JP2004045223A - 半導体検査装置及び半導体検査方法 - Google Patents

半導体検査装置及び半導体検査方法 Download PDF

Info

Publication number
JP2004045223A
JP2004045223A JP2002203158A JP2002203158A JP2004045223A JP 2004045223 A JP2004045223 A JP 2004045223A JP 2002203158 A JP2002203158 A JP 2002203158A JP 2002203158 A JP2002203158 A JP 2002203158A JP 2004045223 A JP2004045223 A JP 2004045223A
Authority
JP
Japan
Prior art keywords
voltage
output
correction
data
comparison
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002203158A
Other languages
English (en)
Other versions
JP3983123B2 (ja
Inventor
Hideaki Sakaguchi
坂口 英明
Masayuki Nagahiro
永廣 雅之
Masami Mori
森 雅美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002203158A priority Critical patent/JP3983123B2/ja
Priority to KR1020030046961A priority patent/KR100561894B1/ko
Priority to TW092118901A priority patent/TWI223099B/zh
Priority to US10/617,387 priority patent/US6833715B2/en
Priority to CNB031474640A priority patent/CN1267738C/zh
Publication of JP2004045223A publication Critical patent/JP2004045223A/ja
Application granted granted Critical
Publication of JP3983123B2 publication Critical patent/JP3983123B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/38Response verification devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers

Abstract

【課題】多数の出力端子を有し多階調の階調出力電圧を出力する半導体集積回路の合否判定測定テストが、安価な装置構成で高精度に行える半導体検査装置及び半導体検査方法を提供する。
【解決手段】100は半導体検査装置を示し、出力電圧検査手段50、比較電圧生成用データ入力手段101、102を備える。出力電圧検査手段50は、被検査電圧入力手段51、DAC106、DAC107、ハイレベル比較器52、ローレベル比較器53、比較結果出力手段56を備える。ハイレベル比較器52、ローレベル比較器53は、被検査電圧と比較電圧とを比較する比較手段を構成するものとする。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、半導体検査装置及び半導体検査方法に関し、詳しくは、例えば液晶表示パネルを駆動するために多段階の電圧(階調出力電圧)を出力するように構成された多数の出力端子を有する半導体集積回路の階調出力電圧の検査を高精度化した半導体検査装置及び半導体検査方法に関する。
【0002】
【従来の技術】
液晶表示パネル(TFT液晶表示パネル)の駆動方式には、液晶駆動電圧の極性切換によってドット反転とライン反転の2種がある。ここで、液晶駆動用半導体集積回路(以下液晶駆動装置という)から出力される液晶駆動電圧に着目すると、最大電圧5V、13Vなどを表示階調度に応じて多段階の所定電圧に分圧したDA変換電圧として出力する。例えば256階調表示の場合、ドット反転方式では512段階の駆動電圧が出力され、ライン反転方式では256段階の駆動電圧が出力される。
【0003】
現行の液晶駆動装置は、例えばRGBの3系統を128ドットずつ駆動するように1パッケージ384ピンとして構成される。例えば縦1024ドット×横1280ドットのSXGA規格の液晶表示パネルを液晶駆動装置により駆動する場合には、このような1パッケージ384ピンの液晶駆動装置を10個用いることになる。ところでこのような液晶駆動装置の出荷にあたっては、全数テストを行って所定の仕様を満たさないものを選別除去している。
【0004】
図17は一般的な液晶駆動装置の概略を示すブロック図である。階調表示用入力データRGB(各6ビット以上/1出力)を順次サンプリングして、1水平期間に相当する階調表示用入力データ数を取り込みホールドメモリにラッチし、その後、レベルシフタを介してDAコンバータ(デジタルアナログ変換器、以下DACともいう)へ入力する。DACでは各出力毎に基準電圧発生回路(ラダ−抵抗)にて生成した階調レベルを選択して、各々の出力毎に有している出力オペアンプを介して、出力端子から各階調レベル(階調出力電圧)を出力する。
【0005】
図18は基準電圧発生回路の概略を示す回路図である。上述の基準電圧発生回路は、一般的には直流電圧Vdcに接続したラダ−抵抗を抵抗分割(R1〜Rn)することで各抵抗接続点から出力する電圧(V0〜Vn)により各階調毎の所望の階調レベルを生成する。上述の入力データ(ビット数)により、6ビットDACの場合では64階調表示、8ビットDACの場合は256階調、10ビットDACの場合では1024階調の表示が可能となる。液晶駆動装置の多階調化に伴い、この品質を確保するための液晶駆動装置のテスト(検査、試験)は、高精度電圧の測定が不可欠となる。
【0006】
つまり、DACから出力される各々の階調出力電圧値がすべて正しい電圧値を出力しているかどうか、また各DAC間において、出力される階調出力電圧値が各々互いに均一であるかどうか等をテストする必要がある。また、テストの対象である被テストデバイス(Device Under Test。 以下DUTという)の電源電圧が同一の場合に、出力端子の性能を64階調から256階調に向上すると、測定精度は4倍高精度化する必要がある。
【0007】
テストの対象となるDUTとして、液晶表示パネルを駆動するためにn通りの電圧レベルを選択して出力するn階調DACが内蔵され、液晶駆動用出力端子数がM個の液晶駆動装置(液晶駆動用LSI)を例に半導体検査装置、半導体検査システム、半導体検査方法等について説明する。
【0008】
図19及び図20は従来の半導体検査システムの概略を示すブロック図である。この従来技術は例えば、特開2001−99899号公報に開示されている。図19における従来の半導体検査システムは、DUT181の試験を行う半導体試験装置(半導体テスタ)182で構成されている。半導体試験装置182はDUT181に所定の入力信号を入力し(不図示)、DUT181に内蔵されたDAC183により適宜変換され出力端子Y1乃至YMから出力される信号の良否を試験(判定)する。この半導体検査システムでは、半導体試験装置182を用いて所定の入力信号をDUT181(液晶駆動装置)へ供給し、1階調目のレベルから順次n階調目のレベルまでの信号を出力させる。この出力を半導体試験装置182に内蔵されているマトリックススイッチ184(ch1〜chM)により切り替えてアナログ電圧測定器185に入力する。アナログ電圧測定器185により、1出力ずつ(出力端子Y1〜YM)順次1階調目の階調出力電圧値を測定し、その測定結果を逐次、半導体試験装置182に内蔵されているデータメモリ186に格納する。この操作をn階調分繰り返し、最終的には全出力・全階調分のデータをデータメモリ186に格納する。この結果、出力数m(出力端子M個)×n(n階調)のデータがデータメモリ186に格納されることになる。
【0009】
データメモリ186に格納されたデータを、半導体試験装置182に内蔵されている演算装置187を用いて所定の演算を行ない、各出力端子における各階調出力電圧値や各出力端子間の階調出力電圧値の均一性の試験を行う。このような液晶駆動装置(DUT181)の試験において、液晶駆動装置の多出力化・多階調化が進むにつれ、階調出力電圧値をより高精度に測定する必要が生じており、テスト時間の増加と、高精度なアナログ電圧測定器(185)を搭載する高価な半導体試験装置(182)が必要となる。
【0010】
図20における従来の半導体検査システムでは各階調毎の期待値電圧(階調期待値電圧)と液晶駆動装置の各出力端子(Y1〜YM)より出力される出力電圧との差電圧を取り、この差電圧を比較部196を用いてパラレルに判定する。なお、階調期待値電圧(以下期待値電圧ともいう)とは各階調に対応して設計上発生することが期待されている電圧をいう。図20における従来の半導体検査システムは、DUT191と半導体試験装置192と、期待値電圧発生手段60と、差動増幅器アレイモジュール193とで構成されている。DUT191にはDAC194が内蔵されている。差動増幅器アレイモジュール193は差動増幅器195により構成される。半導体試験装置192には比較部196が内蔵されている。DUT191と半導体試験装置192の動作は図19で説明したDUT181と半導体試験装置182の動作と同様である。期待値電圧発生手段60は、DUT191が出力すべき階調期待値電圧、即ち、理想出力電圧(期待値電圧)を発生する。差動増幅器アレイモジュール193の各差動増幅器195には、期待値電圧発生手段60からの出力とDUT191の出力端子(Y1〜YM)からの出力が入力される。差動増幅器アレイモジュール193(各差動増幅器195)は期待値電圧発生手段60の出力とDUT191の出力端子(Y1〜YM)の出力との差電圧を増幅して半導体試験装置192に入力(ch1〜chM)する。
【0011】
試験の対象となるDUT191は、例えば、液晶駆動用出力端子数がM個であり、各出力端子にn通りの電圧レベルを選択して出力するためのn階調DAC194を内蔵する液晶駆動装置(液晶駆動装置用LSI)である。半導体試験装置192からDUT191に入力信号(不図示)を与えてM個の出力からは所定の階調出力電圧を発生させるようにDUT191を動作させる。M個の出力端子から出力された階調出力電圧を、差動増幅器アレイモジュール193に搭載される差動増幅器195の一方の入力端子に各々同時に入力する。一方、階調出力電圧の期待値電圧である電圧が期待値電圧発生手段60から出力され、差動増幅器195の他方の入力端子に入力する。差動増幅器アレイモジュール193はDUT191が出力したM個の階調出力電圧と期待値電圧発生手段60が発生した期待値電圧の差電圧、即ち期待値電圧とのズレ量を求める。
【0012】
差電圧の比較判定を高精度で行うため、まず差電圧は差動増幅器アレイモジュール193に備えられた増幅手段(不図示、図21の増幅器8参照)で増幅される。M個(Y1〜YM)の増幅された電圧は差動増幅器アレイモジュール193の出力端子より出力され、半導体試験装置192のテスタチャンネル(ch1〜chM)に入力される。
【0013】
半導体試験装置192には、電圧測定手段として2つの手段がある。即ち、高精度にDC電圧レベルを測定するためのDC測定ユニット(不図示)と上述のテスタチャンネルに備えられた比較部196である。比較部196は、主に機能動作テストを行う為のものであるのでその電圧測定精度はDC測定ユニットに比べ低く、通常は、上述のような高精度電圧測定および比較判定をおこなうことはできない。しかし、上述のように増幅手段で差電圧を増幅する手法を施している為、比較部196での比較判定が可能となる。このように差動増幅器アレイモジュール193を用いて測定を行うことで従来と同等もしくはそれ以上の測定精度でのテストを実現している。
【0014】
図21は図20と同様の従来の半導体検査システムを説明する説明図である。図21におけるDUT、減算器6・増幅器8、期待値電圧発生手段60、半導体試験装置15は、図20におけるDUT191、差動増幅器195(差動増幅器アレイモジュール193)、期待値電圧発生手段60、半導体試験装置192に各々対応する。デジタル比較部11はデジタル比較部196に対応する。半導体試験装置15はさらにテスタ制御手段40、周辺ブロック部12を備える。テスタ制御手段40は、デジタル比較部11からの信号(D1〜DM)に基づいて必要な処理を行う。
【0015】
図20、図21によるテストにおいては、各階調毎の期待値電圧を期待値電圧発生手段60から出力させる際、γ特性仕様などであらかじめ設定された期待値電圧をプログラムを用いて演算し、この演算結果で得られたデータを期待値電圧発生手段60に転送して、順次、期待値電圧を出力している。
【0016】
図22は図20及び図21の従来の半導体検査システムにおける期待値電圧発生手段の概略回路ブロックを示すブロック図である。なお、期待値電圧発生手段60は、図20において期待値電圧発生手段60、図21において期待値電圧発生手段60として記載している。期待値電圧発生手段60において、半導体試験装置192又は半導体試験装置15から転送されたデータは制御手段65に入力され、一時記憶が必要なデータは記憶手段66に記憶される。各データはDAC61を介して、該データに応じた期待値電圧に変換され、差動増幅器アレイモジュール193又は減算器6へ期待値電圧(61a)として出力される。
【0017】
図23は階調出力電圧の状況を示す波形図である。つまり、期待値電圧発生手段60から出力され、差動増幅器アレイモジュール193(差動増幅器195)又は減算器6へ入力される階調期待値電圧波形aと、液晶駆動装置であるDUT(191)から出力される階調出力電圧波形bを示している。液晶駆動装置から出力される階調出力電圧は期待値電圧に対して、例えば、ずれ電圧ΔV1、ΔV2、ΔV3を有する。液晶駆動装置(DUT)のテストにおいては、これらずれ電圧ΔVが規定された電圧範囲に入っているかどうか、また各出力間においてこれらのずれ電圧ΔVi(i=1〜n)が均一性を有しているかどうかをテストする。
【0018】
図24は従来の半導体試験装置における出力電圧検出手段の概略回路ブロックを示すブロック図である。出力電圧検出手段50は、図20における半導体検査装置192の比較部196に含まれるものであり、いわゆるデジタル判定を行うものである。出力電圧検出手段50は、液晶駆動装置(DUT)の出力端子(不図示)から出力される被測定電圧を入力する測定電圧入力手段51、被測定電圧をハイレベル基準値と比較するためのハイレベル比較手段であるハイレベル比較器52、被測定電圧をローレベル基準値と比較するためのローレベル比較手段であるローレベル比較器53、ハイレベル比較器52へハイレベル比較電圧VOHを入力する為のVOH入力手段54、ローレベル比較器53へローレベル比較電圧VOLを入力する為のVOL入力手段55、ハイレベル比較器52とローレベル比較器53における比較結果を各々ハイレベル比較結果出力データDMH、ローレベル比較結果出力データDMLとして出力する比較結果出力手段56により構成されている。ハイレベル比較器52、ローレベル比較器53は各々比較器により構成される。
【0019】
出力電圧検出手段50の外部に構成されたテスタ制御手段40からハイレベル比較電圧VOHに対応するハイレベル比較電圧生成用データIVHがデジタルデータとしてDAC106へ入力され、DAC106によりアナログ電圧であるハイレベル比較電圧VOHに変換され、ハイレベル比較電圧VOHがVOH入力手段54に入力される。同様にテスタ制御手段40からローレベル比較電圧VOLに対応するローレベル比較電圧生成用データIVLがデジタルデータとしてDAC107へ入力され、DAC107によりアナログ電圧であるローレベル比較電圧VOLに変換され、ローレベル比較電圧VOLがVOL入力手段55に入力される。テスタ制御手段40にDUTの出力端子数に応じた数、例えば、200チャンネル乃至500チャンネル程度(図ではchMとして1チャンネルのみ示す)の出力電圧検出手段50が備えられている。
【0020】
【発明が解決しようとする課題】
しかし、図24で示すような従来の出力電圧検出手段50の構成によれば、液晶駆動装置(DUT)の階調出力電圧の測定にあたり、階調出力電圧の判定は半導体試験装置に備えられた比較手段(比較器)の比較結果出力データをデジタル信号処理して行っているので、電圧測定精度は依然として比較器の精度に依存している。測定・判定精度を向上するには比較器を高価な高精度(例えば1mV以内)の比較器に置き換えればよいが、半導体試験装置には液晶駆動装置(DUT)の出力端子数に比例して比較器を備えていることから、半導体試験装置自体がきわめて高価になってしまうという問題がある。
【0021】
例えば、384出力端子構造で64階調(色階調6ビット)の液晶駆動装置の場合には、比較器の電圧測定精度は20mV乃至10mV程度(例えば、3〜5Vを64階調で除算し、それに対し4分の1程度の値のマージンを考慮した場合)で良いが、384出力端子構造で256階調(色階調8ビット)の場合には比較器の電圧測定精度は5.0mV乃至2.5mV程度(例えば、3〜5Vを256階調で除算し、それに対し4分の1の値のマージンを考慮した場合)が必要である。これは液晶表示パネルの表示品位を保つため、液晶駆動装置の階調出力における出力端子間ばらつきを、1階調あたりの電圧の約4分の1程度の電圧以内に抑制する必要があることによる。
【0022】
即ち、電源電圧が5Vの場合、64階調仕様の液晶駆動装置では隣接階調間の電圧はγ補正に依存するものの約80mVとなり、出力端子間当りのバラツキとして約20mV程度以下を保証する必要がある。従って、比較器の電圧測定精度は次のようになる。例えば、図20の半導体検査システムにおいて、階調出力電圧と期待値電圧の差電圧を差動増幅器193により10倍に増幅する場合、差電圧が20mV(バラツキ保証電圧に相当)であれば、増幅後は200mVとなる。この200mVの十分の1の20mVを正確に測定できる精度があれば、バラツキ保証電圧を確実に保証することが可能となる。つまり、増幅後の電圧200mVの十分の1である20mVを正確に測定できる精度が必要である。この測定精度は、現在主流のテスタに用いられている比較器の仕様と一致する。
【0023】
尚、期待値電圧発生手段(60。図22参照)に備えられたDAC61は、2mV以上の分解能を有するデジタルアナログ変換器を使用しているが、この分解能とは別に数mVのオフセット誤差や0.01%程度のゲイン誤差があることから、256階調、512階調、さらには、それ以上の階調に対応する液晶駆動装置の階調出力電圧を試験する高精度測定は、上述の誤差に起因してできないという問題があった。
【0024】
256階調仕様の液晶駆動装置では、上述と同様の考え方から、5mVの測定精度が必要である。また、512階調の液晶駆動装置の場合、2.5mV程度の測定精度が必要である。つまり、256階調を越える仕様の液晶駆動装置においては、従来のテスト手法では電圧測定精度が不十分となり、歩留まり低下、出荷品質劣化などの問題がある。
【0025】
また、高精度かつ数十MHzの応答速度を有する特殊な比較器を新たに導入することは、特注部品となり、部品のコストが高くなり好ましくない。液晶表示パネルに対する高画質の要望に対応して表示パネルの画素数が増加する傾向にあり、液晶駆動装置1個当りの出力端子数は年々増大傾向にあるため、むしろ比較器1個あたりのコストを低減する対応が望まれている状況にあり、テスタの価格を高騰化させる特殊な比較器を用いるという対応は好ましくない。また、特殊な比較器は特殊部品であるため入手が困難となり、修繕などで緊急を要する場合にも問題がある。
【0026】
本発明は斯かる事情に鑑みなされたものであり、その目的は、多数の出力端子を有し多階調の階調出力電圧を出力する半導体集積回路(例えば液晶駆動用半導体集積回路)の合否判定測定テストが、安価な装置構成で高精度に行える半導体検査装置及び半導体検査方法を提供することにある。
【0027】
【課題を解決するための手段】
本発明に係る半導体検査装置は、複数の出力端子の各々から階調出力電圧を出力する半導体集積回路の階調出力電圧特性を検査するために各出力端子に対応して出力電圧検査手段を備える半導体検査装置において、前記出力電圧検査手段は、階調出力電圧から得られる被検査電圧を入力する被検査電圧入力手段と、被検査電圧と比較すべき比較電圧を比較電圧生成用データ入力手段から入力される比較電圧生成用データに基づいて生成する比較電圧生成手段と、被検査電圧と比較電圧とを比較する比較手段とを備え、前記比較電圧生成用データは、他の出力電圧検査手段と共通に与えられる共通比較電圧生成用データ及び各比較手段が有する固有の誤差を補正するために個別に与えられる個別比較電圧生成用データを加算して生成される構成としてあることを特徴とする。
【0028】
本発明に係る半導体検査装置においては、前記比較電圧生成用データ入力手段は、共通比較電圧生成用データを入力する共通比較電圧生成用データ入力手段と、個別比較電圧生成用データを入力する個別比較電圧生成用データ入力手段と、共通比較電圧生成用データ及び個別比較電圧生成用データを加算する加算器とを備え、該加算器における加算結果を前記比較電圧生成用データとして比較電圧生成手段へ入力する構成としてあることを特徴とする。
【0029】
本発明に係る半導体検査装置においては、前記比較手段は、被検査電圧が比較電圧の上限許容範囲か否かを比較検出するハイレベル比較器及び被検査電圧が比較電圧の下限許容範囲か否かを比較検出するローレベル比較器を備え、ハイレベル比較器及びローレベル比較器各々に対応して比較電圧生成用データ入力手段及び比較電圧生成手段を備えることを特徴とする。
【0030】
本発明に係る半導体検査装置においては、前記個別比較電圧生成用データを設定記憶し、個別比較電圧生成用データを比較電圧生成用データ入力手段へ出力する補正データ生成手段を備えることを特徴とする。
【0031】
本発明に係る半導体検査装置においては、前記補正データ生成手段は出力電圧検査手段毎に個別に設けられることを特徴とする。
【0032】
本発明に係る半導体検査装置においては、前記階調出力電圧に対応する階調期待値電圧を出力する期待値電圧発生手段と、階調出力電圧と階調期待値電圧との差を求めて被検査電圧入力手段へ出力する電圧差検出手段とを備えることを特徴とする。
【0033】
本発明に係る半導体検査装置においては、前記期待値電圧発生手段は、階調期待値電圧の理想値入力データを記憶する理想値入力データ記憶手段と、階調期待値電圧の補正をするための補正値入力データを記憶する補正値入力データ記憶手段と、理想値入力データと補正値入力データとを加算して期待値電圧データを出力する加算器と、期待値電圧データに基づいて階調期待値電圧を生成して電圧差検出手段に入力する期待値電圧出力手段とを備えることを特徴とする。
【0034】
本発明に係る半導体検査装置においては、前記比較電圧生成手段及び期待値電圧出力手段は、各々デジタルアナログ変換器を備え、期待値電圧出力手段におけるデジタルアナログ変換器の分解能は比較電圧生成手段におけるデジタルアナログ変換器の分解能より精度が高くしてあることを特徴とする。
【0035】
本発明に係る半導体検査装置においては、前記電圧差検出手段の出力を増幅して被検査電圧入力手段へ入力する増幅手段を備えることを特徴とする。
【0036】
本発明に係る半導体検査装置においては、前記増幅手段と被検査電圧入力手段との間に、共通端子は被検査電圧入力手段へ、独立第1端子は増幅手段の出力端子へ、独立第2端子は固定電位端子へ各々接続される第1補正用切替スイッチを備え、該第1補正用切替スイッチは、前記階調出力電圧を検査する時は被検査電圧入力手段と増幅手段とを接続し、前記比較電圧を補正するために個別比較電圧生成用データを設定補正する時は被検査電圧入力手段と固定電位端子とを接続する構成としてあることを特徴とする。
【0037】
本発明に係る半導体検査装置においては、前記半導体集積回路と電圧差検出手段との間に、共通端子は電圧差検出手段へ、独立第1端子は半導体集積回路の出力端子へ、独立第2端子は高精度電圧発生手段へ各々接続される第2補正用切替スイッチを備え、該第2補正用切替スイッチは、前記階調出力電圧を検査する時は電圧差検出手段と半導体集積回路とを接続し、前記期待値電圧発生手段を補正する時は電圧差検出手段と高精度電圧発生手段とを接続する構成としてあることを特徴とする。
【0038】
本発明に係る半導体検査装置においては、前記半導体検査装置をモジュールとしたことを特徴とする。
【0039】
本発明に係る半導体検査装置においては、前記半導体検査装置は、前記半導体集積回路を駆動するための集積回路駆動部を備えることを特徴とする。
【0040】
本発明に係る半導体検査装置においては、前記半導体集積回路は液晶駆動用半導体集積回路であることを特徴とする。
【0041】
本発明に係る半導体検査方法は、各出力端子から階調出力電圧を出力する半導体集積回路の階調出力電圧特性を検査するために出力端子毎に、階調出力電圧と階調出力電圧の理想値に対応する階調期待値電圧との差に基づく被検査電圧を出力電圧検査手段に入力し、出力電圧検査手段により被検査電圧と比較電圧とを比較して階調出力電圧の検査を行う半導体検査方法において、前記比較電圧は、各出力電圧検査手段が備えるデジタルアナログ変換器に固有の誤差を補正するために出力電圧検査手段毎に補正されることを特徴とする。
【0042】
本発明に係る半導体検査方法においては、前記階調期待値電圧は、階調期待値電圧を発生する期待値電圧発生手段が備えるデジタルアナログ変換器に固有の誤差を補正するために補正されることを特徴とする。
【0043】
本発明においては、被検査電圧(例えば多階調出力電圧と期待値電圧との差電圧)と比較すべき比較電圧(例えば多階調出力電圧の許容範囲を定めた基準電圧)を比較電圧生成用データ入力手段から入力される比較電圧生成用データに基づいて生成する比較電圧生成手段と、被検査電圧と比較電圧とを比較する比較手段とを備え、比較電圧生成用データは、他の出力電圧検査手段と共通に与えられる共通比較電圧生成用データ及び各比較手段が有する固有の誤差を補正するために個別に与えられる個別比較電圧生成用データを加算して生成される構成としたので、各比較手段が有する固有の誤差を個別に補正することができるので、高精度の半導体検査装置(半導体試験装置)及び半導体検査方法(半導体試験方法)を安価に提供することが可能となる。
【0044】
本発明においては、期待値電圧発生手段は、階調期待値電圧の理想値入力データを記憶する理想値入力データ記憶手段と、階調期待値電圧の補正をするための補正値入力データを記憶する補正値入力データ記憶手段とを備えることとしたので、期待値電圧発生手段が有する誤差を補正することができるので、高精度の半導体検査装置(半導体試験装置)及び半導体検査方法(半導体試験方法)を安価に提供することが可能となる。
【0045】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態を説明する。
<実施の形態1>
図1は本発明に係る半導体検査装置の要部回路ブロックを示すブロック図である。従来技術(図24参照)と同じブロック等は同一の番号を付して重複する説明は省略する。図において、100は半導体検査装置を示し、出力電圧検査手段50、比較電圧生成用データ入力手段101、102を備える。出力電圧検査手段50は、被検査電圧入力手段51、DAC106、DAC107、ハイレベル比較器52(以下単に比較器52と表すこともある)、ローレベル比較器53(以下単に比較器53と表すこともある)、比較結果出力手段56を備える。ハイレベル比較器52、ローレベル比較器53は、被検査電圧と比較電圧とを比較する比較手段を構成する。
【0046】
図示しない被検査半導体装置(以下DUT)の出力端子から出力される階調出力電圧から得られる被検査電圧が被検査電圧入力手段51の入力端子(例としてテスタチャンネルchMで示す)へ入力される。被検査電圧は、図20、図21において示したように、階調出力電圧と期待値電圧との差電圧として求められる。被検査電圧は、被検査電圧入力手段51からハイレベル比較手段であるハイレベル比較器52の−入力端子とローレベル比較手段であるローレベル比較器53の+入力端子に入力される。
【0047】
ハイレベル比較器52の+入力端子には比較電圧生成手段を構成するDAC106より発生したハイレベル比較電圧VOHSが入力され、比較対象となる被検査電圧とハイレベル比較電圧VOHSが比較されて、比較結果は比較結果出力手段56よりハイレベル比較結果出力データDMHとして補正データ生成手段210へ出力される。ローレベル比較器53の−入力端子には比較電圧生成手段を構成するDAC107より発生したローレベル比較電圧VOLSが入力され、比較対象となる被検査電圧とローレベル比較電圧VOLSが比較されて、比較結果は比較結果出力手段56よりローレベル比較結果出力データDMLとして補正データ生成手段210へ出力される。なお、ハイレベル比較器52とローレベル比較器53を備えた構成としているが、何れか一方だけであっても半導体検査装置100における出力電圧検出手段50として機能する。ハイレベル比較器52は、例えば被検査電圧が比較電圧の上限許容範囲か否かを比較検出し、ローレベル比較器53は、例えば被検査電圧が比較電圧の下限許容範囲か否かを比較検出する。また、補正データ生成手段210は各出力電圧検査手段50又は半導体検査装置100に対応させて個別に設けることにより、例えばいずれかのテスタチャンネルに対応する出力電圧検査手段50が故障して取替えが必要になった場合等に、当該テスタチャンネルに対応する出力電圧検査手段50及び補正データ生成手段210を取り替えるだけでよく、半導体検査装置100の修理が容易になり、メンテナンスコストを低減できる。
【0048】
ハイ側比較の場合、DAC106への入力データ(比較電圧生成用データ)は、共通比較電圧生成用データ入力手段101bへ入力されるハイレベル共通比較電圧生成用データIVHbと個別比較電圧生成用データ入力手段101cへ入力されるハイレベル個別比較電圧生成用データIVHcとを加算器101aにおいて加算して生成される。ハイレベル共通比較電圧生成用データIVHbは、半導体検査装置100を制御するテスタ制御手段40から、例示しているchM以外の他の出力電圧検出手段(50)における比較器(52)と共通するデータとして共通比較電圧生成用データ入力手段101bへ入力される。また、ハイレベル個別比較電圧生成用データIVHcは、各比較器(52)個々の固有の誤差を補正する為のデータとして補正データ生成手段210において各比較器(52)が有する誤差に対応して生成され、個別比較電圧生成用データ入力手段101cへ入力される。共通比較電圧生成用データ入力手段101b、個別比較電圧生成用データ入力手段101c、加算器101aは比較電圧生成用データ入力手段101を構成する。ハイレベル共通比較電圧生成用データIVHbはchM以外の他の出力電圧検出手段(50)における比較器(52)と共通して入力されるデータであるが、ハイレベル個別比較電圧生成用データIVHcは各比較器(52)に固有の値として入力されることから各比較器(52)の誤差を補正して高精度な電圧測定を可能としている。
【0049】
ロー側比較の場合も同様であり、DAC107への入力データ(比較電圧生成用データ)は、共通比較電圧生成用データ入力手段102bへ入力されるローレベル共通比較電圧生成用データIVLbと個別比較電圧生成用データ入力手段102cへ入力されるローレベル個別比較電圧生成用データIVLcとを加算器102aにおいて加算して生成される。ローレベル共通比較電圧生成用データIVLbは、テスタ制御手段40から、例示しているchM以外の他の出力電圧検出手段(50)における比較器(53)と共通するデータとして共通比較電圧生成用データ入力手段102bへ入力される。また、ローレベル個別比較電圧生成用データIVLcは、各比較器(53)個々の固有の誤差を補正する為のデータとして補正データ生成手段210において各比較器(53)が有する誤差に対応して生成され、個別比較電圧生成用データ入力手段102cへ入力される。共通比較電圧生成用データ入力手段102b、個別比較電圧生成用データ入力手段102c、加算器102aは比較電圧生成用データ入力手段102を構成する。ローレベル共通比較電圧生成用データIVLbはchM以外の他の出力電圧検出手段(50)における比較器(53)と共通して入力されるデータであるが、ローレベル個別比較電圧生成用データIVLcは各比較器(53)に固有の値として入力されることから各比較器(53)の誤差を補正して高精度な電圧測定を可能としている。
【0050】
なお、補正用データである個別比較電圧生成用データIVHc、IVLcは正の場合と、負の場合がある。また比較対象となる被検査電圧はDUTの各出力端子毎の電圧でもよく、またDUTの所定の出力端子を適宜切り換えて選択された電圧であっても良い。また、半導体検査装置100と補正データ生成手段210とを各テスタチャンネル毎に1つのユニットにすることにより、ハイレベル個別比較電圧生成用データIVHc及びローレベル個別比較電圧生成用データIVLcの帰還ループを短縮できるのでノイズによる影響を低減でき、さらに、半導体検査装置100等の故障時においてユニット交換による修理が可能となりメンテナンスが容易になる。
【0051】
<実施の形態2>
図2は図1の半導体検査装置の要部回路ブロックを複数備えた半導体検査装置の要部を示すブロック図である。半導体検査装置200は図1において述べた半導体検査装置100を複数備えたものであり、重複する部分については説明を省略する。DUTの出力に対応する入力端子としてテスタチャンネルch1〜chMを備え、各テスタチャンネルに対応して半導体検査装置100が設けてある。半導体検査装置200は、さらに補正データ生成手段210を備え、外部にはテスタ制御手段40が接続されている。各半導体検査装置100は比較電圧生成用データ入力手段101、102を備え、比較電圧生成用データ入力手段101にはハイレベル共通比較電圧生成用データIVHbがテスタ制御手段40から、ハイレベル個別比較電圧生成用データIVHcが補正データ生成手段210から入力される。比較電圧生成用データ入力手段102にはローレベル共通比較電圧生成用データIVLbがテスタ制御手段40から、ローレベル個別比較電圧生成用データIVLcが補正データ生成手段210から入力される。なお、補正データ生成手段210は全テスタチャンネル分をまとめてブロックとしているが、上述したとおり各テスタチャンネルに応じてユニット化しても良い。
【0052】
図1において述べたとおり、ハイレベル個別比較電圧生成用データIVHc及びローレベル個別比較電圧生成用データIVLcに基づいて各半導体検査装置100(に内蔵する比較器(52、53))の固有の誤差が補正される。各半導体検査装置100はハイレベル比較結果出力データをD1H〜DMHとして、ローレベル比較結果出力データをD1L〜DMLとして、補正データ生成手段210、テスタ制御手段40へ出力する。テスタ制御手段40は、比較結果出力データ(ハイレベル比較結果出力データD1H〜DMH及びローレベル比較結果出力データD1L〜DML)に基づいてDUTの良否判定を行う。
【0053】
図3は補正データ生成手段の概略ブロックを示すブロック図である。補正データ生成手段210は図1、図2においてブロックで示したものである。比較結果入力手段211には、半導体検査装置(100、200)における被検査電圧と比較電圧の比較結果である比較結果出力データ(ハイレベル比較結果出力データD1H〜DMH及びローレベル比較結果出力データD1L〜DML)が入力される。図においては、テスタチャンネルM(chM)の場合(DMH/DML)を示す。ハイレベル比較器52の固有の誤差を補正するための補正データ(個別比較電圧生成用データIVHc)は、ハイレベル比較結果出力データDMH(D1H〜DMH)をもとに生成される。またローレベル比較器53の固有の誤差を補正するための補正データ(個別比較電圧生成用データIVLc)は、ローレベル比較結果出力データDML(D1L〜DML)をもとに生成される。
【0054】
ハイレベル比較器52の補正データ(個別比較電圧生成用データIVHc。以下補正データIVHcという)を生成する場合について説明するが、ローレベル比較器53の補正データ(個別比較電圧生成用データIVLc)を生成する場合も同様である。比較結果入力手段211に入力されたデータ(ハイレベル比較結果出力データDMH)は補正データ生成制御手段213に取り込まれる。補正データ生成制御手段213は補正データ生成手段210全体を制御するものである。記憶手段212は制御動作を行わせるプログラムや演算結果等の一時記憶データを記憶するものである。補正データ設定手段216にはハイレベル比較器52へ出力する補正データIVHcが設定されている。補正データIVHcの生成時あるいは補正データIVHc生成後のいずれの場合も、補正データIVHcが補正データ設定手段216に設定されたデータをもとに補正データ出力手段219、比較電圧生成用データ入力手段101等を介してハイレベル比較器52へ出力される。また、検出された最適補正データは補正データ記憶手段215に記憶され、それ以降、補正データ設定手段216には補正データ記憶手段215に記憶された最適補正データが設定される。したがって、補正データ記憶手段215は、半導体検査装置(100、200)の電源が遮断された場合でも記憶された最適補正データを保持することができる不揮発性メモリであることが望ましい。補正データ生成制御手段213にはさらに補正回数カウント手段214が接続され、補正回数の適正化を図る。補正データ生成制御手段213及び補正データ設定手段216にはさらに補正データ加減手段217、補正初期値記憶手段218が接続される。なお、補正方法については後述する(実施の形態7等参照)。
【0055】
<実施の形態3>
図4は本発明に係る半導体検査システムの概略ブロックを示すブロック図である。なお、本発明に係る半導体検査装置(図1の半導体検査装置100及び図2の半導体検査装置200)において半導体検査装置との用語を用いることから半導体検査システムと表記するが、半導体検査システムも半導体検査装置として把握できるものであることは言うまでも無い。第2半導体検査装置200(図1における半導体検査装置100、図2における半導体検査装置200に相当するものであり、「第2」半導体検査装置としたのは、後述する「第1」半導体検査装置201(図5参照)と区別するために過ぎない)は、例えば、その部分をモジュールとすることにより、従来の半導体試験装置(半導体テスタ)15の入力側外部に配備して、従来の半導体試験装置15を改変せずにそのまま利用してより高精度の半導体集積回路の検査をすることができる。また、半導体検査装置(100、200、201)は、半導体集積回路であるDUTを駆動するための集積回路駆動部(不図示)を備える構成とすることにより、より効率的な検査が可能な半導体検査装置、半導体検査システムとすることができる。
【0056】
半導体検査システムはさらに第2半導体検査装置200の入力側に減算器6、増幅器8、階調期待値電圧を発生する期待値電圧発生手段60を備える。減算器6、増幅器8は図20の説明において述べた従来の半導体試験装置15において用いられるものと同一であり、詳細な説明は省略する。期待値電圧発生手段60は補正により高精度のものになっている点を除いて、図20の説明において述べた期待値電圧発生手段60と同一である。DUTの出力端子Y1〜YMからの階調出力電圧は、電圧差検出手段としての減算器6、増幅手段としての増幅器8、期待値電圧発生手段60による所定の処理(図20、図21参照)をされ、第2半導体検査装置200へ入力され良否判定がなされる。半導体試験装置15は内部にデジタル比較部11、テスタ制御手段40、周辺ブロック部12を備える点も図21の説明において述べたとおりである。なお、第2半導体検査装置200から期待値電圧発生手段60へ信号線200aを介して、ハイレベル比較結果出力データ(D1H〜DMH)、ローレベル比較結果出力データ(D1L〜DML)を帰還させた場合には、半導体試験装置15を特に用いる必要がなくなる。
【0057】
デジタル比較部11は第2半導体検査装置200から入力される判定結果(論理信号)に基づいてデジタル比較を行い、論理信号(D1〜DM)に変換してテスタ制御手段40へ入力する。第2半導体検査装置200をモジュールとする場合に、減算器6、増幅器8を含めてモジュール化することが可能である。また、このようなモジュール化によりDUTから比較器(52、53)までの電気長は半導体試験装置15内部の比較器(デジタル比較部11)を用いて検査する場合と比較して短縮できることになり、耐雑音性等を考慮すれば好ましいことは言うまでも無い。半導体検査システムにおいては、第2半導体検査装置200を用いることから、テスタ制御手段40から第2半導体検査装置200へ共通比較電圧生成用データIVHb、IVLbが入力される。個別比較電圧生成用データ(IVHc、IVLc)は、第2半導体検査装置200の内部において処理される。
【0058】
なお、第2半導体検査装置200に含まれる比較器52、53の電圧測定精度は、デジタル比較部11において用いられる比較器(不図示)と同程度の精度であっても、固有の誤差を補正することにより測定精度を向上できる。一層高精度化を実現するためには、比較器52、53の精度をデジタル比較部11において用いられる比較器より高精度のものとすることが望ましい。
【0059】
<実施の形態4>
図5は本発明に係る半導体検査システムの概略ブロックを示すブロック図である。第2半導体検査装置200をデジタル比較部11と共に半導体試験装置15の内部に組み込んで第1半導体検査装置201としたものであり、第1半導体検査装置201は第2半導体検査装置200の機能とともにデジタル比較部11の機能を併せ持つものである。図4における半導体検査システムと基本構成に差はないので、詳細な説明は省略する。
【0060】
<実施の形態5>
図6は本発明に係る出力電圧検査手段における比較手段の補正方法を説明するブロック図である。基本構成は図4において示した半導体検査システムと同様であり、詳細な説明は省略する。DUTの出力端子Y1〜YMから出力される階調出力電圧は、減算器6、増幅器8、期待値電圧発生手段60による所定の処理(図21参照)をされ、第2半導体検査装置200へ入力される。半導体試験装置15は、デジタル比較部11、周辺ブロック部12、テスタ制御手段40を備え、第2半導体検査装置200からの信号はデジタル比較部11へ入力される。図4との違いは、増幅器8と第2半導体検査装置200との間に第1補正用切替スイッチSW1を備える点である。第1補正用切替スイッチSW1は、その共通端子S1cを第2半導体検査装置200の被検査電圧入力手段(51)へ、独立第1端子S1aを増幅器8の出力端子へ、独立第2端子S1bを固定電位端子(接地点)へ各々接続される。DUTの階調出力電圧検査時には共通端子S1cは独立第1端子S1aへ接続され、比較器(52、53)の0V補正時(後述)には共通端子S1cは独立第2端子S1bへ接続される構成とする。第1補正用切替スイッチSW1は、第2半導体検査装置200の近くに配置することにより固定電位端子(接地点)を強固にでき、耐雑音性に優れた試験装置にすることができる。第1補正用切替スイッチSW1は、減算器6、増幅器8、期待値電圧発生手段60、第2半導体検査装置200と共にモジュール化することにより、従来の半導体試験装置15をそのまま活用でき、極めて簡単に半導体試験システムの高精度化が可能となる。
【0061】
<実施の形態6>
図7は本発明に係る期待値電圧発生手段における補正方法を説明するブロック図である。基本構成は図6において示した半導体検査システムと同様であり、詳細な説明は省略する。図6の構成に、第2補正切替用スイッチSW2がさらに付加されている点が異なる。第2補正切替用スイッチSW2は減算器6に入力する信号をDUTからの階調出力電圧か、高精度電圧発生手段13からの出力かを選択するものである。第2補正用切替スイッチSW2は、その共通端子S2cを減算器6へ、独立第1端子S2aをDUTの出力端子へ、独立第2端子S2bを高精度電圧発生手段13へ各々接続される。DUTの階調出力電圧検査時には共通端子S2cは独立第1端子S2aへ接続され、期待値電圧発生手段60の補正時(後述)には共通端子S2cは独立第2端子S2bへ接続される構成とする。DUTの階調出力電圧検査時は、独立第1端子S2aと共通端子S2cが接続され、期待値電圧発生手段60の補正時は共通端子S2cと独立第2端子S2bが接続される。この際、第1補正用切替スイッチSW1は増幅器8と第2半導体検査装置200とを接続している。増幅器8の出力電圧は、高精度電圧発生手段13のアナログ出力(VKS)と期待値電圧発生手段60の出力(VKD)の差電圧を増幅(増幅率を例えば24倍とする)した電圧ΔVK=24×(VKS−VKD)のアナログ信号となる。アナログ信号は第2半導体装置200に入力され、第2半導体装置200の比較結果出力データ(D1H〜DMH、D1L〜DML)の少なくとも1つは信号線200aを介して期待値電圧発生手段60に入力(フィードバック)されている。また、テスタ制御手段40から信号線40aを介して期待値電圧発生手段60に入力(フィードバック)する場合は、期待値電圧発生手段60の補正を更に高速にすることができる。高精度電圧発生手段13は、標準器として規格化された標準電圧発生器をトレースした副標準電圧発生器等を用いるので、高精度電圧発生手段13の電圧発生精度は実質的に0と見なすことができる。第2補正切替用スイッチSW2は、減算器6、増幅器8、第1補正用切替スイッチSW1、期待値電圧発生手段60、第2半導体検査装置200と共にモジュール化することにより、従来の半導体試験装置15をそのまま活用でき、極めて簡単に半導体試験システムの高精度化が可能となる。
【0062】
図8、図9は本発明に係る期待値電圧発生手段のブロック構成を示すブロック図である。期待値電圧発生手段60は、実施の形態7乃至11における各種補正のための構成ブロックである。図9は図8の構成に対し演算手段67をさらに付加したものである。期待値電圧発生手段60は、期待値電圧出力手段を構成する18ビットのDAC61、DAC61へ入力する理想値入力データ(誤差が無いとした場合にDAC61へ入力されるべきデータ)を記憶する理想値入力データ記憶手段63と、DAC61の理想特性からの誤差を補正するための補正入力値を記憶する補正値入力データ記憶手段64と、理想値入力データ記憶手段63に記憶されている理想値入力データVKIDと補正値入力データ記憶手段64に記憶されている補正値入力データVKHDを加算器62により加算し、DAC61への入力データVKRDを生成する演算手段67とを備えている。さらに、これらを制御する制御手段65と、記憶手段66と、制御手段65と外部(例えば信号線40a又は信号線200a等)との間でデータを入出力するデータ入出力手段(不図示)を備えている。演算手段67はゲイン補正係数、DAC61への入力データとなる補正値入力データを算出する(実施の形態11参照)。なお、期待値電圧出力手段60におけるDAC61の分解能を、比較電圧生成手段におけるDAC106、DAC107の分解能より高精度にすることにより、より高精度の検査ができる。また、期待値電圧発生手段60は半導体検査装置等への適用に限らず、その他の用途への適用も可能である。
【0063】
記憶手段66には補正過程を記述した補正プログラム、DAC61に入力する複数の理想値入力データ、補正データなどが記憶されている。制御手段65と記憶手段66は、半導体試験装置15等の外部装置に備えていてもよい。内部に備えている場合は、高価な半導体試験装置15が無くても補正が可能となる。また、外部装置に備えている場合は、期待値電圧発生手段60の構成が簡略化できる。増幅器8の増幅率は、比較器誤差補正時と同様に24倍である。
【0064】
期待値電圧発生手段60に備えられた期待値電圧出力手段であるDAC61の出力は減算器6に入力され(図6、図7参照)、階調期待値電圧と階調出力電圧との差電圧を生成するための基準電圧(階調期待値電圧)であるため極力高精度である必要があり、18ビット仕様のものを選択した。なお、必要なビット数はデバイスの仕様により相対的に決定されるものであり、18ビット仕様に限定されるものではない。DAC61の最大出力は、例えば13Vである。したがってこの場合のDAC61の分解能は、13V/21 8 、即ち、0.050mV/ビットである。
【0065】
<実施の形態7>
実施の形態7は本発明に係る半導体検査装置の補正方法である。基本的な流れは、次のとおりである。
出力電圧検査手段50に備えられた比較器52、53のいずれか一方の比較器について、まず0V補正を行い、次に0V以外の補正を適宜行う。次に他方の比較器52、53についても同様に補正を行う。さらに、期待値電圧発生手段60についても0V補正を行い、次に0V以外の補正を適宜行う。
【0066】
期待値電圧発生手段60における期待値電圧補正方法はさらに、次のようなステップにより行う。
補正基準となる補正基準電圧入力ステップと、前記補正基準電圧に対応した比較結果に応じて補正基準電圧を増加または減少させる補正基準電圧増減ステップと、比較結果が変化するか否かを検出する比較結果検出ステップと、比較結果が変化しないときは補正基準電圧増減ステップを繰り返し行い、比較結果が変化したときは補正基準電圧増減を停止し、且つ、該タイミングの補正電圧データを記憶する補正データ記憶ステップとを備える。
【0067】
図6、図7、図8、図1を参照して比較器、デジタルアナログ変換器等が有する固有の誤差を補正する補正方法を説明する。
第2半導体検査装置200に備えられている比較器52、53の測定誤差は例えば20mVであるとする。比較器用基準電圧(VOHS、VOHL)発生用DAC106、107は14ビット構成であり、発生する最大電圧は比較器52、53の仕様により、例えば±2.560V(Vp−p=5.120V)である。また、期待値電圧発生手段60に備えられている基準電圧発生用DAC61は18ビット構成であり、発生する最大電圧は13Vである。この最大電圧13Vは、DUTの出力仕様の最大出力電圧13Vに対応づけている。第1補正用切替スイッチSW1は、後述する比較器の0V補正時は共通端子S1cと第2独立端子S1b(固定電位端子(接地点))を接続する。
【0068】
補正対象の比較器52、53には0V(固定電位端子(接地点)に接続)を入力する。半導体検査装置200に内蔵されているDAC106、107は14ビットであり、最大出力電圧の絶対値は5.120Vであるとする。つまり、DAC106、107の分解能は5.120V/214=0.3mV/ビットである。補正順序は、図1内のハイレベル比較器52、ローレベル比較器53のうちいずれから行ってもよい。
【0069】
比較器52の0V補正値を求める方法の概略ステップ(1〜6)は以下のとおりである。比較器53についても同様に補正することができる。
概略ステップ1:
まず、期待値電圧発生手段60の理想値入力データ記憶手段63に対応するDAC61が理想DACであるときの理想特性に対応する入力データの値を設定する。設定はテスタ制御手段40からデータを制御手段65へ入力し、理想値入力データ記憶手段63に記憶、読出して設定する。補正値入力データについても同様に補正値入力データ記憶手段64に記憶、読出して設定する。
概略ステップ2:
次に、比較器52等の誤差補正対象回路部の仕様から決まる最大誤差範囲よりも大きな値を補正値の初期値として設定する。最大誤差(仕様)が例えば+64mVの場合、例えばその2倍の+128mVを設定する。比較器52はハイレベル側の比較を行う比較器であるから、VOH補正データ入力手段(比較電圧生成用データ入力手段101c)を介して比較器52の+端子の値VOHSを設定する。
【0070】
概略ステップ3:
最初は概略ステップ2の設定条件であるから、補正値が許容誤差の範囲を超えるので、比較器52の出力(例えばchMでは、最終的にはDMH)はハイまたはローのいずれかの値になる。
概略ステップ4:
次の補正値は、絶対値が現在の補正値(+128mV)の1/2倍で、極性は反対の値(+に対し−)として求める(つまり−64mV)。
【0071】
概略ステップ5:
補正値として概略ステップ4により求めた−64mVを設定する。このとき(VOH補正データ入力手段を介して−64mVを入力したとき)、比較器52の出力状態が直前と反対の状態に変化する場合、つまり、比較器52の出力がハイからローに変化、あるいは、ローからハイに変化した場合は、現在の補正値(−64mV)に対し、新たに設定する補正値として現在の補正値を求めた際の補正値の変化幅の1/2の値だけ変化させ、且つ、変化方向は直前の変化方向の反対側に変化させる。つまり、+128mVから−64mVへの変化は−192mV(現在の補正値を求めた際の補正値の変化幅)であり、変化幅は192、変化方向はマイナスである。従って、次の補正値を求めるための変化幅は192mV/2=96mV、補正は増加する方向、つまりプラス方向となる。したがって、直前の補正値−64mVに補正値の変化幅+96mVを加えた値+32mVを次の補正値とする。
また、比較器52の出力が直前の状態と同じ場合、つまり、ハイ又はロー状態を維持した場合は、現在の補正値(−64mV)に対し、新たに設定する補正値として現在の補正値を求めた際の補正値の変化幅の1/2倍の値だけ変化させ、且つ、変化方向は直前の変化方向と同じ側に変化させる。つまり、+128mVから−64mVへの変化は−192mVであり、変化幅は192、変化方向はマイナスである。従って、次の補正値を求めるための変化幅は192mV/2=96mV、補正は減少する方向、つまりマイナス方向となる。したがって、直前の補正値−64mVに補正値の変化幅−96mVを加えた値−160mVを次の補正値とする。この様な方法で、補正値の再補正を行う。
概略ステップ6:
変化幅が、比較器52の分解能の値より小さくなった時点の補正値を最終補正値として確定する。
【0072】
以上の方法は、比較器、DACのような補正対象回路が有する固有の誤差を補正するために、補正値の設定を出力状態(出力の論理状態)の変化を判定しながら繰り返し、設定する補正値を徐々に収束させていくものであり、これにより補正対象回路が有する誤差を絞り込むことができる。比較器、DACのような誤差補正が必要な補正対象回路に適用可能な高速補正値探索方法である。
【0073】
さらに詳細に補正対象回路の補正方法を説明する。
<実施の形態8>
実施の形態8は+20mVの誤差が内蔵されているハイレベル比較器52の補正方法(補正手順)である。さらに、実施の形態9において、+10mVの誤差が内蔵されているローレベル比較器53の場合の補正方法(補正手順)を説明する。
【0074】
(A.ハイレベル比較器52の0V補正値の補正方法における初期設定)
ここで、0V補正値とは、理想特性0Vに対する補正値(補正入力データ)をいう。
図6において、第2半導体検査装置200へ入力されるテスタ制御手段40からの共通比較電圧生成用データ(IVHb、IVLb)から得られる電圧VOH、VOLは0.000V(以下他のデータ部分を含め全て、データの数値ではなく対応する電圧値で示す)に設定する。補正用データ初期値は、各々128mV、−2.500Vに設定する。この値はハイレベル比較器52(以下比較器52ともいう)に入力される電圧が誤差の範囲よりも十分に大きな値になるように選択し、比較器52の初期出力値は比較器の測定誤差の大小に拘わらず所定の値に設定できるようにしている。VOHの初期値は、補正時間を短くする観点からは極力小さい値が望まれるためVOLよりも小さい値を選択している。第1補正用切替スイッチSW1の共通端子S1cと独立第2端子S1bとを接続し、比較器52への入力電圧(被検査電圧に対応)を0.000Vとする。比較器52に対応するDAC(比較電圧生成手段)106には128mV+0.000V即ち128mVに対応するデジタルデータが入力されている。ローレベル比較器53に対応するDAC(比較電圧生成手段)107には−2.500V+0.000V即ち2.500Vに対応するデジタルデータが入力されている。
【0075】
(B.ハイレベル比較器52の0V補正値の補正方法)
比較器52の誤差が+20mVの場合、即ち、比較器52の+入力端子に入力される補正電圧(個別比較電圧生成用データIVHcから変換される電圧)に+20mVを加えた値が、実効入力電圧となるような誤差を含む場合、これを、DUTのデバイス仕様から要求される測定精度を満たす精度まで以下の方法で補正する場合について説明する。図10はハイレベル比較器の0V補正値の補正方法における各ステップでの状況を示す状況一覧図表である。図において、IVHc補正値欄は個別比較電圧生成用データIVHcに対応するが、ここでは簡単化するために電圧値で示す。+端子入力電圧(実効入力電圧)欄は誤差を含む実効的な値を示す。比較器出力欄は比較器52の出力状態(論理ハイ/ロー)を示す。誤差欄は補正値による補正の結果得られる最終的な誤差をあらわす。ステップ欄の番号は以下のステップ番号と一致する。誤差欄の数値はDAC61での量子化誤差分を除いて示す。なお、比較器52の補正においては、ローレベル比較器53については言及しないが、出力は常時ローレベルである。比較器52の−入力端子に入力される電圧は0.000V(固定)、VOHは0.000V(固定)、VOLは−2.500V(固定)とする。
【0076】
ステップ1:
初期状態の比較器52の出力(ハイ又はローのいずれの状態にあるか)を確認する。初期状態では+入力端子の実効入力電圧は+148mV(+128mV+20mV)であるので、比較器52の出力はハイレベルとなる。これにより誤差電圧が−128mV以上であることを確認する
ステップ2:
−128mV×1/2=−64mVに対応するデジタル補正データを設定する。+入力端子の実効入力電圧は−44mV(−64mV+20mV)であるので、出力はローレベルとなる。これにより、誤差は+64mV以下であることが確認できる。
ステップ3:
−(148mV+44mV)×1/2−64mV=+32mVに対応するデジタル補正データを設定する。+入力端子の実効入力電圧は+52mVであるので、出力はハイレベルとなる。これにより、+誤差電圧は32mV以上であることが確認できる。
【0077】
ステップ4:
−(96mV)×1/2+32mV=−16mVに対応するデジタル補正データを設定する。+入力端子の実効入力電圧は+4mVであるので、出力はハイレベルとなり、ハイレベル出力が連続する。誤差電圧は−16mV以上であることが確認できる。
ステップ5:
比較器52の出力状態が変化しない場合は、次の補正値として、現補正値(ここではステップ4で得た補正値)に変化幅Δnを加算した値を設定する。該変化幅Δnは、直前の補正値の変化幅Δ(n−1)(ステップ4で得た補正値からステップ3で得た補正値を差し引いた値)の1/2である。変化させる極性は直前の変化と同方向に変化させる。
Δ(n−1)=+32mV−(−16mV)=+48mV、Δn=+48mV×1/2=+24mV
次の補正値は、−16mV−24mV=−40mVに対応するデジタル補正データを設定する。+入力端子の実効入力電圧は−20mVであるので出力はローレベルとなる。誤差電圧は+40mV以下であることが確認できる。
ステップ6:
比較器52の出力状態が変化した場合は、次の補正値として、現補正値(ここではステップ5で得た補正値)に変化幅Δmを加算する。変化幅Δmは、直前の補正値の変化幅Δ(m−1)(ステップ5で得た補正値からステップ4で得た補正値を差し引いた値)の1/2である。変化させる極性は直前の変化とは逆方向に変化させる。前回の変化幅は24mVであり、変化方向は負である。したがって、変化幅は12mV、変化方向は正である。その結果、次の補正値は、以下のようになる。
次の補正値=現在の補正値+12mV=−40mV+12mV=−28mV
次の補正値として−28mVに対応するデジタル補正データを設定する。+入力端子の実効入力電圧は−8mVであるので出力はローレベルとなる。誤差電圧は+28mV以下であることが確認できる。
【0078】
ステップ7:
比較器52の出力状態が変化しない場合であるので、ステップ5と同様の方法で次の補正値を求める。変化幅は12mV×1/2=6mV、変化方向は正である。
次の補正値=現在の補正値+6mV=−28mV+6mV=−22mV
次の補正値は、−22mVに対応するデジタル補正データを設定する。実効入力電圧は−2mVであるので、出力はローレベルとなる。誤差電圧は+22mV以下であることが確認できる。
ステップ8:
比較器52の出力状態が変化しない場合であるので、ステップ5と同様の方法で次の補正値を求める。変化幅は+6mV×1/2=+3mV、変化方向は正である。
次の補正値=現在の補正値+3mV=−22mV+3mV=−19mV
次の補正値は、−19mVに対応するデジタル補正データを設定する。実効入力電圧は+1mVであるので、出力はハイレベルとなる。誤差電圧は+19mV以上であることが確認できる。
ステップ9:
比較器52の出力状態が変化する場合であるので、ステップ5と同様の方法で次の補正値を求める。変化幅は3mV×1/2=1.5mV、変化方向は負である。
次の補正値=現在の補正値−0.75mV=−19mV−1.5mV=−20.5mV
次の補正値は、−20.5mVに対応するデジタル補正データを設定する。実効入力電圧は−0.5mVであるので、出力はローレベルとなる。誤差電圧は+20.5mV以下であることが確認できる。
【0079】
ステップ10:
比較器52の出力状態が変化する場合であるので、ステップ5と同様の方法で次の補正値を求める。変化幅は1.5mV×1/2=0.75mV、変化方向は正である。
次の補正値=現在の補正値+0.75mV=−20.5mV+0.75mV=−19.75mV
次の補正値は、−19.75mVに対応するデジタル補正データを設定する。実効入力電圧は+0.25mVであるので、出力はハイレベルとなる。誤差電圧は+19.75mV以上であることが確認できる。
ステップ11:
比較器52の出力状態が変化する場合であるので、ステップ5と同様の方法で次の補正値を求める。変化幅は0.75mV×1/2=0.375mV、変化方向は負である。
次の補正値=現在の補正値−0.375mV=−19.75mV−0.375mV=−20.125mV
次の補正値は、−20.125mVに対応するデジタル補正データを設定する。実効入力電圧は−0.125mVであるので、出力はローレベルとなる。誤差電圧は+20.125mV以下であることが確認できる。
ステップ12:
比較器52の出力状態が変化する場合であるので、ステップ5と同様の方法で次の補正値を求める。変化幅は0.375mV×1/2=0.1875mV、変化方向は正である。
次の補正値=現在の補正値+0.1875mV=−20.125mV+0.1875mV=−19.9375mV
次の補正値は、−19.9375mVに対応するデジタル補正データを設定する。実効入力電圧は+0.0625mVであるので、出力はハイレベルとなる。誤差電圧は+19.9375mV以上であることが確認できる。この時点での補正誤差は+0.0625mVである。
【0080】
ハイレベル比較器52に対応するDAC106の分解能が0.03mVであるので、これ以上の補正は行わない。初期設定から11回の補正を行うことで、誤差20mVを誤差0.0625mVまで補正できた。比較器52の分解能が0.3mVであるので、不確定誤差0.15mVを考慮すると、誤差は+0.15625mV乃至−0.14375mVの範囲となる。測定対象のDUTの出力仕様は、例えば、最大出力電圧13V、512階調出力であるので、1階調間あたりの電圧はγ補正に依存するものの、均等に分割すると25.39mVである。出力端子間偏差電圧としては25.39mV/4=6.35mV程度の電圧測定精度が必要であるが、今回の補正で十分に正確な測定が行える。なお、出力端子間偏差電圧仕様は、256階調以上の仕様の液晶駆動装置においては、隣接階調電圧の1/2である場合も多く、当然ながらこのような場合にも正確な測定が行える。
【0081】
測定対象のDUTの出力仕様が、最大出力電圧13V、1024階調出力である場合は、1階調間あたりの電圧は均等に分割すると6.35mVである。出力端子間偏差電圧は6.35mV/4=1.587mV程度の電圧測定が必要であるが、今回の補正で0.15mVの誤差範囲で測定が可能なため十分に正確な測定が行える。
【0082】
<実施の形態9>
(ローレベル比較器53の0V補正値の補正方法)
実施の形態8と同様の方法により、+10mVの誤差が内蔵されているローレベル比較器53の補正方法(補正手順)を説明する。
ローレベル比較器53についても同様の方法で補正を行うことができる。このときの初期設定としては、−端子入力電圧=0.000V(固定)、VOH=2.500V(固定)、VOL=0.000V(固定)、IVLb=−128mVである。図11はローレベル比較器の0V補正値の補正方法における各ステップでの状況を示す状況一覧図表である。図において、IVLc補正値欄は個別比較電圧生成用データIVLcに対応するが、ここでは簡単化するために電圧値で示す。その他の項目等は図10と同一ある。基本的には実施の形態8における方法と同一であり、ステップ21からステップ32についての詳細な説明は省略する。ローレベル比較器53の+入力端子に入力される電圧は0.000V(固定)、VOL=0.000V(固定)、VOH=2.500V(固定)とする。
【0083】
以上により、所定のチャンネルのハイレベル比較器52、ローレベル比較器53の補正データが確定され、補正データ記憶手段(215。図3参照)に記憶される。この動作を補正が必要なすべてのチャンネルに対して行う。なお、一度設定された補正データはテスト装置の電源が遮断されても記憶されている事が望ましい。電源再投入時に再度補正値を求める必要がないからである。したがって、この記憶手段は不揮発性メモリであることが望ましい。
【0084】
<実施の形態10>
図9における期待値電圧発生手段60に誤差がある場合、即ち、期待値電圧発生手段60が備えるDAC61に誤差がある場合は、この誤差を補正する必要がある。誤差がない理想的DACとした場合のDAC入力データ(理想値入力データVKID)に、誤差補正用データ(補正値入力データVKHD)を加え、加算後のデータ(実入力データVKRD。加算器62の出力)をDAC61の入力デジタルデータとして与えることで期待値電圧発生手段60からの発生電圧の誤差を補正する。DAC61の誤差には、オフセット誤差と増幅率誤差とがある。オフセット誤差とは、理想特性のDACであれば0V電圧を出力することになるデジタルデータをDAC61の入力データとして与えたときに、DAC61から出力される電圧値のことをいう。実施の形態10においては期待値電圧発生手段60におけるオフセット誤差の補正方法を説明する。増幅率誤差(ゲイン誤差)の補正方法については実施の形態11において説明する。DUTの仕様は実施の形態9、10の場合と同様である。
【0085】
(A.期待値電圧発生手段60のオフセット誤差の補正方法)
オフセット誤差が−10mVの場合を例として、以下の補正過程によりオフセット誤差を補正する。なお、−10mVの誤差がある場合、検査対象のDUTは1階調間あたりの電圧が25.39mVであり、測定精度として不十分である。以下、DACの各入力データ(理想値入力データVKID、補正値入力データVKHD、実入力データVKRD)は、各デジタル入力に対応する電圧値で表現することとする。期待値電圧発生手段60の補正をする方法の概略ステップ(10〜15)は以下のとおりである。
【0086】
概略ステップ10:
まず、理想値入力データ記憶手段63に記憶するデータは、高精度電圧発生手段13(図7参照)の電圧に対応する理想DAC入力データ(理想値入力データVKID)の値を設定する。
概略ステップ11:
次に、DAC61等の誤差補正対象回路部の仕様から決まる最大誤差範囲よりも大きな値を補正値の初期値として設定する。例えば、DAC61の出力の最大誤差(仕様)が例えば+64mVの場合、例えばその2倍の+128mVを設定する。この設定条件では、補正値が許容誤差の範囲を超えているので、比較器53の出力(例えばchMでは、最終的にはDML)はハイ又はローのいずれかの値になる。
概略ステップ12:
次の補正値は、絶対値が現在の補正値(+128mV)の1/2倍で、極性は反対の値、つまり−64mVを次の補正値として設定する。
【0087】
概略ステップ13:
このとき、比較器53の出力状態が直前の状態と反対の状態、つまり、ハイからローに変化、又はローからハイに変化する場合は、現在の補正値(−64mV)に対し、新たに設定する補正値として現在の補正値を求めた際の補正値の変化幅の1/2の値だけ変化させ、且つ、変化方向は直前の変化方向の反対側に変化させる。つまり、128mVから−64mVへの変化は−192mVであり、変化幅は192、変化方向はマイナスである。従って、次の補正値を求めるための変化幅は192mV/2=96mV、補正は増加する方向、つまりプラス方向となる。したがって、直前の補正値−64mVに補正値の変化幅+96mVを加えた値+32mVを次の補正値とする。
概略ステップ14:
また、比較器53の出力状態が直前の状態と同じ場合、つまり、ハイ又はロー状態を維持した場合は、現在の補正値(−64mV)に対し、新たに設定する補正値として現在の補正値を求めた際の補正値の変化幅の1/2の値だけ変化させ、且つ、変化方向は直前の変化方向と同じ側に変化させる。つまり、128mVから−64mVへの変化は−192mVであり、変化幅は192、変化方向はマイナスである。従って、次の補正値を求めるための変化幅は192mV/2=96mV、補正は減少する方向、つまりマイナス方向となる。したがって、−64mVに補正値の変化幅−96mVを加えた値−164mVを次の補正値とする。
【0088】
概略ステップ15:
この様な方法で、補正値の再補正を行う。この変化幅が、補正対象デバイス、例えば、比較器あるいはDACの分解能の値より小さくなった時点の補正値を最終補正とする。この方法は、誤差補正対象が比較器、DACのいずれにも適用できる高速補正値探索方法である。
【0089】
(B.期待値電圧発生手段60のオフセット誤差の補正方法における初期設定)図7乃至図9、図1を参照して期待値電圧発生手段60が有するオフセット誤差の補正方法における初期設定について説明する。
比較器52、53の初期設定状態は、VOH=0.00mV、VOL=0.00mV、比較器補正データ(IVHc、IVLc)は比較器52、53の補正過程で得られた値が設定されている。高精度電圧発生手段13の出力電圧VKSは100mVに設定されている。理想値入力データ記憶手段63に記憶される理想値入力データVKIDは100mV(VKSに対応させる)、補正値入力データ記憶手段64の補正値入力データVKHDは128mVである。この128mVという値は、予想誤差よりも大きい値であり、且つ、補正値を極力効率よく検出できる値であることが必要である。ここで、期待値電圧発生手段60のDAC61の最大誤差範囲は±128mVである。即ち、±13V出力時の誤差は最大でも±128mVの範囲内にあるので、初期補正値として128mVを設定する。加算器62の出力VKRDは、228mV(VKID100mV+VKHD128mV)である。DAC61のオフセット誤差は−10mVであるので、DAC61の実効出力電圧VKDは218mV(228mV−10mV)となる。高精度電圧発生手段13の出力電圧VKSとDAC61の実効出力電圧VKDとの差電圧(増幅器8の入力)は−118mVであるので、増幅器8の出力電圧ΔVKは(−118mV)×24=−2832mVとなる。その結果、第2半導体検査装置200に備えられた2つの比較器52、53の基準電圧(VOH、VOL)いずれも0.00mVであるので、比較結果出力DMHはロー、DMLはハイとなる。補正は、比較結果出力DMH、DMLのいずれか一方のデータを用いて行うことができるが、図12に示す各補正過程では比較結果出力DML(比較器53)のデータを用いて補正を行う。高精度電圧発生手段13の出力電圧VKS、理想値入力データVKIDは、特に言及しない限り100mVの状態を保持する。
【0090】
図12は期待値電圧発生手段のオフセット誤差の補正方法における各ステップでの状況を示す状況一覧図表である。期待値電圧発生手段60のオフセット誤差は上述のとおり、−10mVである。図において、DAC各欄の理想値入力データVKIDは理想値入力データVKIDに、補正入力データVKHDは補正値入力データVKHDに、出力電圧はVKDに各々対応する。増幅器各欄の入力電圧は高精度電圧発生手段13の出力電圧VKSとDAC61の実効出力電圧VKDとの差電圧を、出力電圧は増幅器8からの出力電圧ΔVKを示す。比較器出力電圧欄は比較器53の比較結果出力の論理状態状況(ハイ、ロー)を示す。ステップ欄の番号は以下のステップ番号と一致する。誤差欄の数値はDAC61での量子化誤差分を除いて示す。なお、データの欄は簡単化するために対応する電圧で示す。
【0091】
ステップ41:
初期状態の比較器出力を確認する。初期状態ではDAC61の実効出力電圧VKDは218mVである。増幅器8の出力電圧ΔVKは(−118mV)×24=−2832mVである。出力電圧ΔVKが第2半導体検査装置200に備えられた比較器53に入力され、ローレベル比較結果出力データDML(以下出力データDMLともいう)はローとなる。
DAC61の補正値入力データVKHDに128mVの補正を行った基準電圧(出力電圧VKD)が被比較電圧(高精度電圧発生手段13の出力電圧VKS、理想値入力データVKIDに対応)100mVより高い電圧であることが判り、誤差電圧が−128mV以上であることが確認できる。
【0092】
ステップ42:
(−1)×128mV×1/2=−64mVに対応するDAC61の補正値を補正値入力データ記憶手段64に設定する。(ステップ41(以下S41のように示す)の補正値より192mV小さな値を設定する。)DAC61の実効出力電圧VKDは、26mVである。
VKD=理想値入力データ設定値+補正値入力データ設定値+誤差値=100mV+(−64mV)+(−10mV)=26mV
増幅器8の出力電圧ΔVKは、S41と同様の算出方法で1776mVとなる。
ΔVK=(高精度電圧発生手段13の出力電圧VKS−期待値電圧発生手段60の実効電圧VKD(DAC61の実効出力電圧))×増幅率=(100−26mV)×24=1776mV
比較器53の比較結果出力DMLはハイレベルとなる。即ち、−64mVの補正を行ったDAC61の入力データにて発生した基準電圧(出力電圧VKD)が被比較電圧100mVより低い電圧であるので、誤差電圧が64mV以下であることが確認できる。
【0093】
ステップ43:
(−1)×(−64mV)×1/2=32mVに対応するDAC61の補正値を補正値入力データ記憶手段64に設定する。(S42の補正値より96mV大きな値を設定する。)
DAC61の実効出力電圧VKDは122mV、増幅器8の出力電圧ΔVKは(−22mV)×24=−528mVとなる。比較器53の比較結果出力DMLはハイレベルである。即ち、32mVの補正を行ったDAC61の入力データにて発生した基準電圧(出力電圧VKD)が被比較電圧100mVより高い電圧であるので、誤差電圧が−32mV以上であることが確認できる。
【0094】
ステップ44:
(−1)×(32mV)×1/2=−16mVに対応するDAC61の補正値を補正値入力データ記憶手段64に設定する。(S43の補正値より48mV小さな値を設定する。)
DAC61の実効出力電圧VKDは74mV、増幅器8の出力電圧ΔVKは(26mV)×24=624mVである。比較器53の比較結果出力DMLはハイレベルである。即ち、−16mVの補正を行ったDAC61の入力データにて発生した基準電圧(出力電圧VKD)が被比較電圧100mVより低い電圧であるので、誤差電圧が16mV以下であることが確認できる。
【0095】
ステップ45:
(−1)×(−16mV)×1/2=8mVに対応するDAC61の補正値を補正値入力データ記憶手段64に設定する。(S44の補正値より24mV大きな値を設定する。)
DAC61の実効出力電圧VKD−10mVの誤差があるのでVKDは98mV、増幅器8の出力電圧ΔVKは(2mV)×24=48mVである。比較器53対応出力DMLはハイレベルである。即ち、8mVの補正を行ったDAC61の入力データにて発生した基準電圧(出力電圧VKD)が被比較電圧100mVより低い電圧であるので、誤差電圧が−8mV以下であることが確認できる。
【0096】
ステップ46:
S45では比較器53対応出力DMLの出力状態が変化しなかったことを考慮して、補正値の変化方向はS45の場合と同じ方向とする。つまり補正値を増加する方向に変化させる。増加する値はS45で増加した値の1/2倍とする。つまり、補正値の加算データは(24mV)×1/2=12mV、補正値は8mV+12mV=20mVに対応するDAC61の補正値を補正値入力データ記憶手段64に設定する。(S45の補正値より12mV大きな値を設定する。)
DAC61の実効出力電圧VKDは110mV、増幅器8の出力電圧ΔVKは(−10mV)×24=−240mVである。比較器53対応出力DMLはローレベルである。即ち、20mVの補正を行ったDAC61の入力データにて発生した基準電圧(出力電圧VKD)が被比較電圧100mVより低い電圧であるので、誤差電圧が−20mV以上であることが確認できる。
【0097】
ステップ47:
S46では比較器53対応出力DMLの出力状態が変化したことを考慮して、補正値の変化方向はS46の場合と反対方向とする。つまり、誤差値はS45の補正値とS46の補正値の中間にある補正値を検索する方向、即ち、減少させる方向に変化させる。減少する値はS46のステップで増加した値の1/2倍とする。補正値の減算データは(12mV)×1/2=6mV、補正値は−6mV+20mV=14mVに対応するDAC61の補正値を補正値入力データ記憶手段64に設定する。
DAC61の実効出力電圧VKDは104mV、増幅器8の出力電圧ΔVKは(−4mV)×24=−96mVである。比較器53対応出力DMLはローレベルである。これによりDAC61の誤差電圧が−14mV以上であることを確認する。
【0098】
ステップ48:
S47では比較器53対応出力DMLの出力状態が変化しなかったことを考慮して、補正値の変化はS47の場合と同じ方向とする。つまり、誤差値はS45の補正値とS47の補正値の中間にある補正値を検索する方向、即ち、減少させる方向に変化させる。減少する値はS47で減少した値の1/2倍とする。補正値の減少データは(6mV)×1/2=3mV、補正値は−3mV+14mV=11mVに対応するDAC61の補正値を補正値入力データ記憶手段64に設定する。
DAC61の実効出力電圧VKDは101mV、増幅器8の出力電圧ΔVKは(−1mV)×24=−24mVである。比較器53対応出力DMLはローレベルである。これによりDAC61の誤差電圧が−11mV以上であることを確認する。
【0099】
ステップ49:
S48では比較器53対応出力DMLの出力状態が変化しなかったことを考慮して、補正値の変化はS48の場合と同じ方向とする。つまり、誤差値はS45の補正値とS48の補正値の中間にある補正値を検索する方向、即ち、減少させる方向に変化させる。減少する値はS48で減少した値の1/2倍とする。補正値の減少データは(3mV)×1/2=1.5mV、補正値は−1.5mV+11mV=9.5mVに対応するDAC61の補正値を補正値入力データ記憶手段64に設定する。
DAC61の実効出力電圧VKDは99.5mV、増幅器8の出力電圧ΔVKは(+0.5mV)×24=12mVである。比較器53対応出力DMLはハイレベルである。これによりDAC61の誤差電圧が−9.5mV以下であることを確認する。
【0100】
ステップ50:
S49では比較器53対応出力DMLの出力状態が変化したことを考慮して、補正値の変化はS49の場合と反対方向とする。つまり、誤差値はS49の補正値とS48の補正値の中間にある補正値を検索する方向、即ち、増加させる方向に変化させる。増加する値はS49で減少した値の1/2倍とする。補正値の増加データは(1.5mV)×1/2=0.75mV、補正値は0.75mV+9.5mV=10.25mVに対応するDAC61の補正値を補正値入力データ記憶手段64に設定する。
DAC61の実効出力電圧VKDは100.25mV、増幅器8の出力電圧ΔVKは(−0.25mV)×24=−6mVである。比較器53対応出力DMLはローレベルである。これによりDAC61の誤差電圧が−10.25mV以上であることを確認する。
【0101】
ステップ51:
S50では比較器53対応出力DMLの出力状態が変化したことを考慮して、補正値の変化はS50の場合と反対方向とする。つまり、誤差値はS50の補正値とS49の補正値の中間にある補正値を検索する方向、即ち、減少させる方向に変化させる。減少する値はS50で増加した値の1/2倍とする。補正値の減少データは(0.75mV)×1/2=0.375mV、補正値は−0.375mV+10.25mV=9.875mVに対応するDAC61の補正値を補正値入力データ記憶手段64に設定する。
DAC61の実効出力電圧VKDは99.875mV、増幅器8の出力電圧ΔVKは(+0.125mV)×24=3mVである。比較器53対応出力DMLはハイレベルである。これによりDAC61の誤差電圧が−9.875mV以下であることを確認する。
【0102】
ステップ52:
S51では比較器53対応出力DMLの出力状態が変化したことを考慮して、補正値の変化はS51の場合と反対方向とする。即ち、増加させる方向に変化させる。増加させる値はS51で増加した値の1/2倍とする。補正値の増加データは(0.375mV)×1/2=0.1875mV、補正値は+0.1875mV+9.875mV=10.0625mVに対応するDAC61の補正値を補正値入力データ記憶手段64に設定する。
DAC61の実効出力電圧VKDは100.0625mV、増幅器8の出力電圧ΔVKは(−0.0375mV)×24=−0.9mVである。比較器53対応出力DMLはローレベルである。これによりDAC61の誤差電圧が−10.0625mV以上であることを確認する。
【0103】
ステップ53:
S52では比較器53対応出力DMLの出力状態が変化したことを考慮して、補正値の変化はS52の場合と反対方向とする。減少させる値はS52で増加した値の1/2倍とする。補正値の増加データは(0.1875mV)×1/2=0.09375mV、補正値は−0.09375mV+10.0625mV=9.96875mVに対応するDAC61の補正値を補正値入力データ記憶手段64に設定する。
DAC61の実効出力電圧VKDは99.9688mV、増幅器8の出力電圧ΔVKは(+0.0312mV)×24=0.7488mVである。比較器53対応出力DMLはハイレベルである。これによりDAC61の誤差電圧が−9.9688mV以下であることを確認する。
【0104】
ステップ54:
S53では比較器53対応出力DMLの出力状態が変化したことを考慮して、補正値の変化はS53の場合と反対方向とする。増加させる値はS53で減少した値の1/2倍とする。補正値の増加データは(0.09375mV)×1/2=0.046875mV、補正値は9.9688mV+0.046875mV=10.015675mVに対応するDAC61の補正値を補正値入力データ記憶手段64に設定する。
DAC61の実効出力電圧VKDは100.015675mV、増幅器8の出力電圧ΔVKは(−0.015675mV)×24=−0.3762mVである。比較器53対応出力DMLはローレベルである。これによりDAC61の誤差電圧が−10.015675mV以上であることを確認する。補正データ値の変化幅が、補正対象DAC61の分解能50μV以下になったので、これ以上の補正は行わない。この時点の補正データ10.015675mVを補正値として採用する。この補正によるDAC61の実効出力電圧VKDの誤差は0.015675mVとなる。
【0105】
ステップ55:
誤差電圧が−10.015675mV以上で、且つ、−9.9688mV以下であることがわかるので、S53とS54の補正値のそれそれの補正値の平均値9.992375mVを補正値としてもよい。この補正によるDAC61の実効出力電圧VKDの誤差は−0.007625mVとなり、S54におけるDAC61の実効出力電圧VKDの誤差に比べ一層高精度化される。
【0106】
<実施の形態11>
(期待値電圧発生手段60のゲイン誤差の補正方法)
ゲイン誤差とは、DAC61の入力データ変化に対応する出力電圧変化の比率、即ち、増幅率(ゲイン)に誤差があることから出力電圧に発生する誤差のことをいう。ゲイン誤差が0.01%、オフセット誤差が0mVの場合を例として、以下の補正過程によりゲイン誤差を補正する。なお、DAC61のデジタル入力データの表現は、実施の形態10と同様である。この補正を実現する補正用システムの主要部である期待値電圧発生手段60のブロック構成は図9のとおりである。既述のとおり図8に対し、ゲイン補正係数やDAC61の入力データとしての補正値入力データを算出するための演算器67が更に付加されている。補正のためのシステムは、オフセット誤差補正値を求めた実施の形態10の場合と同様である。
【0107】
ゲイン誤差の補正は、DAC61の出力電圧状態の2ポイントについて補正をすることにより行う。ここでは、100mV(0.1V)及び12900mV(12.9V)を選択した場合の誤差補正値を求めて(図13、図14)、その値からゲイン誤差を補正するゲイン誤差補正係数を求める。この時に必要となる演算は、四則演算のみである。図13はDACの出力電圧が100mVの時の誤差補正値を求める各ステップでの状況を示す状況一覧図表である。ステップ61乃至ステップ72により誤差補正値を求めている。図14はDACの出力電圧が12900mVの時の誤差補正値を求める各ステップでの状況を示す状況一覧図表である。ステップ81乃至ステップ92により誤差補正値を求めている。求め方は実施の形態10等と同様であり、説明は省略する。
【0108】
以上の補正で求めたDAC61における2点(出力電圧0.1V及び12.9V)での最終の実入力データ(VKRD)の差と、理想値入力データ(VKID)の差を用いて以下のようにゲイン補正係数を求めることができる。ここでいうゲイン補正係数とは、ゲイン誤差を補正し、実質ゲインを1に補正するための係数である。
ゲイン補正係数=((12.9V出力時のDAC61の補正後実入力データ)−(0.1V出力時のDAC61の補正後実入力データ))÷(DAC61の理想値入力データ(12.9V用)−DAC61の理想値入力データ(0.10V用))=(12898.562−99.9735)/12.800=99.989%・・・(1)
【0109】
即ちゲインを0.011%下げる方向の補正が必要であることがわかる。入力データを0.99989倍したデータをDAC61の実入力データとして用いることで、0.01%のゲイン誤差を補正することが出来る。即ち、事前に、ゲイン誤差が不明な場合でも、上述のように、DAC61の特性2点の補正を行い、2点の補正データの差をDAC61の理想値入力データの差で除算した値が、ゲイン誤差を補正する補正用ゲインであることがわかる。なお、補正ポイント2点は、上述12.900Vと0.100Vの2点に限定されない。
【0110】
上述の様にして算出した入力データを外部より直接DAC61の実入力データとしてもよいが、式(1)を元に補正値を計算し補正値入力データ記憶手段64に補正データを入力して補正を行ってもよい。この場合は、理想値入力データの−0.011%減じた値を補正データとして採用する。この0.011%は不揮発性メモリに記憶しておくことが望ましい。
【0111】
以上により、期待値電圧発生手段60の比較対象側のオフセット電圧として寄与する期待値電圧発生手段60のオフセットについても、補正値に反映させて吸収することができる。なお、オフセット誤差は0mVとしたが、0mVでなくても2点補正法をもちいることで、ゲイン誤差補正及びオフセット誤差の両方を同時に補正することができることはいうまでもない。また、本過程により期待値電圧発生手段60のみならず増幅器8の誤差がある場合も、前記2種類の誤差を併せて補正できることは明らかである。
【0112】
以上の補正値設定過程では、第2半導体装置200の出力を期待値電圧発生手段60にフィードバックし、その入力されるデータを基に制御手段65が補正値算出制御を行った(図7参照)。この場合、高価なテスト装置を用いなくても補正を行うことができる。また、テスタ制御手段40の出力を期待値電圧発生手段60にフィードバックし、その入力されるデータを基にテスタ制御手段により補正値算出制御を行うことも可能である。この場合、制御手段65、記憶手段66、演算手段67は、テスタ装置15に備えられているテスタ制御手段40、記憶手段(図示せず)、演算手段(図示せず)を用いるので、期待値電圧発生手段60には、制御手段65、記憶手段66、演算手段67を備える必要がない。
【0113】
また、高精度電圧発生手段13としてテスタ装置15の電圧出力を用いることも可能である。この場合、補正精度はテスタ装置16の電圧出力の分解能に制約されるが、高精度電圧発生手段13としての新たな装置が不用となるメリットがある。テスト対象となるDUTが複数種類、例えば、6V仕様と13V仕様の2種類がある場合、各DUTの出力振幅に合わせて補正値設定を実施することで測定電圧精度を最適化できることはいうまでもない。
【0114】
図4、図5の検査システムに示す検査システムでは、第1半導体検査装置201(検査装置モジュールを半導体試験装置15に内蔵)および第2半導体検査装置200(検査装置モジュールを半導体試験装置15に外付け)に備えられている比較器(52、53)精度及びそれに対応して設けられているDAC(61、106、107)の分解能を向上することで測定誤差を更に少なくできることはいうまでも無いが、図4の構成では、第2半導体検査装置200は半導体テスタ(半導体試験装置15)の外部に設けられているので、一部のチャンネルだけ比較器精度及びそれに対応して設けられているDAC61の分解能を向上することが容易に行えるため、デバイス仕様に応じた低価格な検査装置を容易に実現できる。
【0115】
<実施の形態12>
図15、図16は本発明に係る補正対象回路の補正方法をしめすフローチャートである。実施の形態12は本発明に係る実施の形態7乃至11における補正方法のフローをまとめたものであり、概要を図15、図16に示す。
なお、補正対象回路とは、具体的には比較器、デジタルアナログ変換器、さらにはこれらの組み合わせ、その他の回路との組み合わせ等をいう。出力状態とは、出力電圧をアナログ出力する場合には、プラスマイナスの極性を含む電圧値をいい、出力電圧が論理信号等の場合には論理状態のハイ、ロー等を示す。その他の用語は、基本的には実施の形態7乃至11における用語を適用して理解すべきものである。例えば、最大誤差とは、仕様誤差、最大許容誤差等を意味するものである。
【0116】
ステップ101:
補正対象回路の補正しようとする理想特性に対応する入力データを設定する。例えば、実施の形態8において、VOH=0.000Vとして入力したことが対応する。なお、上述したとおり、0.000Vはデジタルデータとして与えられるが、理解を容易にするためにアナログ値として示す(以下においても同様である)。
ステップ102:
絶対値が最大誤差の絶対値以上である補正入力データを補正初期値として設定する。例えば、実施の形態8において、VOHに対して補正用データ初期値=+128mVとして入力したことが対応する。
ステップ103:
補正対象回路の出力状態を確認する。出力状態は例えば論理状態を意味し、論理状態を意味する場合にはハイまたはローいずれであるかを確認する。例えば、実施の形態8におけるステップ1の出力がハイレベルとなることが対応する。
【0117】
ステップ104:
絶対値が現補正入力データの絶対値の1/2で、正負極性が現補正入力データの反対極性である値に補正入力データを設定変更する。例えば、実施の形態8におけるステップ2に対応し、現補正入力データは初期値の+128mVが対応するから、補正入力データを、+128mVの1/2の64mVを負にした−64mVに設定変更することが対応する。
ステップ105:
補正対象回路の出力状態を確認する。S103と同様である。例えば、実施の形態8におけるステップ2の出力がローレベルとなることが対応する。
ステップ106:
直前の出力状態と現出力状態が一致するか否かを判定確認する。直前の出力状態とは例えばS103のハイレベルを示し、現出力状態とは例えばS105のローレベルを示す。実施の形態8の例(ステップ1の出力がハイレベル、ステップ2の出力がローレベル)では一致しない(NO)場合に対応するので、ステップ107(S107)へ進む。なお、一致する(YES)場合はステップ108(S108)へ進む。
【0118】
ステップ107:
絶対値が現補正入力データの絶対値の1/2で、正負極性が現補正入力データの反対極性である値に補正入力データを設定変更して、ステップ109へ進む。例えば、実施の形態8におけるステップ3が対応し、現補正入力データは−64mVが対応するから、補正入力データを、−64mVの1/2の−32mVを正にした+32mVに設定変更する。以下実施の形態8との照合は省略する。
ステップ108:
絶対値が現補正入力データの絶対値の1/2で、正負極性が現補正入力データと同極性である値に補正入力データを設定変更する。
ステップ109:
補正対象回路の出力状態を確認する。S105と同様である。
【0119】
ステップ110:
補正値の絶対値(補正入力データの絶対値)が補正対象回路の分解能以下か否かを判断する。分解能以下の(YES)場合にはステップ111へ、分解能以下でない(NO)場合にはステップ106へ戻り、以降のステップを繰り返す。
ステップ111:
直前の出力状態と現出力状態が一致するか否かを判断する。一致する場合には補正フローを終了する。一致しない場合にはステップ112へ進む。
ステップ112:
現補正入力データと直前の補正入力データの平均値に補正入力データを設定変更して、補正フローを終了する。
【0120】
上述の補正フローにおいては、補正回数の制限を設け、必要に応じて精度を調整し、補正時間を短縮するようにしても良い。
【0121】
上述した本発明に係る補正方法は、補正方法を実行するプログラムをコンピュータプログラムとして記録媒体に記録して、コンピュータにより実行させるようにしても良い。例えば、記憶手段、制御手段として開示したブロック部分を適用することができる。また、記録媒体に記録したプログラムはコンピュータ本体(検査装置等)から分離して搬送可能な形態にすることもできる。
【0122】
上述の説明では例えばTFT液晶を駆動する液晶駆動装置のテスト装置に適用する例を示したが、本発明に係る半導体検査装置、半導体検査方法は、各種の多段階の電圧を出力するように構成された多数の出力端子を有する半導体集積回路のテスト装置にも適用できることは言うまでも無い。
【0123】
【発明の効果】
以上説明したように、本発明によれば、液晶表示パネルなどを駆動するために多数の出力端子を有し多段階の電圧を出力するように構成された半導体集積回路の合否判定測定テストが、コスト高要因となる高精度比較器などの手段を用いずに可能となる。また、簡易な構造の半導体検査装置をモジュール化することにより、半導体試験装置の外部に取り付けて用いる場合には、従来の半導体試験装置をそのまま活用でき簡易な構造で高精度に行える半導体試験システムを提供できる。
【図面の簡単な説明】
【図1】本発明に係る半導体検査装置の要部回路ブロックを示すブロック図である。
【図2】図1の半導体検査装置の要部回路ブロックを複数備えた半導体検査装置の要部を示すブロック図である。
【図3】補正データ生成手段の概略ブロックを示すブロック図である。
【図4】本発明に係る半導体検査システムの概略ブロックを示すブロック図である。
【図5】本発明に係る半導体検査システムの概略ブロックを示すブロック図である。
【図6】本発明に係る出力電圧検査手段における比較手段の補正方法を説明するブロック図である。
【図7】本発明に係る期待値電圧発生手段における補正方法を説明するブロック図である。
【図8】本発明に係る期待値電圧発生手段のブロック構成を示すブロック図である。
【図9】本発明に係る期待値電圧発生手段のブロック構成を示すブロック図である。
【図10】ハイレベル比較器の0V補正値の補正方法における各ステップでの状況を示す状況一覧図表である。
【図11】ローレベル比較器の0V補正値の補正方法における各ステップでの状況を示す状況一覧図表である。
【図12】期待値電圧発生手段のオフセット誤差の補正方法における各ステップでの状況を示す状況一覧図表である。
【図13】DACの出力電圧が100mVの時の誤差補正値を求める各ステップでの状況を示す状況一覧図表である。
【図14】DACの出力電圧が12900mVの時の誤差補正値を求める各ステップでの状況を示す状況一覧図表である。
【図15】本発明に係る補正対象回路の補正方法をしめすフローチャートである。
【図16】本発明に係る補正対象回路の補正方法をしめすフローチャートである。
【図17】一般的な液晶駆動装置の概略を示すブロック図である。
【図18】基準電圧発生回路の概略を示す回路図である。
【図19】従来の半導体検査システムの概略を示すブロック図である。
【図20】従来の半導体検査システムの概略を示すブロック図である。
【図21】図20と同様の従来の半導体検査システムを説明する説明図である。
【図22】図20及び図21の従来の半導体検査システムにおける期待値電圧発生手段の概略回路ブロックを示すブロック図である。
【図23】階調出力電圧の状況を示す波形図である。
【図24】従来の半導体試験装置における出力電圧検出手段の概略回路ブロックを示すブロック図である。
【符号の説明】
6 減算器
8 増幅器
50 出力電圧検査手段
51 被検査電圧入力手段
52、53 比較器
60 期待値電圧発生手段
61、106、107、 DAC
62、101a、102a 加算器
63 理想値入力データ記憶手段
64 補正値入力データ記憶手段
100、200、201 半導体検査装置
101、102 比較電圧生成用データ入力手段
101b、102b 共通比較電圧生成用データ入力手段
101c、102c 個別比較電圧生成用データ入力手段
210 補正データ生成手段
DUT 被テストデバイス
IVHb、IVLb 共通比較電圧生成用データ
IVHc、IVLc 個別比較電圧生成用データ
SW1 第1補正用切替スイッチ
SW2 第2補正用切替スイッチ

Claims (16)

  1. 複数の出力端子の各々から階調出力電圧を出力する半導体集積回路の階調出力電圧特性を検査するために各出力端子に対応する出力電圧検査手段を備える半導体検査装置において、
    前記出力電圧検査手段は、階調出力電圧から得られる被検査電圧を入力する被検査電圧入力手段と、被検査電圧と比較すべき比較電圧を比較電圧生成用データ入力手段から入力される比較電圧生成用データに基づいて生成する比較電圧生成手段と、被検査電圧と比較電圧とを比較する比較手段とを備え、
    前記比較電圧生成用データは、他の出力電圧検査手段と共通に与えられる共通比較電圧生成用データ及び各比較手段が有する固有の誤差を補正するために個別に与えられる個別比較電圧生成用データを加算して生成される構成としてあることを特徴とする半導体検査装置。
  2. 前記比較電圧生成用データ入力手段は、共通比較電圧生成用データを入力する共通比較電圧生成用データ入力手段と、個別比較電圧生成用データを入力する個別比較電圧生成用データ入力手段と、共通比較電圧生成用データ及び個別比較電圧生成用データを加算する加算器とを備え、
    該加算器における加算結果を前記比較電圧生成用データとして比較電圧生成手段へ入力する構成としてあることを特徴とする請求項1記載の半導体検査装置。
  3. 前記比較手段は、被検査電圧が比較電圧の上限許容範囲か否かを比較検出するハイレベル比較器及び被検査電圧が比較電圧の下限許容範囲か否かを比較検出するローレベル比較器を備え、ハイレベル比較器及びローレベル比較器各々に対応して比較電圧生成用データ入力手段及び比較電圧生成手段を備えることを特徴とする請求項1又は2記載の半導体検査装置。
  4. 前記個別比較電圧生成用データを設定記憶し、個別比較電圧生成用データを比較電圧生成用データ入力手段へ出力する補正データ生成手段を備えることを特徴とする請求項1乃至3のいずれかに記載の半導体検査装置。
  5. 前記補正データ生成手段は出力電圧検査手段毎に個別に設けられることを特徴とする請求項4記載の半導体検査装置。
  6. 前記階調出力電圧に対応する階調期待値電圧を出力する期待値電圧発生手段と、階調出力電圧と階調期待値電圧との差を求めて被検査電圧入力手段へ出力する電圧差検出手段とを備えることを特徴とする請求項1乃至5のいずれかに記載の半導体検査装置。
  7. 前記期待値電圧発生手段は、階調期待値電圧の理想値入力データを記憶する理想値入力データ記憶手段と、階調期待値電圧の補正をするための補正値入力データを記憶する補正値入力データ記憶手段と、理想値入力データと補正値入力データとを加算して期待値電圧データを出力する加算器と、期待値電圧データに基づいて階調期待値電圧を生成して電圧差検出手段に入力する期待値電圧出力手段とを備えることを特徴とする請求項6記載の半導体検査装置。
  8. 前記比較電圧生成手段及び期待値電圧出力手段は、各々デジタルアナログ変換器を備え、期待値電圧出力手段におけるデジタルアナログ変換器の分解能は比較電圧生成手段におけるデジタルアナログ変換器の分解能より精度が高くしてあることを特徴とする請求項7記載の半導体検査装置。
  9. 前記電圧差検出手段の出力を増幅して被検査電圧入力手段へ入力する増幅手段を備えることを特徴とする請求項6乃至8のいずれかに記載の半導体検査装置。
  10. 前記増幅手段と被検査電圧入力手段との間に、共通端子は被検査電圧入力手段へ、独立第1端子は増幅手段の出力端子へ、独立第2端子は固定電位端子へ各々接続される第1補正用切替スイッチを備え、
    該第1補正用切替スイッチは、前記階調出力電圧を検査する時は被検査電圧入力手段と増幅手段とを接続し、前記比較電圧を補正するために個別比較電圧生成用データを設定補正する時は被検査電圧入力手段と固定電位端子とを接続する構成としてあることを特徴とする請求項9記載の半導体検査装置。
  11. 前記半導体集積回路と電圧差検出手段との間に、共通端子は電圧差検出手段へ、独立第1端子は半導体集積回路の出力端子へ、独立第2端子は高精度電圧発生手段へ各々接続される第2補正用切替スイッチを備え、
    該第2補正用切替スイッチは、前記階調出力電圧を検査する時は電圧差検出手段と半導体集積回路とを接続し、前記期待値電圧発生手段を補正する時は電圧差検出手段と高精度電圧発生手段とを接続する構成としてあることを特徴とする請求項9又は10記載の半導体検査装置。
  12. 前記半導体検査装置をモジュールとしたことを特徴とする請求項1乃至11のいずれかに記載の半導体検査装置。
  13. 前記半導体検査装置は、前記半導体集積回路を駆動するための集積回路駆動部を備えることを特徴とする請求項1乃至12のいずれかに記載の半導体検査装置。
  14. 前記半導体集積回路は液晶駆動用半導体集積回路であることを特徴とする請求項1乃至13のいずれかに記載の半導体検査装置。
  15. 各出力端子から階調出力電圧を出力する半導体集積回路の階調出力電圧特性を検査するために出力端子毎に、階調出力電圧と階調出力電圧の理想値に対応する階調期待値電圧との差に基づく被検査電圧を出力電圧検査手段に入力し、出力電圧検査手段により被検査電圧と比較電圧とを比較して階調出力電圧の検査を行う半導体検査方法において、
    前記比較電圧は、各出力電圧検査手段が備えるデジタルアナログ変換器に固有の誤差を補正するために出力電圧検査手段毎に補正されることを特徴とする半導体検査方法。
  16. 前記階調期待値電圧は、階調期待値電圧を発生する期待値電圧発生手段が備えるデジタルアナログ変換器に固有の誤差を補正するために補正されることを特徴とする請求項15記載の半導体検査方法。
JP2002203158A 2002-07-11 2002-07-11 半導体検査装置及び半導体検査方法 Expired - Fee Related JP3983123B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002203158A JP3983123B2 (ja) 2002-07-11 2002-07-11 半導体検査装置及び半導体検査方法
KR1020030046961A KR100561894B1 (ko) 2002-07-11 2003-07-10 반도체 시험 장치 및 반도체 시험 방법
TW092118901A TWI223099B (en) 2002-07-11 2003-07-10 Semiconductor testing apparatus and semiconductor testing method
US10/617,387 US6833715B2 (en) 2002-07-11 2003-07-11 Semiconductor testing apparatus and semiconductor testing method
CNB031474640A CN1267738C (zh) 2002-07-11 2003-07-11 半导体测试装置和半导体测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203158A JP3983123B2 (ja) 2002-07-11 2002-07-11 半導体検査装置及び半導体検査方法

Publications (2)

Publication Number Publication Date
JP2004045223A true JP2004045223A (ja) 2004-02-12
JP3983123B2 JP3983123B2 (ja) 2007-09-26

Family

ID=30112663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203158A Expired - Fee Related JP3983123B2 (ja) 2002-07-11 2002-07-11 半導体検査装置及び半導体検査方法

Country Status (5)

Country Link
US (1) US6833715B2 (ja)
JP (1) JP3983123B2 (ja)
KR (1) KR100561894B1 (ja)
CN (1) CN1267738C (ja)
TW (1) TWI223099B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132905A (ja) * 2005-11-14 2007-05-31 Yokogawa Electric Corp Icテスタ
JP2009501935A (ja) * 2005-07-19 2009-01-22 テラダイン・インコーポレーテッド 3分探索プロセスを使用してデバイス信号値を取得する装置及び方法
JP2010175427A (ja) * 2009-01-30 2010-08-12 Advantest Corp 電圧測定装置、方法、プログラム、記録媒体およびテスタ
KR101741958B1 (ko) * 2016-10-11 2017-05-31 한국기초과학지원연구원 적정파형 및 전압 출력을 위한 반도체 검사 장비 및 그 제어 방법

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4261432B2 (ja) * 2004-07-09 2009-04-30 株式会社アドバンテスト 半導体試験装置および半導体試験方法
KR100596436B1 (ko) 2004-07-29 2006-07-05 주식회사 하이닉스반도체 반도체 메모리 소자 및 그 테스트 방법
CN100359556C (zh) * 2004-09-13 2008-01-02 凌阳科技股份有限公司 内建测试电路的源极驱动器及其测试方法
KR100708329B1 (ko) * 2004-10-14 2007-04-17 요코가와 덴키 가부시키가이샤 Ic 테스터
CN100376209C (zh) 2005-03-10 2008-03-26 深圳迈瑞生物医疗电子股份有限公司 血氧传感器故障诊断的方法及装置
CN100423693C (zh) 2005-06-29 2008-10-08 深圳迈瑞生物医疗电子股份有限公司 适用于呼吸波形采集的抗电快速脉冲串干扰的方法和装置
DE102005045183B4 (de) * 2005-09-21 2011-03-31 Infineon Technologies Ag Testvorrichtung und Verfahren zum Auswerten einer digitalisierten Testantwort
US7756495B2 (en) * 2005-09-29 2010-07-13 Intel Corporation High speed receiver
CN100423688C (zh) 2005-10-19 2008-10-08 深圳迈瑞生物医疗电子股份有限公司 抑制工频共模干扰的方法及装置
JP2008102344A (ja) * 2006-10-19 2008-05-01 Nec Electronics Corp 表示装置の駆動回路およびそのテスト方法
KR100975404B1 (ko) * 2008-02-28 2010-08-11 주식회사 종합건축사사무소근정 블록담장용 지주 및 이의 시공방법
JP2010008781A (ja) * 2008-06-27 2010-01-14 Toshiba Corp 表示制御装置および表示装置
JP2010256175A (ja) * 2009-04-24 2010-11-11 Sharp Corp 半導体集積回路装置の、検査装置および検査方法
US8423314B2 (en) * 2009-11-18 2013-04-16 National Instruments Corporation Deterministic reconfiguration of measurement modules using double buffered DMA
KR20120136474A (ko) * 2011-06-09 2012-12-20 삼성전자주식회사 반도체 테스트 장치 및 그 테스트 방법
CN102288901B (zh) * 2011-09-01 2016-05-11 上海华虹宏力半导体制造有限公司 一种仿真数据的处理方法
TWI439711B (zh) * 2011-10-03 2014-06-01 Star Techn Inc 切換矩陣器及其半導體元件特性之測試系統
US9240160B2 (en) * 2013-02-18 2016-01-19 Au Optronics Corporation Driving circuit and display device of using same
CN103176116B (zh) * 2013-02-20 2016-01-20 国网智能电网研究院 一种半导体器件测试装置及其测试方法
TWI468710B (zh) 2013-03-25 2015-01-11 Test Research Inc 用於電壓設定的測試機台
CN104076270B (zh) * 2013-03-25 2016-09-28 德律科技股份有限公司 用于电压设定的测试机台
JP2015011505A (ja) * 2013-06-28 2015-01-19 ソニー株式会社 電圧検出器、電子機器、および、電圧検出器の制御方法
EP3379274B1 (en) 2017-03-23 2021-04-28 Rohde & Schwarz GmbH & Co. KG Multi-level logic analyzer for analyzing multi-level digital signals and method for operating a multi-level logic analyzer for analyzing multi-level digital signals
CN106908971B (zh) * 2017-04-28 2019-02-01 南京中电熊猫平板显示科技有限公司 液晶显示面板的绑定拦截装置及其绑定拦截方法
CN107861055B (zh) * 2017-12-15 2020-04-07 中国电子产品可靠性与环境试验研究所 集成电路动态输出性能测定方法、装置和系统
CN109903708B (zh) * 2019-03-21 2022-04-26 Tcl华星光电技术有限公司 量测系统及其量测参数设置方法
CN114664271B (zh) * 2022-05-17 2022-09-27 惠科股份有限公司 公共电压校正电路、显示面板和显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259018A (ja) 1984-06-06 1985-12-21 Toshiba Corp コンパレ−タのキヤリブレ−シヨン方式
JP3180435B2 (ja) 1992-05-06 2001-06-25 株式会社アドバンテスト 液晶駆動ドライバic試験装置
JP3233559B2 (ja) * 1995-08-14 2001-11-26 シャープ株式会社 半導体集積回路のテスト方法および装置
JP3392029B2 (ja) * 1997-12-12 2003-03-31 株式会社アドバンテスト Icテスタの電圧印加電流測定回路
JP3558964B2 (ja) 1999-07-23 2004-08-25 シャープ株式会社 半導体集積回路の検査装置及びその検査方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501935A (ja) * 2005-07-19 2009-01-22 テラダイン・インコーポレーテッド 3分探索プロセスを使用してデバイス信号値を取得する装置及び方法
JP2007132905A (ja) * 2005-11-14 2007-05-31 Yokogawa Electric Corp Icテスタ
JP2010175427A (ja) * 2009-01-30 2010-08-12 Advantest Corp 電圧測定装置、方法、プログラム、記録媒体およびテスタ
KR101741958B1 (ko) * 2016-10-11 2017-05-31 한국기초과학지원연구원 적정파형 및 전압 출력을 위한 반도체 검사 장비 및 그 제어 방법

Also Published As

Publication number Publication date
TWI223099B (en) 2004-11-01
TW200403445A (en) 2004-03-01
CN1267738C (zh) 2006-08-02
KR100561894B1 (ko) 2006-03-16
KR20040007317A (ko) 2004-01-24
CN1475811A (zh) 2004-02-18
JP3983123B2 (ja) 2007-09-26
US6833715B2 (en) 2004-12-21
US20040008052A1 (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP2004045223A (ja) 半導体検査装置及び半導体検査方法
KR100573340B1 (ko) 기준 전압 발생 장치 및 그것을 구비한 반도체 집적 회로와반도체 집적 회로의 검사 장치 및 그 검사 방법
JP3617621B2 (ja) 半導体集積回路の検査装置及びその検査方法
US20070067693A1 (en) Method of testing driving circuit and driving circuit for display device
JP3558964B2 (ja) 半導体集積回路の検査装置及びその検査方法
US7612698B2 (en) Test apparatus, manufacturing method, and test method
KR100389560B1 (ko) 반도체집적회로의 검사장치 및 그의 검사방법 및 그검사프로그램을 기록하는 기억매체
JP2006119225A (ja) 電圧制御装置および表示装置
WO2012137708A1 (ja) 半導体装置及びその検査方法
KR100824158B1 (ko) 반도체 장치 및 반도체 장치의 시험 방법
JP4754264B2 (ja) 半導体集積回路および半導体集積回路を搭載した製品のテスト方法
JP3553509B2 (ja) 半導体集積回路及びその検査方法
US20110001509A1 (en) Semiconductor integrated circuit device and method for testing the same
JP2007132905A (ja) Icテスタ
KR100815537B1 (ko) Ic 테스터
JP2007147469A (ja) Icテスタ
JP2002098738A (ja) Icテスタ
JP2002156412A (ja) Icテスタ
JP2001013218A (ja) 半導体テスト装置
JP2006211145A (ja) アナログ電圧出力装置の検査装置、検査システム、および検査方法
JP2007192754A (ja) 半導体装置、液晶表示装置駆動回路、半導体装置の検査装置、並びに半導体装置の検査方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees