と、
前記反応室の内部に配置された第1電極と、
前記反応室の内部に前記第1電極と対向する位置に配置された第2電極と、
前記第1電極に第1の周波数を有する高周波電力を供給する第1電源と、
前記第2電極に第2の周波数を有する高周波電力を供給する第2電源と、
を備えたことを特徴とするプラズマCVD装置。 - 請求項7記載のプラズマCVD装置において、
前記第1の周波数は、13.56MHzであり、
前記第2の周波数は、380kHzであることを特徴とするプラズマCVD装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002297498A JP2004133184A (ja) | 2002-10-10 | 2002-10-10 | 光導波路の製造方法およびプラズマcvd装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002297498A JP2004133184A (ja) | 2002-10-10 | 2002-10-10 | 光導波路の製造方法およびプラズマcvd装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004133184A true JP2004133184A (ja) | 2004-04-30 |
Family
ID=32287185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002297498A Pending JP2004133184A (ja) | 2002-10-10 | 2002-10-10 | 光導波路の製造方法およびプラズマcvd装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004133184A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004183071A (ja) * | 2002-12-05 | 2004-07-02 | Tokyo Electron Ltd | プラズマ成膜方法及びプラズマ成膜装置 |
JP2006225702A (ja) * | 2005-02-16 | 2006-08-31 | Sumitomo Electric Ind Ltd | 基板ホルダ、および光導波路のための膜を堆積する方法 |
JP2007019407A (ja) * | 2005-07-11 | 2007-01-25 | Seiko Epson Corp | キャパシタの製造方法 |
JP2007142066A (ja) * | 2005-11-17 | 2007-06-07 | Renesas Technology Corp | 半導体装置の製造方法 |
JP2018012851A (ja) * | 2016-07-19 | 2018-01-25 | 株式会社ユーテック | プラズマcvd装置及び成膜方法 |
JP2021073369A (ja) * | 2020-12-25 | 2021-05-13 | アドバンストマテリアルテクノロジーズ株式会社 | プラズマcvd装置及び成膜方法 |
-
2002
- 2002-10-10 JP JP2002297498A patent/JP2004133184A/ja active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004183071A (ja) * | 2002-12-05 | 2004-07-02 | Tokyo Electron Ltd | プラズマ成膜方法及びプラズマ成膜装置 |
JP2006225702A (ja) * | 2005-02-16 | 2006-08-31 | Sumitomo Electric Ind Ltd | 基板ホルダ、および光導波路のための膜を堆積する方法 |
JP4670383B2 (ja) * | 2005-02-16 | 2011-04-13 | 住友電気工業株式会社 | 基板ホルダ、および光導波路のための膜を堆積する方法 |
JP2007019407A (ja) * | 2005-07-11 | 2007-01-25 | Seiko Epson Corp | キャパシタの製造方法 |
JP4678251B2 (ja) * | 2005-07-11 | 2011-04-27 | セイコーエプソン株式会社 | キャパシタの製造方法 |
JP2007142066A (ja) * | 2005-11-17 | 2007-06-07 | Renesas Technology Corp | 半導体装置の製造方法 |
JP4684866B2 (ja) * | 2005-11-17 | 2011-05-18 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
JP2018012851A (ja) * | 2016-07-19 | 2018-01-25 | 株式会社ユーテック | プラズマcvd装置及び成膜方法 |
JP2021073369A (ja) * | 2020-12-25 | 2021-05-13 | アドバンストマテリアルテクノロジーズ株式会社 | プラズマcvd装置及び成膜方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4371576B2 (ja) | 膜を堆積するための装置 | |
CN105390389B (zh) | 高深宽比结构中的触点清洁 | |
JPH0422985B2 (ja) | ||
TWI445074B (zh) | 在蝕刻處理前施行之遮罩層處理方法 | |
TW200525611A (en) | Chamber cleaning method | |
TWI405260B (zh) | A plasma etching treatment method and a plasma etching processing apparatus | |
JP2004133184A (ja) | 光導波路の製造方法およびプラズマcvd装置 | |
JPH06326026A (ja) | 半導体装置の薄膜形成方法 | |
WO2020110363A1 (ja) | 基板処理方法および基板処理システム | |
WO2022219977A1 (ja) | 基板処理方法 | |
JP2006286662A (ja) | シリコン系被処理物の酸化処理方法、酸化処理装置および半導体装置の製造方法 | |
JP2002164330A (ja) | 遮光膜で被覆された透過窓を有するプラズマ処理装置 | |
JP4141021B2 (ja) | プラズマ成膜方法 | |
JP3092559B2 (ja) | プラズマ処理装置及びこの装置のガスの導入方法 | |
JP2021118315A (ja) | エッチング方法、基板処理装置、及び基板処理システム | |
JP2008159763A (ja) | プラズマ処理装置 | |
JPH029787A (ja) | プラズマ処理装置 | |
JPS59177919A (ja) | 薄膜の選択成長法 | |
JP2004099994A (ja) | ガラス膜の形成方法 | |
JPH0323633A (ja) | ドライエッチング方法 | |
JP2743386B2 (ja) | 薄膜形成方法 | |
JP2002261096A (ja) | プラズマcvd装置を用いたガラス膜の製造方法 | |
JP2000269202A (ja) | プラズマ処理方法及びプラズマ処理装置 | |
JPH11193466A (ja) | プラズマ処理装置及びプラズマ処理方法 | |
JPH06275564A (ja) | マイクロ波プラズマエッチング装置 |