JP2004085491A - 酸素センサ素子 - Google Patents

酸素センサ素子 Download PDF

Info

Publication number
JP2004085491A
JP2004085491A JP2002249805A JP2002249805A JP2004085491A JP 2004085491 A JP2004085491 A JP 2004085491A JP 2002249805 A JP2002249805 A JP 2002249805A JP 2002249805 A JP2002249805 A JP 2002249805A JP 2004085491 A JP2004085491 A JP 2004085491A
Authority
JP
Japan
Prior art keywords
solid electrolyte
oxygen sensor
heater
sensor element
zirconia solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002249805A
Other languages
English (en)
Other versions
JP3898603B2 (ja
Inventor
Masahide Akiyama
秋山 雅英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002249805A priority Critical patent/JP3898603B2/ja
Publication of JP2004085491A publication Critical patent/JP2004085491A/ja
Application granted granted Critical
Publication of JP3898603B2 publication Critical patent/JP3898603B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

【課題】平板形状からなり、耐久性、耐熱性に優れ、且つ長時間運転に対してもセンサ素子が破壊することのない優れた安定性を有する長尺平板状の酸素センサ素子を提供する。
【解決手段】大気導入孔を有する長尺平板状のジルコニア固体電解質基体における前記大気導入孔の内壁面とそれと対向する外表面に一対の電極対を有するセンサ部と、セラミック絶縁層内に発熱体を埋設したヒータ部を具備する酸素センサ素子において、前記ヒータ部の周囲がジルコニア固体電解質層によって覆われ、前記ヒータ部と一体的に形成されているとともに、前記ヒータ部におけるセラミック絶縁層と前記ジルコニア固体電解質層との間に、気孔率が3〜20%の多孔質ジルコニア固体電解質層10を形成する。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明は、酸素センサ素子に関し、特に自動車等の内燃機関における空気と燃料の比率を制御するための酸素センサ素子に関するものである。
【0002】
【従来技術】
現在、自動車等の内燃機関においては、排出ガス中の酸素濃度を検出して、その検出値に基づいて内燃機関に供給する空気および燃料供給量を制御することにより、内燃機関からの有害物質、例えばCO、HC、NOxを低減させる方法が採用されている。
【0003】
この検出素子として、主として酸素イオン導電性を有するジルコニアを主成分とする固体電解質からなり、一端が封止された円筒管の外面および内面にそれぞれ一対の電極層が形成された固体電解質型の酸素センサが用いられている。この酸素センサの代表的なものとしては、図8の概略断面図に示すように、ZrO固体電解質からなり、先端が封止された円筒管41の内面には、センサ部として白金からなり空気などの基準ガスと接触する基準電極42が、また円筒管41の外面には排気ガスなどの被測定ガスと接触される測定電極43が形成されている。
【0004】
このような酸素センサにおいて、一般に、空気と燃料の比率が1付近の制御に用いられている、いわゆる理論空燃比センサ(λセンサ)としては、測定電極43の表面に、保護層としてセラミック多孔質層44が設けられており、所定温度で円筒管41両側に発生する酸素濃度差を検出し、エンジン吸気系の空燃比の制御が行われている。この際、理論空燃比センサは約700℃付近の作動温度までに加熱する必要があり、そのために、円筒管41の内側には、センサ部を作動温度まで加熱するため棒状ヒータ45が挿入されている。
【0005】
しかしながら、近年排気ガス規制の強化傾向が強まり、エンジン始動直後からのCO、HC、NOxの検出が必要になってきた。このような要求に対して、上述のように、棒状ヒータ45を円筒管41内に挿入してなる間接加熱方式の円筒型酸素センサでは、センサ部が活性化温度に達するまでに要する時間(以下、活性化時間という。)が遅いために排気ガス規制に充分対応できないという問題があった。
【0006】
近年、この問題を回避する方法として、図9の概略断面図に示すように、ジルコニア固体電解質からなる平板状の基板46の外面および内面に基準電極48と測定電極47をそれぞれ設けると同時に、アルミナセラミックスからなるセラミック絶縁層49の内部に白金やタングステンのヒータ50を埋設したヒータ一体型の酸素センサ素子が提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、図9に示すような平板状のヒータ一体型酸素センサは、図8の間接加熱方式と異なり、直接加熱方式であるために、ヒータ50によるセンサ部の急速昇温が可能ではあるが、形状が平板形状であり、またジルコニア固体電解質の基板46とアルミナセラミック絶縁層49との熱膨張係数が異なるため、このような急速昇温の繰り返しによって、ジルコニア固体電解質基板46とアルミナセラミック絶縁層49の界面にクラックが発生し、このクラックの進展によって最終的には破壊に至る場合が発生するなどの問題があった。
【0008】
また、かかる問題は、素子の小型化によってジルコニア固体電解質基板46やアルミナセラミック絶縁層49の絶対強度が低下することによって、クラックや破壊の発生が非常に顕著になりつつあり、素子の小型化を阻害する大きな要因となっている。
【0009】
従って、本発明は、平板形状からなり、耐久性、耐熱性に優れ、且つ長時間運転に対してもクラックの発生や破壊することのない優れた安定性を有する平板状の酸素センサ素子を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明者は、上記の問題について検討した結果、大気導入孔を有する長尺平板状のジルコニア固体電解質基体における前記大気導入孔の内壁面とそれと対向する外表面に一対の電極対を有するセンサ部と、セラミック絶縁層内に発熱体を埋設したヒータ部を具備する酸素センサ素子において、前記ヒータ部の周囲がジルコニア固体電解質層によって覆われ、前記センサ部と一体的に形成されているとともに、前記ヒータ部におけるセラミック絶縁層と前記ジルコニア固体電解質層との間に、気孔率が3〜20%の多孔質ジルコニア固体電解質層を形成することによって、セラミック絶縁層と固体電解質の接合力を高め、平板形状のセンサ素子の問題点である急速昇温時の素子の破壊を防止するとともに、耐熱性、耐久性に優れた素子を提供できることを見出した。
【0011】
また、前記多孔質ジルコニア固体電解質層の厚みは、10〜300μmであることが効果的である。また、前記ヒータ部を覆うジルコニア固体電解質層の厚みを20μm以上とすることによって、耐湿性を向上することができる。
【0012】
また、前記センサ部と前記ヒータ部とが同時焼成して形成されてなる場合に好適である。
【0013】
また、本発明の酸素センサ素子は、前記センサ部における一対の電極対のうち、被測定ガスと接触する電極の面積が8〜18mmであり、且つ素子の長手方向に対して直交する方向の幅が、素子先端から少なくとも5mm以上が2.0〜3.5mmと小型化を図る上で好適であり、これによってセンサ部の小型化とともに耐久性を高めることができる。
【0014】
なお、小型化を図る上で、素子の先端付近にセンサ部の一対の電極対が形成され、素子の後端付近に端子を接続するための電極パッドを備えており、前記電極パッド形成部分における長手方向に対して直交する方向の幅が、素子先端の幅よりも大きいことが望ましい。
【0015】
【発明の実施の形態】
以下、本発明の酸素センサ素子の基本構造の例を図面をもとに以下に説明する。
【0016】
図1は、本発明の酸素センサ素子の一例を説明するための概略断面図である。これらは、一般的に理論空撚比センサ素子と呼ばれるものであり、図1の例ではいずれもセンサ部1とヒータ部2を具備するものである。
【0017】
図1の酸素センサ素子においては、ジルコニア固体電解質からなる酸素イオン導電性を有し、内部に先端が封止された大気導入孔3aが形成された基体3と、この基体3における大気導入孔3aの内壁と基体3の対向する両面には、空気に接する基準電極4と、排気ガスと接する測定電極5とが形成されており、酸素濃度を検知する機能を有するセンサ部1を形成している。
【0018】
また、排気ガスによる電極の被毒を防止する観点から、測定電極5表面には電極保護層としてセラミック多孔質層6が形成されていてもよい。
【0019】
一方、ヒータ部2は、セラミック絶縁層7の内部に、白金などからなる発熱体8が埋設されており、図1の酸素センサ素子においては、このヒータ部2はジルコニア固体電解質基体3の一部となるジルコニア固体電解質層9によりその周囲が覆われている。
【0020】
本発明においては、上記のヒータ部の構造において、アルミナセラミック絶縁層7とジルコニア固体電解質層9との界面に、気孔率が3〜20%の多孔質ジルコニア固体電解質層(以下、多孔質層という。)10が形成されていることが大きな特徴である。
【0021】
このような多孔質層10を設けることによって、ジルコニア固体電解質層9とアルミナセラミック絶縁層7との熱膨張係数に起因する熱応力を緩和することができる。多孔質層10の気孔率としては、3〜20%、特に5〜15%が優れる。これは、気孔率が3%よりも小さいと、応力の緩和効果が十分でなく、クラックの発生や破壊が発生しやすくなり、気孔率が20%よりも大きいと、多孔質層自体の強度が低下してしまうためである。この気孔率としては、多孔質層における縦断面に占める気孔の占める面積と定義する。
【0022】
また、多孔質層10の厚みとしては、10〜300μm、特に20〜50μmの範囲が効果的で、気孔の大きさとしては、直径が3〜10μm、特に3〜5μmの範囲が効果的である。
【0023】
多孔質層10の厚みが、10μmより小さくても、あるいは300μmを越えてもアルミナセラミック絶縁層7と固体電解質層9との接合力が低下しやすい。
【0024】
なお、この多孔質層は、ジルコニア粉末組成物に対して、樹脂ビーズなどの気孔形成剤を5〜30体積%の割合で配合したスラリーを塗布したり、スラリーをドクターブレード法等によってシート化して、前記セラミック絶縁層とジルコニア固体電解質層9との間に配設し、焼成することによって形成することができる。気孔率や気孔径は、気孔形成剤の粒径や配合量によって容易に制御することができる。
【0025】
本発明の酸素センサ素子におけるジルコニア固体電解質基体3やジルコニア固体電解質層9、9’並びに、アルミナを含有するジルコニア固体電解質層10中のジルコニア固体電解質は、ZrOを含有するセラミックスからなり、安定化剤として、YおよびYb、Sc、Sm、Nd、Dyの群から選ばれる少なくとも1種を1〜30モル%、好ましくは3〜15モル%含有する部分安定化ZrOあるいは安定化ZrOが用いられる。さらに、焼結性を改善する目的で、上記ZrOに対して、SiOを添加含有させることができるが、多量に含有させると高温におけるクリープ特性が悪くなることから、SiOの添加量は総量で5質量%以下、特に2質量%以下であることが望ましい。
【0026】
さらに、本発明においては、ヒータ部2を覆うジルコニア固体電解質層9の最小厚さSが20μm以上、特に50μm以上、さらには100μm以上とすることが望ましい。これは、ジルコニア固体電解質層9の内部に気孔が存在する場合があり、この気孔を経由して水蒸気が浸入することを防止すると同時に、固体電解質間の接合力を強化する目的で形成される。
【0027】
なお、このジルコニア固体電解質層9は、センサ部1が形成される基板3を構成するジルコニア固体電解質と同じ材質からなることが望ましく、相対密度が90%以上、特に95%以上の緻密体からなることが望ましい。
【0028】
図1の酸素センサ素子においては、ヒータ部2は、センサ部1を有する基板3の下部に内蔵されることによって、ジルコニア固体電解質によって覆われており、センサ部1とともに焼成によって一体化された構造からなるものである。
【0029】
本発明においては、このヒータ部2を形成するセラミック絶縁層7は、a)アルミナを主体とする焼結体、b)少なくともAlとMgとを含む複合酸化物を主体とする焼結体、c)Alと、Yおよび希土類元素の群から選ばれる少なくとも1種との複合酸化物を主体とする焼結体の群から選ばれる少なくとも1種の焼結体によって構成することが望ましい。
【0030】
a)アルミナを主体とする焼結体としては、アルミナを90質量%以上含有し、さらには、焼結性を改善する目的で、前記主成分以外の成分として、Mg、Caなどのアルカリ土類金属の酸化物や、SiOの群から選ばれる少なくとも1種を総和で1〜10質量%含有していることが望ましい。
【0031】
また、b)AlとMgとの複合酸化物を主成分とする焼結体は、AlとMgとの酸化物換算による2成分基準で、Alを酸化物換算で20〜90モル%、Mgを酸化物換算で10〜80モル%の割合で含有することが望ましい。
【0032】
この場合、用いる組成と焼成温度にもよるが、得られるセラミック絶縁層4中の結晶相としては、Al相、MgO・Al(スピネル)相、MgO相のうちの2種または3種の結晶から構成されている。上記の組成範囲のうち、Al量が酸化物換算50〜80モル%、Mg量が酸化物換算で20〜50モル%の範囲が特に好ましい。
【0033】
さらに、c)Alと、Yおよび希土類元素の群から選ばれる少なくとも1種との複合酸化物としては、Yおよび希土類元素量と、Alとの酸化物換算による2成分基準で、Alを酸化物換算で20〜90モル%、Yおよび希土類元素を10〜80モル%の範囲からなることが望ましい。上記の範囲の中で、Al量が50〜80モル%、Yおよび希土類元素の群から選ばれる少なくとも1種を20〜50モル%からなることが望ましい。希土類元素としては、具体的にLa、Yb、Nd、Dy、Sc、Sm、Scが好適に用いられる。
【0034】
また、この時の結晶相としては、Alと、AlとYまたは希土類元素との複合酸化物、Yまたは希土類元素酸化物のうちの2種または3種から構成される。例えば、複合酸化物としては、例えば、AlとYを用いた場合、3Y・5Al、2Y・Al、およびY等の結晶を組み合わせた結晶相からなる。
【0035】
なお、この発熱体8を埋設するセラミック絶縁層7を構成する焼結体は、相対密度が80%以上、特に90%以上、さらには95%以上、開気孔率が5%以下、特に3%以下の緻密質な焼結体によって構成することによって、セラミック絶縁層7を介したヒータ部2の強度を高め、素子全体の強度を高めることができる。
【0036】
また、このセラミック絶縁層7中には、Na、K等のアルカリ金属は、マイグレーションしてヒータ部2の電気絶縁性を悪くするため酸化物換算で総量で50ppm以下に制御することが望ましい
基体3の表面に被着形成される基準電極4、測定電極5は、いずれも白金、あるいは白金と、ロジウム、パラジウム、ルテニウムおよび金の群から選ばれる1種との合金が用いられる。また、センサ動作時の電極中の金属の粒成長を防止する目的と、応答性に係わる白金粒子と固体電解質と気体との、いわゆる3相界面の接点を増大する目的で、上述のセラミック固体電解質成分を1〜50体積%、特に10〜30体積%の割合で上記電極中に混合してもよい。また、電極形状としては、四角形でも楕円形でもよい。また、電極の厚さは、3〜20μm、特に5〜10μmが好ましい。
【0037】
ヒータ部2におけるアルミナセラミック絶縁層7内に埋設されたヒータ8およびリード8a1、8a2は、金属として白金単味、あるいは白金とロジウム、パラジウム、ルテニウムの群から選ばれる1種との合金、またはW単体、あるいはWとMo、Reの群から選ばれる1種の合金を用いることができる。
【0038】
ヒータとして白金ヒータを用いる場合は、焼成中の白金の粒成長を防止する観点からアルミナの他に、セラミック絶縁層を形成する同じセラミック粉末を全量に対して、10〜40体積%、特に20〜30体積%添加することが好ましい。この場合、ヒータ8とリード8a1,8a2の抵抗比率は、いずれの場合も室温において、9:1〜7:3の範囲に制御することが好ましい。
【0039】
また、測定電極5の表面に形成されるセラミック多孔質層6は、厚さ10〜800μm、特に100〜500μmで、気孔率が10〜50%のジルコニア、アルミナ、γ−アルミナおよびスピネルの群から選ばれる少なくとも1種によって形成されていることが望ましい。
【0040】
また、本発明の酸素センサ素子は、小型の酸素センサ素子に最も好適に用いられる。具体的には、素子の小型化とともに優れたガス応答性を図る上で、測定電極5の電極面積が8〜18mmであり、素子の先端から5mm以上、特に10mm以上の部分における長手方向に対して直交する方向の幅が、2.0〜3.5mmであることが望ましい。本発明によれば、測定電極5の面積および先端部の幅を上記の範囲に制御することによって、ヒータによる測定電極5の急速昇温性を高め、センサによるガス応答性を改善することができる。
【0041】
また、本発明の酸素センサ素子は、素子の先端付近にセンサ部1の一対の電極対5が形成され、素子の後端付近に端子を接続するための電極パッド11を備えているが、電極面積および幅を上記の範囲に設定する上で、前記素子後端の長手方向に対して直交する方向の幅L1が、素子先端の幅L2よりも大きいことが、あるいは、前記センサ素子の幅が、素子先端から後端に向かって連続的、または不連続的に大きくなっていることが望ましい。特に、電極パッド11が形成される後端部における最大幅は、3.7〜5mm、特に4.0〜4.5mmであることが適当である。
【0042】
この場合の、酸素センサ素子の具体的な構造としては、具体的には、図2(a)に示すように、素子の先端部から後端部にわたって連続して幅が大きくなるように、言い換えれば幅が広くなるようなもの、図2(b)に示すように、先端部から後端部の間で段差部vを境に素子の幅が広くなるようなもの、図2(c)に示すように、先端部から後端部の間でテーパ部pを設け、部分的に連続して幅が広くなるもの等が挙げられる。
【0043】
このように、電極パッド11が設けられる部分の幅を広くし、電極パッド11を形成している部分の幅L1を素子先端部の幅L2よりも大きくすることによって、センサ部の小型化とともに、電極パッド11にコネクタや金属ピンなどを容易に且つ強固に取り付けることができる。
【0044】
また、ヒータ部2における発熱体8の配置としては、通常、断面における一対の発熱体は、同一平面内に形成してもよいが、同一平面の場合には、小型化に伴い、ヒータパターンの形状が非常に制約されることから、図1に示すように、ヒータ部2の長手方向に対して直交する方向の断面における一対の発熱体8がセラミック絶縁層7aを介して形成すると、ヒータ部の小型化を図ることができる。
【0045】
より具体的には、図3の発熱体パターンの構造を説明する概略透過図に示すように、長尺状のセラミック絶縁層7内において、一端側からリード8a1が長手方向に伸び、セラミック絶縁層7の他端部付近のセンサ部1の電極形成部と対向する部分に発熱部8b1が形成され、素子の他端部で折り返された後、発熱部8b2を経由してリード8a2に接続されている。本発明においては、少なくとも発熱部8b1と8b2とがセラミック絶縁層7aを介して上下に形成されており、この発熱部8b1、8b2は、他端部においてセラミック絶縁層7aを貫通するビア8cなどの接続体によって電気的に接続されている。
【0046】
図3の発熱体パターンは、ミアンダ構造(波形)のパターンから構成され、発熱体の幅をxとした場合、図3のミアンダ構造では、発熱体8の幅xは、その波形の最大振幅に相当する。この発熱部8b1、8b2がそれぞれ所定の幅xを有する場合、一般に、これらを同一平面内に形成すると、素子全体の幅wは、発熱部8b1、8b2を絶縁層7内に埋設するためのしろ部分や発熱体8b1、8b2間のショートを防止するために、素子全体の幅wは、w≧3x程度は必要となる。
【0047】
これに対して、発熱部8b1、8b2をそれぞれ異なる層間に形成すると、平面的にみて、発熱部8b1、8b2が重なっていてもセラミック絶縁層7aによって絶縁性が保たれているために、素子全体の幅wは、3xよりも小さくできる。特に小型化を図る上で、w≦2.5x、さらにはw≦2xを満足することが望ましい。
【0048】
なお、上下の発熱部8a1、8b2間のセラミック絶縁層7aの厚みとしては、電気絶縁性の観点から1〜300μm、特に5〜100μm、さらには、5〜50μmが好ましい。
【0049】
なお、図3の例では、発熱体8は、素子の長手方向に直交する方向で折り返しを有するミアンダ(波形)形パターンからなるものであったが、この発熱体パターンは、これに限定されるものではなく、例えば、図4の発熱体のパターン図に示すように、素子の長手方向で折り返しを有するミアンダ形パターンであってもよい。
【0050】
さらに、本発明によれば、上記図2(c)の酸素センサ素子を用いて、例えば、図5に示すように、酸素センサ素子をホルダーに取り付ける場合の取り付け治具12をテーパ部pの部分に取り付けることができる。
【0051】
また、本発明の酸素センサ素子は、素子強度の観点から、素子全体の厚さとしては、0.8〜3mm、特に1〜2mm、素子の長さとしては45〜55mm、特に45〜50mmが急速昇温性と素子のエンジン中への取付け具合との関係から好ましい。
【0052】
また、本発明の酸素センサ素子は、図6のようなワイドレンジセンサ素子に対しても適用される。図6は、その代表的な構造を説明するための概略断面図である。この図6の酸素センサ素子によれば、基体3の対向する面に基準電極4、測定電極5の電極対が形成され、測定電極5の上側には基板13によって空間部14が形成されており、この基板13には排気ガスを取り込むための0.1〜0.5mmの大きさの拡散孔15が開けられている。
【0053】
かかる酸素センサにおいては、基体3を挟む一対の電極対4、5によってポンピングセルが形成されており、排気ガス中の酸素濃度に対応して電極対間に流れる電流を制御して排気ガス中の空燃比を制御する。
【0054】
なお、上記空間部14内には素子の強度を持たせるため多孔質のセラミックスを充填することもできる。また、上記の拡散孔15は、素子上面の他、側面や先端に形成することもできる。さらには、拡散孔15は空間内に一定の排気ガスを取り込むための孔として作用する。そのため、拡散孔15は、多数個の孔で形成してもよいし、またセラミック多孔質層で形成してもよい。
【0055】
また、基体3の下面に形成された基準電極4は、大気導入孔3aの内壁に形成されている。大気導入孔3aの直下には、さらにWあるいはPtからなる発熱体8を埋設したアルミナセラミック絶縁層7がジルコニア固体電解質層9によって覆われている。この発熱体8を加熱することにより、基体3と電極対4、5を加熱する仕組みとなっている。本発明の酸素センサにおいては、他の例として、上記の基板11の両面にポンピング電極を形成することもできる。
【0056】
かかる酸素センサ素子においても、アルミナセラミック絶縁層7とジルコニア固体電解質層9との間に、アルミナを5〜10質量%含有するジルコニア固体電解質層10を形成する。
【0057】
次に、本発明の酸素センサ素子の製造方法を、図1の酸素センサ素子の製造方法を例にして、発熱体としてPtを、またセラミック絶縁層として、アルミナを用いた場合について、図7の分解斜視図をもとに説明する。
【0058】
まず、固体電解質のグリーンシート21を作製する。このグリーンシート21は、例えば、ジルコニアの酸素イオン導電性を有するセラミック固体電解質粉末に対して、適宜、成形用有機バインダーを添加してドクターブレード法や、押出成形や、静水圧成形(ラバープレス)あるいはプレス形成などの周知の方法により作製される。
【0059】
次に、上記のグリーンシート21の両面に、それぞれ測定電極5および基準電極4となるパターン22やリードパターン23やスルーホール(図示せず)などを例えば、白金を含有する導電性ペーストを用いてスラリーデッィプ法、あるいはスクリーン印刷、パット印刷、ロール転写で印刷形成した後、大気導入孔24を形成したグリーンシート25およびグリーンシート26をアクリル樹脂や有機溶媒などの接着剤を介在させるか、あるいはローラ等で圧力を加えながら機械的に接着することによりセンサ部用の積層体Aを作製する
さらに、この時に使用する白金を含有する導電性ペーストとしては、ジルコニアを1〜50体積%、特に10〜30体積%の割合で包含する白金粒子に、エチルセルロース等の有機樹脂成分を含有するものを用いることによって、電極の感度を高めることできる。なお、この時に測定電極5となるパターンの表面には、セラミック多孔質層6を形成するための多孔質スラリーを印刷塗布形成してもよい。
【0060】
次に、図7に示すようにジルコニアグリーンシート27表面に、グリーンシート21を形成するジルコニア粉末組成物に、平均粒径が5〜50μmの樹脂ビーズや炭素粉末などの気孔形成剤を5〜30体積%添加混合したペーストを用いて、スラリーデッィプ法、あるいはスクリーン印刷、パット印刷、ロール転写で印刷して多孔質層28aを形成する。次にAl粉末に有機樹脂および溶剤を加え混合した絶縁性ペーストをスラリーデッィプ法、あるいはスクリーン印刷、パット印刷、ロール転写で印刷し、セラミック絶縁層29aを形成する。
【0061】
次に、図2のように、セラミック絶縁層29aの表面に、ヒータパターン30およびリードパターン31を印刷塗布する。そして、上記絶縁性ペーストを塗布してセラミック絶縁層29bを形成する。その後、再度、前記多孔質層形成用のペーストを用いて多孔質ジルコニア固体電解質層28bを形成する。
【0062】
その後、上記多孔質ジルコニア固体電解質層28a,28bを固体電解質で被覆するために、ジルコニア粉末からなるペーストを用いて、多孔質ジルコニア固体電解質層28a,28bの周囲に、セラミック絶縁層28a,28bとほぼ同じ高さにジルコニア固体電解質層32を印刷形成する。そして、再度、ジルコニアグリーンシート33を積層して、ヒータ部2の積層体Bを作製する。
【0063】
上記のヒータ部2の積層体を作製するにあたり、セラミック絶縁層28a、28b,29a,29bは、上記のように絶縁性ペーストの印刷塗布によって形成する他に、セラミックのスラリーを用いてドクターブレード法などのシート成形方法によってシート化して積層することもできる。
【0064】
また、図2の酸素センサ素子のように、白金ヒータを異なる面に形成する場合には、上側のヒータパターンおよびリードパターンと、上側のヒータパターンおよびリードパターンとを分離し、下側のヒータパターンおよびリードパターンを形成後に、セラミック絶縁層を塗布形成した後、上側のヒータパターンおよびリードパターンを形成すればよい。なお、下側のヒータパターンと上側ヒータパターンとは、介在するセラミック絶縁層に貫通孔を形成し、上側ヒータパターン形成時にこの貫通孔内に導電性ペーストを充填すればよい。または、介在するセラミック絶縁層の先端部を切り欠き、その切り欠き部に導電性ペーストを塗布して接続し、一本に繋がった白金ヒータを形成する。
【0065】
また、本発明においては、気孔形成剤を含有する固体電解質のグリーンシートをセラミック絶縁体表面に積層して形成することができる。
【0066】
この後、センサ部1の積層体Aとヒータ部2の積層体Bをアクリル樹脂や有機溶媒などの接着剤を介在させるか、あるいはローラ等で圧力を加えながら両者を機械的に接着することにより接着一体化した後、これらを焼成する。焼成は、大気中または不活性ガス雰囲気中、1300℃〜1700℃の温度範囲で1〜10時間焼成する。なお、焼成時には、焼成時のセンサ部Aの反りを抑制するため、錘として平滑なアルミナ等の基板を積層体の上に置くことにより反り量を低減することができる。
【0067】
その後、必要に応じて、焼成後の測定電極の表面に、プラズマ溶射法等により,アルミナ、ジルコニア、スピネルの群から選ばれる少なくとも1種のセラミックスを形成することによってヒータ部が一体化された酸素センサ素子を形成することができる。
【0068】
なお、上記の方法では、ヒータ部1はセンサ部2と同時焼成して形成した場合について説明したが、センサ部1とヒータ部2とはそれぞれ別体で焼成した後、ガラスなどの適当な無機接合材によって接合することによって一体化することも可能である。
【0069】
ヒータをWで形成する場合、積層体の作製方法は、上述の白金ヒータを用いた場合とどうようであるが、焼成は、還元雰囲気または不活性ガス雰囲気中、1300℃〜1700℃の温度範囲で1〜10時間焼成する必用がある。
【0070】
【実施例】
図1に示す理論空燃比センサ素子を、図7に従い以下のようにして作製した。
【0071】
まず、アルミナとシリカをそれぞれ0.1重量%含む5モル%Y含有のジルコニア粉末にポリビニルアルコール溶液を添加してスラリーを作製し、押出成形により焼結後の厚さが0.4mmになるようなジルコニアグリーンシート21を作製した。
【0072】
その後、ジルコニアグリーンシート21の両面に、平均粒子径が0.1μmで8モル%のイットリアからなるジルコニアを30体積%結晶内に含有する白金粉末を含有する導電性ペーストをスクリーン印刷して、測定電極と基準電極のパターン22、リードパターン23を印刷形成した後、大気導入孔24を形成したジルコニアグリーンシート25、およびジルコニアグリーンシート26をアクリル樹脂の接着剤により積層しセンサ部用積層体Aを得た。
【0073】
次に、上記ジルコニアグリーンシート27表面に、気孔形成剤(フロービーズ;平均粒子径約4μm)を5〜40体積%含有する5モル%Y含有のジルコニア粉末のスラリーを焼成後5〜400μmとなるように形成して多孔質ジルコニア層28aを形成した後、アルミナ粉末からなる絶縁性ペーストを作製して、厚みが焼成後20μmとなるようスクリーン印刷してセラミック絶縁層29aを形成した。そして、その表面にアルミナを10体積%含有する白金粉末のペーストを用いてヒータパターン30およびリードパターン31をスクリーン印刷した。
【0074】
さらに、このヒータパターン30、リードパターン31の表面に、上記アルミナ絶縁性ペーストを焼成後20μmになるようにスクリーン印刷してセラミック絶縁層29bを形成し、再度、上記気孔形成剤を含むジルコニアのスラリーを焼成後5〜400μmとなるように積層形成して多孔質ジルコニア層28bを形成した。
【0075】
そして、この積層体の周囲に、5モル%Y含有のジルコニア粉末からなるペーストを用い、スクリーン印刷により積層体と同じ高さとなるように塗布してジルコニア固体電解質層32を形成した。そして、さらにジルコニアシート33を積層して、セラミック絶縁層29a、29b間にヒータパターン30を埋設したヒータ部用積層体を作製した。
【0076】
その後、センサ部積層体とヒータ部積層体とを積層し、1500℃で1時間焼成して、ヒータを一体化したセンサ素子を作製した。
【0077】
なお、作製した酸素センサ素子は、図2(c)にもとづき、すべて測定電極の面積を12mm、素子の長さ50mm、素子の先端部から20mmまでの部分の幅を3mmとし、電極パッド形成部分の幅を4.5mmとしその長さを10mmとした。なお、素子の厚みは1.5mmとした。
【0078】
上記の方法により多孔質体の気孔率およびその厚みの異なるセンサ素子をそれぞれ20個ずつ作製し、室温から約20秒で1000℃まで昇温した後、ファンで強制的に室温まで急冷するという温度サイクルを1サイクルとして、これを20万回程度行った後の破損率を求めた。この際、セラミック絶縁層に接する多孔質の固体電解質層の鏡面研磨した面を、2000倍の走査型電子顕微鏡写真を10点測定して、断面積に占め気孔の面積比率を測定しその平均値を気孔率とした。また、多孔質の固体電解質層の厚みも同様に走査型電子顕微鏡写真により測定した。
【0079】
結果を表1に示す。表には、比較のため多孔質の固体電解質層を形成しないヒータを一体化したセンサ素子(試料No.1)についても示した。
【0080】
【表1】
Figure 2004085491
【0081】
表1より、本発明のセラミック絶縁層の周囲に多孔質の固体電解質層を配置した試料No.2〜試料No.17は素子の破損率が低いことがわかる。その中で,気孔率が3〜19%の試料および多孔質の固体電解質層の厚みが10〜300μmの試料については特に破損率が低かった。
【0082】
【発明の効果】
以上詳述した通り、本発明によれば、ヒータ部におけるジルコニア固体電解質層と前記セラミック絶縁層の間に、多孔質のジルコニア固体電解質層を形成することによって、長時間運転に対してもクラックの発生や破壊することのない優れた安定性を有する平板状の酸素センサ素子を提供することができる。
【図面の簡単な説明】
【図1】本発明の酸素センサ素子の一例を説明するための概略断面図である。
【図2】本発明における酸素センサ素子の概略平面図である。
【図3】図2の酸素センサ素子の発熱体パターンの構造を説明するための概略斜視図である。
【図4】図2の酸素センサ素子の発熱体パターンの他の構造を説明するための概略斜視図である。
【図5】図3(c)の酸素センサ素子の応用例を説明するための概略斜視図である。
【図6】本発明の酸素センサ素子のさらに他の例を説明するために概略断面図である。
【図7】図1の酸素センサ素子の製造方法を説明するための分解斜視図である。
【図8】従来のヒータ一体型酸素センサ素子の構造を説明するための概略断面図である。
【図9】従来の他のヒータ一体型酸素センサ素子の構造を説明するための概略断面図である。
【符号の説明】
1 センサ部
2 ヒータ部
3 基板
4 基準電極
5 測定電極
6 セラミック多孔質層
7 セラミック絶縁層
8 発熱体
9 ジルコニア固体電解質層
10 多孔質ジルコニア固体電解質層

Claims (6)

  1. 大気導入孔を有する長尺平板状のジルコニア固体電解質基体における前記大気導入孔の内壁面とそれと対向する外表面に一対の電極対を有するセンサ部と、セラミック絶縁層内に発熱体を埋設したヒータ部を具備する酸素センサ素子において、前記ヒータ部の周囲がジルコニア固体電解質層によって覆われ、前記センサ部と一体的に形成されているとともに、前記ヒータ部におけるセラミック絶縁層と前記ジルコニア固体電解質層との間に、気孔率が3〜20%の多孔質ジルコニア固体電解質層を形成したことを特徴とする酸素センサ素子。
  2. 前記多孔質ジルコニア固体電解質層の厚みが10〜300μmであること特徴とする請求項1記載の酸素センサ素子。
  3. 前記ヒータ部を覆うジルコニア固体電解質層の厚みが20μm以上であることを特徴とする請求項1または請求項2記載の酸素センサ素子。
  4. 前記センサ部と前記ヒータ部とが同時焼成して形成されてなることを特徴とする請求項1乃至請求項3記載のいずれか記載の酸素センサ素子。
  5. 前記センサ部における一対の電極対のうち、被測定ガスと接触する電極の面積が8〜18mmであり、且つ素子の長手方向に対して直交する方向の幅が、素子先端から少なくとも5mm以上が2.0〜3.5mmであることを特徴とする請求項1乃至請求項4のいずれか記載の酸素センサ素子。
  6. 素子の先端付近にセンサ部の一対の電極対が形成され、素子の後端付近に端子を接続するための電極パッドを備えており、前記電極パッド形成部分における長手方向に対して直交する方向の幅が、素子先端の幅よりも大きいことを特徴とする請求項1乃至請求項5のいずれか記載の酸素センサ素子。
JP2002249805A 2002-08-28 2002-08-28 酸素センサ素子 Expired - Fee Related JP3898603B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002249805A JP3898603B2 (ja) 2002-08-28 2002-08-28 酸素センサ素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249805A JP3898603B2 (ja) 2002-08-28 2002-08-28 酸素センサ素子

Publications (2)

Publication Number Publication Date
JP2004085491A true JP2004085491A (ja) 2004-03-18
JP3898603B2 JP3898603B2 (ja) 2007-03-28

Family

ID=32056791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249805A Expired - Fee Related JP3898603B2 (ja) 2002-08-28 2002-08-28 酸素センサ素子

Country Status (1)

Country Link
JP (1) JP3898603B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040838A (ja) * 2005-08-03 2007-02-15 Denso Corp ガスセンサ素子の製造方法及びガスセンサ素子
JP2010019736A (ja) * 2008-07-11 2010-01-28 Ngk Spark Plug Co Ltd ガスセンサ素子及びガスセンサ

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131158A (ja) * 1982-12-24 1984-07-27 Ngk Insulators Ltd 電気化学的セルおよび装置
JPH01227955A (ja) * 1988-03-09 1989-09-12 Hitachi Ltd 空燃比検出器
JPH01305350A (ja) * 1988-06-02 1989-12-08 Ngk Spark Plug Co Ltd 酸素センサ
JPH0432759A (ja) * 1990-05-30 1992-02-04 Kyocera Corp 酸素センサ
JPH0496056U (ja) * 1991-12-25 1992-08-20
JPH09196884A (ja) * 1996-01-17 1997-07-31 Toyota Motor Corp 加熱式積層型酸素センサ
JPH10160704A (ja) * 1996-11-29 1998-06-19 Ngk Spark Plug Co Ltd 酸素センサ及び空燃比検出方法
JPH11248671A (ja) * 1998-02-26 1999-09-17 Ngk Spark Plug Co Ltd ガスセンサ
JP2000206080A (ja) * 1999-01-20 2000-07-28 Ngk Spark Plug Co Ltd ヒ―タ付き酸素センサ及びその製造方法
JP2001124723A (ja) * 1999-10-26 2001-05-11 Ngk Spark Plug Co Ltd ヒータ付き酸素センサ及びその製造方法
JP2001296269A (ja) * 2000-04-17 2001-10-26 Ngk Spark Plug Co Ltd セラミック素子と電極の組立体
JP2002005875A (ja) * 2000-06-19 2002-01-09 Denso Corp 積層型ガスセンサ素子及びその製造方法
JP2002071628A (ja) * 2000-06-16 2002-03-12 Ngk Spark Plug Co Ltd 積層型ガスセンサ素子及びその製造方法並びにこれを備えるガスセンサ
JP2002296222A (ja) * 2001-03-23 2002-10-09 Robert Bosch Gmbh センサ素子
JP2004003963A (ja) * 2002-04-03 2004-01-08 Denso Corp ガスセンサ

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131158A (ja) * 1982-12-24 1984-07-27 Ngk Insulators Ltd 電気化学的セルおよび装置
JPH01227955A (ja) * 1988-03-09 1989-09-12 Hitachi Ltd 空燃比検出器
JPH01305350A (ja) * 1988-06-02 1989-12-08 Ngk Spark Plug Co Ltd 酸素センサ
JPH0432759A (ja) * 1990-05-30 1992-02-04 Kyocera Corp 酸素センサ
JPH0496056U (ja) * 1991-12-25 1992-08-20
JPH09196884A (ja) * 1996-01-17 1997-07-31 Toyota Motor Corp 加熱式積層型酸素センサ
JPH10160704A (ja) * 1996-11-29 1998-06-19 Ngk Spark Plug Co Ltd 酸素センサ及び空燃比検出方法
JPH11248671A (ja) * 1998-02-26 1999-09-17 Ngk Spark Plug Co Ltd ガスセンサ
JP2000206080A (ja) * 1999-01-20 2000-07-28 Ngk Spark Plug Co Ltd ヒ―タ付き酸素センサ及びその製造方法
JP2001124723A (ja) * 1999-10-26 2001-05-11 Ngk Spark Plug Co Ltd ヒータ付き酸素センサ及びその製造方法
JP2001296269A (ja) * 2000-04-17 2001-10-26 Ngk Spark Plug Co Ltd セラミック素子と電極の組立体
JP2002071628A (ja) * 2000-06-16 2002-03-12 Ngk Spark Plug Co Ltd 積層型ガスセンサ素子及びその製造方法並びにこれを備えるガスセンサ
JP2002005875A (ja) * 2000-06-19 2002-01-09 Denso Corp 積層型ガスセンサ素子及びその製造方法
JP2002296222A (ja) * 2001-03-23 2002-10-09 Robert Bosch Gmbh センサ素子
JP2004003963A (ja) * 2002-04-03 2004-01-08 Denso Corp ガスセンサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040838A (ja) * 2005-08-03 2007-02-15 Denso Corp ガスセンサ素子の製造方法及びガスセンサ素子
JP4715375B2 (ja) * 2005-08-03 2011-07-06 株式会社デンソー ガスセンサ素子の製造方法及びガスセンサ素子
JP2010019736A (ja) * 2008-07-11 2010-01-28 Ngk Spark Plug Co Ltd ガスセンサ素子及びガスセンサ

Also Published As

Publication number Publication date
JP3898603B2 (ja) 2007-03-28

Similar Documents

Publication Publication Date Title
JP2004325196A (ja) 酸素センサ素子
JP3572241B2 (ja) 空燃比センサ素子
JP3866135B2 (ja) 積層型ガスセンサ素子及びその製造方法並びにガスセンサ
JP2003279528A (ja) 酸素センサ素子
JP4025561B2 (ja) 酸素センサ素子
JP3860768B2 (ja) 酸素センサ素子
JP4084593B2 (ja) 酸素センサ素子
JP2004085493A (ja) 酸素センサ素子
JP3898603B2 (ja) 酸素センサ素子
JP3814549B2 (ja) 酸素センサ素子
JP3677480B2 (ja) 酸素センサ素子
JP2001041922A (ja) ヒータ一体型酸素センサ素子
JP3935754B2 (ja) 酸素センサ素子
JP2003344350A (ja) 酸素センサ素子
JP4113479B2 (ja) 酸素センサ素子
JP2005005057A (ja) セラミックヒータ、並びにセラミックヒータ構造体
JP4698041B2 (ja) 空燃比センサ素子
JP4689859B2 (ja) ヒータ一体型酸素センサ素子
JP2005049115A (ja) 酸素センサ
JP2004226310A (ja) 酸素センサ
JP3673501B2 (ja) 酸素センサ素子
JP3929855B2 (ja) 酸素センサ素子
JP4189242B2 (ja) 酸素センサ素子
JP2004085494A (ja) 酸素センサ素子
JP2004296142A (ja) セラミックヒータおよびそれを用いた検出素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees