JP2004109663A - 光源装置、光走査装置及び画像形成装置 - Google Patents

光源装置、光走査装置及び画像形成装置 Download PDF

Info

Publication number
JP2004109663A
JP2004109663A JP2002273804A JP2002273804A JP2004109663A JP 2004109663 A JP2004109663 A JP 2004109663A JP 2002273804 A JP2002273804 A JP 2002273804A JP 2002273804 A JP2002273804 A JP 2002273804A JP 2004109663 A JP2004109663 A JP 2004109663A
Authority
JP
Japan
Prior art keywords
light source
coupling lens
linear expansion
support
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002273804A
Other languages
English (en)
Inventor
Tomoya Osugi
大杉 友哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002273804A priority Critical patent/JP2004109663A/ja
Priority to US10/663,759 priority patent/US7295225B2/en
Publication of JP2004109663A publication Critical patent/JP2004109663A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/026Mountings, adjusting means, or light-tight connections, for optical elements for lenses using retaining rings or springs

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)

Abstract

【課題】複数のビームの相対的な位置の経時変化や環境変動を抑えることができるようにする。
【解決手段】複数のLEDと、各LEDに対応してそれぞれ設けられたカップリングレンズ2a,2bとによって光ビームとして出射する光源装置において、前記カップリングレンズ2a,2bの光軸に略平行な2つの支持面を有するレンズホルダ15と、前記支持面に前記カップリングレンズ2a,2bの側面部分を押圧して前記2面で前記カップリングレンズ2a,2bを保持させる弾性部材16a,16bと、前記カップリングレンズ2a,2bと対となるLEDを保持する光源支持部材と、この光源支持部材を固定するボルトとを備え、ボルトによって光源支持部材をカップリングレンズ2a,2bの光軸に対して略垂直な方向に調整してレンズホルダ15に固定するようにした。
【選択図】   図5

Description

【0001】
【発明の属する技術分野】
本発明は、光ビームを出射する光源装置、この光源装置を使用して光書き込みを行うための光走査装置、及びこの光走査装置による光走査によって画像を形成するデジタル複写機、レーザプリンタ、レーザFAX等の画像形成装置に関する。
【0002】
【従来の技術】
デジタル複写機やレーザプリンタ等の画像形成装置においては、像担持体に像を書き込む像書込装置として光走査(光書き込み)装置が用いられている。この光走査装置において、半導体レーザ等の光源と、光源から発せられた光を所定の平行光、収束光あるいは発散光としてカップリングするカップリングレンズとを備えた光源装置には、その光学特性として、光源装置より射出されるレーザ光の方向性(光軸特性)と光束の平行/収束/発散性(カップリング特性)とが要求される。このため、発光点とカップリングレンズとの相対位置は3軸(x軸、y軸、z軸)方向に対して、初期調整時及び経時・環境変動時において高い精度を保つことが必要となる。
【0003】
このような光走査装置の光源装置として、例えば特開平8−7294号公報に開示された発明が知られている。この特開平8−7294号公報には、図15及び図16に示すようなLED101とレンズホルダ102が開示されている。図15はレンズホルダ102とコリメータレンズ104を示す斜視図、図16は、図15のI−I線断面図である。この発明は、コリメータレンズ104をL型当接面105やV形溝等の案内手段に対して接着剤使用することなく弾性部材106からなる付勢手段で弾性付勢することによって保持するものである。しかし、この公知例では、また、以下のような点で十分な配慮がされているとは言い難い。
【0004】
▲1▼ 具体的には、図16に示すように、光源として用いられているような半導体レーザ(LED)101のパッケージの材質は通常鉄系材料であり、コリメータレンズ104の材質はガラスまたは樹脂である。また、LED(光源)101及びコリメータレンズ104を支持する支持部材、すなわち光源支持部103やレンズホルダ102にはアルミニウムや樹脂が多く用いられている。このように、LED101のパッケージ、コリメータレンズ104、光源支持部103及びコリメータレンズホルダ102の線膨張係数がそれぞれ異なる場合に、環境温度変動があると、例えば図16におけるA点を基準として考えるとわかるように、光源(LED101)周辺の副走査(z軸)方向の伸び(縮み)量(図中Δt1)とコリメータレンズ104周辺の副走査(z軸)方向の伸び(縮み)量(図中Δt2+Δt3)とが異なり、副走査(z軸)方向の発光点SECの位置とコリメータレンズ104の光軸Lの位置とにずれが生じる。すなわち、
Δt1≠Δt2+Δt3
となり、LED101の発光点SECとコリメータレンズ104の光軸Lが一致しない。
【0005】
▲2▼ また、図15をB方向から見た図17に示すように、コリメータレンズ104とレンズホルダ102のL型当接面やV形溝等の案内手段との間の摩擦が大きかったり、案内手段の硬さが十分でない場合には、コリメータレンズ104が案内手段に完全には倣らわず、図17のように傾いた状態で保持されてしまうことがある。この状態ではコリメータレンズ104は●印で示した2点のみで当接面に接触して支持されており、非常に不安定な状態であるため、振動や環境温度変動等によりコリメータレンズ104の姿勢が変動することがある。コリメータレンズ104は、位置変動に限らず傾きが変化しても射出されるビームの方向は変化するため、この姿勢変動によっても射出されるビームの方向は変化する。
【0006】
▲3▼ さらに、図15をC方向から見た図18に示すようにコリメータレンズ104を押圧する弾性部材106を図18のような形状にした場合、例えばコリメータレンズ104のレンズホルダ102の線膨張係数より弾性部材106の線膨張係数が大きいと、環境温度が上昇した時に相対的に弾性部材106の方がより多く伸び、結果としてコリメータレンズ104は図中矢印方向に力を受け、当接面105に沿った分力により、コリメータレンズ104の位置が変動するおそれがある。
【0007】
また、画像形成装置の出力速度を高めるための主な手段としては、
(1) 像担持体の移動速度(回転速度)を高める方法
(2) 像担持体を複数用いる方法
がある。ここで、(1)の方法を用いた場合には、像担持体の移動速度の増加に伴い、像担持体に像を書き込む光走査装置の書込速度を高める必要が生じる。光走査装置の書込速度を高める方法としては、
(i)偏向手段であるポリゴンスキャナの回転速度を高める。
(ii)書込ビーム数を増やす。
などの方法が挙げられる。しかし、(i)の方法ではモータの耐久性や騒音、振動、及びレーザの変調スピード等が問題となり限界がある。また、(ii)の方法を実現するためには、複数のレーザビームを出射するマルチビーム光源装置が必要となる。
【0008】
マルチビーム光源装置の1つとして、例えば1パッケージ内に複数の発光点(発光チャンネル)をもつ半導体レーザアレイを用いる方式がある。この半導体レーザアレイは、製造プロセス上、チャンネル数を増加することが困難であり、また熱的、電気的なクロストークの影響を除去することが難しく、短波長化が困難であるといった理由により、現在では高価な光源手段である。さらに、市場で用いられる個数の影響などにより、1パッケージ内の発光点の数が多いほど、1本のビーム当りのコストが高くなっているのが現状である。例えばシングルビームの半導体レーザを4個使うより、1パッケージ内に4つの発光点を持つ半導体レーザアレイを使う方がはるかに高価である。従って、複数のシングルビーム半導体レーザ(あるいは発光点数の少ないマルチビーム半導体レーザ)を用い、ビームを合成して走査する光源装置及び複数ビーム走査装置に関する提案が、例えば、特開平10−284803号公報などによりなされている。
【0009】
【発明が解決しようとする課題】
前述のような複数のビームによって像担持体上を走査する光走査装置においては、像担持体上における複数のビームスポットの副走査方向の相対位置(ビームスポット間隔)が所定の値からずれると、それが像として周期的に繰り返されることから、周期的な縞が現れる不良画像を生じやすい。従って、発光点とカップリングレンズとの、副走査方向の相対位置ずれを小さく抑えることが特に重要となる。また、像担持体上における複数のビームスポットの主走査方向の位置のずれは、同期検知手段による同期検知後の発光点点灯タイミングを調整することにより比較的容易に調整することができるが、副走査方向の相対位置ずれを調整するのは困難であり、機構が複雑になる。
【0010】
また、前述の特開平10−284803号公報で引用された特開平7−181410号公報に開示された光源装置では、レンズホルダとコリメータレンズ、レンズホルダとフランジの嵌合孔との間にはそれぞれ0.01〜0.03mm程度のクリアランスがあり、これを埋めるように接着剤でそれぞれが接着固定されている。接着剤は硬化する際の硬化収縮、経時変化、環境変化による変動が大きく、また、前記各構成部品のばらつきによってクリアランス等が異なるため、接着部の変動量にも構成部品によるばらつきがある。従って、接着剤の硬化収縮、経時変化、環境変化等によって上下のコリメータレンズの相対位置が変化し、上下の2本のビームの相対位置が変動してしまう。
【0011】
また、この公知例では、半導体レーザ(LED)は固定され、コリメータレンズのみを3軸方向に動かしてその相対位置を調整し、その上でコリメータレンズを接着固定するが、位置調整幅を考慮してコリメータレンズとレンズホルダとの間には0.2mm程度のすきまが必要となる。そして、このすきまを接着剤で埋めてレンズを固定するわけであるが、このように元々接着層が厚い上に、位置調整を行うことによってコリメータレンズの位置は±0.1mm程度ずれ、結果として接着層は0.1mm〜0.3mm程度となり、組み立てたユニットによって大きくばらつくことになる。従って、接着剤の硬化収縮、経時変化、環境変化等によるコリメータレンズの位置変動も、ユニット毎のばらつきが大きくなる。
【0012】
また、レンズホルダのコリメータレンズの支持部の接着面がコリメータレンズに対して同心円状に設けられているので、図19に示したようにコリメータレンズ104の位置が副走査(z軸)方向に偏った位置で接着固定された場合には、副走査(z軸)方向に接着剤107の厚さの偏りが発生し、環境変動による接着剤層の伸縮によるコリメータレンズ104の位置変動の副走査(z軸)方向成分が生じやすい。コリメータレンズ104の位置変動の副走査方向成分が生じ、かつその変動量がユニット毎に大きくばらつくと、結果として像担持体上における2つのビームスポットの副走査方向の相対位置の変動が大きくなる。なお、図19は接着剤107によるコリメータレンズ104の接着状態を示す説明図である。
【0013】
また、例えば複数のビームのうちの1つに図15のような光源装置を適用して、プリズム等によってビームを合成して用いた場合、前記▲1▼〜▲3▼で説明したように、発光点SEC位置とコリメータレンズ104の光軸L位置との図15中のyz方向の相対的な位置がずれるなどしてコリメータレンズ104から射出されるビームの方向が変化すると、合成された後の複数のビームの相対位置が変化し、結果として像担持体上における複数のビームスポットの相対位置が変化して出力画像の劣化を生じる。
【0014】
また、画像形成装置の出力速度を高める手段として、例えばカラー画像形成装置の場合には前述の(2)の方法に従って像担持体を4本用いて出力速度を高めたものなどがあるが、この場合には像担持体の数に対応した書込ビーム数が必要となる。この時、経時変化や環境変動等によって各像担持体上を走査する書込ビーム間の相対位置が変動すると、各色の像が正確に重なり合わない、いわゆる色ずれの状態を生じてしまう。
【0015】
本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、複数のビームの相対的な位置の経時変化や環境変動を抑えることができる光源装置、光走査装置及び画像形成装置を安価に提供することにある。
【0016】
また、他の目的は、安価に良好な画像を得ることができる画像形成装置を実現することにある。
【0017】
【課題を解決するための手段】
前記目的を達成するため、第1の手段は、複数の光源と、各光源に対応してそれぞれ設けられたカップリングレンズとによって光ビームとして出射する光源装置において、前記カップリングレンズの光軸に略平行な2つの支持面を有するカップリングレンズ支持手段と、前記支持面に前記カップリングレンズの側面部分を押圧して前記2面で前記カップリングレンズを保持させる弾性付勢手段とを備えていることを特徴とする。
【0018】
このように構成すると、カップリングレンズの光軸に略平行な2つの支持面にカップリングレンズを弾性付勢して固定するので、簡単な構成でカップリングレンズと支持面との関係を固定し、経時的変化の発生を防ぐことができる。
【0019】
第2の手段は、第1の手段において、前記カップリングレンズと対となる光源を保持する光源保持手段と、前記光源保持手段を固定する固定手段とを備え、前記固定手段は、前記カップリングレンズの光軸に対して略垂直な方向の光源位置を調整可能に前記光源保持手段を固定することを特徴とする。このように構成すると、光源側をカップリングレンズの光軸に合わせて配置するので、調整と取り付けが簡単に行える。
【0020】
第3の手段は、第2の手段において、前記固定手段は、前記カップリングレンズ支持手段に前記光源保持手段を固定することを特徴とする。このようにカップリングレンズ支持手段に光軸保持手段を固定すると、光源側のカップリングレンズの光軸に対する調整が簡単に行え、又、一端固定すると、光源側のカップリング支持手段に対する相対的な位置がずれことがなくなる。
【0021】
第4の手段は、第1ないし第3の手段において、1つのカップリングレンズを支持する当該カップリングレンズの光軸に略平行な2つの支持面を1組の支持部とし、前記カップリングレンズを支持する少なくとも2組の支持部が一体の部材として形成されていることを特徴とする。このように構成すると、2つのカップリングレンズを支持する支持部の相対的な位置がずれることはないので、経時的な変化によって光ビームの位置ずれが生じることはない。
【0022】
第5の手段は、第1ないし第4の手段において、1つのカップリングレンズを支持する当該カップリングレンズの光軸に略平行な2つの支持面を1組の支持部とし、前記カップリングレンズを支持する少なくとも2組の支持部の前記カップリングレンズの光軸方向、主走査方向及び副走査方向に対する向きが同一に設定されていることを特徴とする。
【0023】
第6の手段は、第1ないし第4の手段において、1つのカップリングレンズを支持する当該カップリングレンズの光軸に略平行な2つの支持面を1組の支持部とし、前記カップリングレンズを支持する少なくとも2組の支持部の前記カップリングレンズの光軸方向、主走査方向及び副走査方向に対する向きが、光軸方向と副走査方向とに平行な面に対して対称に設定されていることを特徴とする。
【0024】
これら第5及び第6の手段によれば、2つの光源の支持状態が光軸対して同一なので、熱膨張などの変化が生じたときの変化の状態もそれぞれ同一となり、両光源間で結果として光ビームにずれが生じることはない。
【0025】
第7の手段は、第1、第3、第4及び第5の手段において、前記カップリングレンズと前記支持面の当接個所の少なくとも一方に潤滑手段が設けられていることを特徴とする。このように潤滑手段、例えば潤滑剤を塗布したり、潤滑層を設けたりすると、摩擦力の影響が抑えられるので、弾性手段による弾性力によりカップリングレンズと前記支持部材との当接個所で線的な接触が確保でき、カップリングレンズが支持面に対してずれることがない。
【0026】
第8の手段は、第1、第3、第4及び第5の手段において、前記支持面の前記カップリングレンズの当接個所に表面硬化処理が施されていることを特徴とする。このように当接個所に表面硬化処理が施され、表面が硬くなっていると、接触面積が最小限に抑えられるので、カップリングレンズの移動が小さな力で可能となり、これによってカップリングレンズのずれを抑えることができる。
【0027】
第9の手段は、第1の手段において、前記弾性付勢手段が板状の弾性部材からなり、当該弾性部材は前記カップリングレンズの押圧個所を挟んだ両側で固定されていることを特徴とする。このように弾性部材の両側で固定すると、弾性部材の伸縮によってカップリングレンズに加わる力が最小限に抑えられるので、カップリングレンズが移動する虞がなく、これによってカップリングレンズのずれを抑えることができる。
【0028】
第10の手段は、第9の手段において、前記弾性部材は前記押圧個所から略対称な位置で固定されていることを特徴とする。このように対称な位置で抑えると、たとえ弾性部材が伸縮したとしても、カップリングレンズを押さえた個所の両側で伸縮量が同じなので、カップリングレンズが動くことはない。
【0029】
第11の手段は、第9および第10の手段において、前記弾性部材の線膨張係数が、前記カップリングレンズ支持手段を構成する構成部材の線膨張率に略等しいことを特徴とする。このように弾性部材の線膨張係数をカップリングレンズ支持手段を構成する構成部材の線膨張率に略等しくすると、カップリングレンズに当接する部分の伸縮量が同一なので、温度変化が生じても、カップリングレンズが動くことはない。
【0030】
第12の手段は、第1の手段において、前記カップリングレンズ支持手段に取り付けられ、前記光源を保持する光源保持手段をさらに備え、前記カップリングレンズの線膨張係数をα1[1/K]、前記カップリングレンズ支持手段の線膨張係数をα2[1/K]、前記光源を半導体レーザから構成し、そのパッケージ部の線膨張係数をα3[1/K]、前記光源保持手段の線膨張係数をα4[1/K]としたときに、
α1≦α3のときは、α1≦α2≦α3 かつ α1≦α4≦α3
を満足する線膨張係数を有する材料によって前記カップリングレンズ支持手段、前記パッケージ部、及び前記光源保持手段が構成されていることを特徴とする。
【0031】
この手段では、光ビームのずれに関係のなる部材を全て同一の材料あるいは全て同一の線膨張係数を有する材料で構成することはできないので、カップリングレンズの線膨張係数α1が半導体レーザのパッケージ部の線膨張係数α3よりも小さいときには、カップリングレンズ支持手段と光源保持手段の線膨張係数α2,α4がカップリングレンズの線膨張係数α1と半導体レーザのパッケージ部の線膨張係数α3の間になるような材料を選択する。これにより、発光点とカップリングレンズの光軸の副走査方向の相対位置ずれを小さく抑えることができる。
【0032】
第13の手段は、第1の手段において、前記カップリングレンズ支持手段に取り付けられ、前記光源を保持する光源保持手段をさらに備え、前記カップリングレンズの線膨張係数をα1[1/K]、前記カップリングレンズ支持手段の線膨張係数をα2[1/K]、前記光源を半導体レーザから構成し、そのパッケージ部の線膨張係数をα3[1/K]、前記光源保持手段の線膨張係数をα4[1/K]としたときに、
α3<α1のときは、α3≦α2≦α1 かつ α3≦α4≦α1
を満足する線膨張係数を有する材料によって前記カップリングレンズ支持手段、前記パッケージ部、及び前記光源保持手段が構成されていることを特徴とする。
【0033】
この手段では、光ビームのずれに関係のある部材を全て同一の材料あるいは全て同一の線膨張係数を有する材料で構成することはできないので、カップリングレンズの線膨張係数α1が半導体レーザのパッケージ部の線膨張係数α3よりも大きいときには、カップリングレンズ支持手段と光源保持手段の線膨張係数α2,α3がカップリングレンズの線膨張係数α1と半導体レーザのパッケージ部の線膨張係数α3の間になるような材料を選択する。これにより、発光点とカップリングレンズの光軸の副走査方向の相対位置ずれを小さく抑えることができる。
【0034】
第14の手段は、第1ないし第13の手段に係る光源装置と、前記光源装置から出射された光ビームを受光し、主走査方向に変更させる偏向手段と、前記偏向手段によって偏向された光ビームをスポット光として走査対象物上に結像させて走査する光学手段とを含んで光走査装置を構成したことを特徴とする。このように第1ないし第13の手段に係る光源装置を使用して光書き込み用の光走査装置を構成すると、光源装置から出射される光ビームの位置ずれが抑えられるので、光走査精度に優れた光走査装置を構成することができる。
【0035】
第15の手段は、第1の手段に係る光源装置と、前記カップリングレンズ支持手段に取り付けられ、前記光源を保持する光源保持手段と、前記光源装置から出射された光ビームを受光し、主走査方向に変更させる偏向手段と、前記偏向手段によって偏向された光ビームをスポット光として走査対象物上に結像させて走査する光学手段とを備え、前記カップリングレンズの線膨張係数をα1[1/K]、前記カップリングレンズの光軸から前記カップリングレンズが前記支持面と接触する点までの距離をr1、前記カップリングレンズ支持手段の線膨張係数をα2[1/K]、前記光源を半導体レーザから構成し、そのパッケージ部の線膨張係数をα3[1/K]、前記パッケージ部の外周の半径をr3[mm]、前記光源保持手段の線膨張係数をα4[1/K]としたとき、前記光ビーム照射対象部における位置ずれが、前記光源から照射される光ビームのドットピッチの50%以下になるように前記線膨張係数α1、α2、α3及びα4が選定された材料により前記カップリングレンズ、前記カップリングレンズ支持手段、前記パッケージ部及び前記光源保持手段を構成し、前記距離r1および半径r3を設定したことを特徴とする。
【0036】
このように線膨張率α1,α2,α3,α4を設定し、前記距離r1および半径r3を設定すると、複数の光ビーム間の相対的なずれ量を人間の視覚で識別できない範囲に抑えられるので、マルチビームで書き込む際に視覚上画像の劣化を生じさせることはない。
【0037】
第16の手段は、第1の手段に係る光源装置と、前記カップリングレンズ支持手段に取り付けられ、前記光源を保持する光源保持手段と、前記光源装置から出射された光ビームを受光し、主走査方向に変更させる偏向手段と、前記偏向手段によって偏向された光ビームをスポット光として走査対象物上に結像させて走査する光学手段とを備え、前記カップリングレンズの線膨張係数をα1[1/K]、前記カップリングレンズの光軸から前記カップリングレンズが前記支持面と接触する点までの距離をr1、前記カップリングレンズ支持手段の線膨張係数をα2[1/K]、前記光源を半導体レーザから構成し、そのパッケージ部の線膨張係数をα3[1/K]、前記パッケージ部の外周の半径をr3[mm]、前記カップリングレンズ支持手段に取り付けられ、前記光源を保持する光源保持手段の線膨張係数をα4[1/K]としたとき、
α2=α4
かつ、
|α3×r3−α1×r1−α2×(r3−r1)|
≦2.5×10−5[mm/K]
を満足するように前記線膨張係数α1、α2、α3及びα4が選定された材料により前記カップリングレンズ、前記カップリングレンズ支持手段、前記パッケージ部及び前記光源保持手段を構成し、前記距離r1および半径r3を設定したことを特徴とする。
【0038】
このように線膨張率α1,α2,α3,α4を選定し、前記距離r1および半径r3を設定すると、通常の温度変化範囲40Kで光ビーム間のずれ量を1μm以下に抑えることができ、600dpi、1200dpi、2400dpiの書き込み密度であっても光ビームのずれ量が問題となることはない。
【0039】
第17の手段は、第16の手段において、前記α3×r3−α1×r1−α2×(r3−r1)が常用温度範囲で1[μm]以下であることを特徴とする。これによって材料の線膨張係数の選択、前記距離r1および半径r3の設定によって600dpi、1200dpi、2400dpiの書き込み密度にも常用温度範囲で複数の光ビーム間の相対的なずれ量を問題にならない程度に抑えることができる。
【0040】
第18の手段は、第14ないし第17の手段において、前記光源装置を並置(積層)し、多数の光ビーム、少なくとも4ビーム以上のマルチビームによって走査させることを特徴とする。このように構成すると、2ビームの光源装置を2個並置して機械的に結合し、ユニット化することにより4ビームの光源とし、4個並置して機械的に結合し、ユニット化することにより8ビームの光源とし、8個並置して機械的に結合し、ユニット化することにより16ビームの光源とするというように2ビームの光源を1単位として複数単位のマルチビーム走査を行う走査装置を低コストで提供できる。
【0041】
第19の手段は、第14ないし第18の手段に係る光走査装置と、入力された画像データに基づいて前記光走査装置によって画像形成媒体に書き込まれた画像を顕像化する作像手段とを含んで画像形成装置を構成したことを特徴とする。このように構成すると、像担持体上における複数の光ビームスポットの相対位置の変動が小さく、良好な出力画像が得られる。
【0042】
第20の手段は、第19の手段において、前記光走査装置と前記画像形成媒体が色毎に設けられていることを特徴とする。このように構成すると、光ビームのずれが視覚上問題にならない程度に抑えられた書き込み画像に基づいて各色毎に顕像化するので、画像品質に優れたフルカラーの画像形成装置を構成することができる。
【0043】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
【0044】
<第1の実施形態>
図1は本発明の第1の実施形態に係る光源装置を説明するための図、図2及び図3は本発明に係る光源装置が使用される光走査装置の構成を示す概略図である。
【0045】
まず、本発明が適用される一般的な2ビームの光走査装置LSNは、図2に示すように、光源としての半導体レーザ(LED)1a,1b、カップリングレンズ2a,2b、アパチャー4a,4b、ビーム合成プリズム(ビーム合成手段)5、シリンドリカルレンズ8、ポリゴンスキャナ(ミラー)9、fθレンズ10,11、トロイダルレンズ12からなる。これにより、光源(LED)1a,1bから出射されたレーザ光はそれぞれカップリングレンズ2a,2bにより平行光とされ、アパーチャ4a,4bを通り、ビーム合成手段(プリズム)5によって合成された後、シリンドリカルレンズ8を通って線状のビームとされた後、ポリゴンスキャナ9に入射される。ポリゴンスキャナに9に入射されたレーザビームはポリゴンスキャナ9の各面に設けられたミラーにより偏向され、fθレンズ10、11により、定角速度偏向から定速度偏向に変換され、さらに、トロイダルレンズ12でビームの傾きが補正され、副走査方向のピントが調整された後、像担持体13上にビームスポットとして結像され、主走査方向に走査される。なお、14はレーザビームの画像書き込み範囲から外れた位置に設けられた同期検知センサである。
【0046】
図3は、ビーム合成プリズム7を用いる代わりに、2つのビームをポリゴンスキャナ9のミラー上で交差させることによって、ビームを合成して走査する例であり、一般的に前記図2に示した構成や図3に示した構成が光走査装置には採用されている。なお、図2と同等な各部には、同一の参照符号を付し、重複する説明は省略する。
【0047】
なお、以下に示す本発明の実施形態に係る光走査装置では、この図2または図3のような光走査装置における光源部、すなわち、光源及びカップリングレンズ、または光源、カップリングレンズ及びビーム合成手段の部分のみを示す。
【0048】
図1は、本発明の第1の実施形態に係る光源部Sの構成を示す斜視図である。同図において、光源部Sは、光源としての第1及び第2の半導体レーザ(以下、LEDとも称す)1a,1bと、第1及び第2のカップリングレンズ2a,2bと、第1及び第2のカップリングレンズ支持部材(以下、レンズホルダと称す)3a,3bと、ビーム合成プリズム5とから主に構成されている。第1及び第2のLED1a,1bは、それらの各光軸(第1及び第2の光軸)La,Lbが同一平面上で90°交差するように配置され、第1及び第2のカップリングレンズ2a,2bは前記第1及び第2の光軸La,Lbに対してそれぞれ直交するように配置されている。
【0049】
この構成では、第1及び第2のLED1a,2bから発せられたレーザ光はそれぞれ、第1及び第2のカップリングレンズ2a,2bを通過後、ビーム合成プリズム5によって略同じ方向へ合成される。ここで、合成後のビームの光軸Lcの方向に対して、主走査方向、副走査方向を図中矢印のようにすると、光源位置における光軸、主走査、副走査方向はそれぞれ(x1,y1,z1)、(x2,y2,z2)のように表される。第1及び第2のカップリングレンズ2a,2bは、それぞれ第1及び第2の弾性部材(バネ)4a,4bによって、第1及び第2のレンズホルダ3a,3bに押圧されて支持されている。レンズホルダ3a,3bは、それぞれ光軸方向x1,x2に平行な支持面6a,7a、6b,7bを2つずつ有し、この2つの支持面6a,7a、6b,7bによってカップリングレンズ2a,2bをそれぞれ支持している。このように構成すると、従来例のように接着剤を使うことなく支持面6a,7a、6b,7bに対して押圧するのみなので、環境変動によってカップリングレンズ2a,2bと支持面6a,7a、6b,7bとの距離が変化するようなことがない。従って、合成された後の2つのビームの相対位置の変化も小さく、結果として図2または図3に示したような走査光学系を通して像担持体13上に結像されるビームスポットの相対位置の変動も小さくできる。
【0050】
第1のレンズホルダ3a上の支持面6a,7aのなす角と、第2のレンズホルダ3b上の支持面6b,7bのなす角は共に90°である。そして、支持面6a,7aと6b,7bとは、それぞれ光軸、主走査、副走査方向(x1,y1,z1)、(x2,y2,z2)に対する向きが、副走査面(光軸方向と副走査方向とに平行な面)に対して対称となっている。ここで、カップリングレンズ2a,2bそれぞれの光軸La,Lbは、前述の従来例において図18で示したように、環境温度変動によって発光点に対する相対位置が主走査方向また副走査方向に変動する可能性がある。しかし、図1のように構成すれば、第1のLED1aに対する第1のカップリングレンズ2aの光軸Laの相対位置ずれ量と、第2のLED1bに対する第2のカップリングレンズ2bの光軸Lbの相対位置ずれ量とが、少なくとも副走査方向には同程度となるため、結果として、図2または図3に示したような走査光学系を通して像担持体上に結像されるビームスポットの相対位置の副走査方向の変動を抑えることができる。
【0051】
なお、図1では図示していないが、アパーチャを用いる場合には前述の図2に示したように例えばカップリングレンズ2a,2bとビーム合成プリズム5との間に挿入すればよい。
【0052】
<第2の実施形態>
図4は本発明の第2の実施形態に係る光源部Sの構成を示す斜視図である。この実施形態は、第1の実施形態における第1のカップリングレンズ2aの光軸Laと第2のカップリングレンズ2bの光軸Lbの中央を通る線に関し、第1のカップリングレンズ2a及びレンズホルダ3aを第2のカップリングレンズ2b及びレンズホルダ3b対して対称になるように配置したものである。その他の各部及び配置は前述の第1の実施形態と同一である。
【0053】
この実施形態では、第1及び第2のLED1a,2bから発せられたレーザ光はそれぞれ第1及び第2のカップリングレンズ2a,2bを通過後、ビーム合成プリズム5によって略同じ方向へ合成される。ここで、合成後のビームの光軸の方向に対して、主走査方向、副走査方向を図中矢印のようにすると、光源位置における光軸、主走査、副走査方向はそれぞれ(x1,y1,z1)、(x2,y2,z2)のようになる。第1及び第2のカップリングレンズ2a,2bは、それぞれバネ4a,4bによって、第1の実施形態と同様にレンズホルダ3a,3bの支持面6a,7a、6b,7bにそれぞれ押圧されて支持されている。
【0054】
また、前記第1のレンズホルダ3a上の支持面6a,7aのなす角と、第2のレンズホルダ3b上の支持面6b,7bのなす角は共に90°である。そして、支持面6a,7aと6b,7bとは、それぞれ光軸、主走査、副走査方向(x1,y1,z1)、(x2,y2,z2)に対する向きが同じになっており、前述の用に第1及び第2のカップリングレンズ2a,2bそれぞの光軸La,Lbは、環境温度変動によって発光点に対する相対位置が主走査方向また副走査方向に変動する可能性があるが、図4のように構成しているので、第1のLED1aに対する第1のカップリングレンズ2aの光軸Laの相対位置ずれ量及び方向と、第2のLED1bに対する第2のカップリングレンズ2bの光軸の相対位置ずれ量及び方向とが同程度となるため、結果として、第1の実施形態と同様に走査光学系を通して像担持体上に結像されるビームスポットの相対位置の変動を抑えることができる。
【0055】
その他、特に説明しない各部は前述の第1の実施形態と同等に構成され、同等に機能する。
【0056】
<第3の実施形態>
図5ないし図8に本発明の第3の実施形態に係る光源部の構成を示す。図5は光源部を正面側から見た斜視図、図6は背面側から見た斜視図、図7は図5のII部拡大図、図8は図5のIII−III線断面図である。
【0057】
この実施形態では、第1及び第2の実施形態に係るカップリングレンズ2a,2bがそれぞれ別体に構成されたレンズホルダ3a,3bに保持されているのを一体に形成されたレンズホルダ15に保持させるようにしたものである。これにより、レンズホルダ15を一体化し、別体に構成されたレンズホルダ3a,3bのような両者の相対的な位置ずれを解消している。すなわち、図5に示すように第1及び第2のカップリングレンズ2a,2bはレンズホルダ15に一体的に突設されたレンズ支持部15aの側面に設けられた支持溝17に対して、それぞれバネ16a,16bによって押圧され、支持されている。2つのカップリングレンズ2a,2bを支持する支持面は全て(4面とも)レンズホルダ15上に形成された支持溝17に一体的に設けられている。支持溝17は所謂V溝であって、隣接する支持面6aと7a、及び6bと7bとはそれぞれ直角になるように切溝されている。
【0058】
また、図7に示すように第2のカップリングレンズ2b(第1のカップリングレンズ2aも同様)はそれぞれ2つの支持面6b,7bにバネ16bによって弾性的に押圧され、位置決めされた状態で支持されている。また、バネ16bは図中に示したカップリングレンズ押圧箇所18に対して対称な2ヶ所をボルト19によって固定されている。従って、このような構成では、レンズホルダ15と押圧バネ16a,16bとの線膨張係数が異なる場合にも、前述の図18に示したようは矢印方向の力が生じることはなく、これによってカップリングレンズ2a,2bがずれるようなことはない。したがって、環境変動によってカップリングレンズ2a,2bの位置が変動することがなく結果として、2つのビームの相対位置が変動することを抑制することができる。
【0059】
カップリングレンズ2a,2bの固定方法は上述の通りである。一方、LED1a,1bは図8に示すように、光源支持部材20a,20bに形成された支持部(支持孔)に圧入されて固定されている。また、光源支持部材20a,20bは図6に示すようにボルト21によってレンズホルダ15に固定される。ここで、光源支持部材20a,20bにはそれぞれボルト21の径より大きい穴が明けられており、図8におけるカップリングレンズ2a,2bの光軸La,Lbに発光点SEC位置が合うように、光源支持部材20a,20bの位置を主走査方向(図8中y1,y2)及び副走査方向(図8中紙面垂直方向)に位置を調整した後に、締結固定される。このような構成により、図2または図3のような光走査装置において、像担持体上における複数のビームスポットの相対位置を所望の状態に調整することができる。
【0060】
なお、この実施形態では、カップリングレンズ2a,2bの光軸La,LbとLED1a、1bの調整時に前記光軸La,Lbに対して垂直な方向に光源支持部材20a,20bを移動可能にしておき、ボルト21で固定する際に位置調整を行うようになっているが、この位置調整には、治具を使用して図8にも示すようにy方向と紙面に垂直な2方向の調整を容易にできるようにしておくとよい。調整ネジなどを使用して位置調整を行うように構成することも可能であるが、機構が複雑となることは否めない。
【0061】
このように構成すると、環境変動等によって複数のカップリングレンズに対応した複数のレンズホルダがそれぞれ独立に傾いたりすることがなく、万が一レンズホルダ15が傾くようなことがあったとしても、このレンズホルダ15によって支持されている2つのカップリングレンズ2a,2bが同じ方向に同じ量だけ傾くので、結果として2つのビームの相対位置が変動することがなくなる。
【0062】
また、図8に示すように本実施形態では、ビーム合成プリズム5を使用することなくポリゴンミラー9上でビームを交差させることによって2つのビームを合成する方式を採用している。図8に示すように、ここでも光軸方向、主走査方向を2つのそれぞれのビームについて(x1,y1)、(x2,y2)のように定義している。副走査方向はいずれのビームについても紙面垂直方向となる。従って、本実施形態においても第1の実施形態と同様に2組のカップリングレンズ支持面が副走査面に対称となる構成をとっており、図3に示したような走査光学系を通して像担持体上に結像されるビームスポットの相対位置の副走査方向の変動を抑えることができる。
【0063】
なお、第1及び第2の実施形態では、第1及び第2のレンズホルダ3a,3bがそれぞれ独立しているので、光軸La,Lbに対してレンズホルダ3a,3bの位置を固定する際の調整も大変であるが、本実施形態ではレンズホルダ15は一体なのでレンズホルダ間の相対的な位置ずれは発生しないので、所定位置にレンズホルダ15を固定するだけで良く、調整も簡単になる。
【0064】
また、カップリングレンズ支持面6a,7a、6b,7bに対し、例えばテフロン(登録商標)系の表面処理を施してカップリングレンズ2a,2bと支持面6a,7a、6b,7bとの間の潤滑性を向上させると、カップリングレンズ2a,2bは2つの支持面にならって、図17に示したように点で支持されるのではなく、線で確実に支持され、前述の▲2▼の問題の発生を抑制することができる。
【0065】
また、カップリングレンズ支持部材15の材質が例えばアルミニウムであった場合、少なくともカップリングレンズ支持面6a,7a、6b,7bにアルマイト処理を施して表面の硬さを向上させると、カップリングレンズ2a,2bは2つの支持面6a,7a、6b,7bに倣って、図17に示したように点で支持されるのではなく、線で確実に支持され、前述の▲2▼の問題の発生を抑制することができる。
【0066】
さらに、カップリングレンズ支持部材15の材質を鉄系材料とし、少なくともカップリングレンズ支持面6a,7a、6b,7bに焼き入れ処理を施して表面の硬さを向上させると、支持面6a,7a、6b,7bはより硬くなり、前述の▲2▼の問題の発生を抑制することができる。
【0067】
その他、特に説明しない各部は前述の第1及び第2の実施形態と同等に構成され、同等に機能する。
【0068】
<第4の実施形態>
図9ないし図11に本発明の第4の実施形態に係る光源装置の構成を示す。図9は本実施形態に係る光源装置を正面側から見た斜視図、図10は図9のIV−IV線断面図、図11は図9のV−V線断面図である。
【0069】
図9において、本実施形態に係る光源装置は、レンズホルダ22に正面視L字型のレンズ支持部22a,22bを一体的に突設し、そのレンズ支持部22a,22bの各カップリングレンズ支持面6a,7a、6b,7bに対してカップリングレンズ2a,2bをバネ23a、23bによって弾性的に押圧し、支持させたもので、第1の実施形態におけるレンズホルダ3a,3bが平板上に一体的に突設されたような形状となっている。この実施形態においてもカップリングレンズ支持面6a,7a、6b,7bは、主走査方向に対して平行な面7a,7bと副走査方向に対して平行な面6a,6bとなっている。一方、光源支持部材20a,20b及びLED1a,1bは第3の実施形態と同様に構成され、ボルトによってレンズホルダ22に固定されている。
【0070】
なお、この実施形態では、カップリングレンズ2a,2bを押さえるバネ23a,23bを片持ちに構成しているが、正面視L字形のバネ部材を使用してレンズ支持部22a,22bの両端で固定するようにすることもできる。
【0071】
その他、特に説明しない各部は前述の第1ないし第3の実施形態と同等に構成され、同等に機能する。
【0072】
ここで、この実施形態を例にとって熱膨張の影響について検討する。
LED1a,1bのパッケージ部(図11では、符号1b’で示す)の線膨張係数をα3、カップリングレンズ2a,2bの線膨張係数をα1、レンズホルダ22(22a,22b)の線膨張係数をα2、光源支持部材20a,20bの線膨張係数をα4とする。ここで、
α1=α2=α3=α4
であれば、図16の従来例として▲1▼に示したような問題は発生しない。しかし、汎用品ではLED1a,1bのパッケージ1a’,1b’は鉄系の材料であることが多く、またカップリングレンズ2a,2bは光学特性を優先させるため材質の選択の余地は少ない。従って、α3=α1とするのは困難である。そこで、例えばカップリングレンズ2a,2bの材質がガラス材料であるような、
α1≦α3
のときは、
α1≦α2≦α3
かつ
α1≦α4≦α3
にのように線膨脹係数α2とα4を設定する。
【0073】
カップリングレンズ2a,2bの材質が樹脂系材料であるような、
α3<α1
のときは、
α3≦α2≦α1
かつ
α3≦α4≦α1
のように線膨脹係数α2とα4を設定する。すなわち、カップリングレンズ2a,2bをガラスレンズから作成した場合には、レンズホルダ22a,22bと光源支持部材20a,20bの線膨張係数がLED1a,1bのパッケージ部1b’の線膨張係数とカップリングレンズ2a,2bの線膨張係数との間に入るような材料を選択すれば、前述の従来例の▲1▼に示したような発光点とカップリングレンズ2a,2bの光軸La,Lbの副走査方向(z1)の相対位置ずれを小さく抑えることができ、結果として、図9における2つの光ビームの光軸La,Lbの相対位置の副走査方向の変動が抑えられる。
【0074】
また、このとき、カップリングレンズ2a,2bを押圧するバネ23a,23bの線膨張係数をレンズホルダ22の線膨張係数と同じにすれば、図18の従来例で▲3▼に示したような問題の発生をなくすことができ、結果として、図9における2つの光ビームの光軸La,Lb2の相対位置の副走査方向の変動を、さらに小さく抑えることができる。
【0075】
また、レンズホルダ22と光源支持部材20a,20bを同じ材質で形成し(α2=α4)、環境温度変動が+40Kあったとすると、基準Aに対する発光点の副走査方向(z1)への位置変動は
r3×α3×40
で表すことができる。
【0076】
一方、基準Aに対するカップリングレンズ2a,2bの光軸La,Lbの副走査方向(z1)への位置変動は、
r1×α1×40+(r3−r1)×α2×40
となる。そこで、図11において、
|α3×r3−{α1×r1+α2×(r3−r1)}|×40
≦ 1×10−3 [mm/K]
が成り立つようにα1,α2,α3,r1,r2を決めれば、環境温度変動が40Kあった時にも発光点とカップリングレンズ2a,2bの光軸La,Lbとの副走査方向(z1)の相対位置ずれは1μm以下に抑えることができる。結果として、図9における2つのビームの相対位置の副走査方向の変動を抑制することができる。
【0077】
なお、ドットピッチは600dpiの書き込み密度を有する光走査装置では21μmとなり、前述のように線膨張率を設定したときの副走査方向の位置ずれは最大1μmなので、ドットピッチに対して位置ずれは5%以下に抑えられている。このようなずれ量は人間の視覚上では判別できない量であり、前記位置ずれ量は、1200dpi、2400dpiの書き込み密度を有する光走査装置においても視覚上では判別できない量である。
【0078】
なお、ドットピッチが21μmの場合、10〜15μmのずれでも人間の視覚特性上判別できる人は少ないので、前記ずれ量は、ドットピッチの50%以下であれば、ほとんどの場合、画像劣化として認識されることはない。
【0079】
以上のような図11における線膨張係数の決め方は、図10のような主走査方向にも同様に適用することができ、この場合には図9における2つの光ビームの光軸La,Lbの相対位置の主走査方向の変動を抑えることができる。
【0080】
以上の実施形態においては、カップリングレンズ2a,2bの形状はすべて円筒形としたが、他の形状であってもよいことは言うまでもない。また、各実施形態においては全てビーム数を2として説明しているが、複数ビームの光源にも適用できる。例えば、前述の各実施形態において、LED1a,bは1つのパッケージ内に複数の発光点を持つLEDアレイとしてもよい。すなわち、この2個のLEDからなるアレイを1単位として複数単位並置してマルチビームのLEDアレイを構成することもできる。具体的には、例えば図9に示したような光源装置をさらに2つ用いて上下方向に積層し、機械的に結合して1つのユニットを構成し、これらの計4つとなるビームをプリズムで合成することもできる。さらには、このようにして4個の発光点を有するLEDアレイユニットをさらに2つ結合し、8ビームの光源として、あるいは、前記8ビームの光源を2段重ねて16ビームの光源にするなどの応用の可能である。なお、図5に示したような形式のものでも同様である。
【0081】
このようにマルチビームにしたときに、4個の発光点を有するLEDアレイを使用するのではなく、2個のLED1a,1bを備えたLEDユニットの段数を増やしてマルチビームの光源とすると、最小単位が1ビームのLEDを組み合わせるだけなので、例えば4ビームのLEDアレイなどのマルチビームを1つのチップで構成したものに比べて製造コストが各段に安くなる。また、ビーム数を設計条件に合わせて設定すればよいので、設計の自由度も大幅に拡大することができる。
【0082】
<第5の実施形態>
図12は本発明の第5の実施形態に係る画像形成装置の要部を示す概略構成図である。第1ないし第4の実施形態に係る光源装置は、例えば電子写真方式の画像形成装置の光走査装置に使用される。
【0083】
図12において、光学ユニットとして構成される光走査装置LSUは、前述の図2及び図3に示す光学ユニットLSNにより構成されている。すなわち、画像データに合わせて点灯するLEDと、LEDから出射された光ビーム(レーザビーム)BMを平行光束化する図示しないカップリングレンズと、副走査方向に平行な線状に焦点を結ぶ図示しないシリンダレンズと、シリンダレンズからの光が入射し、当該光を偏向するポリゴンミラー9と、ポリゴンミラー9を高速で回転駆動するポリゴンモータ9aと、等角速度走査を等速度走査に変換するfθレンズ10,11と、BTLレンズ12と、ミラー105とからなる。このような構成により、LEDから出射された光ビームBMは、図示しないカップリングレンズにより平行光束化され、シリンダレンズを通り、ポリゴンモータ9aによって回転するポリゴンミラー9によって偏向され、fθレンズ10,11及びBTL12を通ってミラー15によって反射され、感光体上106を走査する。BTLとは、Barrel Toroidal Lens(バレル・トロイダル・レンズ)の略で、副走査方向のピント合わせ(集光機能と副走査方向の位置補正(面倒れ補正等))を行っている。
【0084】
感光体106の回りには、帯電器107、現像ユニット108、転写器109、クリーニングユニット110、および除電器111が配置され、これらにより作像手段が構成され、画像形成部として機能する。通常の電子写真プロセスである帯電、露光、現像によって感光体106上にトナーによる顕像が形成され、用紙搬送ベルト112によって搬送されたきた記録紙P上に転写器109によって画像が転写され、図示しない定着装置によって記録紙P上の画像が定着される。
【0085】
このような画像形成装置の光走査装置に、前記第1ないし第4の実施形態に係る光源装置を用い、1つの像担持体(感光体106)に対して複数のビームで像を書き込むようにすると、像担持体上における複数のビームスポットの相対位置の変動が小さく、良好な出力画像が得られる。
【0086】
<第6の実施形態>
図13は本発明の第6の実施形態に係る画像形成装置としての4連タンデム式カラー複写機の機械的構成を示す概略構成図である。
【0087】
図13において4連タンデム式カラー複写機は、4色(マゼンタ、シアン、イエロー、ブラック)の画像を重ね合わせたカラー画像を形成するために4組の画像形成部200BK,200Y,200C,200Mと1つの光走査装置LSUを備えている。各色とも、感光体201BK,201Y,201C,201Mの回りには、帯電器202BK,202Y,202C,202M、現像ユニット203BK,203Y,203C,203M、転写器204BK,204Y,204C,204M、クリーニングユニット205BK,205Y,205C,205M、除電器206BK,206Y,206C,206Mが備わっており、通常の電子写真プロセスである帯電、露光、現像、転写により記録紙P上に画像が形成される。転写ベルトBによって矢印方向に搬送される記録紙P上に1色目の画像を形成し、次に2色目、3色目、4色目の順に画像を転写することにより、図示しない給紙装置から供給された記録紙P上に4色の画像が重ね合わさったカラー画像を形成することができる。そして図示していないが定着装置によって記録紙P上の画像が定着される。
【0088】
本実施形態に係る光走査装置LSUは、1つのポリゴンミラー210を用いて、ポリゴンミラー210面の上方と下方で異なる色のレーザビームLBK,LY,LC,LMを偏向走査させ、さらに、ポリゴンミラー210を中心に対向振分走査させることで、4色分のレーザビームをそれぞれの感光体201BK,201Y,201C,201M上を走査する。各色のレーザビームLBK,LY,LC,LMは、ポリゴンミラー210によって偏向され、fθレンズ212YBK,212CMを通り、第1ミラー213BK,213Y,213C,213M、第2ミラー214BK,214Y,214C,214Mで折り返され、BTL215BK,215Y,215C,215Mを通り、第3ミラー216BK,216Y,216C,216Mで折り返され、それぞれの色に対応した感光体201BK,201Y,201C,201M上を走査する。
【0089】
図14は光走査装置LSUの概略構成を示す平面図であり、図13の光走査装置LSUを上から見た図である。M色用のLDユニット220M及びBK色用のLDユニット220BKからのレーザビームは、シリンダレンズ(以下、CYLと称す)221M,221BKを通り、反射ミラー222BK,222Mによってポリゴンミラー210の下側反射面に入射し、ポリゴンミラー210が回転することによりレーザビーム(光ビーム)LBK,LMを偏向し、fθレンズ212YBK,212CMを通り、第1ミラー213BK,213Mによって折り返される。シアンCのLDユニット220C及びイエローYのLDユニット220YからのレーザビームLC,LYは、CYL221C,221Yを通り、ポリゴンミラー210の上側反射面に入射し、ポリゴンミラー210が回転することによりレーザビームLC,LYを偏向し、fθレンズ212CM,212YBKを通り、第1ミラー213C,213Yによって折り返される。
【0090】
本実施形態では、主走査方向両端には第1のシリンダミラー(以下、CYM1と称す)CMY1_YBK、CMY1_CM、第2のシリンダミラー(以下、CYM2と称す)CMY2_YBK、CYM2_CM、第1のセンサ(以下、S1と称す)S1_YBK、S1_CM、第2のセンサ(以下、S2と称す)S2_YBK、S2_CMが備わっており、fθレンズ112YBK,112CMを通ったレーザビームがCYM1_YBK、CMY1_CM、CYM2_YBK、CYM2_CMによって反射集光されてS1_YBK、S1_CM、S2_YBK、S2_CMに入射するような構成となっている。
【0091】
第1のセンサS1_YBK、S1_CMは、同期検知信号になるレーザビーム走査同期信号の検出を行うための同期検知センサの役割も果たしている。また、LDユニット220YからのレーザビームLYとLDユニット220BKからのレーザビームLBKでは、共通のCYM1_YBK、CYM2_YBK、並びにS1_YBK、S2_YBKを使用している。LDユニット220CとLDユニット220Mについても同様である。同じセンサに2つのレーザビームが入射することになるので、それぞれ検出できるように、それぞれ入射するタイミングが異なるようにしてある。しかし、それぞれのレーザビームに対し、2つずつのセンサを設けるようにしてもかまわない。
【0092】
なお、図からも分かるように、イエローYとブラックBKのレーザビームLY、LBKに対し、シアンCとマゼンタMのレーザビームLC、LMが逆方向に走査している。
【0093】
図13、図14の例では、1つの像担持体当たり1つのビームで像を書き込んでいる。このようなカラー複写機の光走査装置に、例えば図7に示したような光源装置を用い、ビームBMaによってシアンの像担持体に、ビームBMbによってマゼンタの像担持体にそれぞれ像を書き込むようにすれば、環境変動等によるビームBMaとビームBMbとの相対位置の変動が小さいため、結果としてシアン画像とマゼンタ画像との位置ずれが小さい、良好なカラー画像が得られる。
【0094】
【発明の効果】
以上のように、本発明によれば、カップリングレンズの光軸に略平行な2つの支持面を有するカップリングレンズ支持手段と、前記支持面に前記カップリングレンズの側面部分を押圧して前記2面で前記カップリングレンズを保持させる弾性付勢手段とを備え、さらには、カップリングレンズと対となる光源を保持する光源保持手段と、前記光源保持手段を固定する固定手段とを備え、前記固定手段は、前記カップリングレンズの光軸に対して略垂直な方向の光源位置を調整可能に前記光源保持手段を固定するので、光走査装置における複数のビームの相対的な位置の経時変化や環境変動を抑えることができる光源装置、光走査装置及び画像形成装置を安価に提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る光源装置の一例を示す図である。
【図2】本発明に係る光源ユニットが使用されるビーム合成プリズムを使用した光走査装置の一例を示す図である。
【図3】本発明に係る光源ユニットが使用される2つのビームをポリゴンスキャナのミラー上で交差させてビーム合成して走査する光走査装置の一例を示す図である。
【図4】本発明の第2の実施形態に係る光源装置の一例を示す図である。
【図5】本発明の第3の実施形態に係る光源装置を正面側から見た斜視図である。
【図6】本発明の第3の実施形態に係る光源装置を背面側から見た斜視図である。
【図7】図5のII部拡大図である。
【図8】図5のIII−III線断面図である。
【図9】本発明の第4の実施形態に係る光源装置を正面側から見た斜視図である。
【図10】図9のIV−IV線断面図である。
【図11】図9のV−V線断面図である。
【図12】本発明の第5の実施形態に係る画像形成装置の要部を示す概略構成図である。
【図13】本発明の第6の実施形態に係る画像形成装置の要部を示す概略構成図である。
【図14】図13の画像形成装置の光走査装置の概略構成を示す平面図である。
【図15】従来例に係る光源装置のレンズホルダとLEDの支持部材を示す斜視図である。
【図16】図15のI−I線断面図である。
【図17】図16をB方向から見た図である。
【図18】図16をC方向から見た図である。
【図19】コリメータレンズの接着状態を示す図である。
【符号の説明】
1a,1b LED(半導体レーザ)
2a,2b カップリングレンズ
3a,3b レンズホルダ(カップリングレンズ支持部材)
4a,4b,16a,16b 押圧 バネ
5 ビーム合成プリズム
6a,6b,7a,7b 支持面
8 シリンドリカルレンズ
9,102,210 ポリゴンスキャナ(ミラー)
10,11,103 fθレンズ
12,104 トロイダルレンズ
13,106,201BK,201Y,201C,201M 像担持体(感光体)
15 レンズホルダ
20a,20b 光源支持部材
21 ボルト
100,200BK,200Y,200C,200M 画像形成部
La,Lb 光軸
LSN,LSU 光走査装置(光学ユニット)
S 光源部)

Claims (20)

  1. 複数の光源と、各光源に対応してそれぞれ設けられたカップリングレンズとによって光ビームとして出射する光源装置において、
    前記カップリングレンズの光軸に略平行な2つの支持面を有するカップリングレンズ支持手段と、
    前記支持面に前記カップリングレンズの側面部分を押圧して前記2面で前記カップリングレンズを保持させる弾性付勢手段と、
    を備えていることを特徴とする光源装置。
  2. 前記カップリングレンズと対となる光源を保持する光源保持手段と、
    前記光源保持手段を固定する固定手段と、
    を備え、前記固定手段は、前記カップリングレンズの光軸に対して略垂直な方向の光源位置を調整可能に前記光源保持手段を固定することを特徴とする請求項1記載の光源装置。
  3. 前記固定手段は、前記カップリングレンズ支持手段に前記光源保持手段を固定することを特徴とする請求項2記載の光源装置。
  4. 1つのカップリングレンズを支持する当該カップリングレンズの光軸に略平行な2つの支持面を1組の支持部とし、前記カップリングレンズを支持する少なくとも2組の支持部が一体の部材として形成されていることを特徴とする請求項1ないし3のいずれか1項に記載の光源装置。
  5. 1つのカップリングレンズを支持する当該カップリングレンズの光軸に略平行な2つの支持面を1組の支持部とし、前記カップリングレンズを支持する少なくとも2組の支持部の前記カップリングレンズの光軸方向、主走査方向及び副走査方向に対する向きが同一に設定されていることを特徴とする請求項1ないし4のいずれか1項に記載の光源装置。
  6. 1つのカップリングレンズを支持する当該カップリングレンズの光軸に略平行な2つの支持面を1組の支持部とし、前記カップリングレンズを支持する少なくとも2組の支持部の前記カップリングレンズの光軸方向、主走査方向及び副走査方向に対する向きが、光軸方向と副走査方向とに平行な面に対して対称に設定されていることを特徴とする請求項1ないし4のいずれか1項に記載の光源装置。
  7. 前記カップリングレンズと前記支持面の当接個所の少なくとも一方に潤滑手段が設けられていることを特徴とする請求項1、3、4及び5のいずれか1項に記載の光源装置。
  8. 前記支持面の前記カップリングレンズの当接個所に表面硬化処理が施されていることを特徴とする請求項1、3、4及び5のいずれか1項に記載の光源装置。
  9. 前記弾性付勢手段が板状の弾性部材からなり、当該弾性部材は前記カップリングレンズの押圧個所を挟んだ両側で固定されていることを特徴とする請求項1記載の光源装置。
  10. 前記弾性部材は前記押圧個所から略対称な位置で固定されていることを特徴とする請求項9記載の光源装置。
  11. 前記弾性部材の線膨張係数が、前記カップリングレンズ支持手段を構成する構成部材の線膨張率に略等しいことを特徴とする請求項9または10記載の光源装置。
  12. 前記カップリングレンズ支持手段に取り付けられ、前記光源を保持する光源保持手段をさらに備え、
    前記カップリングレンズの線膨張係数をα1[1/K]、
    前記カップリングレンズ支持手段の線膨張係数をα2[1/K]、
    前記光源を半導体レーザから構成し、そのパッケージ部の線膨張係数をα3[1/K]、
    前記光源保持手段の線膨張係数をα4[1/K]としたときに、
    α1≦α3のときは、α1≦α2≦α3 かつ α1≦α4≦α3
    を満足する線膨張係数を有する材料によって前記カップリングレンズ支持手段、前記パッケージ部、及び前記光源保持手段が構成されていることを特徴とする請求項1記載の光源装置。
  13. 前記カップリングレンズ支持手段に取り付けられ、前記光源を保持する光源保持手段をさらに備え、
    前記カップリングレンズの線膨張係数をα1[1/K]、
    前記カップリングレンズ支持手段の線膨張係数をα2[1/K]、
    前記光源を半導体レーザから構成し、そのパッケージ部の線膨張係数をα3[1/K]、
    前記光源保持手段の線膨張係数をα4[1/K]としたときに、
    α3<α1のときは、α3≦α2≦α1 かつ α3≦α4≦α1
    を満足する線膨張係数を有する材料によって前記カップリングレンズ支持手段、前記パッケージ部、及び前記光源保持手段が構成されていることを特徴とする請求項1記載の光源装置。
  14. 請求項1ないし13のいずれか1項に記載の光源装置と、前記光源装置から出射された光ビームを受光し、主走査方向に変更させる偏向手段と、
    前記偏向手段によって偏向された光ビームをスポット光として走査対象物上に結像させて走査する光学手段と、
    を備えていることを特徴とする光走査装置。
  15. 請求項1記載の光源装置と、
    前記カップリングレンズ支持手段に取り付けられ、前記光源を保持する光源保持手段と、
    前記光源装置から出射された光ビームを受光し、主走査方向に変更させる偏向手段と、
    前記偏向手段によって偏向された光ビームをスポット光として走査対象物上に結像させて走査する光学手段と、
    を備え、
    前記カップリングレンズの線膨張係数をα1[1/K]、
    前記カップリングレンズの光軸から前記カップリングレンズが前記支持面と接触する点までの距離をr1、
    前記カップリングレンズ支持手段の線膨張係数をα2[1/K]、
    前記光源を半導体レーザから構成し、そのパッケージ部の線膨張係数をα3[1/K]、
    前記パッケージ部の外周の半径をr3[mm]、
    前記光源保持手段の線膨張係数をα4[1/K]としたとき、
    前記光ビーム照射対象部における位置ずれが、前記光源から照射される光ビームのドットピッチの50%以下になるように前記線膨張係数α1、α2、α3及びα4が選定された材料により前記カップリングレンズ、前記カップリングレンズ支持手段、前記パッケージ部及び前記光源保持手段が構成され、前記距離r1および半径r3が設定されていることを特徴とする光走査装置。
  16. 請求項1記載の光源装置と、
    前記カップリングレンズ支持手段に取り付けられ、前記光源を保持する光源保持手段と、
    前記光源装置から出射された光ビームを受光し、主走査方向に変更させる偏向手段と、
    前記偏向手段によって偏向された光ビームをスポット光として走査対象物上に結像させて走査する光学手段と、
    を備え、
    前記カップリングレンズの線膨張係数をα1[1/K]、
    前記カップリングレンズの光軸から前記カップリングレンズが前記支持面と接触する点までの距離をr1、
    前記カップリングレンズ支持手段の線膨張係数をα2[1/K]、
    前記光源を半導体レーザから構成し、そのパッケージ部の線膨張係数をα3[1/K]、
    前記パッケージ部の外周の半径をr3[mm]、
    前記カップリングレンズ支持手段に取り付けられ、前記光源を保持する光源保持手段の線膨張係数をα4[1/K]としたとき、
    α2=α4
    かつ、
    |α3×r3−α1×r1−α2×(r3−r1)|
    ≦2.5×10−5[mm/K]
    を満足するように前記線膨張係数α1、α2、α3及びα4が選定された材料により前記カップリングレンズ、前記カップリングレンズ支持手段、前記パッケージ部及び前記光源保持手段が構成され、前記距離r1および半径r3が設定されていることを特徴とする光走査装置。
  17. 前記α3×r3−α1×r1−α2×(r3−r1)が常用温度範囲で1μm以下であることを特徴とする請求項16記載の光走査装置。
  18. 前記光源装置を並置し、多数の光ビームによって走査させることを特徴とする請求項14ないし17のいずれか1項に記載の光走査装置。
  19. 請求項14ないし18のいずれか1項に記載の光走査装置と、
    入力された画像データに基づいて前記光走査装置によって画像形成媒体に書き込まれた画像を顕像化する作像手段と、
    を備えていることを特徴とする画像形成装置。
  20. 前記光走査装置と前記画像形成媒体が色毎に設けられていることを特徴とする請求項19記載の画像形成装置。
JP2002273804A 2002-09-19 2002-09-19 光源装置、光走査装置及び画像形成装置 Pending JP2004109663A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002273804A JP2004109663A (ja) 2002-09-19 2002-09-19 光源装置、光走査装置及び画像形成装置
US10/663,759 US7295225B2 (en) 2002-09-19 2003-09-17 Light source and light beam scanning unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002273804A JP2004109663A (ja) 2002-09-19 2002-09-19 光源装置、光走査装置及び画像形成装置

Publications (1)

Publication Number Publication Date
JP2004109663A true JP2004109663A (ja) 2004-04-08

Family

ID=32270473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273804A Pending JP2004109663A (ja) 2002-09-19 2002-09-19 光源装置、光走査装置及び画像形成装置

Country Status (2)

Country Link
US (1) US7295225B2 (ja)
JP (1) JP2004109663A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080832A (ja) * 2008-09-29 2010-04-08 Ricoh Co Ltd 光源装置、光源装置の製造方法、光走査装置及び画像形成装置
JP2011013345A (ja) * 2009-06-30 2011-01-20 Kyocera Mita Corp 画像形成装置における走査光学系

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500738B2 (ja) * 2005-06-20 2010-07-14 株式会社リコー 光走査装置・画像形成装置
JP5196733B2 (ja) * 2006-05-09 2013-05-15 キヤノン株式会社 光学走査装置
JP2008051978A (ja) * 2006-08-23 2008-03-06 Brother Ind Ltd 光源装置およびその製造方法、露光装置ならびに画像形成装置
JP4915177B2 (ja) * 2006-08-23 2012-04-11 ブラザー工業株式会社 光源装置およびその製造方法、露光装置ならびに画像形成装置
JP5223199B2 (ja) * 2007-01-25 2013-06-26 株式会社リコー 光走査装置及び画像形成装置
JP5032158B2 (ja) * 2007-03-07 2012-09-26 株式会社リコー 光走査装置・画像形成装置
JP5038239B2 (ja) * 2008-06-30 2012-10-03 株式会社リコー 光走査装置及び画像形成装置
JP5152268B2 (ja) * 2010-07-27 2013-02-27 ブラザー工業株式会社 マルチビーム光走査装置
JP2013020690A (ja) * 2011-06-13 2013-01-31 Sanyo Electric Co Ltd レンズ、レンズの取付方法および光ピックアップ装置
JP6269955B2 (ja) * 2014-07-25 2018-01-31 京セラドキュメントソリューションズ株式会社 コリメータレンズの筐体への固定方法、光走査装置、及び画像形成装置
CN106797102B (zh) * 2014-10-22 2020-04-21 松下知识产权经营株式会社 激光模块
KR20170133145A (ko) * 2016-05-25 2017-12-05 에스프린팅솔루션 주식회사 광학 주사 장치 및 이를 포함한 화상 형성 장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127050A (ja) * 1991-10-30 1993-05-25 Hitachi Ltd 半導体レーザモジユール
JPH07181410A (ja) 1993-12-24 1995-07-21 Ricoh Co Ltd マルチビーム走査装置
JPH07262588A (ja) * 1994-03-24 1995-10-13 Toshiba Corp 光ヘッドとその光学部品の取付方法
JPH085882A (ja) * 1994-06-22 1996-01-12 Olympus Optical Co Ltd レンズ保持体
JPH087294A (ja) 1994-06-24 1996-01-12 Canon Inc 光源装置
US5870133A (en) * 1995-04-28 1999-02-09 Minolta Co., Ltd. Laser scanning device and light source thereof having temperature correction capability
JPH09186395A (ja) * 1995-12-27 1997-07-15 Nippon Sheet Glass Co Ltd 半導体レーザモジュール及びその製造方法
JPH10284803A (ja) 1997-04-07 1998-10-23 Ricoh Co Ltd 光源装置
JP3695617B2 (ja) * 1997-09-10 2005-09-14 ペンタックス株式会社 レンズ位置調整固定装置
JP4774157B2 (ja) * 2000-04-13 2011-09-14 株式会社リコー マルチビーム光源装置及び光走査装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080832A (ja) * 2008-09-29 2010-04-08 Ricoh Co Ltd 光源装置、光源装置の製造方法、光走査装置及び画像形成装置
JP2011013345A (ja) * 2009-06-30 2011-01-20 Kyocera Mita Corp 画像形成装置における走査光学系

Also Published As

Publication number Publication date
US20040125192A1 (en) 2004-07-01
US7295225B2 (en) 2007-11-13

Similar Documents

Publication Publication Date Title
US7667868B2 (en) Optical scanning device and image forming apparatus
JP5032158B2 (ja) 光走査装置・画像形成装置
US7450274B2 (en) Optical scanning apparatus, image forming apparatus, and beam positioning method
US7351950B2 (en) Optical beam scanning device and image forming apparatus
US7999970B2 (en) Light source device, optical scanning device, and image forming apparatus
JP4027293B2 (ja) 走査光学装置
JPH09189872A (ja) 光走査装置
KR100904053B1 (ko) 광학 부품의 만곡 장치, 광학 장치, 광주사 장치 및 화상형성 장치
JP2004109663A (ja) 光源装置、光走査装置及び画像形成装置
JP4015249B2 (ja) マルチビーム露光装置
US6392773B1 (en) Multi-beam scanning optical system
US6392772B1 (en) Multi-beam scanning optical system
JP2007171626A (ja) 光走査装置・画像形成装置
JP2007304166A (ja) 光学走査装置
JP5364969B2 (ja) 光走査装置
JP2003182153A (ja) 光源装置
JP2001194605A (ja) マルチビーム走査装置・マルチビーム走査方法・光源装置・画像形成装置
JP4404667B2 (ja) 光走査装置
JP2004287077A (ja) 光走査装置
JPH10293261A (ja) 光走査装置
JP2003315711A (ja) 光走査装置および画像形成装置
JP2004301974A (ja) 走査光学装置
JP2007183414A (ja) 光源装置並びにそれを用いた光走査装置、画像形成装置
JP2007052446A (ja) 光走査装置および画像形成装置
JP4075365B2 (ja) 光走査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507