JP3929855B2 - 酸素センサ素子 - Google Patents

酸素センサ素子 Download PDF

Info

Publication number
JP3929855B2
JP3929855B2 JP2002249806A JP2002249806A JP3929855B2 JP 3929855 B2 JP3929855 B2 JP 3929855B2 JP 2002249806 A JP2002249806 A JP 2002249806A JP 2002249806 A JP2002249806 A JP 2002249806A JP 3929855 B2 JP3929855 B2 JP 3929855B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
heater
zirconia solid
alumina
oxygen sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002249806A
Other languages
English (en)
Other versions
JP2004085492A (ja
Inventor
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002249806A priority Critical patent/JP3929855B2/ja
Publication of JP2004085492A publication Critical patent/JP2004085492A/ja
Application granted granted Critical
Publication of JP3929855B2 publication Critical patent/JP3929855B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸素センサ素子に関し、特に自動車等の内燃機関における空気と燃料の比率を制御するための酸素センサ素子に関するものである。
【0002】
【従来技術】
現在、自動車等の内燃機関においては、排出ガス中の酸素濃度を検出して、その検出値に基づいて内燃機関に供給する空気および燃料供給量を制御することにより、内燃機関からの有害物質、例えばCO、HC、NOxを低減させる方法が採用されている。
【0003】
この検出素子として、主として酸素イオン導電性を有するジルコニアを主成分とする固体電解質からなり、一端が封止された円筒管の外面および内面にそれぞれ一対の電極層が形成された固体電解質型の酸素センサが用いられている。この酸素センサの代表的なものとしては、図9の概略断面図に示すように、ZrO2固体電解質からなり、先端が封止された円筒管41の内面には、センサ部として白金からなり空気などの基準ガスと接触する基準電極42が、また円筒管41の外面には排気ガスなどの被測定ガスと接触される測定電極43が形成されている。
【0004】
このような酸素センサにおいて、一般に、空気と燃料の比率が1付近の制御に用いられている、いわゆる理論空燃比センサ(λセンサ)としては、測定電極43の表面に、保護層としてセラミック多孔質層44が設けられており、所定温度で円筒管41両側に発生する酸素濃度差を検出し、エンジン吸気系の空燃比の制御が行われている。この際、理論空燃比センサは約700℃付近の作動温度までに加熱する必要があり、そのために、円筒管41の内側には、センサ部を作動温度まで加熱するため棒状ヒータ45が挿入されている。
【0005】
しかしながら、近年排気ガス規制の強化傾向が強まり、エンジン始動直後からのCO、HC、NOxの検出が必要になってきた。このような要求に対して、上述のように、棒状ヒータ45を円筒管41内に挿入してなる間接加熱方式の円筒型酸素センサでは、センサ部が活性化温度に達するまでに要する時間(以下、活性化時間という。)が遅いために排気ガス規制に充分対応できないという問題があった。
【0006】
近年、この問題を回避する方法として、図10の概略断面図に示すように、ジルコニア固体電解質からなる平板状の基板46の外面および内面に基準電極48と測定電極47をそれぞれ設けると同時に、アルミナセラミックスからなるセラミック絶縁層49の内部に白金やタングステンのヒータ40を埋設したヒータ一体型の酸素センサ素子が提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、図10に示すような平板状のヒータ一体型酸素センサは、図9の間接加熱方式と異なり、直接加熱方式であるために、ヒータによるセンサ部の急速昇温が可能ではあるが、形状が平板形状であり、またジルコニア固体電解質とアルミナセラミック絶縁体との熱膨張係数が異なるため、このような急速昇温の繰り返しによって、ジルコニア固体電解質とアルミナセラミック絶縁層の界面にクラックが発生し、このクラックの進展によって最終的には破壊に至る場合が発生するなどの問題があった。
【0008】
また、かかる問題は、素子の小型化によってジルコニア固体電解質層やアルミナセラミック絶縁層の絶対強度が低下することによって、クラックや破壊の発生が非常に顕著になりつつあり、素子の小型化を阻害する大きな要因となっている。
【0009】
従って、本発明は、平板形状からなり、耐久性、耐熱性に優れ、且つ長時間運転に対してもクラックの発生や破壊することのない優れた安定性を有する平板状の酸素センサ素子を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明者は、上記の問題について検討した結果、大気導入孔を有する長尺平板状のジルコニア固体電解質基体と、前記大気導入孔の内壁面とそれと対向する外表面に一対の電極対を有するセンサ部と、セラミック絶縁層と、該セラミック絶縁層内に埋設された発熱体とからなり、前記センサ部よりも前記ジルコニア固体電解質基体の底面側に位置するヒータ部を具備する酸素センサ素子であって、前記ヒータ部の上面側及び底面側には、5〜30質量%のアルミナを含有するジルコニア固体電解質層形成されているとともに、前記ヒータ部の上面側に形成されたアルミナを含有するジルコニア固体電解質層の上面に位置する前記ジルコニア固体電解質基体と、前記ヒータ部の底面側に形成されたアルミナを含有するジルコニア固体電解質層の下面に位置する前記ジルコニア固体電解質基体の組成が同じであることによって、セラミック絶縁層と固体電解質の接合力を高め、平板形状のセンサ素子の問題点である急速昇温時の素子の破壊を防止するとともに、耐熱性、耐久性に優れた素子を提供できることを見出した。
【0011】
また、前記ヒータ部における発熱体は、前記ヒータ部の長手方向に対して直交する方向の断面において、上下方向にそれぞれ高さが異なる第1発熱部と第2発熱部を備え、前記第1発熱部と第2発熱部は、前記ヒータ部内で接続されていることが効果的である。
【0015】
【発明の実施の形態】
以下、本発明の酸素センサ素子の基本構造の例を図面をもとに以下に説明する。
【0016】
図1は、本発明の酸素センサ素子の一例を説明するための概略断面図、図2に他の例を説明するための概略断面図である。これらは、一般的に理論空撚比センサ素子と呼ばれるものであり、図1、図2の例ではいずれもセンサ部1とヒータ部2を具備するものである。
【0017】
図1の酸素センサ素子においては、ジルコニア固体電解質からなる酸素イオン導電性を有し、内部に先端が封止された大気導入孔3aが形成された基板3と、この基板3における大気導入孔3aの内壁と基板3の対向する両面には、空気に接する基準電極4と、排気ガスと接する測定電極5とが形成されており、酸素濃度を検知する機能を有するセンサ部1を形成している。
【0018】
また、排気ガスによる電極の被毒を防止する観点から、測定電極5表面には電極保護層としてセラミック多孔質層6が形成されていてもよい。
【0019】
一方、ヒータ部2は、アルミナセラミック絶縁層7の内部に、白金などからなる発熱体8が埋設されており、このヒータ部2はジルコニア固体電解質層9によりその周囲が覆われている。
【0020】
本発明においては、上記のヒータ部の構造において、アルミナセラミック絶縁層7とジルコニア固体電解質層9との界面に、アルミナを5〜30質量%含有するジルコニア固体電解質層10を形成されていることが大きな特徴である。
【0021】
この固体電解質層10中のアルミナの含有量を上記の範囲に限定したのは、アルミナ量が3質量%より小さいとアルミナセラミック絶縁層7と固体電解質層9との接合力が小さく、その結果素子の急速昇温の繰り返しにより素子が破壊し易い。それに対して、アルミナの含有量が30質量%を越えると、固体電解質層10の焼結性が悪くなり、気孔の形成により固体電解質層10の強度が低下し、その結果急速昇温の繰り返しにより素子が破壊し易くなる。アルミナの含有量としては10〜25質量%の範囲が特に優れる。
【0022】
また、このアルミナを含有するジルコニア固体電解質層10の厚みとしては、10〜300μmが好ましく、特に20〜100μmの範囲が優れる。固体電解質層の厚みが、10μmより小さくても、あるいは300μmを越えてもアルミナセラミック絶縁層7と固体電解質層9との接合力が低下しやすい。このジルコニア固体電解質層10中におけるアルミナは、平均結晶子径で0.1〜5μm、特に1〜2μmの粒子として分散して含有されていることが望ましい。
【0023】
なお、ヒータ部の構造としては、図1では、ヒータ部がアルミナセラミック絶縁層7に周囲が包まれた状態であったが、ヒータ部は、図2に示すように、センサ部と積層された構造からなり、その場合、熱膨張係数差による応力のバランスをとるために、ヒータ部の下面にジルコニア固体電解質層9と同じ組成からなるジルコニア固体電解質層9’を形成することが望ましい。
【0024】
かかる構造においても、図1に基づき説明したのと同様な仕様にて、センサ部とアルミナセラミック絶縁層7との間、ジルコニア固体電解質層9’とアルミナセラミック絶縁層7との間に、それぞれアルミナを5〜30質量%含有するジルコニア固体電解質層10を形成ことが望ましい。
【0025】
本発明の酸素センサ素子におけるジルコニア固体電解質基板3やジルコニア固体電解質層9、9’並びに、アルミナを含有するジルコニア固体電解質層10中のジルコニア固体電解質は、ZrO2を含有するセラミックスからなり、安定化剤として、Y23およびYb23、Sc23、Sm23、Nd23、Dy23の群から選ばれる少なくとも1種を1〜30モル%、好ましくは3〜15モル%含有する部分安定化ZrO2あるいは安定化ZrO2が用いられる。さらに、焼結性を改善する目的で、上記ZrO2に対して、SiO2を添加含有させることができるが、多量に含有させると高温におけるクリープ特性が悪くなることから、SiO2の添加量は総量で5質量%以下、特に2質量%以下であることが望ましい。
【0026】
本発明においては、このヒータ部2を形成するアルミナセラミック絶縁層7は、アルミナを90質量%以上含有するアルミナ焼結体によって構成するものであって、相対密度が80%以上、特に90%以上、さらには95%以上、開気孔率が5%以下、特に3%以下の緻密質な焼結体によって構成することによって、セラミック絶縁層7を介したヒータ部2の強度を高め、素子全体の強度を高めることができる。
【0027】
また、このセラミック絶縁層7中には、上記の成分以外に、焼結性を改善する目的で、前記主成分以外の成分として、Mg、Caなどのアルカリ土類金属の酸化物や、SiO2の群から選ばれる少なくとも1種を総和で1〜10質量%含有していることが望ましい。但し、Na、K等のアルカリ金属は、マイグレーションしてヒータ部2の電気絶縁性を悪くするため酸化物換算で総量で50ppm以下に制御することが望ましい。
【0028】
基板3の表面に被着形成される基準電極4、測定電極5は、いずれも白金、あるいは白金と、ロジウム、パラジウム、ルテニウムおよび金の群から選ばれる1種との合金が用いられる。また、センサ動作時の電極中の金属の粒成長を防止する目的と、応答性に係わる白金粒子と固体電解質と気体との、いわゆる3相界面の接点を増大する目的で、上述のセラミック固体電解質成分を1〜50体積%、特に10〜30体積%の割合で上記電極中に混合してもよい。また、電極形状としては、四角形でも楕円形でもよい。また、電極の厚さは、3〜20μm、特に5〜10μmが好ましい。
【0029】
ヒータ部2におけるアルミナセラミック絶縁層7内に埋設されたヒータ8およびリード8a1、8a2は、金属として白金単味、あるいは白金とロジウム、パラジウム、ルテニウムの群から選ばれる1種との合金、またはW単体、あるいはWとMo、Reの群から選ばれる1種の合金を用いることができる。
【0030】
ヒータとして白金ヒータを用いる場合は、焼成中の白金の粒成長を防止する観点からアルミナの他に、セラミック絶縁層を形成する同じセラミック粉末を全量に対して、10〜40体積%、特に20〜30体積%添加することが好ましい。この場合、ヒータ8とリード8a1,8a2の抵抗比率は、いずれの場合も室温において、9:1〜7:3の範囲に制御することが好ましい。
【0031】
また、測定電極5の表面に形成されるセラミック多孔質層6は、厚さ10〜800μm、特に100〜500μmで、気孔率が10〜50%のジルコニア、アルミナ、γ−アルミナおよびスピネルの群から選ばれる少なくとも1種によって形成されていることが望ましい。
【0032】
また、本発明の酸素センサ素子は、小型の酸素センサ素子に最も好適に用いられる。具体的には、素子の小型化とともに優れたガス応答性を図る上で、測定電極5の電極面積が8〜18mm2であり、素子の先端から5mm以上、特に10mm以上の部分における長手方向に対して直交する方向の幅が、2.0〜3.5mmであることが望ましい。本発明によれば、測定電極5の面積および先端部の幅を上記の範囲に制御することによって、ヒータによる測定電極5の急速昇温性を高め、センサによるガス応答性を改善することができる。
【0033】
また、本発明の酸素センサ素子は、素子の先端付近にセンサ部1の一対の電極対5が形成され、素子の後端付近に端子を接続するための電極パッド11を備えているが、電極面積および幅を上記の範囲に設定する上で、前記素子後端の長手方向に対して直交する方向の幅L1が、素子先端の幅L2よりも大きいことが、あるいは、前記センサ素子の幅が、素子先端から後端に向かって連続的、または不連続的に大きくなっていることが望ましい。特に、電極パッド11が形成される後端部における最大幅は、3.7〜5mm、特に4.0〜4.5mmであることが適当である。
【0034】
この場合の、酸素センサ素子の具体的な構造としては、具体的には、図3(a)に示すように、素子の先端部から後端部にわたって連続して幅が大きくなるように、言い換えれば幅が広くなるようなもの、図3(b)に示すように、先端部から後端部の間で段差部vを境に素子の幅が広くなるようなもの、図3(c)に示すように、先端部から後端部の間でテーパ部pを設け、部分的に連続して幅が広くなるもの等が挙げられる。
【0035】
このように、電極パッド11が設けられる部分の幅を広くし、電極パッド11を形成している部分の幅L1を素子先端部の幅L2よりも大きくすることによって、センサ部の小型化とともに、電極パッド11にコネクタや金属ピンなどを容易に且つ強固に取り付けることができる。
【0036】
また、ヒータ部2における発熱体8の配置としては、通常、図1に示すように、断面における一対の発熱体は、同一平面内に形成してもよいが、同一平面の場合には、小型化に伴い、ヒータパターンの形状が非常に制約されることから、図2に示すように、ヒータ部2の長手方向に対して直交する方向の断面における一対の発熱体8がセラミック絶縁層7aを介して形成すると、ヒータ部の小型化を図ることができる。
【0037】
より具体的には、図4の発熱体パターンの構造を説明する概略透過図に示すように、長尺状のセラミック絶縁層7内において、一端側からリード8a1が長手方向に伸び、セラミック絶縁層7の他端部付近のセンサ部1の電極形成部と対向する部分に発熱部8b1が形成され、素子の他端部で折り返された後、発熱部8b2を経由してリード8a2に接続されている。本発明においては、少なくとも発熱部8b1と8b2とがセラミック絶縁層7aを介して上下に形成されており、この発熱部8b1、8b2は、他端部においてセラミック絶縁層7aを貫通するビア8cなどの接続体によって電気的に接続されている。
【0038】
図4の発熱体パターンは、ミアンダ構造(波形)のパターンから構成され、発熱体の幅をxとした場合、図4のミアンダ構造では、発熱体8の幅xは、その波形の最大振幅に相当する。この発熱部8b1、8b2がそれぞれ所定の幅xを有する場合、一般に、これらを同一平面内に形成すると、素子全体の幅wは、発熱部8b1、8b2を絶縁層7内に埋設するためのしろ部分や発熱体8b1、8b2間のショートを防止するために、素子全体の幅wは、w≧3x程度は必要となる。
【0039】
これに対して、発熱部8b1、8b2をそれぞれ異なる層間に形成すると、平面的にみて、発熱部8b1、8b2が重なっていてもセラミック絶縁層7aによって絶縁性が保たれているために、素子全体の幅wは、3xよりも小さくできる。特に小型化を図る上で、w≦2.5x、さらにはw≦2xを満足することが望ましい。
【0040】
なお、上下の発熱部8a1、8b2間のセラミック絶縁層7aの厚みとしては、電気絶縁性の観点から1〜300μm、特に5〜100μm、さらには、5〜50μmが好ましい。
【0041】
なお、図4の例では、発熱体8は、素子の長手方向に直交する方向で折り返しを有するミアンダ(波形)形パターンからなるものであったが、この発熱体パターンは、これに限定されるものではなく、例えば、図5の発熱体のパターン図に示すように、素子の長手方向で折り返しを有するミアンダ形パターンであってもよい。
【0042】
さらに、本発明によれば、上記図3(c)の酸素センサ素子を用いて、例えば、図6に示すように、酸素センサ素子をホルダーに取り付ける場合の取り付け治具12をテーパ部pの部分に取り付けることができる。
【0043】
また、本発明の酸素センサ素子は、素子強度の観点から、素子全体の厚さとしては、0.8〜3mm、特に1〜2mm、素子の長さとしては45〜55mm、特に45〜50mmが急速昇温性と素子のエンジン中への取付け具合との関係から好ましい。
【0044】
また、本発明の酸素センサ素子は、図7のようなワイドレンジセンサ素子に対しても適用される。図7は、その代表的な構造を説明するための概略断面図である。この図7の酸素センサ素子によれば、基板3の対向する面に基準電極4、測定電極5の電極対が形成され、測定電極5の上側には基板13によって空間部14が形成されており、この基板13には排気ガスを取り込むための0.1〜0.5mmの大きさの拡散孔15が開けられている。
【0045】
かかる酸素センサにおいては、基板3を挟む一対の電極対4、5によってポンピングセルが形成されており、排気ガス中の酸素濃度に対応して電極対間に流れる電流を制御して排気ガス中の空燃比を制御する。
【0046】
なお、上記空間部14内には素子の強度を持たせるため多孔質のセラミックスを充填することもできる。また、上記の拡散孔15は、素子上面の他、側面や先端に形成することもできる。さらには、拡散孔15は空間内に一定の排気ガスを取り込むための孔として作用する。そのため、拡散孔15は、多数個の孔で形成してもよいし、またセラミック多孔質層で形成してもよい。
【0047】
また、基板3の下面に形成された基準電極4は、大気導入孔3aの内壁に形成されている。大気導入孔3aの直下には、さらにWあるいはPtからなる発熱体8を埋設したアルミナセラミック絶縁層7がジルコニア固体電解質層9によって覆われている。この発熱体8を加熱することにより、基板3と電極対4、5を加熱する仕組みとなっている。本発明の酸素センサにおいては、他の例として、上記の基板11の両面にポンピング電極を形成することもできる。
【0048】
かかる酸素センサ素子においても、アルミナセラミック絶縁層7とジルコニア固体電解質層9との間に、アルミナを5〜10質量%含有するジルコニア固体電解質層10を形成する。
【0049】
次に、本発明の酸素センサ素子の製造方法を、図1の酸素センサ素子の製造方法を例にして、発熱体としてPtを、またセラミック絶縁層として、アルミナを用いた場合について、図8の分解斜視図をもとに説明する。
【0050】
まず、固体電解質のグリーンシート21を作製する。このグリーンシート21は、例えば、ジルコニアの酸素イオン導電性を有するセラミック固体電解質粉末に対して、適宜、成形用有機バインダーを添加してドクターブレード法や、押出成形や、静水圧成形(ラバープレス)あるいはプレス形成などの周知の方法により作製される。
【0051】
次に、上記のグリーンシート21の両面に、それぞれ測定電極5および基準電極4となるパターン22やリードパターン23やスルーホール(図示せず)などを例えば、白金を含有する導電性ペーストを用いてスラリーデッィプ法、あるいはスクリーン印刷、パット印刷、ロール転写で印刷形成した後、大気導入孔24を形成したグリーンシート25およびグリーンシート26をアクリル樹脂や有機溶媒などの接着剤を介在させるか、あるいはローラ等で圧力を加えながら機械的に接着することによりセンサ部用の積層体Aを作製する
さらに、この時に使用する白金を含有する導電性ペーストとしては、ジルコニアを1〜50体積%、特に10〜30体積%の割合で包含する白金粒子に、エチルセルロース等の有機樹脂成分を含有するものを用いることによって、電極の感度を高めることできる。なお、この時に測定電極5となるパターンの表面には、セラミック多孔質層6を形成するための多孔質スラリーを印刷塗布形成してもよい。
【0052】
次に、図8に示すようにジルコニアグリーンシート27表面に、グリーンシート21を形成するジルコニア粉末組成物に、アルミナを5〜30質量%含有するジルコニア粉末組成物を含有するジルコニアペーストを用いて、スラリーデッィプ法、あるいはスクリーン印刷、パット印刷、ロール転写で印刷してアルミナ含有ジルコニア固体電解質層28aを形成する。次にAl23粉末に有機樹脂および溶剤を加え混合した絶縁性ペーストをスラリーデッィプ法、あるいはスクリーン印刷、パット印刷、ロール転写で印刷し、セラミック絶縁層29aを形成する。
【0053】
次に、図2のように、セラミック絶縁層29aの表面に、ヒータパターン30およびリードパターン31を印刷塗布する。そして、上記絶縁性ペーストを塗布してセラミック絶縁層29bを形成する。その後、再度アルミナ含有ジルコニアペーストを用いてアルミナ含有ジルコニア固体電解質層28bを形成する。
【0054】
その後、上記アルミナ含有ジルコニア固体電解質層28a,28bを固体電解質で被覆するために、ジルコニア粉末からなるペーストを用いて、アルミナ含有ジルコニア固体電解質層28a,28bの周囲に、セラミック絶縁層28a,28bとほぼ同じ高さにジルコニア固体電解質層32を印刷形成する。そして、再度、ジルコニアグリーンシート33を積層して、ヒータ部2の積層体Bを作製する。
【0055】
上記のヒータ部2の積層体を作製するにあたり、セラミック絶縁層18a、18b、18cは、上記のように絶縁性ペーストの印刷塗布によって形成する他に、セラミックのスラリーを用いてドクターブレード法などのシート成形方法によって絶縁性シートを形成して積層することもできる。
【0056】
また、図2の酸素センサ素子のように、白金ヒータを異なる面に形成する場合には、上側のヒータパターンおよびリードパターンと、上側のヒータパターンおよびリードパターンとを分離し、下側のヒータパターンおよびリードパターンを形成後に、セラミック絶縁層を塗布形成した後、上側のヒータパターンおよびリードパターンを形成すればよい。なお、下側のヒータパターンと上側ヒータパターンとは、介在するセラミック絶縁層に貫通孔を形成し、上側ヒータパターン形成時にこの貫通孔内に導電性ペーストを充填すればよい。または、介在するセラミック絶縁層の先端部を切り欠き、その切り欠き部に導電性ペーストを塗布して接続し、一本に繋がった白金ヒータを形成する。
【0057】
また、本発明においては、気孔形成剤を含有する固体電解質のグリーンシートをセラミック絶縁体表面に積層して形成することができる。
【0058】
この後、センサ部1の積層体Aとヒータ部2の積層体Bをアクリル樹脂や有機溶媒などの接着剤を介在させるか、あるいはローラ等で圧力を加えながら両者を機械的に接着することにより接着一体化した後、これらを焼成する。焼成は、大気中または不活性ガス雰囲気中、1300℃〜1700℃の温度範囲で1〜10時間焼成する。なお、焼成時には、焼成時のセンサ部Aの反りを抑制するため、錘として平滑なアルミナ等の基板を積層体の上に置くことにより反り量を低減することができる。
【0059】
その後、必要に応じて、焼成後の測定電極の表面に、プラズマ溶射法等により,アルミナ、ジルコニア、スピネルの群から選ばれる少なくとも1種のセラミックスを形成することによってヒータ部が一体化された酸素センサ素子を形成することができる。
【0060】
なお、上記の方法では、ヒータ部1はセンサ部2と同時焼成して形成した場合について説明したが、センサ部1とヒータ部2とはそれぞれ別体で焼成した後、ガラスなどの適当な無機接合材によって接合することによって一体化することも可能である。
【0061】
ヒータをWで形成する場合、積層体の作製方法は、上述の白金ヒータを用いた場合とどうようであるが、焼成は、還元雰囲気または不活性ガス雰囲気中、1300℃〜1700℃の温度範囲で1〜10時間焼成する必用がある。
【0062】
【実施例】
図1に示す理論空燃比センサ素子を、図8に従い以下のようにして作製した。
【0063】
まず、アルミナとシリカをそれぞれ0.1質量%含む5モル%Y23含有のジルコニア粉末にポリビニルアルコール溶液を添加してスラリーを作製し、押出成形により焼結後の厚さが0.4mmになるようなジルコニアグリーンシート21を作製した。
【0064】
その後、ジルコニアグリーンシート21の両面に、平均粒子径が0.1μmで8モル%のイットリアからなるジルコニアを30体積%結晶内に含有する白金粉末を含有する導電性ペーストをスクリーン印刷して、測定電極と基準電極のパターン22、リードパターン23を印刷形成した後、大気導入孔24を形成したジルコニアグリーンシート25、およびジルコニアグリーンシート26をアクリル樹脂の接着剤により積層しセンサ部用積層体Aを得た。
【0065】
次に、上記のジルコニア粉末のスラリーを用いて作製したジルコニアグリーンシート27表面に、アルミナを1〜40質量含有する5モル%Y23のジルコニアのスラリーを焼成後5〜400μmとなるように形成してアルミナ含有ジルコニア層28aを形成した後、アルミナ粉末からなる絶縁性ペーストを作製して、厚みが焼成後20μmになるようにスクリーン印刷してセラミック絶縁層29aを形成した後、その表面にアルミナを10体積%含有する白金粉末のペーストを用いてヒータパターン29およびリードパターン30をスクリーン印刷した。
【0066】
さらに、このヒータパターン30、リードパターン31の表面に、上記の絶縁性ペーストを焼成後20μmになるようにスクリーン印刷してセラミック絶縁層29bを形成した後、上記と同じアルミナを含有するジルコニアのスラリーを焼成後5〜400μmの厚さのアルミナ含有ジルコニア層29bを形成した。
【0067】
そして、これらの積層体の周囲に、ジルコニアシート27と同組成のスラリーを積層体と同じ高さとなるように塗布してジルコニア固体電解質層32を形成した。そして、さらにジルコニアシート33を積層して、セラミック絶縁層28a、28bと白金ヒータ29とを埋設したヒータ部用積層体を作製した。
【0068】
その後、センサ部用積層体とヒータ部用積層体とを積層し、1500℃で1時間焼成して、ヒータを一体化したセンサ素子を作製した。
【0069】
なお、作製した酸素センサ素子は、図3(c)に基づき、素子の全体長さ50mm、測定電極の面積を12mm2、素子の先端から20mmまでの幅を3mmとし、電極パッド形成部分の幅を4.5mmとし、その長さを10mmとした。なお、素子の厚みは1.5mmとした。
【0070】
上記の方法により、種々の厚みでアルミナの含有量が異なるジルコニアを形成したセンサ素子をそれぞれ20個ずつ作製し、室温から約20秒で1000℃まで昇温した後、ファンで強制的に室温まで急冷するという温度サイクルを1サイクルとして、これを20万回行った後の破損率を求めた。この際、素子断面を鏡面研磨した面について、検量線法を用いたEPMA分析によりアルミナの含有量測定した。また、アルミナを含有したジルコニア層の厚みは走査型電子顕微鏡写真から求めた。
【0071】
結果を表1に示す。表には、比較のためアルミナ含有のジルコニア層を形成しないヒータを一体化したセンサ素子(試料No.1)を作製し、同様な測定を行った。
【0072】
【表1】
Figure 0003929855
【0073】
表1より、アルミナを5〜20質量%含有する固体電解質層を形成した本発明品は全ては素子の破損率が低いことがわかる。また、本発明の中ではアルミナを含有した固体電解質層の厚みとして、10〜300μmの範囲の素子が特に優れていることが分かる。
【0074】
【発明の効果】
以上詳述した通り、本発明によれば、ヒータ部におけるジルコニア固体電解質層と前記セラミック絶縁層の間に、5〜30質量%のアルミナを含有する固体電解質層を形成することによって、長時間運転に対してもクラックの発生や破壊することのない優れた安定性を有する平板状の酸素センサ素子を提供することができる。
【図面の簡単な説明】
【図1】本発明の酸素センサ素子の一例を説明するための概略断面図である。
【図2】本発明の酸素センサ素子の他の例を説明するために概略断面図である。
【図3】本発明における酸素センサ素子の概略平面図である。
【図4】図2の酸素センサ素子の発熱体パターンの構造を説明するための概略斜視図である。
【図5】図2の酸素センサ素子の発熱体パターンの他の構造を説明するための概略斜視図である。
【図6】図3(c)の酸素センサ素子の応用例を説明するための概略斜視図である。
【図7】本発明の酸素センサ素子のさらに他の例を説明するために概略断面図である。
【図8】図1の酸素センサ素子の製造方法を説明するための分解斜視図である。
【図9】従来のヒータ一体型酸素センサ素子の構造を説明するための概略断面図である。
【図10】従来の他のヒータ一体型酸素センサ素子の構造を説明するための概略断面図である。
【符号の説明】
1 センサ部
2 ヒータ部
3 基板
4 基準電極
5 測定電極
6 セラミック多孔質層
7 セラミック絶縁層
8 発熱体
9 ジルコニア固体電解質層
10 アルミナ含有ジルコニア固体電解質層

Claims (3)

  1. 大気導入孔を有する長尺平板状のジルコニア固体電解質基体と、
    前記大気導入孔の内壁面とそれと対向する外表面に一対の電極対を有するセンサ部と、
    セラミック絶縁層と、該セラミック絶縁層内に埋設された発熱体とからなり、前記センサ部よりも底面側に位置するヒータ部を具備する酸素センサ素子であって、
    前記ヒータ部の上面側及び底面側には、5〜30質量%のアルミナを含有するジルコニア固体電解質層が形成されているとともに、
    前記ヒータ部の上面側に形成されたアルミナを含有するジルコニア固体電解質層の上面に位置する前記ジルコニア固体電解質基体と、前記ヒータ部の底面側に形成されたアルミナを含有するジルコニア固体電解質層の下面に位置する前記ジルコニア固体電解質基体の組成が同じであることを特徴とする酸素センサ素子。
  2. 大気導入孔を有する長尺平板状のジルコニア固体電解質からなる基板と、
    前記大気導入孔の内壁面とそれと対向する外表面に一対の電極対を有するセンサ部と、
    セラミック絶縁層と、該セラミック絶縁層内に埋設された発熱体とからなり、前記センサ部よりも底面側に位置するヒータ部と、
    前記ヒータ部よりも底面側に位置するジルコニア固体電解質層とを具備する酸素センサ素子であって、
    前記ヒータ部の上面側と前記基板の間及び前記ヒータ部の底面側と前記底面側に位置するジルコニア固体電解質層との間には、それぞれ5〜30質量%のアルミナを含有するジルコニア固体電解質層が形成されているとともに、
    前記基板のジルコニア固体電解質と、前記ヒータ部の底面側に形成されたアルミナを含有するジルコニア固体電解質層よりも底面側に位置するジルコニア固体電解質層の組成が同じであることを特徴とする酸素センサ素子。
  3. 前記ヒータ部における発熱体は、前記ヒータ部の長手方向に対して直交する方向の断面において、上下方向にそれぞれ高さが異なる第1発熱部と第2発熱部を備え、
    前記第1発熱部と第2発熱部は、前記ヒータ部内で接続されていることを特徴とする請求項1または請求項2に記載の酸素センサ素子。
JP2002249806A 2002-08-28 2002-08-28 酸素センサ素子 Expired - Fee Related JP3929855B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002249806A JP3929855B2 (ja) 2002-08-28 2002-08-28 酸素センサ素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249806A JP3929855B2 (ja) 2002-08-28 2002-08-28 酸素センサ素子

Publications (2)

Publication Number Publication Date
JP2004085492A JP2004085492A (ja) 2004-03-18
JP3929855B2 true JP3929855B2 (ja) 2007-06-13

Family

ID=32056792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249806A Expired - Fee Related JP3929855B2 (ja) 2002-08-28 2002-08-28 酸素センサ素子

Country Status (1)

Country Link
JP (1) JP3929855B2 (ja)

Also Published As

Publication number Publication date
JP2004085492A (ja) 2004-03-18

Similar Documents

Publication Publication Date Title
JP4409581B2 (ja) 酸素センサ素子
JP4025561B2 (ja) 酸素センサ素子
JP2004325196A (ja) 酸素センサ素子
JP2006210122A (ja) セラミックヒータ素子及びそれを用いた検出素子
JP3981307B2 (ja) 酸素センサ素子
JP3898603B2 (ja) 酸素センサ素子
JP4084593B2 (ja) 酸素センサ素子
JP3677480B2 (ja) 酸素センサ素子
JP3929855B2 (ja) 酸素センサ素子
JP3814549B2 (ja) 酸素センサ素子
JP3860768B2 (ja) 酸素センサ素子
JP3935754B2 (ja) 酸素センサ素子
JP4113479B2 (ja) 酸素センサ素子
JP3673501B2 (ja) 酸素センサ素子
JP4610127B2 (ja) 空燃比センサ素子
JP4637375B2 (ja) 酸素センサの製造方法
JP2004085493A (ja) 酸素センサ素子
JP2005049115A (ja) 酸素センサ
JP4689859B2 (ja) ヒータ一体型酸素センサ素子
JP4698041B2 (ja) 空燃比センサ素子
JP4189242B2 (ja) 酸素センサ素子
JP3850286B2 (ja) 酸素センサ
JP3677479B2 (ja) 酸素センサ素子
JP2005005057A (ja) セラミックヒータ、並びにセラミックヒータ構造体
JP3860771B2 (ja) 酸素センサ素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070307

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees