JP2004127481A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2004127481A
JP2004127481A JP2003148335A JP2003148335A JP2004127481A JP 2004127481 A JP2004127481 A JP 2004127481A JP 2003148335 A JP2003148335 A JP 2003148335A JP 2003148335 A JP2003148335 A JP 2003148335A JP 2004127481 A JP2004127481 A JP 2004127481A
Authority
JP
Japan
Prior art keywords
data
storage area
read
sense amplifier
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003148335A
Other languages
English (en)
Other versions
JP4259922B2 (ja
Inventor
Shinsuke Anzai
安西 伸介
Yasumichi Mori
森 康通
Tsuguhiko Tanaka
田中 嗣彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003148335A priority Critical patent/JP4259922B2/ja
Priority to EP03017195A priority patent/EP1387361A3/en
Priority to TW092120669A priority patent/TWI226642B/zh
Priority to US10/630,641 priority patent/US6947322B2/en
Priority to CNB031523595A priority patent/CN100359604C/zh
Priority to KR1020030052507A priority patent/KR100547009B1/ko
Publication of JP2004127481A publication Critical patent/JP2004127481A/ja
Application granted granted Critical
Publication of JP4259922B2 publication Critical patent/JP4259922B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5642Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • G11C16/28Sensing or reading circuits; Data output circuits using differential sensing or reference cells, e.g. dummy cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/562Multilevel memory programming aspects
    • G11C2211/5623Concurrent multilevel programming and reading
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/564Miscellaneous aspects
    • G11C2211/5641Multilevel memory having cells with different number of storage levels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits

Abstract

【課題】半導体チップの占有面積の点でも、消費電力の点でも有利である。
【解決手段】2値記憶領域22からのデータ読み出し時と、4値記憶領域21からのデータ読み出し時とで、共通のセンスアンプ6mに入力される参照電位を、切り替え手段19によって切り替える。変換手段7mは、センスアンプ6mからの比較結果を読み出しデータに変換する際に、4値記憶領域21からの読み出し時と2値記憶領域22からの読み出し時とで、読み出しデータを切り替えて出力する。2値記憶領域22の読み出し時には、センスアンプ6mからの3ビット出力のうち、有意な出力レベルは1ビットだけであるため、変換回路7mでは、センスアンプ6mからの3ビット出力を2ビット信号に変換する際に、その2ビット信号を有意な1ビットの出力レベルと等しくする。
【選択図】  図1

Description

【0001】
【発明の属する技術分野】
本発明は、同一チップ内で多値記憶領域と2値記憶領域とを設けた例えばフラッシュメモリなどの半導体記憶装置に関する。
【0002】
【従来の技術】
従来、一般に、電子機器は、その動作を制御するための制御プログラムや音声・画像などの種々のデータを格納するための半導体記憶装置を備えている。
【0003】
近年、文字データに加えて、画像データを容易に送受信可能な携帯電話サービスが行われるようになり、携帯電話装置に搭載されるフラッシュメモリの大容量化が進んでいる。また、BSデジタルチューナなどのSTB(Set Top Box)においても、大容量のフラッシュメモリが搭載されている。その一方で、システム全体に占めるメモリ価格の比率が高まっており、より安価なメモリが求められている。
【0004】
このような事情から、最近では、大容量メモリを低コストで提供するために、一つのメモリセルに1ビットの情報(2値データ)を記憶させるのではなく、2ビット以上の情報(多値データ)を記憶させるという、メインメモリの多値化技術が進んでいる。例えば、一つのメモリセルに2ビットの情報(4値データ)を記憶させると、従来と同じメモリセルアレイの面積で2倍の容量のデータを記憶させることができる。このため、所定容量当たりで必要とされるコストを下げることができる。
【0005】
例えば特許文献1などには、高速アクセス用途において高い信頼性を確保するために、同一チップ内で多値記憶領域と2値記憶領域とを設けた半導体記憶装置が開示されている。
【0006】
この特許文献1の半導体記憶装置では、同一チップ内でメモリセルアレイを複数のブロック領域に分割して、各領域を4値記憶領域と2値記憶領域とに自由に設定することができるように構成されている。この場合、小容量ではあるが高速読み出しが可能な2値記憶領域には制御用プログラムなどを格納し、大容量の4値記憶領域には各種データを格納できるようになっている。
【0007】
この半導体記憶装置において、4値記憶領域からのデータ読み出しは、選択されたメモリセルに流れるセル電流を電流−電圧変換したセル電位と参照電位(リファレンス電圧)とを4値用センスアンプによって比較することによって行われる。また、2値記憶領域からのデータ読み出しは、選択されたメモリセルに流れるセル電流を電流−電圧変換したセル電位と参照電位とを2値用センスアンプによって比較することによって行われる。
【0008】
上記特許文献1の半導体記憶装置では、4値記憶領域に含まれるメモリセルからデータを読み出すための4値用センスアンプと、2値記憶領域に含まれるメモリセルを読み出すための2値用センスアンプとが個別に設けられている。
また、特許文献2には、複数の記憶領域(メモリブロック)を有する半導体記憶装置において、別々のメモリブロックに対して、消去と書き込みと読み出しなどの各メモリ動作のうちの2機能以上を同時に実行させる消去・書き込み・読み出し制御部を設けた半導体記憶装置が開示されている。この消去・書き込み・読み出し制御部は、メモリ動作させるメモリブロックが消去動作中または書き込み動作中であるか否かを確認し、消去動作または書き込み動作を行っていないメモリブロックに対して情報の読み出し動作を行わせることができるようになっている。また、消去・書き込み・読み出し制御部は、メモリ動作させるメモリブロックが消去動作中であるか否かを確認し、消去動作を行っていないメモリブロックに対して書き込み動作を行わせることができるようになっている。また、消去・書き込み・読み出し制御部は、メモリ動作させるメモリブロックが書き込み動作中であるか否かを確認し、書き込み動作を行っていないメモリブロックに対して消去動作を行わせることができるようになっている。
【特許文献1】
特開2001−202788号公報
【特許文献2】
特開平7−281952号公報
【0009】
【発明が解決しようとする課題】
上記特許文献1に開示されている従来の半導体記憶装置では、4値記憶領域に含まれるメモリセルと2値記憶領域に含まれるメモリセルとを同時に読み出すことはできないため、一方のセンスアンプを用いてデータ読み出しを行っているときに、他方のセンスアンプは全く使用されず、無駄になっている。
【0010】
特に、例えばフラッシュメモリの使用者がメモリセルアレイの全領域を4値記憶領域または2値記憶領域に設定した場合には、フラッシュメモリ内に全く使用されない部分(2値用センスアンプまたは4値用センスアンプが設けられている部分)が存在することになり、半導体チップの占有面積の点でも、消費電力の点でも、大きな損失であるという問題を有している。
また、上記特許文献2には、複数の記憶領域(メモリブロック)において、読み出し動作と書き込み動作とを同時に行わせることができる半導体記憶装置が開示されているが、この従来技術は、2値記憶領域と多値記憶領域とについては記載されておらず、同一チップ内に多値記憶領域と2値記憶領域とを有する半導体記憶装置に関するものではない。
【0011】
本発明は、上記従来の問題を解決するもので、同一チップ内に設けた多値記憶領域と2値記憶領域に対してセンスアンプを共通にしてメモリ動作を行うことにより、半導体チップの占有面積の点でも、消費電力の点でも有利な半導体記憶装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の半導体記憶装置は、それぞれ1ビットのデータを記憶する複数のメモリセルが設けられた2値記憶領域および、それぞれ2ビット以上のデータを記憶する複数のメモリセルが設けられた多値記憶領域を有するメモリセルアレイと、該2値記憶領域と多値記憶領域とで共通に設けられ、選択されたメモリセルからの電位と参照基準電位を比較して該選択メモリセルのデータを読み出すセンスアンプ手段とを備えており、そのことにより上記目的が達成される。
また、本発明の半導体記憶装置は、それぞれ1ビットのデータを記憶する複数のメモリセルが設けられた2値記憶領域および、それぞれ2ビット以上のデータを記憶する複数のメモリセルが設けられた多値記憶領域を有するメモリセルアレイと、2値記憶領域と多値記憶領域とで共通に設けられ、選択されたメモリセルからの電位と参照基準電位とを比較して選択メモリセルのデータを読み出すセンスアンプ手段と、参照基準電位を、2値記憶領域からのデータ読み出し時と多値記憶領域からのデータ読み出し時とに応じて切り替える第1切り替え手段とを備えており、そのことにより上記目的が達成される。
【0013】
また、好ましくは、本発明の半導体記憶装置において、センスアンプ手段による比較結果に基づいてビット数を変換してデータを読み出す際に、多値記憶領域からのデータ読み出し時と2値記憶領域からのデータ読み出し時とに応じてデータ出力を切り替える変換手段を更に備えている。
【0014】
本発明の半導体記憶装置は、それぞれ1ビットのデータを記憶する複数のメモリセルが設けられた2値記憶領域および、それぞれ2ビット以上のデータを記憶する複数のメモリセルが設けられた多値記憶領域を有するメモリセルアレイと、2値記憶領域と多値記憶領域とで共通に設けられ、選択されたメモリセルからの電位と参照基準電位を比較して選択メモリセルのデータを読み出すセンスアンプ手段と、このセンスアンプ手段による比較結果に基づいてビット数を変換してデータを読み出す際に、多値記憶領域からのデータ読み出し時と2値記憶領域からのデータ読み出し時とに応じてデータ出力を切り替える変換手段とを備えており、そのことにより上記目的が達成される。
【0015】
さらに、好ましくは、本発明の半導体記憶装置における変換手段は2ビット以上の出力端を有し、2値記憶領域の読み出し時には全ビットを同じ値にして出力端からデータ出力する。
【0016】
さらに、好ましくは、本発明の半導体記憶装置において、メモリセルアレイに不良メモリセルが含まれる場合に、この不良メモリセルと置換される冗長セルと、選択メモリセルから読み出されたデータと冗長セルから読み出されたデータとが入力され、選択メモリセルが不良である場合に選択メモリセルからの読み出しデータを冗長セルからの読み出しデータに選択的に切り替えて出力する切り替え手段とを更に備えている。
さらに、好ましくは、本発明の半導体記憶装置において、前記2値記憶領域および多値記憶領域へのデータ書き込みまたはデータ消去をそれぞれ独立して制御可能とする書き込み・消去制御手段をさらに有し、該書き込み・消去制御手段によって前記2値記憶領域および多値記憶領域の一方にデータ書き込み動作またはデータ消去動作が行われている間に、前記センスアンプ手段によって他方の記憶領域に対して読み出し動作を可能とするように構成されている。
また、好ましくは、本発明の半導体記憶装置において、前記2値記憶領域および多値記憶領域へのデータ書き込みまたはデータ消去をそれぞれ独立して制御可能とする書き込み・消去制御手段をさらに有し、前記センスアンプ手段によって該2値記憶領域および多値記憶領域の一方に対して読み出し動作が行われている間に、該書き込み・消去制御手段によって他方の記憶領域に対してデータ書き込み動作またはデータ消去動作を可能とするように構成されている。
【0017】
上記構成により、以下、本発明の作用について説明する。
【0018】
本発明の半導体記憶装置においては、メモリセルアレイに多値記憶領域と2値記憶領域との二つの領域が設けられており、多値記憶領域に含まれるメモリセルからのデータ読み出し時と2値記憶領域に含まれるメモリセルからのデータ読み出し時とで、共通のセンスアンプ手段に入力される参照電位を第1切り替え手段で切り替えることによって、読み出し経路を共通化することができる。これによって、従来の半導体記憶装置のように、多値用センスアンプ手段と2値用センスアンプ手段とを個別に設ける必要がなく、無駄な領域をなくして半導体チップの占有面積の点でも消費電力の点でも有利であり、製造コストをも削減することができる。
【0019】
センスアンプ手段による比較結果は、変換手段によって、多値記憶領域からのデータ読み出し時と2値記憶領域からのデータ読み出し時とで切り替えて、多値または2値の読み出しデータに変換することができる。
【0020】
上記変換手段には、2ビット以上の出力を有し、2値記憶領域の読み出し時に全ての出力ビットを同じ値として出力する第2切り替え手段を設けることが好ましい。
【0021】
例えば、4値記憶領域と2値記憶領域とを有する半導体記憶装置において、2値記憶領域の読み出し時には、センスアンプ手段からの3ビット出力のうち、有意な出力レベルは1ビットだけであるため、変換回路では、センスアンプ手段からの3ビット出力を2ビット信号に変換する際に、その2ビット信号を有意な1ビットの出力レベルと等しくする。このことによって、最も簡単な回路構成によって2値データに変換することができると共に、回路検証に必要な時間をも削減できる。
【0022】
さらに、冗長セルを設けて、4値記憶領域または2値記憶領域に不良メモリセルが含まれている場合に、第3切り替え手段によって不良メモリセルからの読み出しデータを冗長セルからの読み出しデータに切り替えることも可能である。
また、本発明の半導体記憶装置にあっては、2値記憶領域と多値記憶領域とを有するメモリセルアレイにおいて、2値記憶領域および多値記憶領域へのデータ書き込み・消去をそれぞれ独立して制御する書き込み・消去制御手段を有し、書き込み・消去制御手段によって一方の記憶領域にデータ書き込み動作または消去動作が行われている間に、センスアンプ手段によって他方の記憶領域から読み出し動作を行うことができる。このことによって、動作速度を速めると共に、回路検証に必要な時間を短縮化することができる。
また、本発明は、同一チップ内に多値記憶領域と2値記憶領域とを有する半導体記憶装置において、一方の記憶領域への書き込み・消去動作時に他方の記憶領域への読み出し動作を行って動作速度を速くすることができる半導体記憶装置を提供することを目的とする。
【0023】
【発明の実施の形態】
以下に、本発明の半導体記憶装置の実施形態をフラッシュメモリに適用した場合について図面を参照しながら説明する。
【0024】
(実施形態1)
図1は、本発明の半導体記憶装置の実施形態1であるフラッシュメモリの構成例を示すブロック図であり、図2は、図1のフラッシュメモリにおけるメモリセルアレイ20の要部を示す回路図である。なお、本実施形態1では、読み出し動作に関する部分についてのみ説明を行っており、書き込み回路、消去回路、これらの制御回路などについては、ここではその説明を省略している。
【0025】
図1において、このフラッシュメモリ1は、データ記憶が可能な複数のメモリセルがマトリクス状に配置されたメモリセルアレイ2と、4値記憶領域21および2値記憶領域22のそれぞれのビット線を選択するカラムデコーダ3と、ブロックを選択するブロック選択回路4と、4値記憶領域21および2値記憶領域22それぞれのワード線を選択するロウデコーダ5とを有している。
【0026】
また、フラッシュメモリ1は、信号線11m0〜11m31を介して選択セル電圧を入力するセンスアンプ手段としての通常セル用センスアンプ6mと、通常セル用センスアンプ6mに接続される変換回路7mと、変換回路7mに接続されるラッチ回路8mと、信号線11r0および11r1を介して冗長セル電圧を入力するセンスアンプ手段としての冗長セル用センスアンプ6rと、冗長セル用センスアンプ6rに接続される変換回路7rと、変換回路7rに接続されるラッチ回路8rと、ラッチ回路8m,8rの出力を選択するマルチプレクサMUX9と、マルチプレクサMUX9からの各出力端子を持つ出力パッド10と、冗長アドレス記憶回路15と、冗長判定回路16と、制御回路17と、リファレンスセル18と、切り替え回路19とを有している。
【0027】
このメモリセルアレイ2は、図2に示すように、例えば、複数のメモリセルCELL11〜CELL44が縦横方向にマトリックス状に設けられている。メモリセルアレイ2に含まれる各メモリセルCELLのゲートは行単位で共通にワード線WL1〜WL4と接続されており、各メモリセルCELLのドレインは列単位で共通にビット線BL1〜BL4と接続されている。また、ワード線WL1〜WL4とビット線BL1〜BL4とは、互いに直交するように設けられている。また、各メモリセルCELLのソースは、ブロック単位で共通化されて共通ソース線SRCに接続されている。
【0028】
各メモリセルCELLは、互いに隣接するメモリセルCELLとそのドレイン同士が接続されてビット線BLと接続され、そのソース同士が互いに接続されて共通ソース線SRCと接続されている。例えばメモリセルCELL11,CELL21は、各ドレイン同士が接続されて、それらのドレインがビット線BL1と接続されている。また、メモリセルCELL21,CELL31とは、ソース同士が接続されて、それらのソースが共通ソース線SRCと接続されている。また、メモリセルCELL31,CELL41とは、ドレイン同士が接続されて、それらのドレインがビット線BL1と接続されている。各ビット線の先には、カラムデコーダ回路などが接続されている。
【0029】
本実施形態1では、このメモリセルアレイ2には、4値(2ビット)のデータが記憶される4値記憶領域21と、2値(1ビット)のデータが記憶される2値記憶領域22とが設けられている。4値記憶領域21は、メインメモリ領域に設けられていることによって、大容量化と低コスト化とを両立させることができる。また、2値記憶領域22は、例えばフラッシュメモリ1内のOTP(OneTime Programmable)領域に設けることによって、高い信頼性を確保することができる。
【0030】
また、メモリセルアレイ2には、例えばワード線のショートなどによって不良状態となったメモリセルCELL(通常セル)を置き換えるために、上記メモリセルCELLと同様の予備のメモリセル(以下、冗長セルと称する)が設けられている。
【0031】
図3は、図1の4値記憶領域21と2値記憶領域22とを有するメモリセルアレイ2の概略構成図である。
【0032】
図3において、このメモリセルアレイ2では、4値記憶領域21および2値記憶領域22のそれぞれは、一つまたは複数のメモリセルブロックによって構成されており、それぞれのブロックは通常セル領域と冗長セル領域とによって構成されている。
【0033】
また、4値記憶領域21であるメインメモリ領域に含まれるメモリセル(通常セル)からデータを読み出す際に用いるセンスアンプと、2値記憶領域22であるOTP領域に含まれるメモリセル(通常セル)からデータを読み出す際に用いるセンスアンプとして、通常セル用センスアンプ6m(S/A0〜S/A31)が共通に設けられている。通常セル用センスアンプ6mでは、選択されたメモリセル(通常セル)に流れるセル電流を電流−電圧変換したセル電圧(ビット線の電位)と、リファレンスセル18に流れるセル電流を電流−電圧変換した参照電位(リファレンス電圧)Vref0〜Vref2とが比較されて電位差が増幅出力される。
【0034】
これと同様に、4値記憶領域21に含まれる冗長セルからデータを読み出す際に用いるセンスアンプと、2値記憶領域22に含まれる冗長セルからデータを読み出す際に用いるセンスアンプとして、冗長セル用センスアンプ6r(RS/A0およびRS/A1)が共通に設けられている。冗長セル用センスアンプ6rでは、選択された冗長セルに流れるセル電流を電流−電圧変換したセル電圧と、リファレンスセル18に流れるセル電流を電流−電圧変換した参照電位Vref0〜Vref2とが比較されて電位差が増幅出力される。上記通常セル用センスアンプ6mのそれぞれと、冗長セル用センスアンプ6rのそれぞれとは、全く同じ構成の回路であり、レイアウトも同じである。
【0035】
リファレンスセル18は、上記メモリセル(通常セル)と同様の構成を有するメモリセルを複数含んでおり、それぞれのリファレンスセルによって予めメモリセルのしきい値電圧値が設定されている。それらのリファレンスセルに流れるセル電流が電流−電圧変換された電位が参照電位(リファレンス電圧)として出力される。リファレンスセルからの参照電位(参照基準電位)は、第1切り替え手段として設けられている切り替え回路19を介して、センスアンプ6mおよび6rに入力される。
【0036】
切り替え回路19はマルチプレクサなどによって構成されており、切り替え回路19には制御回路17からの識別信号MLCBが入力されている。2値記憶領域22からのデータ読み出し時と、4値記憶領域21からのデータ読み出し時とで識別信号MLCBを切り替えることによって、センスアンプ6mおよび6rに入力される参照電位を最適な参照電位に切り替え可能としている。これによって、同一のセンスアンプ6m,6rを用いて、4値データの読み出しと2値データの読み出しとの両方に対応することができる。
【0037】
センスアンプ6mからの3ビット出力は、変換回路7m(7m0〜7m31)によって2ビットの信号に変換され、ラッチ回路8m(8m0〜8m31)によってラッチされる。同様に、センスアンプ6rからの3ビット出力は、変換回路7r(7r0および7r1)によって2ビットの信号に変換され、ラッチ回路8r(8r0および8r1)によってラッチされる。上記変換回路7mおよび7rは同じ構成の回路であり、ラッチ回路8mおよび8rも同じ構成の回路である。
【0038】
図4は、図1の変換回路7m,7rの構成例を示す回路図である。
【0039】
図4において、この変換回路7m(または7r)は、インバータとNOR回路とを組み合せた回路構成を有しており、センスアンプ6m(または6r)からの3ビット出力(比較結果sout0〜sout2)と、制御回路17からの識別信号MLCBとが入力される。識別信号MLCBは、4値記憶領域からのデータ読み出し時と2値記憶領域からのデータ読み出し時とで切り替えられて入力されるようになっており、例えば4値記憶領域21からのデータ読み出し時には、MLCB=”0”が制御回路17から入力され、out1=sout1となる。また、out0は、sout1=”1”のときにout0=sout0となり、sout1=”0”のときにout0=sout2となる。また、2値記憶領域22からのデータ読み出し時には、MLCB=”1”が制御回路17から入力され、out1=out0=sout1が出力される。
【0040】
また、不良メモリセルのアドレス情報が記憶される冗長アドレス記憶回路15と、冗長アドレス記憶回路15に記憶されている不良メモリセルのアドレスと現在選択されている内部アドレス(内部カラムアドレスおよび内部ブロックアドレス)とを比較して、冗長セルを用いるか否かを判定する冗長判定回路16が設けられている。冗長判定回路16による判定結果は制御回路17に供給される。
【0041】
ラッチ回路8mおよび8rの出力は、第3切り替え手段(切り替え手段)として設けられているマルチプレクサMUX9に入力されると、制御回路17からの制御信号によって、複数入力のうちの一つが唯一の出力として選択されて出力パッド10に出力されるようになっている。
【0042】
以上の構成により、以下、本実施形態1のフラッシュメモリ1の読み出し動作について説明する。
【0043】
まず、アドレスをデコードしてメモリセルのワード線を駆動するロウデコーダ5、アドレスをデコードしてメモリセルのビット線を駆動するカラムデコーダ3およびブロックを選択するブロック選択回路4によって、この例では、通常セル32個+冗長セル2個の合計34個の同一ブロック内のメモリセルが同時に選択されて活性化される。
【0044】
このうち、2個の冗長セルの各ビット線にそれぞれ接続されている信号線11r0および11r1を介して冗長セル用センスアンプ6r(RS/A0およびRS/A1)に接続されている。この2個の冗長セルは、32個の通常セルの各ビット線にそれぞれ接続されている信号線11m0〜11m31を介してセンスアンプ6m(S/A0〜S/A31)に接続される32個の通常セルの何れかが不良のときに、それに置き替えられるために用意されている。なお、この冗長セルは、3個以上設けられていてもよい。
【0045】
このとき、選択されたメモリセル(通常セルおよび冗長セル)に流れるセル電流は、信号線11m0〜11m31、11r0および11r1を介してセル電圧としてセンスアンプ6mおよび6rに入力され、それぞれ参照電位Vref0〜Vref2と比較される。
【0046】
ここまでの動作は、4値記憶領域21からデータを読み出す場合および2値記憶領域22からデータを読み出す場合ともに同様である。
【0047】
次に、センスアンプ6mおよび6rによるセンス動作以降の信号の流れを、4値記憶領域21からデータを読み出す場合と、2値記憶領域22からデータを読み出す場合とに分けて、図1および図5を用いて説明する。
【0048】
図5は、図1のセンスアンプ6m0以降の読み出し経路を取り出した回路構成例を示すブロック図である。なお、MUXEは偶数出力パッドI/O(図1に示す出力パッドDQ2i、i=0、1、2 ・・・7)に接続されるマルチプレクサ9を表し、MUXOは奇数出力パッドI/O(図1に示す出力パッドDQ2i+1、i=0、1、2 ・・・7)に接続されるマルチプレクサ9を表す。
【0049】
まず、4値記憶領域21からデータを読み出す場合について説明する。
【0050】
4値記憶領域21の通常セルから信号線11m0を介してセンスアンプ6mに入力された信号電圧Vcell(通常セルのビット線の電位)は、リファレンスセル18から切り替え回路19を介してセンスアンプ6mに入力されている参照電位Vref0、Vref1およびVref2とそれぞれ比較され、3ビットの信号sout[2:0]として出力される。ここでは、3個のリファレンスセルによって予めメモリセルのしきい値電圧値が設定されているものとする。
【0051】
図5では、センスアンプ6m0における3個のセンスアンプS/A60〜62それぞれの一方の入力端子には、データ読み出しのために選択されたメモリセルのビット線に接続されている信号線11m0が接続されている。センスアンプS/A60(出力がsout0)の他方の入力端子には、第1のリファレンスセル(図示せず)に流れるセル電流により発生した参照電位(リファレンス電圧)Vref0が入力され、信号線11m0の電位(セル電位)と参照電位Vref0との大小をセンスアンプS/A60で比較した結果が出力sout0として出力される。
【0052】
また同様に、センスアンプS/A61(出力がsout1)の他方の入力端子には、第2のリファレンスセル(図示せず)に流れるセル電流により発生した参照電位Vref1が入力され、信号線11m0の電位と参照電位Vref1との大小をセンスアンプS/A61で比較した結果が出力sout1として出力される。また、センスアンプS/A62(出力がsout2)の他方の入力端子には、第3のリファレンスセル(図示せず)に流れるセル電流により発生した参照電位Vref2が入力され、信号線11m0の電位と参照電位Vref2との大小をセンスアンプS/A62で比較した結果が出力sout2として出力される。
【0053】
例えば、図6に示すように参照電位Vref0、Vref1およびVref2を、それぞれ、データ”11”、”10”、”01”、”00”のそれぞれに対応する四つのしきい値電圧Vtが分布している領域の間隙に設定することによって、メモリセルのしきい値電圧値Vtが、その格納データとして”11”、”10”、”01”、”00”の四つの状態の何れにあるのかを判定することが可能となる。なお、図6において、横軸にメモリセルのしきい値電圧Vtを表し、縦軸にメモリセルの個数を表している。
【0054】
各センスアンプS/A60〜S/A62でセル電圧と参照電位とを比較した結果である信号sout[2:0](sout0〜2の出力は、それぞれ1ビットであり、比較結果によりロウレベル”0”またはハイレベル”1”が出力されている。)は,変換回路7でエンコードされて2ビットのデータ出力out[1:0](4値のデータ)として読み出される。
【0055】
例えば、図4に示す変換回路7では、MLCB=”0”が制御回路17から入力され、out1=sout1となる。また、out0は、sout1=”1”のときにout0=sout0となり、sout1=”0”のときにout0=sout2となる。したがって、信号(sout2、sout1、sout0)が(”0”、”0”、”0”)および(”0”、”0”、”1”)のときには(out1、out0)は(”0”、”0”)となる。また、信号(sout2、sout1、sout0)が(”0”、”1”、”1”)および(”1”、”1”、”1”)のときには(out1、out0)は(”1”、”1”)となる。また、信号(sout2、sout1、sout0)が(”0”、”1”、”0”)および(”1”、”1”、”0”)のときには(out1、out0)は(”1”、”0”)となる。また、信号(sout2、sout1、sout0)が(”1”、”0”、”0”)および(”1”、”0”、”1”)のときには(out1、out0)は(”0”、”1”)となる。このように変換回路7によって、センスアンプ6mから出力される3ビットデータを2ビットデータに変換することができる。
【0056】
以上では、信号線11mの電位を参照電位と比較することによって、一つのメモリセルからのデータを4値データとして読み出す信号の流れについて説明したが、同時に読み出される他のメモリセルからのデータ(信号線11m1〜11m31、11r0および11r1の電位)についても、同様に読み出すことができる。
【0057】
このようにして読み出されたデータは、ラッチ回路8m(8m0〜8m31)または8r(8r0および8r1)によってラッチされ、マルチプレクサ9で選択されたデータが出力パッド10(DQ0〜DQ15)から出力される。
【0058】
図1および図5に示すように、ラッチ回路8mから出力される2ビットの信号のうち、偶数ビットは偶数出力パッドI/Oに接続されたマルチプレクサMUX(以下、偶数マルチプレクサと称する)の一つに入力され、奇数ビットは奇数出力パッドI/Oに接続されたマルチプレクサMUX(以下、奇数マルチプレクサと称する)の一つに入力されている。また、ラッチ回路8rから出力される2ビットの信号は、偶数ビット(r0_0およびr1_0)が全ての偶数マルチプレクサに入力され、奇数ビット(r0_1およびr1_1)が全ての奇数マルチプレクサに入力されている。
【0059】
不良メモリセルの位置は、各フラッシュメモリ1毎に異なるため、上述したようにラッチ回路8とマルチプレクサ9とを接続することによって,全ての偶数マルチプレクサおよび奇数マルチプレクサにおいて、通常セルからの読み出しデータを冗長セルからの読み出しデータと置換することができるように構成している。
【0060】
通常セルのデータを冗長セルのデータに置き換えて、マルチプレクサ9から出力パッド10を介して出力するか否かという判定は、冗長判定回路16によって行われる。例えば、信号線11m0に接続されているメモリセルが不良である場合には、そのアドレスを予め冗長アドレス記憶回路15に記憶させておき、読み出し時に冗長アドレス記憶回路15に記憶されているアドレスと内部カラムアドレス(内部ブロックアドレスも含む。)を冗長判定回路16で比較する。その比較結果が一致していれば、一致信号を制御回路17に出力する。制御回路17では、一致信号が入力されると、そのアドレスのメモリセルを不良セルと判定し、マルチプレクサ90および91に対して、ラッチ回路8mからの信号(p0_0〜p3_15)の代りにラッチ回路8rからの冗長信号(r0_0〜r1_1)を選択して出力パッド10を介して出力するように制御信号を出力する。
【0061】
ここで、ラッチ回路8r0からの冗長信号r0_[1:0]とラッチ回路8r1からの冗長信号r1_[1:0]の何れを使用するかについては、不良セルアドレスを記憶する際に、同時に冗長アドレス記憶回路15に記憶させておくことができる。これによって、制御回路17は、その情報を利用して、冗長信号を選択するための制御信号をマルチプレクサ90,91に出力することができる。
【0062】
次に、2値記憶領域22からのデータ読み出しについて説明する。ここでは、4値記憶領域21からのデータ読み出しと異なる部分について説明する。
【0063】
4値記憶領域21からのデータ読み出しおよび2値記憶領域22からのデータ読み出しは、何れも、同じセンスアンプ6m(6m0〜6m31)および6r(6r0、6r1)が用いられるが、このとき、参照電位Vref0〜Vref2は、切り替え回路19によって、例えば図7に示すように2値読み出し用に切り替えられる。この例では、参照電位Vref1がデータ”1”および”0”のそれぞれに対応する二つのしきい値電圧Vtが分布している領域の間隙に設定されており、Vref0およびVref2はそれぞれ、Vref1の両側に設定されている。この参照電位Vref1によって、メモリセルのしきい値電圧値Vtが、その格納データとして”1”および”0”の二つの状態の何れにあるのかを判定することが可能となる。なお、図7において、横軸はメモリセルのしきい値電圧Vtを、縦軸はメモリセルの個数を表している。切り替え回路19は、マルチプレクサなどによって、入力される参照電位を4値読み出し用参照電位と2値読み出し用参照電位とを切り替えることができる。
【0064】
ここで、2値のデータを記憶しているメモリセルからデータを読み出す場合には、図7に示すように、メモリセルのしきい値電圧Vtが、その格納データとして”1”または”0”の二つの状態の何れかにあるのかを判定すればよい。このため、読み出されるメモリセルのデータ(セル電位)を参照電位Vref1と比較すれば十分であり、Vref0およびVref2はどのようなレベルであってもよい。但し、4値記憶領域21の読み出し時に設定するものと同一として、予め用意しておく参照電位の数を最小限とすることが望ましい。
【0065】
実際は、図7の右側は図6の右側よりスケール的に小さいため,2値記憶領域は4値記憶領域より高信頼性を得ることが可能である。
【0066】
また、例えば4値記憶領域21からデータ読み出しを行う場合と、2値記憶領域22からデータ読み出しを行う場合とで、Vref1の値を調整する必要がある場合には、上記第1のリファレンスセル〜第3のリファレンスセルとは別に、予めしきい値電圧を調整しておいた第4のリファレンスセルを設けて、切り替え回路19によってこの第4のリファレンスセルからの出力と切り替えることによって、調整された参照電位をセンスアンプに供給することができる。
【0067】
4値データであるか、または2値データであるかを識別するための識別信号MLCBは、例えば、制御回路17によって、内部アドレスから、4値記憶領域21からデータを読み出しているのか、2値記憶領域22からデータを読み出しているのかを識別することによって生成することができる。また、メモリセルに格納するデータ内に4値データであるのか、または2値データであるのかを識別するための識別データを記憶させておき、読み出されたデータ内の識別データによって、制御回路17で4値データであるのか、または2値データであるのかを識別して識別データを生成することもできる。さらに、他の方法によって識別信号MLCBを生成してもよい。
【0068】
このようにして、読み出されたセンスアンプ出力sout[2:0]は、変換回路7によって2ビットの信号out[1:0]に変換される。このとき、Vref0、Vref2は、上述したように意味を持たない参照電位であるので、センスアンプ出力sout[2:0]のうち、有意なデータはsout1のみである。このため、変換回路7では、図4に示すような回路構成によって、2値記憶領域22の読み出し状態を示すMLCB=”1”が制御回路17から入力されると、多ビット出力の全てのビットを同じ値として出力する第2切り替え手段として動作し、out1=out0=sout1が出力されるようにする。したがって、sout0およびsout2がどのような値であっても、sout1が”0”のときにはout1=out0=”0”となり、sout1が”1”のときにはout1=out0=”1”となる。
【0069】
なお、2値記憶領域22の読み出し時には、out1またはout0のどちらか一方のみが必要であり、他方はどのようなデータであってもよく、例えばVssなどが出力されてもよい。しかしながら、2値記憶領域22の不良セルを冗長セルと置き換える場合を考えると、上述したようにout1=out0とすることによって、共通となる変換回路、ラッチ回路、マルチプレクサ回路等を削減することが可能となることから、回路面積を削減して最も簡単な変換回路を構成することができる。
【0070】
以上により、本実施形態1によれば、2値記憶領域22からのデータ読み出し時と、4値記憶領域21からのデータ読み出し時とで、共通のセンスアンプ6mに入力される参照電位を、切り替え手段19によって切り替える。変換手段7mは、センスアンプ6mからの比較結果を読み出しデータに変換する際に、4値記憶領域21からの読み出し時と2値記憶領域22からの読み出し時とで、読み出しデータを切り替えて出力する。2値記憶領域22の読み出し時には、センスアンプ6mからの3ビット出力のうち、有意な出力レベルは1ビットだけであるため、変換回路7mでは、センスアンプ6mからの3ビット出力を2ビット信号に変換する際に、その2ビット信号を有意な1ビットの出力レベルと等しくする。これによって、同一チップ内に設けた多値記憶領域と2値記憶領域に対してセンスアンプを共通にしてメモリ動作を行うことができる。
【0071】
なお、上記実施形態1では、特に説明しなかったが、上記実施形態とは別の実施形態のフラッシュメモリ1Aとして、4値記憶領域21からデータ読み出しを行う場合と2値記憶領域22からデータ読み出しを行う場合とで、Vref1の値を調整する必要がない場合、即ち、図5に示す参照電位Vref1と図7に示す参照電位Vref1とを同じ値に設定されていれば、4値の場合でも2値の場合でも参照電位Vref1をそのまま使用するができる。このため、図8に示すように図1の切り替え回路19を省略して、センスアンプ6の後段の変換回路7により、センスアンプ6による比較結果に基づいてビット数を変換してデータを読み出す際に、多値記憶領域(ここでは4値記憶領域)からのデータ読み出し時と2値記憶領域からのデータ読み出し時とに応じてデータ出力を切り替えるように構成すればよい。これによって、上記実施形態1同様に、同一チップ内に設けた多値記憶領域と2値記憶領域に対してセンスアンプ6を共通にしてメモリ動作を行うことができる。また、上記実施形態1と同様に、変換回路7(変換手段)は、2値記憶領域の読み出し時には全ビットを同じ値にして出力端からデータ出力するように構成する。
(実施形態2)
上記実施形態1では、2値記憶領域と多値記憶領域とでセンスアンプ手段を共用してデータ読み出し動作を行う場合について説明したが、本実施形態2では、2値記憶領域と多値記憶領域とを有するメモリセルアレイにおいて、2値記憶領域および多値記憶領域へのデータ書き込み動作または消去動作を、一方の記憶領域に行っている間に、センスアンプ手段によって他の記憶領域からデータ読み出し動作を行う場合である。
図9は、本発明の半導体記憶装置のさらに他の実施形態2であるフラッシュメモリの構成例を示すブロック図である。なお、この場合に、図1に示すフラッシュメモリと同じ機能を有する部分については、同じ符号を付してその説明を省略する。
図9において、このフラッシュメモリ1Bは、上記実施形態1のフラッシュメモリ1の場合と同様に、データ記憶が可能な複数のメモリセルがマトリクス状に配置されたメモリセルアレイ2と、4値記憶領域21および2値記憶領域22のそれぞれのビット線を選択してそれぞれに独立して電圧を印加するカラムデコーダ3−1および3−2と、ブロック(2値記憶領域および4値記憶領域)を選択するブロック選択回路4と、4値記憶領域21および2値記憶領域22のそれぞれのワード線を選択してそれぞれに独立して電圧を印加するロウデコーダ5−1および5−2とを有している。さらに、フラッシュメモリ1Bは、カラムデコーダ3−1および3−2に接続された、書き込み制御手段としての書き込み制御回路20を有している。書き込み制御は、カラムデコーダ3−1,3−2をそれぞれ介してビット線に正電圧を供給し、ローデコーダ5−1,5−2をそれぞれ介してワード線に正の高電圧を印加する。
また、フラッシュメモリ1Bは、フラッシュメモリの消去制御の場合、消去制御回路23からソーススイッチ24,25をそれぞれ介して2値・多値領域内の各ブロックの共通ソース線に正電圧を印加し、多値領域の4値記憶領域21および2値記憶領域22それぞれのローデコーダ5−1,5−2をそれぞれ介してワード線に負電圧を印加する。以上の書き込み制御手段としての書き込み制御回路20と、消去制御手段としての消去制御回路23およびソーススイッチ24,25とにより書き込み・消去制御手段を構成することができる。
このように、消去制御と書き込み制御とでは、用いる構成要素が異なる。
一方、フラッシュメモリ1Bは、上記実施形態1のフラッシュメモリ1の場合と同様に、信号線11m0〜11m31を介して選択セル電圧を入力するセンスアンプ手段としての通常セル用センスアンプ6mと、通常セル用センスアンプ6mに接続される変換回路7mと、変換回路7mに接続されるラッチ回路8mと、信号線11r0および11r1を介して冗長セル電圧を入力するセンスアンプ手段としての冗長セル用センスアンプ6rと、冗長セル用センスアンプ6rに接続される変換回路7rと、変換回路7rに接続されるラッチ回路8rと、ラッチ回路8m,8rの出力を選択するマルチプレクサMUX9と、マルチプレクサMUX9からの各出力端子を持つ出力パッド10と、冗長アドレス記憶回路15と、冗長判定回路16と、制御回路17と、リファレンスセル18と、切り替え回路19とを有している。
上記構成により、書き込み制御回路20から出力される書き込みデータは、カラムデコーダ3−1および3−2に入力される。例えば2値記憶領域22にデータが書き込まれている間に、4値記憶領域21からデータを読み出すことができる。この場合、書き込み制御回路20によって、書き込みデータが2値記憶領域22のカラムデコーダ3−2に入力されている間に、4値記憶領域21からデータが読み出され、カラムデコーダ3−1およびブロック選択回路4を通って信号線11m0〜11m31に出力される。信号線11m0〜11m31に出力されたデータは、通常セル用センスアンプ6mに入力され、データの読み出し動作が行われる。
また同様に、4値記憶領域21にデータが書き込まれている間に、2値記憶領域22からデータを読み出すこともできる。この場合、書き込み制御回路20によって、書き込みデータが4値記憶領域21のカラムデコーダ3−1に入力されている間に、2値記憶領域22からデータが読み出され、カラムデコーダ3−2およびブロック選択回路4を通って信号線11m0〜11m31に出力される。信号線11m0〜11m31に出力されたデータは、通常セル用センスアンプ6mに入力され、データの読み出し動作が行われる。
これと同様に、4値記憶領域21のデータ消去が行われている間に、2値記憶領域22からデータを読み出すこともでき、2値記憶領域22のデータ消去が行われている間に、4値記憶領域21からデータを読み出すこともできる。もちろん、4値記憶領域21のデータ消去が行われている間に、2値記憶領域22からデータを書き込むこともでき、2値記憶領域22のデータ消去が行われている間に、4値記憶領域21からデータを書き込むこともできる。
このように、データ書き込み動作と読み出し動作とを別々の記憶領域に対して行うために、書き込み制御回路20によって、各記憶領域に対して書き込み動作が行われているか否かが確認され、その確認情報が制御回路17に伝えられて、データ書き込み動作が行われていない記憶領域において、データの読み出し動作が行われる。データ消去動作と読み出し動作とを別々の記憶領域に対して行う場合も、データ書き込み動作と読み出し動作とを別々の記憶領域に対して行う場合と同様に、消去制御回路23およびソーススイッチ24,25を用いて行うことができる。
なお、図9には図示していないが、特許文献2に開示されているように、カラムデコーダ3−1および3−2と書き込み制御回路20とを接続する信号線にラッチ回路を挿入して、そのラッチ回路に各記憶領域の動作状態を保持させるようにしてもよい。また、カラムデコーダ3−1および3−2と書き込み制御回路20とを接続する信号線を、読み出し用に用いられる信号線とは別に設けて、セレクタ回路によって信号線を選択するようにしてもよい。
また、複数の記憶領域に対して、書き込み動作と読み出し動作とを同時に実行可能とするためには、動作させる記憶領域に書き込み・消去動作が行われているか否かを確認する必要があるが、その確認処理は、書き込み制御回路20や消去制御回路23によっても行われ得る。
【0072】
【発明の効果】
以上により、本発明によれば、同一チップ内に多値記憶領域(例えば4値記憶領域)と2値記憶領域との二種類の記憶領域を設けて、多値記憶領域に含まれるメモリセルからデータを読み出すときと2値記憶領域に含まれるメモリセルからデータを読み出すときに共通のセンスアンプ手段に入力される参照電位を第1切り替え手段で切換えることによって、読み出し経路を共通化し、多値記憶領域と2値記憶領域とで専用に設けられ、一方が使用中には他方が使用されない無駄なセンスアンプ手段の領域をなくして半導体記憶装置の省面積化、省電力化および製造コストの低廉価化を図ることができる。
【0073】
また、2値記憶領域からのデータ読み出し時に、変換回路において、センスアンプからの多ビット出力を全て、有意な1ビットの出力レベルと等しくすることによって、最も簡単な回路構成によって2値データを得ることができると共に、回路検証に必要な時間をも削減できる。
さらに、2値記憶領域および多値記憶領域の一方にデータ書き込み・消去動作が行われている間に、他方に対してデータ読み出し動作を行うことができるため、動作速度を速めると共に、回路検証に必要な時間を短縮化することができる。
【図面の簡単な説明】
【図1】本発明の半導体記憶装置の一実施形態であるフラッシュメモリの構成例を示すブロック図である。
【図2】図1のフラッシュメモリにおけるメモリセルアレイの要部を示す回路図である。
【図3】図1の4値記憶領域21と2値記憶領域22とを有するメモリセルアレイ2の概略構成図である。
【図4】図1の変換回路の構成例を示す回路図である。
【図5】図1のセンスアンプ6m0以降の読み出し経路を取り出した回路構成例を示すブロック図である。
【図6】4値データを記憶しているメモリセルの閾値分布とそのデータを読み出す際の参照電位との関係を示す図である。
【図7】2値データを記憶しているメモリセルの閾値分布とそのデータを読み出す際の参照電位との関係を示す図である。
【図8】本発明の半導体記憶装置の他の実施形態であるフラッシュメモリの構成例を示すブロック図である。
【図9】本発明の半導体記憶装置の実施形態2であるフラッシュメモリの構成例を示すブロック図である。
【符号の説明】
1、1A、1B  フラッシュメモリ
2 メモリセルアレイ
21  4値記憶領域
22  2値記憶領域
3、3−1、3−2  カラムデコーダ
4  ブロック選択回路
5、5−1、5−2  ロウデコーダ
6、60〜62     センスアンプ
6m、6m0〜6m31  通常セル用センスアンプ
6r、6r0、6r1  冗長セル用センスアンプ
7  変換回路
7m、7m0〜7m31  通常セル用変換回路
7r、7r0、7r1  冗長セル用変換回路
8  ラッチ回路
8m、8m0〜8m31   通常セル用ラッチ回路
8r、8r0、8r1   冗長セル用ラッチ回路
9、90、91  マルチプレクサ
10  出力パッド
11m0〜11m31、11r0、11r1  フラッシュメモリセルとセンスアンプとを接続する信号線
15  冗長アドレス記憶回路
16  冗長判定回路
17  制御回路
18   リファレンスセル
19   切り替え回路
20  書き込み制御回路
23 消去制御回路
24,25 ソーススイッチ

Claims (7)

  1. それぞれ1ビットのデータを記憶する複数のメモリセルが設けられた2値記憶領域および、それぞれ2ビット以上のデータを記憶する複数のメモリセルが設けられた多値記憶領域を有するメモリセルアレイと、
    該2値記憶領域と多値記憶領域とで共通に設けられ、選択されたメモリセルからの電位と参照基準電位を比較して該選択メモリセルのデータを読み出すセンスアンプ手段とを備えた半導体記憶装置。
  2. 前記参照基準電位を、前記2値記憶領域からのデータ読み出し時と前記多値記憶領域からのデータ読み出し時に応じて切り替える第1切り替え手段とを備えた請求項1に記載の半導体記憶装置。
  3. 前記センスアンプ手段による比較結果に基づいてビット数を変換してデータを読み出す際に、前記多値記憶領域からのデータ読み出し時と前記2値記憶領域からのデータ読み出し時に応じて該データの出力を切り替える変換手段を更に備えた請求項1または2に記載の半導体記憶装置。
  4. 前記変換手段は2ビット以上の出力端を有し、前記2値記憶領域の読み出し時には全ビットを同じ値にして該出力端からデータ出力する請求項3に記載の半導体記憶装置。
  5. 前記メモリセルアレイに不良メモリセルが含まれる場合に、該不良メモリセルと置換される冗長セルと、
    選択メモリセルから読み出されたデータと該冗長セルから読み出されたデータとが入力され、選択メモリセルが不良である場合に該選択メモリセルからの読み出しデータを該冗長セルからの読み出しデータに選択的に切り替えて出力する切り替え手段とを更に備えた請求項1〜4の何れかに記載の半導体記憶装置。
  6. 前記2値記憶領域および多値記憶領域へのデータ書き込みまたはデータ消去をそれぞれ独立して制御可能とする書き込み・消去制御手段をさらに有し、
    該書き込み・消去制御手段によって前記2値記憶領域および多値記憶領域の一方にデータ書き込み動作またはデータ消去動作が行われている間に、前記センスアンプ手段によって他方の記憶領域に対して読み出し動作を可能とするように構成された請求項1〜5の何れかに記載の半導体記憶装置。
  7. 前記2値記憶領域および多値記憶領域へのデータ書き込みまたはデータ消去をそれぞれ独立して制御可能とする書き込み・消去制御手段をさらに有し、
    前記センスアンプ手段によって該2値記憶領域および多値記憶領域の一方に対して読み出し動作が行われている間に、該書き込み・消去制御手段によって他方の記憶領域に対してデータ書き込み動作またはデータ消去動作を可能とするように構成された請求項1〜5の何れかに記載の半導体記憶装置。
JP2003148335A 2002-07-30 2003-05-26 半導体記憶装置 Expired - Fee Related JP4259922B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003148335A JP4259922B2 (ja) 2002-07-30 2003-05-26 半導体記憶装置
EP03017195A EP1387361A3 (en) 2002-07-30 2003-07-29 Semiconductor memory device
TW092120669A TWI226642B (en) 2002-07-30 2003-07-29 Semiconductor memory device
US10/630,641 US6947322B2 (en) 2002-07-30 2003-07-29 Semiconductor memory device
CNB031523595A CN100359604C (zh) 2002-07-30 2003-07-30 半导体存储装置
KR1020030052507A KR100547009B1 (ko) 2002-07-30 2003-07-30 반도체 기억장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002221145 2002-07-30
JP2003148335A JP4259922B2 (ja) 2002-07-30 2003-05-26 半導体記憶装置

Publications (2)

Publication Number Publication Date
JP2004127481A true JP2004127481A (ja) 2004-04-22
JP4259922B2 JP4259922B2 (ja) 2009-04-30

Family

ID=30117496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003148335A Expired - Fee Related JP4259922B2 (ja) 2002-07-30 2003-05-26 半導体記憶装置

Country Status (6)

Country Link
US (1) US6947322B2 (ja)
EP (1) EP1387361A3 (ja)
JP (1) JP4259922B2 (ja)
KR (1) KR100547009B1 (ja)
CN (1) CN100359604C (ja)
TW (1) TWI226642B (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100655849B1 (ko) 2005-09-20 2006-12-11 후지쯔 가부시끼가이샤 반도체 기억 장치
KR100666174B1 (ko) 2005-04-27 2007-01-09 삼성전자주식회사 3-레벨 불휘발성 반도체 메모리 장치 및 이에 대한구동방법
JP2008084499A (ja) * 2006-09-29 2008-04-10 Toshiba Corp 半導体記憶装置
JP2008108297A (ja) * 2006-10-23 2008-05-08 Toshiba Corp 不揮発性半導体記憶装置
US7453712B2 (en) 2006-10-25 2008-11-18 Samsung Electronics Co., Ltd. Hybrid flash memory device and method for assigning reserved blocks thereof
US7698615B2 (en) 2006-12-06 2010-04-13 Samsung Electronics Co., Ltd. Semiconductor memory device having single-level cells and multi-level cells and method of driving the semiconductor memory device
KR20130129125A (ko) 2012-05-18 2013-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 기억 장치 및 기억 장치의 구동 방법
JP2014142986A (ja) * 2012-12-26 2014-08-07 Semiconductor Energy Lab Co Ltd 半導体装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4357331B2 (ja) * 2004-03-24 2009-11-04 東芝メモリシステムズ株式会社 マイクロプロセッサブートアップ制御装置、及び情報処理システム
US7444557B2 (en) * 2004-07-15 2008-10-28 Freescale Semiconductor, Inc. Memory with fault tolerant reference circuitry
JP4805696B2 (ja) * 2006-03-09 2011-11-02 株式会社東芝 半導体集積回路装置およびそのデータ記録方式
US7639535B2 (en) * 2006-11-17 2009-12-29 Intel Corporation Detection and correction of defects in semiconductor memories
JP4746598B2 (ja) * 2007-09-28 2011-08-10 株式会社東芝 半導体記憶装置
JP2009193627A (ja) * 2008-02-13 2009-08-27 Toshiba Corp 半導体記憶装置
CN104600074A (zh) * 2009-11-06 2015-05-06 株式会社半导体能源研究所 半导体装置
US8406072B2 (en) * 2010-08-23 2013-03-26 Qualcomm Incorporated System and method of reference cell testing
KR102189824B1 (ko) * 2014-08-04 2020-12-11 삼성전자주식회사 메모리 장치의 단위 어레이, 이를 포함하는 메모리 장치 및 메모리 시스템
US10074036B2 (en) * 2014-10-21 2018-09-11 Kla-Tencor Corporation Critical dimension uniformity enhancement techniques and apparatus
US11238906B2 (en) 2020-06-15 2022-02-01 Taiwan Semiconductor Manufacturing Company Limited Series of parallel sensing operations for multi-level cells

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438546A (en) * 1994-06-02 1995-08-01 Intel Corporation Programmable redundancy scheme suitable for single-bit state and multibit state nonvolatile memories
AU2598895A (en) * 1994-06-02 1996-01-04 Intel Corporation Dynamic single to multiple bit per cell memory
TW389909B (en) * 1995-09-13 2000-05-11 Toshiba Corp Nonvolatile semiconductor memory device and its usage
DE69635105D1 (de) * 1996-01-31 2005-09-29 St Microelectronics Srl Mehrstufige Speicherschaltungen und entsprechende Lese- und Schreibverfahren
JP3740212B2 (ja) * 1996-05-01 2006-02-01 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
US5835406A (en) * 1996-10-24 1998-11-10 Micron Quantum Devices, Inc. Apparatus and method for selecting data bits read from a multistate memory
DE69820032D1 (de) * 1998-05-27 2004-01-08 St Microelectronics Srl Nichtflüchtiger Speicher mit grosser Kapazität
JP3629144B2 (ja) * 1998-06-01 2005-03-16 株式会社東芝 不揮発性半導体記憶装置
JP2000331491A (ja) * 1999-05-21 2000-11-30 Mitsubishi Electric Corp 不揮発性半導体記憶装置
JP2001052495A (ja) * 1999-06-03 2001-02-23 Toshiba Corp 半導体メモリ
JP4299428B2 (ja) 2000-01-19 2009-07-22 三星電子株式会社 可変容量半導体記憶装置
JP2002026254A (ja) * 2000-07-03 2002-01-25 Hitachi Ltd 半導体集積回路および不揮発性メモリ
US6307787B1 (en) * 2000-07-25 2001-10-23 Advanced Micro Devices, Inc. Burst read incorporating output based redundancy
EP1193715A1 (en) * 2000-09-20 2002-04-03 STMicroelectronics S.r.l. Nonvolatile memory device, having parts with different access time, reliability and capacity
JP2002100192A (ja) * 2000-09-22 2002-04-05 Toshiba Corp 不揮発性半導体メモリ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100666174B1 (ko) 2005-04-27 2007-01-09 삼성전자주식회사 3-레벨 불휘발성 반도체 메모리 장치 및 이에 대한구동방법
KR100655849B1 (ko) 2005-09-20 2006-12-11 후지쯔 가부시끼가이샤 반도체 기억 장치
JP2008084499A (ja) * 2006-09-29 2008-04-10 Toshiba Corp 半導体記憶装置
JP2008108297A (ja) * 2006-10-23 2008-05-08 Toshiba Corp 不揮発性半導体記憶装置
US7453712B2 (en) 2006-10-25 2008-11-18 Samsung Electronics Co., Ltd. Hybrid flash memory device and method for assigning reserved blocks thereof
US7698615B2 (en) 2006-12-06 2010-04-13 Samsung Electronics Co., Ltd. Semiconductor memory device having single-level cells and multi-level cells and method of driving the semiconductor memory device
KR20130129125A (ko) 2012-05-18 2013-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 기억 장치 및 기억 장치의 구동 방법
US8953358B2 (en) 2012-05-18 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Memory device and method for driving memory device
JP2014142986A (ja) * 2012-12-26 2014-08-07 Semiconductor Energy Lab Co Ltd 半導体装置

Also Published As

Publication number Publication date
JP4259922B2 (ja) 2009-04-30
KR20040011387A (ko) 2004-02-05
TWI226642B (en) 2005-01-11
US20040114430A1 (en) 2004-06-17
US6947322B2 (en) 2005-09-20
KR100547009B1 (ko) 2006-01-31
EP1387361A2 (en) 2004-02-04
EP1387361A3 (en) 2005-12-14
TW200409124A (en) 2004-06-01
CN100359604C (zh) 2008-01-02
CN1477646A (zh) 2004-02-25

Similar Documents

Publication Publication Date Title
JP4259922B2 (ja) 半導体記憶装置
US6400602B2 (en) Semiconductor memory device and restoration method therefor
US8014207B2 (en) Nonvolatile memory device and method of operating the same
US7339825B2 (en) Nonvolatile semiconductor memory with write global bit lines and read global bit lines
US7826277B2 (en) Non-volatile memory device and method of operating the same
US7730383B2 (en) Structure and method for detecting errors in a multilevel memory device with improved programming granularity
JP2007035088A (ja) 半導体記憶装置の読み出し回路
EP0940753B1 (en) Semiconductor memory device with redundancy
JP5403292B2 (ja) 外部アドレスに応える不良メモリブロックの置き換え
KR102550416B1 (ko) 메모리 장치
JP2002025282A (ja) 不揮発性半導体記憶装置
US6307794B1 (en) Semiconductor memory device and signal line shifting method
JP2006147145A (ja) 半導体メモリ装置の配置方法
KR960011542B1 (ko) 반도체 메모리 장치
JP2009129477A (ja) 不揮発性半導体記憶装置
JP2008299918A (ja) 不揮発性半導体記憶装置及びその不良ブロック置き換え方法
JP2009146548A (ja) 不揮発性半導体記憶装置
US7236401B2 (en) Nonvolatile semiconductor memory device and write/verify method thereof
JP2008299962A (ja) 半導体記憶装置
JP2980038B2 (ja) 半導体記憶装置
JP2004530243A5 (ja)
JP4226571B2 (ja) 半導体記憶装置及び電子機器
JP2006024342A (ja) 不揮発性半導体記憶装置、不揮発性半導体記憶装置の書き込み方法、メモリカード及びicカード
JP2006331564A (ja) 不揮発性半導体メモリ
JP4833073B2 (ja) 半導体装置及びデータ読み出し方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4259922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees