JP2000219917A - 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法 - Google Patents

磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法

Info

Publication number
JP2000219917A
JP2000219917A JP11020276A JP2027699A JP2000219917A JP 2000219917 A JP2000219917 A JP 2000219917A JP 11020276 A JP11020276 A JP 11020276A JP 2027699 A JP2027699 A JP 2027699A JP 2000219917 A JP2000219917 A JP 2000219917A
Authority
JP
Japan
Prior art keywords
hot
flux density
magnetic flux
rolling
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11020276A
Other languages
English (en)
Inventor
Ryutaro Kawamata
竜太郎 川又
Takeshi Kubota
猛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11020276A priority Critical patent/JP2000219917A/ja
Publication of JP2000219917A publication Critical patent/JP2000219917A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

(57)【要約】 【課題】 安定して低鉄損の無方向性電磁鋼板を製造す
る。 【解決手段】 重量%で、0.1%≦Si≦3.5%、0.1%≦Mn≦
1.5%、C ≦0.004%、N ≦0.002%、S ≦0.002%、Ti≦0.00
3%、Nb≦0.003%、V ≦0.005%、Zr≦0.003%、Ca≦0.003
%、As≦0.003%、Cr≦0.05% 、Sn≦0.01% 、Cu≦0.05%
、O ≦0.02% を含有し、残部がFeおよび不可避的不純
物からなり、Q値が-4.70 以下でαγ変態を有するスラ
ブを熱間圧延して熱延板とし、次いで熱延板焼鈍を施
し、酸洗し、1回の冷間圧延工程を施した後、仕上焼鈍
を施す無方向性電磁鋼板の製造方法であって、熱延板焼
鈍をAc1 点以上の温度域で10秒〜5分の間実施するこ
とを特徴とする磁束密度が高く鉄損の低い無方向性電磁
鋼板の製造法。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、電気機器の鉄心材
料として用いられる、磁束密度が高く、鉄損が低い優れ
た磁気特性を有する無方向性電磁鋼板の製造方法に関す
るものである。
【0002】
【従来の技術】近年、電気機器、特に無方向性電磁鋼板
がその鉄心材料として使用される回転機および中、小型
変圧器等の分野においては、世界的な電力、エネルギー
節減、さらにはフロンガス規制等の地球環境保全の動き
の中で、高効率化の動きが急速に広まりつつある。この
ため、無方向性電磁鋼板に対しても、その特性向上、す
なわち、高磁束密度かつ低鉄損化への要請がますます強
まってきている。ところで、無方向性電磁鋼板において
は、従来、低鉄損化の手段として一般に、電気抵抗増大
による渦電流損低減の観点からSiあるいはAl等の含
有量を高める方法がとられてきた。しかし、この方法で
は反面、磁束密度の低下は避け得ないという問題点があ
った。このような問題点の克服のために、熱延板結晶粒
径を粗大化することで磁束密度と鉄損の両方を改善させ
る方法が行われてきた。
【0003】従来、変態を有する無方向性電磁鋼板にお
いては、α域の上限付近において熱延を終了することに
より冷延前結晶粒径を確保し、結果として成品の磁束密
度、鉄損を向上させることが行われてきた。このような
観点から、特開昭56−38420号公報には熱延仕上
温度をAr3 点とAr1 点の中間温度以下として680
℃以上の温度で巻き取ることにより熱延結晶組織の粗大
化を図る方法が開示されている。しかしながら、熱延仕
上温度がγ域に上昇することは、熱延終了後にα相への
変態が進行することから熱延組織が細粒化し、結果とし
て磁気特性が悪化するため、避けるべき事とされてき
た。
【0004】一方、実際の仕上熱延機においては、噛み
込み時の圧延速度と定常圧延状態の圧延速度が必然的に
異なることから、コイル長手方向の温度分布を解消する
ことが困難であり、α域の上限にて熱延を実施するため
には、圧延設定温度を低くせざるを得ないという不利益
があった。また、一般的な無方向性電磁鋼板の低級品で
はそのAr1 変態点が860℃付近であることから、熱
延仕上温度を上昇させて熱延結晶組織の成長を図ること
に限度があり、冷延前結晶組織の増大による磁気特性の
向上には限界があった。
【0005】一方で、鉄損低減の為に、単にSiあるい
はAl等の含有量を高めるのみではなく、特公平6−8
0169号公報に記載されているように、Mn及びSの
低減による高純度鋼化により析出物の無害化を図る方法
が開示されている。しかしながら鋼の高純化のみでは上
述のごとき制御熱延による冷延前結晶組織粗大化の限界
を打破することが出来ず、高磁束密度化には限界があっ
た。
【0006】一次再結晶集合組織を改善することで無方
向性電磁鋼板の磁気特性を改善する方法として、特開昭
55−158252号公報のごとくSn添加、特開昭6
2−180014号公報のごときSn、Cu添加、もし
くは特開昭59−100217号公報のごときSb添加
による集合組織の改善による磁気特性の優れた無方向性
電磁鋼板の製造法が開示されているが、集合組織制御元
素であるSn, CuもしくはSb等の添加コストは決し
て低いものではなく、低コストな無方向性電磁鋼板の製
造法の提供には限界があった。
【0007】また、特開昭57−35626号公報に記
載されているような仕上げ焼鈍サイクルの工夫等の製造
プロセス上の処置もなされてきたが、いずれも低鉄損化
は図られても、磁束密度についてはそれほどの効果はな
かった。
【0008】この様な従来技術の限界を打破するために
発明者等は特開平9−125144号公報において、不
純物元素の低減をはかるとともに仕上熱延をAr3 点以
上のγ相域とし、高温で巻取る事で低コストで高磁束密
度で低鉄損な無方向性電磁鋼板を製造する方法を開示し
た。また、冷延前結晶組織粗大化の限界を打破する技術
として、特開昭57−35628号公報には熱延仕上温
度をAr3 点以上として熱延結晶組織の細粒化を図った
上でA3 点以下の温度で熱延板焼鈍を施し、冷延前結晶
組織の粗大化を図る方法が開示されている。
【0009】しかしこれらの技術をもってしても、連続
して無方向性電磁鋼板の製鋼を行う際に、個々の条件は
満足しているにも関わらず、チャージ毎のバラツキが生
じやすく、安定して低鉄損の無方向性電磁鋼板を得る観
点からは若干の課題を残していた。
【0010】このように、従来技術では、磁束密度が高
くかつ鉄損が低い無方向性電磁鋼板を製造できるには至
らず、無方向性電磁鋼板に対する前記の要請に応えるこ
とは出来なかった。発明者等はこの限界を克服すべく、
詳細に解析を行った結果、有害元素の総量と炭素との積
が一定以下であれば安定して低鉄損の無方向性電磁鋼板
を製造しうるという、新規な知見を見出した。
【0011】
【発明が解決しようとする課題】本発明は、従来技術に
おけるこのような問題点を解決し、高磁束密度かつ低鉄
損の無方向性電磁鋼板を提供することを目的とするもの
である。
【0012】
【課題を解決するための手段】本発明の要旨とするとこ
ろは、以下の通りである。 (1) 重量%で、 0.1%≦Si≦3.5%、0.1%≦Mn≦1.5
%、 C ≦0.004%、 N ≦0.002%、 S ≦0.002%、 Ti≦0.003%、 Nb≦0.003%、 V ≦0.005%、 Zr≦0.003%、 Ca≦0.003%、 As≦0.003%、 Cr≦0.05%、 Sn≦0.01%、 Cu≦0.05%、 O ≦0.02% を含有し、残部がFeおよび不可避的不純物からなり、
式(1)で定めるQ値が−4.70以下でαγ変態を有
するスラブを熱間圧延して熱延板とし、次いで熱延板焼
鈍を施し、酸洗し、1回の冷間圧延工程を施した後、仕
上焼鈍を施し、その後にスキンパス圧延工程を施すか或
いは施さない無方向性電磁鋼板の製造方法であって、熱
延板焼鈍をAc1 点以上の温度域で10秒〜5分の間実
施することを特徴とする磁束密度が高く鉄損の低い無方
向性電磁鋼板の製造法。 Q=log[([Ti%]+[Nb%]+[V%]+[Zr%]+[Ca%]) ×[C%]] ・・・式(1) 但し、[Ti%] 、[Nb%] 、[V%]、[Zr%] 、[C%]、[Ca%]
は、それぞれTi、Nb、V、Zr、Ca、Cの成品中
の重量濃度 (2) スラブが、更に重量%で、 0.1%≦Al≦2% を含有することを特徴とする前記(1)記載の磁束密度
が高く鉄損の低い無方向性電磁鋼板の製造法。
【0013】
【発明の実施の形態】以下に、本発明を詳細に説明す
る。発明者らは、低鉄損と高磁束密度を同時に達成すべ
く従来技術における問題点を鋭意検討を重ねた結果、変
態を有する無方向性電磁鋼板にあって、無方向性電磁鋼
板において、Siを0.1%〜2.5%、Alを0.1
%〜2%、Mnを0.1%〜1.5%含有する鋼にあっ
て、C、S、N、Cr、Cu、Sn、O含有量を低減
し、さらに、Ti、V、Nb、Ca、Zr、As含有量
を特定の関係式を満たした上で低減し、高純度鋼化する
とともに、C含有量を同時に低減し、熱延板焼鈍を施
し、一回の冷間圧延で最終板厚とし焼鈍を施すフルプロ
セス無方向性電磁鋼板、あるいは中間焼鈍をはさむ二回
以上の冷間圧延により最終板厚とする無方向性電磁鋼板
製造法において磁束密度が高く、鉄損の低い無方向性電
磁鋼板を製造することが可能であることを見出し発明に
至った。
【0014】無方向性電磁鋼板の磁気特性は冷延前結晶
組織を粗大化することで改善することが可能である。こ
のため従来、仕上熱延において熱延仕上温度を上昇させ
て熱延組織の粗大化を図り、製品の磁束密度を高め、鉄
損を低減させることが行われてきた。しかしながら熱延
仕上温度を上昇させてα+γ2相域もしくはγ域に達す
ると、熱延終了後にγ相からα相への変態が進行するこ
とから熱延組織が細粒化し、結果として磁気特性が悪化
するため、避けるべき事とされてきた。このため、αγ
変態を有する無方向性電磁鋼板ではα域の上限にて熱延
を実施することが必須であるとされてきたが、Si含有
量の少ない無方向性電磁鋼板の低級品ではそのAr1
態点が900℃以下であることから、熱延仕上温度の上
昇による熱延結晶組織の粗大化には限度があり、結果と
して磁気特性の向上には限界があった。
【0015】発明者等は従来のこのような変態を有する
無方向性電磁鋼板の制御熱延の限界を打破すべく鋭意検
討を進めた結果、変態を有する無方向性電磁鋼板にあっ
て、Siを0.1%〜2.5%、Alを0.1%〜2
%、Mnを0.1%〜1.5%含有しαγ変態を有する
鋼にあって、C、S、N、Cr、Cu、Sn、O含有量
を低減し、さらに、Ti、V、Nb、Ca、Zr、As
含有量を特定の式を満たしつつ同時に低減することによ
り高純度鋼化すれば、熱延板焼鈍温度をγ域まで高めて
も変態後のα相の結晶組織が細粒化せず、熱延板焼鈍温
度、或いは中間焼鈍温度の上昇に伴って熱延結晶組織が
粗大化するとともに、発明者等が特開平9−12514
4号公報において開示した技術の問題点であるチャージ
毎のバラツキを解消し、安定して高磁束密度低鉄損の無
方向性電磁鋼板を得ることが可能となった。
【0016】このような方法により得られた熱延板を出
発材とすることにより、仕上げ焼鈍後の製品における磁
束密度が高く、鉄損が良好な(鉄損値が低い)無方向性
電磁鋼板を安価に製造することに成功した。
【0017】まず、成分について説明すると、Siは鋼
板の固有抵抗を増大させ渦流損を低減させ、鉄損値を改
善するために添加される。Si含有量が0.1%未満で
あると固有抵抗が十分に得られないので0.1%以上添
加する必要がある。一方、Si含有量が3.5%を越え
ると冷間圧延が困難となるので3.5%以下に定める。
【0018】Mnは、Siと同様に鋼板の固有抵抗を増
大させ渦電流損を低減させる効果を有する。このため、
Mn含有量は0.1%以上とする必要がある。一方、M
n含有量が1.5%を越えると熱延時の変形抵抗が増加
し熱延が困難となるとともに、冷延前結晶組織が微細化
しやすくなり、製品の磁気特性が悪化するので、Mn含
有量は1.5%以下とする必要がある。
【0019】鋼中のAlは不純物レベルであってもなん
ら問題はないが、AlはSiと同様に鋼板の固有抵抗を
増大させ渦電流損を低減させる効果を有するので、必要
に応じて添加する。特に低鉄損を得たい場合には0.1
%以上2%以下添加する。多量にAl添加した場合に
は、磁束密度が低下し、コスト高ともなるので2%以下
とする。
【0020】また、製品の機械的特性の向上、磁気的特
性、耐錆性の向上あるいはその他の目的のために、P、
B、Ni、Sbの1種または2種以上を鋼中に含有させ
ても本発明の効果は損なわれない。
【0021】C含有量は、0.004%以下に制御する
ことが必要である。C含有量が0.004%を越える
と、成品の使用中に磁気時効が生じて鉄損が悪化するの
みならず、不純物元素と炭化物を生成して仕上げ焼鈍時
の結晶粒成長を阻害し、ひいては鉄損の悪化をもたらす
ので0.004%以下とする必要がある。
【0022】S、Nは熱間圧延工程におけるスラブ加熱
中に一部再固溶し、熱間圧延中にMnS等の硫化物、A
lN等の窒化物を形成する。これらが存在することによ
り熱延後のγ相からα相への変態時にα相の核を提供す
ると共に変態後のα相結晶組織の粒成長を妨げるためそ
の含有量は共に0.002%以下とする必要がある。
【0023】また、Ti含有量、V含有量、Nb含有
量、Zr含有量、Ca含有量、Cr含有量がそれぞれ
0.003%、0.005%、0.003%、0.00
3%、0.003%、0.05%を越えるとTi、V、
Nb、Zr、Ca、Crの炭化物の析出が顕著となり、
熱延結晶組織の粗大化が阻害されるとともに仕上焼鈍工
程での結晶粒成長が阻害され磁気特性が悪化する。この
ため、Ti含有量、V含有量、Nb含有量、Zr含有
量、Ca含有量はそれぞれ0.003%以下、0.00
5%以下、0.003%以下、0.003以下%、0.
003%以下とする必要がある。
【0024】また、本発明では個々のTi、V、Nb、
Zr、Ca単独の含有量に加えて、全体を含めた総量
と、C含有量との間に特定の関係が成立する必要があ
る。すなわち、式(1)で定めるQ値において、 Q=log[([Ti%]+[Nb%]+[V%]+[Zr%]+[Ca%])×[C%]] ・・・式(1) 但し、[Ti%] 、[Nb%] 、[V%]、[Zr%] 、[C%]、[Ca%]
は、それぞれTi、Nb、V、Zr、Ca、Cの成品中
の重量濃度 式(1)のQ値が−4.70を超えると本発明が意図す
る低鉄損無方向性電磁鋼板を得ることが出来ない。従っ
て、式(1)のQ値は−4.70以下である必要があ
る。
【0025】さらに、結晶粒成長を阻害する析出物の形
成に影響を及ぼす要因として、As含有量を抑制する必
要がある。Asは、それ自体では、本発明の成分範囲内
の鋼では、上記の硫化物や窒化物等の析出物を形成する
ことは無い。しかし、鋼中に、一定量以上のAsが含有
されると、硫化物サイズが微細になるため、熱延結晶組
織の粗大化を著しく阻害する。このような観点から、A
s含有量は0.003%以下にする必要がある。
【0026】Sn、Cuは鋼の結晶粒界に偏析して粒成
長を妨げ、成品鉄損を悪化させるので、それぞれ含有量
は0.01%以下、0.05%以下とする必要がある。
【0027】O含有量が0.02%を超えるとSi
2 、Al2 3 等の酸化物系介在物の析出が顕著とな
り。結晶粒成長を妨げ、成品鉄損を悪化させるので、含
有量は0.02%以下とする必要がある。
【0028】Pは、製品の打ち抜き性を良好ならしめる
ために0.1%までの範囲内において添加される。P≦
0.2%であれば、製品の磁気特性の観点から問題がな
い。
【0029】Bは熱間圧延時にBNを形成させてAlN
の微細析出を妨げ、Nを無害化させるために添加され
る。B含有量はNとの量のバランスが必要であり、その
含有量は両者の比B% /N% が0.5から1.5の範囲
を満たすことが好ましい。
【0030】Ni、Sbは成品の一次再結晶集合組織を
改善して特に磁束密度を向上させる効果がある。この目
的のために添加する場合、Niは0.2以上2.5%以
下、Sbは0.05%以上0.5%以下の範囲を満たす
ことが好ましい。
【0031】次に本発明の成分範囲規定理由について説
明する。発明者らは鋭意検討を重ねた結果、C、N、
S、Cr、Cu、Sn、Oに加えTi、V、Nb、Z
r、As、Ca等の不純物含有量を総合的に制御するこ
とにより、製品における鉄損が著しく改善され得ること
を発見し本発明の完成に至った。
【0032】本発明の構成要件を確認するために、以下
のような実験を行った。表1、表2に示す成分の鋼を溶
製し仕上げ熱延を実施し、2.5mm厚に仕上げた。この
際に、熱延仕上温度は960℃のγ相域とした。これを
700℃でコイルに巻きとった。 次に熱延板を酸洗、
冷延し0.5mm厚とし、脱脂した後、750℃、30秒
焼鈍しエプスタイン試料を切断して磁気特性を測定し
た。
【0033】
【表1】
【0034】
【表2】
【0035】表1、表2において、比較例1から3にお
いてはQ値が本発明の構成要件である−4.70以下を
満たしておらず、また、比較例4ではAs含有量が本発
明の構成要件である0.003%以下を満たしていない
ため、本発明例よりも鉄損が悪化していることがわか
る。このように不純物元素を制御することにより、製品
における鉄損を低減し、優れた磁気特性の無方向性電磁
鋼板を製造することが可能である。
【0036】前記成分からなる鋼スラブは、転炉で溶製
され連続鋳造あるいは造塊−分塊圧延により製造され
る。鋼スラブは公知の方法にて加熱される。本発明では
熱延板は、熱延板焼鈍後、一回の冷間圧延と連続焼鈍に
より製品とする。またさらにスキンパス圧延工程を付加
して製品としてもよい。また、中間焼鈍をはさむ2回以
上の冷間圧延により最終板厚としても良い。さらに、そ
の後スキンパスを施して最終板厚としても良い。スキン
パス圧延率は2%未満ではその効果が得られず、20%
以上では磁気特性が悪化するため2%から20%とす
る。
【0037】次に本発明のプロセス条件について説明す
る。従来の技術においては熱延板すなわち冷延前の結晶
粒径を極力粗大化することに主眼がおかれており、熱延
板焼鈍後のγ相からα相への変態は熱延板の結晶粒を微
細化するために有害であるとみなされ、熱延板焼鈍温度
はα相単相であるAc1 変態点以下で億個なうこととさ
れてきた。
【0038】その結果、本発明のごとき熱延板焼鈍温度
をγ域へと高める方法の利用は省みられなかった。しか
し発明者らは鋭意検討を重ねた結果、C、N、S、C
r、Cu、Sn、OをはじめとしてTi、V、Nb、C
a、Zr、As等の不純物含有量を式(1)で定義され
るQ値を一定以下に満足した上で低減することにより、
熱延板焼鈍工程をα+γ相域以上の温度で行った場合に
おいても熱延結晶組織が粗大化され、結果として製品に
おける磁気特性が著しく改善され得ることを発見し本発
明の完成に至った。
【0039】このような鋼の純度による熱延条件に対す
る熱延結晶組織形成の相違を調べるため、以下のような
実験を行った。表3に示す成分の鋼を溶製し仕上げ熱延
を実施し、2.5mm厚に仕上げた。その後熱延板焼鈍温
度は800℃から1000℃の範囲として実施し、これ
を酸洗、冷延し0.5mm厚とし、脱脂した後、720
℃、30秒焼鈍しエプスタイン試料を切断して磁気特性
を測定した。
【0040】
【表3】
【0041】熱延板焼鈍温度に対する熱延板結晶粒径の
変化、製品鉄損、製品磁束密度をそれぞれ図1、図2、
図3に示した。成分1の高純度鋼では熱延仕上げ温度が
Ar 3 点以上になっても熱延結晶組織が粗大化するが、
成分2の比較材では個々の成分は式(1)以外の条件を
満足するが、式(1)で定義されるQ値が−4.70超
となっており、熱延板焼鈍温度がAc1 点以上になると
熱延結晶組織が細粒化する。この結果、成分1の高純度
鋼では熱延板焼鈍温度が上昇するに従い鉄損は低下し、
磁束密度は向上するが、成分2の比較例では鉄損の増
大、磁束密度の低下といった磁気特性の悪化がみられ
る。
【0042】このようにC、N、S、Cr、Cu、S
n、OをはじめとしてTi、V、Nb、Ca、Zr、A
s等の不純物を低減するとともに式(1)で定義される
Q値を−4.70以下に制御した上で、高純度鋼をAc
1 点以上の温度で熱延板焼鈍することにより、製品にお
ける鉄損を低減し、磁束密度の高め、優れた磁気特性の
無方向性電磁鋼板を製造することが可能である。
【0043】前記成分からなる鋼スラブは、転炉で溶製
され連続鋳造あるいは造塊−分塊圧延により製造され
る。鋼スラブは公知の方法にて加熱される。このスラブ
に熱間圧延を施し所定の厚みとする。
【0044】次に熱延板焼鈍を施すが、熱延板焼鈍温度
がAc1 点を下まわると、熱延結晶組織の成長が不十分
となり、本発明が目的とする優れた磁気特性を有する無
方向性電磁鋼板を得ることができない。このため熱延板
焼鈍温度はAc1 点以上であることが必要である。熱延
板焼鈍温度の上限は特に設けないが、あまり高温で焼鈍
を行うと、鋼板表面の酸化により表面性状が著しく悪化
し、酸洗歩留まりも低下することから、必然的にその上
限が決まる。
【0045】このようにして得られた熱延板は一回の冷
間圧延と連続焼鈍により製品とする。あるいは中間焼鈍
をはさむ2回以上の冷間圧延により最終板厚としても良
い。またさらにスキンパス圧延工程を付加して製品とし
てもよい。スキンパス圧延率は2%未満ではその効果が
得られず、20%以上では磁気特性が悪化するため2%
から20%とする。
【0046】
【実施例】次に、本発明の実施例について述べる。 [実施例1]表4に示した成分を有する無方向性電磁鋼
用スラブを通常の方法にて加熱し、熱延により2.5mm
に仕上げた。次に、熱延板焼鈍を1000℃で実施し、
Ac 3 変態点以上のγ相域とした。その後、酸洗を施
し、冷間圧延により0.50mmに仕上げた。これを連続
焼鈍炉にて730℃で30秒間焼鈍した。その後、エプ
スタイン試料に切断し、磁気特性を測定した。表4中に
本発明と比較例の成分と鉄損測定結果をあわせて示す。
【0047】
【表4】
【0048】比較例1はQ値の値が、比較例2はC含有
量が、比較例3はS含有量が、比較例4はTi含有量
が、比較例5はV含有量が、比較例6はNb含有量が、
比較例7はSとAs含有量が、比較例8はCr含有量
が、比較例9はSn含有量が、比較例10はCu含有量
が、比較例11はO含有量がそれぞれ本発明の構成要件
を満たしておらず、本発明の実施例に比べて磁束密度、
鉄損の値が劣っていることが分かる。
【0049】このように鋼の純度を制御すれば、熱延板
焼鈍温度をAc1 点以上にすることにより、磁束密度の
値が高く、鉄損値の低い磁気特性の優れた無方向性電磁
鋼板を得ることが可能である。
【0050】[実施例2]表5に示したA,Bの成分か
らなる無方向性電磁鋼用スラブを通常の方法にて加熱
し、熱延により2.5mmに仕上げた。熱延板焼鈍温度を
Ac3 点以上の1050℃とAc1 点以下の850℃と
した。
【0051】その後、酸洗を施し、冷間圧延により0.
50mmおよび0.55mmに仕上げた。板厚0.50mmの
ものは連続焼鈍炉にて730℃で30秒間焼鈍した。そ
の後、750℃2時間の需要家相当の焼鈍を施した。ま
た、板厚0.55mmのものは、連続焼鈍炉にて700℃
で20秒焼鈍を施し、圧下率9%のスキンパス圧延によ
り0.50mm厚に仕上げ、750℃2時間の需要家相当
の焼鈍を施した。これらの試料からエプスタイン試験片
を切り出しの磁気特性を測定した。
【0052】
【表5】
【0053】表6、表7に上述の本発明例と比較例の熱
延板焼鈍温度と磁気測定結果をあわせて示す。
【0054】
【表6】
【0055】
【表7】
【0056】このように高純度鋼を用い、熱延板焼鈍温
度をAc1 点以上にとることにより、1回法、スキンパ
ス圧延法とも磁束密度の値が高く、鉄損値の低い材料が
得られることがわかる。
【0057】
【発明の効果】このように本願発明によれば、磁束密度
が高く鉄損の低い磁気特性の優れた無方向性電磁鋼板を
製造することが可能である。
【図面の簡単な説明】
【図1】熱延板焼鈍温度と熱延板結晶粒径の関係を示す
図表である。
【図2】熱延板焼鈍温度と製品鉄損の関係を示す図表で
ある。
【図3】熱延板焼鈍温度と製品磁束密度の関係を示す図
表である。
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K033 AA01 CA01 CA02 CA05 CA07 CA09 FA00 FA13 FA14 HA01 KA00 5E041 AA02 AA11 AA19 CA02 CA04 HB05 HB07 HB11 NN01 NN06 NN17 NN18

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 重量%で、 0.1%≦Si≦3.5%、 0.1%≦Mn≦1.5%、 C ≦0.004%、 N ≦0.002%、 S ≦0.002%、 Ti≦0.003%、 Nb≦0.003%、 V ≦0.005%、 Zr≦0.003%、 Ca≦0.003%、 As≦0.003%、 Cr≦0.05%、 Sn≦0.01%、 Cu≦0.05%、 O ≦0.02% を含有し、残部がFeおよび不可避的不純物からなり、
    式(1)で定めるQ値が−4.70以下でαγ変態を有
    するスラブを熱間圧延して熱延板とし、次いで熱延板焼
    鈍を施し、酸洗し、1回の冷間圧延工程を施した後、仕
    上焼鈍を施し、その後にスキンパス圧延工程を施すか或
    いは施さない無方向性電磁鋼板の製造方法であって、熱
    延板焼鈍をAc1 点以上の温度域で10秒〜5分の間実
    施することを特徴とする磁束密度が高く鉄損の低い無方
    向性電磁鋼板の製造法。 Q=log[([Ti%]+[Nb%]+[V%]+[Zr%]+[Ca%]) ×[C%]] ・・・式(1) 但し、[Ti%] 、[Nb%] 、[V%]、[Zr%] 、[C%]、[Ca%]
    は、それぞれTi、Nb、V、Zr、Ca、Cの成品中
    の重量濃度
  2. 【請求項2】 スラブが、更に重量%で、 0.1%≦Al≦2% を含有することを特徴とする請求項1記載の磁束密度が
    高く鉄損の低い無方向性電磁鋼板の製造法。
JP11020276A 1999-01-28 1999-01-28 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法 Withdrawn JP2000219917A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11020276A JP2000219917A (ja) 1999-01-28 1999-01-28 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11020276A JP2000219917A (ja) 1999-01-28 1999-01-28 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法

Publications (1)

Publication Number Publication Date
JP2000219917A true JP2000219917A (ja) 2000-08-08

Family

ID=12022661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11020276A Withdrawn JP2000219917A (ja) 1999-01-28 1999-01-28 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法

Country Status (1)

Country Link
JP (1) JP2000219917A (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298935A (ja) * 2004-04-14 2005-10-27 Nippon Steel Corp 全周磁気特性と打ち抜き加工性に優れた無方向性電磁鋼板の製造方法
JP2007039812A (ja) * 2006-10-06 2007-02-15 Jfe Steel Kk 表面性状に優れた鋼板
KR100683471B1 (ko) 2004-08-04 2007-02-20 제이에프이 스틸 가부시키가이샤 무방향성 전자 강판의 제조방법, 및 무방향성 전자강판용의 소재 열연 강판
JP2008156737A (ja) * 2006-12-26 2008-07-10 Jfe Steel Kk 無方向性電磁鋼板およびその製造方法
EP1838882A4 (en) * 2004-12-21 2011-03-02 Posco Co Ltd NON-ORIENTED ELECTRIC STEEL PLATE WITH OUTSTANDING MAGNETIC PROPERTIES AND METHOD OF MANUFACTURING THEREOF
JP2013044010A (ja) * 2011-08-23 2013-03-04 Nippon Steel & Sumitomo Metal Corp 無方向性電磁鋼板およびその製造方法
EP2975152A4 (en) * 2013-03-13 2016-04-06 Jfe Steel Corp NON-ORIENTED ELECTROMAGNETIC STEEL PLATE WITH EXCELLENT MAGNETIC CHARACTERISTICS
JP2016104902A (ja) * 2014-11-19 2016-06-09 Jfeスチール株式会社 高けい素鋼板
KR20170028437A (ko) * 2014-08-21 2017-03-13 제이에프이 스틸 가부시키가이샤 무방향성 전기 강판 및 그 제조 방법
WO2017122761A1 (ja) * 2016-01-15 2017-07-20 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法
KR20180135949A (ko) * 2016-05-30 2018-12-21 바오샨 아이론 앤 스틸 유한공사 고-자기-유도 저-철-손실 무방향성 실리콘 강판 및 이의 제조 방법
US10242782B2 (en) 2012-08-08 2019-03-26 Jfe Steel Corporation High-strength electrical steel sheet and method of producing the same
CN110121567A (zh) * 2017-01-16 2019-08-13 日本制铁株式会社 无方向性电磁钢板及无方向性电磁钢板的制造方法
WO2022113263A1 (ja) * 2020-11-27 2022-06-02 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法、ならびに熱延鋼板
WO2022196807A1 (ja) * 2021-03-19 2022-09-22 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
CN117107164A (zh) * 2023-10-25 2023-11-24 内蒙古矽能电磁科技有限公司 一种超薄无取向硅钢及其制备方法和应用
US12104215B2 (en) 2021-05-25 2024-10-01 Baoshan Iron & Steel Co., Ltd. High-magnetic-induction low-iron-loss non-oriented silicon steel sheet and manufacturing method therefor

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298935A (ja) * 2004-04-14 2005-10-27 Nippon Steel Corp 全周磁気特性と打ち抜き加工性に優れた無方向性電磁鋼板の製造方法
JP4551110B2 (ja) * 2004-04-14 2010-09-22 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
KR100683471B1 (ko) 2004-08-04 2007-02-20 제이에프이 스틸 가부시키가이샤 무방향성 전자 강판의 제조방법, 및 무방향성 전자강판용의 소재 열연 강판
EP1838882A4 (en) * 2004-12-21 2011-03-02 Posco Co Ltd NON-ORIENTED ELECTRIC STEEL PLATE WITH OUTSTANDING MAGNETIC PROPERTIES AND METHOD OF MANUFACTURING THEREOF
JP2007039812A (ja) * 2006-10-06 2007-02-15 Jfe Steel Kk 表面性状に優れた鋼板
JP2008156737A (ja) * 2006-12-26 2008-07-10 Jfe Steel Kk 無方向性電磁鋼板およびその製造方法
JP2013044010A (ja) * 2011-08-23 2013-03-04 Nippon Steel & Sumitomo Metal Corp 無方向性電磁鋼板およびその製造方法
US10242782B2 (en) 2012-08-08 2019-03-26 Jfe Steel Corporation High-strength electrical steel sheet and method of producing the same
EP2975152A4 (en) * 2013-03-13 2016-04-06 Jfe Steel Corp NON-ORIENTED ELECTROMAGNETIC STEEL PLATE WITH EXCELLENT MAGNETIC CHARACTERISTICS
US10102951B2 (en) 2013-03-13 2018-10-16 Jfe Steel Corporation Non-oriented electrical steel sheet having excellent magnetic properties
KR20170028437A (ko) * 2014-08-21 2017-03-13 제이에프이 스틸 가부시키가이샤 무방향성 전기 강판 및 그 제조 방법
EP3184660A4 (en) * 2014-08-21 2017-12-27 JFE Steel Corporation Non-oriented electrical steel sheet and manufacturing method thereof
KR101949621B1 (ko) 2014-08-21 2019-02-18 제이에프이 스틸 가부시키가이샤 무방향성 전기 강판 및 그 제조 방법
JP2016104902A (ja) * 2014-11-19 2016-06-09 Jfeスチール株式会社 高けい素鋼板
EP3404124A4 (en) * 2016-01-15 2018-12-26 JFE Steel Corporation Non-oriented electromagnetic steel sheet and method for producing same
RU2696887C1 (ru) * 2016-01-15 2019-08-08 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из нетекстурированной электротехнической стали и способ его изготовления
CN108463569A (zh) * 2016-01-15 2018-08-28 杰富意钢铁株式会社 无取向性电磁钢板及其制造方法
US20190017138A1 (en) * 2016-01-15 2019-01-17 Jfe Steel Corporation Non-oriented electrical steel sheet and production method thereof
JPWO2017122761A1 (ja) * 2016-01-15 2018-01-18 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法
WO2017122761A1 (ja) * 2016-01-15 2017-07-20 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法
US11008633B2 (en) 2016-01-15 2021-05-18 Jfe Steel Corporation Non-oriented electrical steel sheet and production method thereof
KR102240395B1 (ko) * 2016-05-30 2021-04-13 바오샨 아이론 앤 스틸 유한공사 고-자기-유도 저-철-손실 무방향성 실리콘 강판 및 이의 제조 방법
KR20180135949A (ko) * 2016-05-30 2018-12-21 바오샨 아이론 앤 스틸 유한공사 고-자기-유도 저-철-손실 무방향성 실리콘 강판 및 이의 제조 방법
JP2019521246A (ja) * 2016-05-30 2019-07-25 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. 高磁気誘導かつ低鉄損の無方向性ケイ素鋼板及びその製造方法
CN110121567A (zh) * 2017-01-16 2019-08-13 日本制铁株式会社 无方向性电磁钢板及无方向性电磁钢板的制造方法
CN110121567B (zh) * 2017-01-16 2021-07-27 日本制铁株式会社 无方向性电磁钢板及无方向性电磁钢板的制造方法
WO2022113263A1 (ja) * 2020-11-27 2022-06-02 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法、ならびに熱延鋼板
JP7492162B2 (ja) 2020-11-27 2024-05-29 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法、ならびに熱延鋼板
WO2022196807A1 (ja) * 2021-03-19 2022-09-22 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
US12104215B2 (en) 2021-05-25 2024-10-01 Baoshan Iron & Steel Co., Ltd. High-magnetic-induction low-iron-loss non-oriented silicon steel sheet and manufacturing method therefor
CN117107164A (zh) * 2023-10-25 2023-11-24 内蒙古矽能电磁科技有限公司 一种超薄无取向硅钢及其制备方法和应用
CN117107164B (zh) * 2023-10-25 2023-12-29 内蒙古矽能电磁科技有限公司 一种超薄无取向硅钢及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP2000219917A (ja) 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法
EP0229846B1 (en) Process for producing silicon steel sheet having soft magnetic characteristics
JP2000219916A (ja) 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法
KR100293140B1 (ko) 일방향성 전자강판 및 그 제조방법
JP4422220B2 (ja) 磁束密度が高く鉄損の低い無方向性電磁鋼板及びその製造方法
JPH1060532A (ja) 磁気特性と表面性状の優れた無方向性電磁鋼板の製造方法
JP2001181806A (ja) 透磁率に優れた無方向性電磁鋼板とその熱延板およびその製造方法
KR100192841B1 (ko) 자성이 우수한 무방향성 전기강판 및 그 제조방법
JP3348811B2 (ja) 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
JPH0797628A (ja) 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
JP2000096196A (ja) 鉄損の低い無方向性電磁鋼板及びその製造方法
JP3379058B2 (ja) 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
JPH08283853A (ja) 磁気特性の優れた無方向性電磁鋼板の製造方法
JP4191806B2 (ja) 無方向性電磁鋼板の製造方法
JPH0860247A (ja) 磁気特性の優れた無方向性電磁鋼板の製造方法
JP2001172718A (ja) 磁気特性の均一な無方向性電磁鋼板の製造方法
JP2666626B2 (ja) 低鉄損無方向性電磁鋼板およびその製造方法
JP3348827B2 (ja) 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造方法
JPH07258736A (ja) 磁気特性の優れた無方向性電磁鋼板の製造方法
JP2000096145A (ja) 磁気特性の均一な無方向性電磁鋼板の製造方法
JP2000309823A (ja) 磁気特性の均一な熱延珪素鋼板の製造方法
JP2003064456A (ja) セミプロセス用無方向性電磁鋼板とその製造方法
JP2000297325A (ja) 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造方法
WO2024150732A1 (ja) 無方向性電磁鋼板
WO2024150733A1 (ja) 無方向性電磁鋼板

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404