WO2022196807A1 - 無方向性電磁鋼板およびその製造方法 - Google Patents

無方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2022196807A1
WO2022196807A1 PCT/JP2022/012760 JP2022012760W WO2022196807A1 WO 2022196807 A1 WO2022196807 A1 WO 2022196807A1 JP 2022012760 W JP2022012760 W JP 2022012760W WO 2022196807 A1 WO2022196807 A1 WO 2022196807A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
less
mass
steel sheet
oriented
Prior art date
Application number
PCT/JP2022/012760
Other languages
English (en)
French (fr)
Inventor
鉄州 村川
智 鹿野
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2023507205A priority Critical patent/JPWO2022196807A1/ja
Priority to CN202280021420.0A priority patent/CN116981792A/zh
Priority to EP22771552.1A priority patent/EP4310203A1/en
Priority to BR112023017003A priority patent/BR112023017003A2/pt
Priority to KR1020237030906A priority patent/KR20230144606A/ko
Publication of WO2022196807A1 publication Critical patent/WO2022196807A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1238Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps

Definitions

  • the present invention relates to a non-oriented electrical steel sheet and a manufacturing method thereof.
  • This application claims priority based on Japanese Patent Application No. 2021-046004 filed in Japan on March 19, 2021, the content of which is incorporated herein.
  • Non-oriented electrical steel sheets are used, for example, in the iron cores of motors, and non-oriented electrical steel sheets are required to have excellent magnetic properties, such as low core loss and high magnetic flux density, in the direction parallel to the plate surface.
  • the texture of the steel sheet so that the axis of easy magnetization ( ⁇ 100> orientation) of the crystal coincides with the in-plane direction of the sheet.
  • the ⁇ 100 ⁇ orientation which has many easy magnetization axes in the plate in-plane direction
  • the ⁇ 111 ⁇ orientation which does not have an easy magnetization axis in the plate in-plane direction
  • many techniques for controlling ⁇ 100 ⁇ orientation, ⁇ 110 ⁇ orientation, ⁇ 111 ⁇ orientation, etc. have been disclosed, such as the techniques described in Patent Documents 1 to 5, for example.
  • an object of the present invention is to provide a non-oriented electrical steel sheet capable of obtaining excellent magnetic properties (low core loss, etc.) even after shearing, and a method for manufacturing the same.
  • the inventors of the present invention have investigated a technique for forming a favorable texture for a non-oriented electrical steel sheet by utilizing strain-induced grain growth and the properties of the resulting steel sheet.
  • strain-induced grain growth the variation in properties (especially iron loss) may become large depending on the processing conditions when cutting out samples for property evaluation.
  • this phenomenon was observed in detail, it was thought that when the properties were low, the cross section of the sample was rough and the fracture behavior during shearing was affecting it.
  • the crystal structure is a mixed grain, and furthermore, it has an orientation that is eroded by strain-induced grain growth ⁇ 100 ⁇ oriented grains, ⁇ 110 ⁇ oriented grains, and ⁇ 111 ⁇ oriented grains serving as eroded oriented grains are characteristically different in grain size.
  • a non-oriented electrical steel sheet according to one aspect of the present invention is in % by mass, Si: 1.50% to 4.00%, One or more selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, and Au: less than 2.50% in total, C: 0.0100% or less, sol.
  • the Al content (% by mass) is measured as [sol. Al], the following formula (1) is satisfied, having a chemical composition with the balance being Fe and impurities, Furthermore, when observed by EBSD on a plane parallel to the surface of the steel sheet, the total area is S tot , the area of ⁇ 100 ⁇ oriented grains is S 100 , and the Taylor factor M according to the following formula (2) is greater than 2.8.
  • S tyl is the area of oriented grains
  • S tra is the total area of oriented grains where the Taylor factor M is 2.8 or less
  • K 100 is the average KAM value of the ⁇ 100 ⁇ oriented grains
  • the Taylor factor M is 2.8.
  • K tyl is the average KAM value of oriented grains that exceed . ([Mn] + [Ni] + [Co] + [Pt] + [Pb] + [Cu] + [Au]) - ([Si] + [sol.Al]) ⁇ 0.00% ...
  • the non-oriented electrical steel sheet described in [1] or 2 above may further satisfy the following formula (8), where S 110 is the area of the ⁇ 110 ⁇ oriented grains. S100 / S110 ⁇ 1.00 (8) Here, equation (8) is assumed to hold even if the area ratio S 100 /S 110 diverges to infinity. [4]
  • the non-oriented electrical steel sheet according to any one of [1] to [3] above may further satisfy the following formula (9), where K 110 is the average KAM value of ⁇ 110 ⁇ oriented grains.
  • a non-oriented electrical steel sheet according to another aspect of the present invention in % by mass, Si: 1.50% to 4.00%, One or more selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, and Au: less than 2.50% in total, C: 0.0100% or less, sol.
  • the Al content (% by mass) is measured as [sol. Al], the following formula (1) is satisfied, having a chemical composition with the balance being Fe and impurities, Furthermore, when observed by EBSD on a plane parallel to the surface of the steel sheet, the total area is S tot , the area of ⁇ 100 ⁇ oriented grains is S 100 , and the Taylor factor M according to the following formula (2) is greater than 2.8.
  • S tyl is the area of oriented grains
  • S tra is the total area of oriented grains where the Taylor factor M is 2.8 or less
  • K 100 is the average KAM value of the ⁇ 100 ⁇ oriented grains
  • the Taylor factor M is 2.8.
  • K tyl is the average KAM value of the oriented grains that exceed
  • d ave is the average grain size of the observation area
  • d 100 is the average grain size of the ⁇ 100 ⁇ oriented grains
  • the Taylor factor M is more than 2.8.
  • M (cos ⁇ cos ⁇ ) ⁇ 1 (2) S tyl /S tot ⁇ 0.70 (10) 0.20 ⁇ S 100 /S tot (11) S100 / Stra ⁇ 0.55 (12) K100/Ktyl ⁇ 1.010 ( 13) d100 / dave >1.00 (14) d100 / dtyl >1.00 (15)
  • ⁇ in the formula (2) represents the angle between the stress vector and the crystal slip direction vector
  • represents the angle between the stress vector and the normal vector of the crystal slip surface.
  • the non-oriented electrical steel sheet described in [5] further satisfies the following formula (16), where K tra is the average KAM value of oriented grains at which the Taylor factor M is 2.8 or less. good too. K100/Ktra ⁇ 1.010 (16) [7] In the non-oriented electrical steel sheet described in [5] or [6] above, the following (17 ) may be satisfied. d100 / dtra >1.00 (17) [8]
  • the non-oriented electrical steel sheet according to any one of [5] to [7] above may further satisfy the following formula (18), where S 110 is the area of the ⁇ 110 ⁇ oriented grains.
  • a method for manufacturing a non-oriented electrical steel sheet according to an aspect of the present invention is the method for manufacturing a non-oriented electrical steel sheet according to any one of [5] to [9] above, The non-oriented electrical steel sheet according to any one of [1] to [4] above is heat-treated at a temperature of 700° C.
  • a non-oriented electrical steel sheet according to another aspect of the present invention is in % by mass, Si: 1.50% to 4.00%, One or more selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, and Au: less than 2.50% in total, C: 0.0100% or less, sol.
  • the Al content (% by mass) is measured as [sol. Al], the following formula (1) is satisfied, having a chemical composition with the balance being Fe and impurities, Furthermore, when observed by EBSD on a plane parallel to the surface of the steel sheet, the total area is S tot , the area of ⁇ 100 ⁇ oriented grains is S 100 , and the Taylor factor M according to the following formula (2) is greater than 2.8.
  • S tyl is the area of the oriented grains
  • S tra is the total area of the oriented grains at which the Taylor factor M is 2.8 or less
  • d ave is the average grain size of the observation area
  • the average grain size of the ⁇ 100 ⁇ oriented grains is is d 100
  • the average grain size of oriented grains with the Taylor factor M exceeding 2.8 is d tyl , the following equations (20) to (24) are satisfied.
  • a method for manufacturing a non-oriented electrical steel sheet according to another aspect of the present invention comprises: For the non-oriented electrical steel sheet according to any one of [1] to [9] above, the temperature is 950° C. to 1050° C. for 1 second to 100 seconds, or the temperature is 700° C. to 900° C. for 1000 seconds. Heat treatment is performed under the condition of super.
  • the non-oriented electromagnetic steel sheet since the area and area ratio of the specific crystal orientation in the cross section parallel to the steel sheet surface are appropriate, the non-oriented electromagnetic steel sheet has excellent magnetic properties even after shearing.
  • a steel sheet and a method for manufacturing the same can be provided.
  • the non-oriented electrical steel sheet according to the present embodiment is manufactured by subjecting a steel material manufactured by casting or the like to a hot rolling process, a hot rolled plate annealing process, a cold rolling process, an intermediate annealing process, and a skin pass rolling process. .
  • a hot rolling process a hot rolled plate annealing process
  • a cold rolling process a cold rolling process
  • an intermediate annealing process a skin pass rolling process.
  • a skin pass rolling process At this stage, it has the metallographic structure described in Embodiment 1, which will be described later.
  • it is manufactured through a first heat treatment step.
  • it has the metallographic structure described in Embodiment 2, which will be described later.
  • it is manufactured by subjecting the non-oriented electrical steel sheet after skin-pass rolling or after the first heat treatment to second heat treatment.
  • the steel sheet undergoes strain-induced grain growth and then normal grain growth. Strain-induced grain growth and normal grain growth may occur in the first heat treatment step or in the second heat treatment step.
  • the steel sheet after skin-pass rolling has a relationship of the original sheet of the steel sheet after strain-induced grain growth and the original sheet of the steel sheet after normal grain growth.
  • the steel sheet after strain-induced grain growth is related to the original sheet of the steel sheet after normal grain growth.
  • the steel sheet after skin-pass rolling, the steel sheet after strain-induced grain growth, and the steel sheet after normal grain growth are all described as non-oriented electrical steel sheets regardless of whether they are before or after heat treatment.
  • the chemical composition does not change through the hot rolling process, hot rolled plate annealing process, cold rolling process, intermediate annealing process, skin pass rolling process, first heat treatment process, and second heat treatment process.
  • the non-oriented electrical steel sheet and steel material according to the present embodiment are one or more selected from the group consisting of Si: 1.50% to 4.00%, Mn, Ni, Co, Pt, Pb, Cu, and Au: total less than 2.50%, C: 0.0100% or less, sol.
  • Al 4.00% or less
  • P 0.00% to 0.40%
  • S 0.0400% or less
  • N 0.0100% or less
  • Sn 0.00% to 0.40%
  • Sb 0.00% to 0.40%
  • Cr 0.001% to 0.100%
  • B 0.0000% to 0.0050%
  • O 0.0000% to 0.0200%
  • Mg Ca , Sr, Ba, Ce, La, Nd, Pr, Zn, and one or more selected from the group consisting of Cd: chemical composition containing 0.0000 to 0.0100% in total, with the balance being Fe and impurities have Examples of impurities include those contained in raw materials such as ores and scraps, and those contained in manufacturing processes.
  • Si increases electrical resistance, reduces eddy current loss, reduces iron loss, and increases yield ratio to improve punching workability for iron cores. If the Si content is less than 1.50%, these effects cannot be sufficiently obtained. Therefore, the Si content should be 1.50% or more.
  • the Si content is preferably 2.00% or more, more preferably 2.10% or more, still more preferably 2.30% or more.
  • the Si content exceeds 4.00%, the magnetic flux density is lowered, the punching workability is lowered due to an excessive increase in hardness, and cold rolling becomes difficult. Therefore, the Si content should be 4.00% or less.
  • These elements are austenite phase ( ⁇ phase) stabilizing elements, and when contained in a large amount, ferrite-austenite transformation (hereinafter referred to as ⁇ - ⁇ transformation) occurs during heat treatment of the steel sheet. It is believed that the effect of the non-oriented electrical steel sheet according to the present embodiment is exhibited by controlling the area and area ratio of a specific crystal orientation in a cross section parallel to the steel sheet surface. When the ⁇ transformation occurs, the above area and area ratio change greatly due to the transformation, and the desired metal structure cannot be obtained.
  • the total content of one or more selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu and Au is set to less than 2.50%.
  • the total content is preferably less than 2.00%, more preferably less than 1.50%.
  • the lower limit of the total content of these elements is not particularly limited (it may be 0.00%), but with regard to Mn, it is preferable to set it to 0.10% or more for the reason of suppressing fine precipitation of MnS that deteriorates the magnetic properties. preferable.
  • C (C: 0.0100% or less) C increases iron loss and causes magnetic aging. Therefore, the lower the C content, the better. Such a phenomenon is remarkable when the C content exceeds 0.0100%. Therefore, the C content should be 0.0100% or less.
  • the lower limit of the C content is not particularly limited, it is preferable to set the C content to 0.0005% or more in consideration of the cost of decarburization treatment during refining.
  • sol. Al increases electrical resistance, reduces eddy current loss, and reduces iron loss. sol. Al also contributes to improving the relative magnitude of the magnetic flux density B50 with respect to the saturation magnetic flux density.
  • the magnetic flux density B50 is the magnetic flux density in a magnetic field of 5000 A/m. sol. If the Al content is less than 0.0001%, these effects cannot be sufficiently obtained. Al also has the effect of promoting desulfurization in steelmaking. Therefore, when obtaining the above effect, sol.
  • the Al content is preferably 0.0001% or more. sol.
  • the Al content is more preferably 0.30% or more. On the other hand, sol.
  • sol. Al content is 4.00% or less.
  • the Al content is preferably 2.50% or less, more preferably 1.50% or less.
  • S is not an essential element but is contained as an impurity in steel, for example. S inhibits recrystallization and grain growth during annealing due to the precipitation of fine MnS. Therefore, the lower the S content, the better. The increase in iron loss and the decrease in magnetic flux density due to the inhibition of recrystallization and grain growth are remarkable when the S content exceeds 0.0400%. Therefore, the S content should be 0.0400% or less.
  • the S content is preferably 0.0200% or less, more preferably 0.0100% or less.
  • the lower limit of the S content is not particularly limited, the S content is preferably 0.0003% or more in consideration of the cost of desulfurization treatment during refining.
  • N 0.0100% or less
  • the N content should be 0.0100% or less.
  • the lower limit of the N content is not particularly limited, the N content is preferably 0.0010% or more in consideration of the cost of denitrification treatment during refining.
  • Sn and Sb are contained excessively, they embrittle the steel. Therefore, both Sn content and Sb content are set to 0.40% or less. Moreover, when P is contained excessively, it causes embrittlement of steel. Therefore, the P content should be 0.40% or less.
  • Sn and Sb have the effect of improving the texture after cold rolling and recrystallization and improving the magnetic flux density.
  • P is an effective element for ensuring the hardness of the steel sheet after recrystallization. Therefore, these elements may be contained as necessary. In that case, one or more selected from the group consisting of 0.02% to 0.40% Sn, 0.02% to 0.40% Sb, and 0.02% to 0.40% P It is preferable to contain
  • Cr 0.001% to 0.100% Cr combines with oxygen in steel to form Cr 2 O 3 .
  • This Cr 2 O 3 contributes to the improvement of the texture.
  • the Cr content is set to 0.001% or more.
  • the Cr content exceeds 0.100%, Cr 2 O 3 inhibits grain growth during annealing, making the crystal grain size finer and causing an increase in iron loss. Therefore, the Cr content is set to 0.100% or less.
  • Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd react with S in molten steel during casting to form precipitates of sulfides and/or oxysulfides.
  • Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd may be collectively referred to as "coarse precipitate forming elements”.
  • the grain size of coarse precipitate-forming elements is about 1 ⁇ m to 2 ⁇ m, which is much larger than the grain size (about 100 nm) of fine precipitates such as MnS, TiN and AlN. For this reason, these fine precipitates adhere to the precipitates of the coarse precipitate-forming element, and are less likely to inhibit the growth of crystal grains in strain-induced grain growth.
  • the total content of these coarse precipitate forming elements is preferably 0.0005% or more. On the other hand, if the total content of these elements exceeds 0.0100%, the total amount of sulfides or oxysulfides or both becomes excessive, inhibiting grain growth in strain-induced grain growth. Therefore, the total content of coarse precipitate-forming elements is set to 0.0100% or less.
  • B (B: 0.0000% to 0.0050%)
  • B may be contained.
  • the B content is preferably 0.0001% or more.
  • the B compound inhibits grain growth during annealing, making the crystal grain size finer and increasing iron loss. Therefore, the B content is set to 0.0050% or less.
  • O combines with Cr in steel to form Cr 2 O 3 .
  • This Cr 2 O 3 contributes to the improvement of the texture. Therefore, O may be contained.
  • the O content is preferably 0.0010% or more.
  • Cr 2 O 3 inhibits grain growth during annealing, making the crystal grain size finer and causing an increase in iron loss. Therefore, the O content is set to 0.0200% or less.
  • the thickness (plate thickness) of the non-oriented electrical steel sheet according to this embodiment is preferably 0.10 mm to 0.50 mm. If the thickness exceeds 0.50 mm, it may not be possible to obtain excellent iron loss. Therefore, the thickness is preferably 0.50 mm or less. If the thickness is less than 0.10 mm, the influence of magnetic flux leakage from the surface of the non-oriented electrical steel sheet increases, and the magnetic properties may deteriorate. Further, if the thickness is less than 0.10 mm, it becomes difficult to pass through the annealing line, or the number of non-oriented electrical steel sheets required for an iron core of a certain size increases, resulting in an increase in man-hours. There is a possibility that the decrease in productivity and the increase in manufacturing cost associated with this may be caused. Therefore, it is preferable to set the thickness to 0.10 mm or more. More preferably, the thickness is 0.20 mm to 0.35 mm.
  • the metal structure of the non-oriented electrical steel sheet according to this embodiment will be described.
  • the metal structure of the non-oriented electrical steel sheet after skin-pass rolling, the metal structure of the non-oriented electrical steel sheet after the first heat treatment, and the metal structure of the non-oriented electrical steel sheet after the second heat treatment are described below.
  • the metal structure specified in the present embodiment is specified by a cross section parallel to the plate surface of the steel plate, and is specified by the following procedure.
  • the plate is polished so that the center of the plate thickness is exposed, and the polished surface (the surface parallel to the steel plate surface) is observed with EBSD (Electron Back Scattering Diffraction) for a region of 2500 ⁇ m 2 or more. Observations may be made at several locations divided into several subdivisions as long as the total area is 2500 ⁇ m 2 or more.
  • the step interval during measurement is desirably 50 to 100 nm.
  • KAM Kernel Average Misorientation
  • average grain size are obtained from the EBSD observation data by a common method.
  • S tot total area (observed area)
  • S tyl Total area of oriented grains with a Taylor factor M exceeding 2.8 according to the following formula (2)
  • S tra Total area of oriented grains with a Taylor factor M of 2.8 or less according to the following formula (2)
  • S 100 Total area of ⁇ 100 ⁇ oriented grains
  • S 110 Total area of ⁇ 110 ⁇ oriented grains
  • K tyl Average KAM value K tra of oriented grains with Taylor factor M exceeding 2.8 according to the following formula (2) : Average KAM value of oriented grains where the Taylor factor M according to the following formula (2) is 2.8 or less
  • K 100 Average KAM value of ⁇ 100 ⁇ oriented grains
  • d tra Average crystal grain size
  • the above Taylor factor M assumes that the slip deformation of the crystal occurs in the slip plane ⁇ 110 ⁇ and the slip direction ⁇ 111>, and the in-plane strain in the plane parallel to the thickness direction and the rolling direction is is the Taylor factor when compressive deformation is performed.
  • the Taylor factor according to the formula (2) is simply referred to as the "Taylor factor" as the average value obtained for all crystallographically equivalent crystals.
  • the characteristics are defined by the area, KAM value, and average crystal grain size.
  • the area of the predetermined oriented grains satisfies the following formulas (3) to (5). 0.20 ⁇ S tyl /S tot ⁇ 0.85 (3) 0.05 ⁇ S100 / Stot ⁇ 0.80 (4) S100 / Stra ⁇ 0.50 (5)
  • S tyl is the abundance of orientations with sufficiently large Taylor factors. In the strain-induced grain growth process, the orientations with small Taylor factors and in which strain due to working is less likely to accumulate grow preferentially while the orientations with large Taylor factors and accumulated strain due to working are overwhelmed. Therefore, a certain amount of S tyl must be present in order to develop a specific orientation by strain-induced grain growth.
  • the area ratio S tyl /S tot to the total area is defined, and the area ratio S tyl /S tot is set to 0.20 or more in the present embodiment. If the area ratio S tyl /S tot is less than 0.20, the intended crystal orientation will not develop sufficiently due to strain-induced grain growth.
  • the area ratio S tyl /S tot is preferably 0.30 or more, more preferably 0.50 or more.
  • the upper limit of the area ratio S tyl /S tot is related to the amount of crystal orientation grains that should be developed in the strain-induced grain growth process described below, but the condition is simply the orientation of preferential growth and the orientation of erosion. It is not determined only by the ratio.
  • the area ratio S 100 /S tot of ⁇ 100 ⁇ oriented grains to be developed by strain-induced grain growth is 0.05 or more, the area ratio S tyl /S tot is inevitably zero. 0.95 or less.
  • the abundance of the area ratio S tyl /S tot becomes excessive, the preferential growth of ⁇ 100 ⁇ oriented grains does not occur in relation to strain, which will be described later.
  • the area ratio S tyl /S tot is 0.85 or less.
  • the area ratio S tyl /S tot is preferably 0.75 or less, more preferably 0.70 or less.
  • ⁇ 100 ⁇ oriented grains are preferentially grown.
  • the ⁇ 100 ⁇ orientation has a sufficiently small Taylor factor and is one of the orientations in which strain due to working is less likely to accumulate, and is an orientation that can preferentially grow in the process of strain-induced grain growth.
  • the presence of ⁇ 100 ⁇ oriented grains is essential, and in this embodiment, the area ratio S 100 /S tot of the ⁇ 100 ⁇ oriented grains is set to 0.05 or more. If the area ratio S 100 /S tot of the ⁇ 100 ⁇ oriented grains is less than 0.05, the ⁇ 100 ⁇ oriented grains will not develop sufficiently due to subsequent strain-induced grain growth.
  • the area ratio S 100 /S tot is preferably 0.10 or more, more preferably 0.20 or more.
  • the upper limit of the area ratio S 100 /S tot is determined according to the amount of crystal orientation grains to be eroded by strain-induced grain growth.
  • the area ratio S tyl /S tot of the orientations in which the Taylor factor to be eroded by strain-induced grain growth exceeds 2.8 is 0.20 or more
  • the area ratio S 100 /S tot is 0. .80 or less.
  • the area ratio S 100 /S tot is preferably 0.60 or less, more preferably 0.50 or less, and even more preferably 0.40 or less.
  • ⁇ 100 ⁇ oriented grains have been described as the oriented grains to be preferentially grown, the grains in the ⁇ 100 ⁇ orientation have a sufficiently small Taylor factor and are less susceptible to accumulation of strain due to processing.
  • oriented grains compete with ⁇ 100 ⁇ oriented grains, which should be preferentially grown.
  • these oriented grains have less magnetization easy axis directions ( ⁇ 100> direction) in the plane of the steel plate than ⁇ 100 ⁇ oriented grains, so if these orientations develop due to strain-induced grain growth, the magnetic properties deteriorate. and become inconvenient.
  • the existence ratio of ⁇ 100 ⁇ oriented grains is defined to be ensured in the orientations in which the Taylor factor is sufficiently small and strain due to working is less likely to accumulate.
  • S tra is the area of oriented grains whose Taylor factor is 2.8 or less, including oriented grains that are considered to compete with ⁇ 100 ⁇ oriented grains in strain-induced grain growth. Then, as shown in the formula (5), the area ratio S 100 /S tra is set to 0.50 or more to secure superiority in the growth of ⁇ 100 ⁇ oriented grains. If the area ratio S 100 /S tra is less than 0.50, ⁇ 100 ⁇ oriented grains will not develop sufficiently due to strain-induced grain growth.
  • the area ratio S 100 /S tra is preferably 0.80 or more, more preferably 0.90 or more.
  • the relationship with ⁇ 110 ⁇ oriented grains which is known as an orientation that tends to grow by strain-induced grain growth
  • the ⁇ 110 ⁇ orientation can be obtained by a general-purpose method such as increasing the crystal grain size of a hot-rolled steel sheet and recrystallizing it by cold rolling, or by cold-rolling at a relatively low rolling reduction to recrystallize it.
  • This orientation should be given special consideration in competition with ⁇ 100 ⁇ orientation grains, which should be preferentially grown. If ⁇ 110 ⁇ oriented grains develop due to strain-induced grain growth, the in-plane anisotropy of the properties of the steel sheet becomes extremely large, which is inconvenient.
  • the area ratio S 100 /S 110 between the ⁇ 100 ⁇ oriented grains and the ⁇ 110 ⁇ oriented grains is controlled to satisfy the expression (8), and the ⁇ 100 ⁇ oriented grains grow. It is preferable to secure the superiority of S100 / S110 ⁇ 1.00 (8)
  • the area ratio S 100 /S 110 is preferably 1.00 or more. More preferably, the area ratio S100 / S110 is 2.00 or more, and still more preferably 4.00 or more. There is no particular upper limit to the area ratio S 100 /S 110 , and the area ratio of ⁇ 110 ⁇ oriented grains may be zero. In other words, equation (8) holds true even if the area ratio S 100 /S 110 diverges to infinity.
  • Equation (6) is the ratio of the strain accumulated in ⁇ 100 ⁇ oriented grains (average KAM value) to the strain accumulated in oriented grains with a Taylor factor exceeding 2.8 (average KAM value).
  • the KAM value is the orientation difference between adjacent measurement points within the same grain, and the KAM value is high at locations with a large amount of strain. From a crystallographic point of view, for example, when performing compressive deformation in the thickness direction in a plane strain state in a plane parallel to the thickness direction and the rolling direction, that is, when simply rolling a steel plate, generally The ratio K 100 /K tyl between K 100 and K tyl is less than one.
  • K 100 /K tyl is set to 0.990 or less.
  • K 100 /K tyl exceeds 0.990, the specificity of the region to be eroded is lost. Therefore, strain-induced grain growth is less likely to occur.
  • K 100 /K tyl is preferably 0.970 or less, more preferably 0.950 or less.
  • K 100 /K tra is preferably less than 1.010. This K 100 /K tra is also an index of competition between orientations in which strain is difficult to accumulate and may grow preferentially . is not exhibited, and the desired crystal orientation is not developed. K 100 /K tra is more preferably 0.970 or less, still more preferably 0.950 or less.
  • K 100 /K 110 is preferably less than 1.010.
  • K 100 /K 110 is more preferably 0.970 or less, still more preferably 0.950 or less.
  • the crystal grain size is not particularly limited. This is because the relationship with the grain size is not so strong in a state where the subsequent first heat treatment causes proper strain-induced grain growth. In other words, whether or not the desired strain-induced grain growth occurs is largely determined by the chemical composition of the steel sheet, the relationship between the abundance (area) for each crystal orientation, and the relationship between the amount of strain for each orientation. can.
  • the practical average crystal grain size is 300 ⁇ m or less. It is more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, and particularly preferably 30 ⁇ m or less. The finer the grain size, the more recognizable the development of the desired crystal orientation by strain-induced grain growth when the distribution of crystal orientation and strain is properly controlled.
  • the average crystal grain size is preferably 3 ⁇ m or more, more preferably 8 ⁇ m or more, and still more preferably 15 ⁇ m or more.
  • the non-oriented electrical steel sheet after skin-pass rolling is further subjected to a first heat treatment, so that the non-oriented electrical steel sheet after strain-induced grain growth occurs (and before strain-induced grain growth is completed).
  • the metal structure of is explained.
  • at least part of the strain is released by strain-induced grain growth, and the characteristics of the metal structure of the steel sheet after strain-induced grain growth are determined by the crystal orientation, strain, and grain size. Defined.
  • the area of the predetermined oriented grains satisfies the following formulas (10) to (12).
  • These provisions differ in numerical range from the formulas (3) to (5) relating to non-oriented electrical steel sheets after skin-pass rolling.
  • ⁇ 100 ⁇ oriented grains preferentially grow and their area increases, and oriented grains with a Taylor factor exceeding 2.8 are mainly eaten by ⁇ 100 ⁇ oriented grains, and their areas decrease. because they are S tyl /S tot ⁇ 0.70 (10) 0.20 ⁇ S 100 /S tot (11) S100 / Stra ⁇ 0.55 (12)
  • the upper limit of the area ratio S tyl /S tot is determined as one of the parameters indicating the progress of strain-induced grain growth. If the area ratio S tyl /S tot is more than 0.70, the grains of the oriented grains with a Taylor factor of more than 2.8 are not sufficiently eroded, and strain-induced grain growth is not sufficiently occurring. It is shown that. In other words, the ⁇ 100 ⁇ orientation grains that should be developed are not sufficiently developed, so that the magnetic properties are not sufficiently improved. Therefore, in this embodiment, the area ratio S tyl /S tot is set to 0.70 or less. The area ratio S tyl /S tot is preferably 0.60 or less, more preferably 0.50 or less. Since it is preferable that the area ratio S tyl /S tot is small, the lower limit does not need to be specified, and may be 0.00.
  • the area ratio S 100 /S tot is set to 0.20 or more.
  • the lower limit of the area ratio S 100 /S tot is determined as one of the parameters indicating the degree of progress of strain-induced grain growth . is insufficient, the magnetic properties are not sufficiently improved.
  • the area ratio S 100 /S tot is preferably 0.40 or more, more preferably 0.60 or more. Since the area ratio S 100 /S tot is preferably as high as possible, the upper limit need not be specified, and may be 1.00.
  • the relationship between grains with ⁇ 100 ⁇ orientation and grains with ⁇ 100 ⁇ orientation is also important.
  • the area ratio S 100 /S tra is large, the superiority of growth of ⁇ 100 ⁇ oriented grains is ensured, resulting in good magnetic properties.
  • the area ratio S 100 /S tra is less than 0.55, the ⁇ 100 ⁇ oriented grains are not sufficiently developed by strain-induced grain growth, and the ⁇ 100 ⁇ oriented grains with a Taylor factor exceeding 2.8 This indicates that the Taylor factors other than the oriented grains are eroded by small orientations. In this case, the in-plane anisotropy of the magnetic properties also increases.
  • the area ratio S 100 /S tra is set to 0.55 or more.
  • the area ratio S 100 /S tra is preferably 0.65 or more, more preferably 0.75 or more.
  • there is no particular upper limit to the area ratio S 100 /S tra and all oriented grains having a Taylor factor of 2.8 or less may be ⁇ 100 ⁇ oriented grains.
  • the relationship with ⁇ 110 ⁇ oriented grains is also defined.
  • the area ratio S 100 /S 110 between the ⁇ 100 ⁇ oriented grains and the ⁇ 110 ⁇ oriented grains satisfies the following formula (18), and the superiority of growth of the ⁇ 100 ⁇ oriented grains is ensured. It is preferable that S100 / S110 ⁇ 1.00 (18)
  • the area ratio S100 / S110 is preferably 1.00 or more.
  • the area ratio S100 / S110 is 2.00 or more, and still more preferably 4.00 or more.
  • the area ratio of ⁇ 110 ⁇ oriented grains may be zero. That is, the equation (18) holds even if the area ratio S 100 /S 110 diverges to infinity.
  • the strain amount in the non-oriented electrical steel sheet according to the present embodiment is significantly reduced compared to the strain amount in the state after skin pass rolling described in Embodiment 1, and among them, the strain amount for each crystal orientation is characteristic. is in a state of having
  • strain in the present embodiment has a different numerical range from formula (6) regarding the steel sheet after skin pass rolling described above, and satisfies formula (13) below.
  • K 100 /K tyl is set to 1.010 or less.
  • K 100 /K tyl exceeds 1.010, the release of strain is not sufficient, so the iron loss is particularly insufficient.
  • K 100 /K tyl is preferably 0.990 or less, more preferably 0.970 or less. Even if the non-oriented electrical steel sheet according to the present embodiment is obtained by performing the first heat treatment on the steel sheet that satisfies the above-mentioned formula (6), due to measurement errors, etc., the formula (13) It is conceivable that the value of may exceed 1.000.
  • K 100 /K tra is preferably less than 1.010.
  • this K 100 /K tra is 1.010 or more, the release of strain is insufficient, and the reduction of iron loss is particularly insufficient.
  • a non-oriented electrical steel sheet that satisfies the formula (16) is obtained by subjecting the non-oriented electrical steel sheet that satisfies the formula (7) to the first heat treatment.
  • the value of K 110 which corresponds to the strain accumulated in the ⁇ 110 ⁇ orientation grains, is a value in which the strain is released to the same extent as K 100 . It is preferred that the formula be satisfied. K100 / K110 ⁇ 1.010 (19)
  • K 100 /K 110 is less than 1.010 as in the formula (9). If this K 100 /K 110 is 1.010 or more, the release of strain may not be sufficient, and the reduction of iron loss, in particular, may be insufficient.
  • a non-oriented electrical steel sheet that satisfies the formula (19) is obtained by subjecting the non-oriented electrical steel sheet that satisfies the formula (9) to the first heat treatment.
  • These formulas show that the average grain size d 100 of ⁇ 100 ⁇ orientation grains, which are preferentially grown, is relatively large.
  • These ratios in formulas (14) and (15) are preferably 1.30 or more, more preferably 1.50 or more, and still more preferably 2.00 or more.
  • the upper limit of these ratios is not particularly limited, the growth rate of crystal grains in the direction to be eroded is slower than that of grains in the ⁇ 100 ⁇ orientation, but the grains grow during the first heat treatment, so the above ratio is excessively large.
  • the practical upper limit is about 10.00.
  • This formula indicates that the average crystal grain size d 100 of grains in the ⁇ 100 ⁇ orientation, which is preferentially grown, is relatively large.
  • the ratio in formula (17) is more preferably 1.30 or more, still more preferably 1.50 or more, and particularly preferably 2.00 or more.
  • the upper limit of this ratio is not particularly limited, the growth rate of crystal grains in the orientation to be eroded is slower than that of grains in the ⁇ 100 ⁇ orientation, but the grains grow during the first heat treatment, so the above ratio becomes excessively large.
  • the practical upper limit is about 10.00.
  • the range of the average crystal grain size is not particularly limited, but if the average crystal grain size is too coarse, it becomes difficult to avoid deterioration of the magnetic properties. Therefore, in the present embodiment, it is preferable that the practical average grain size of ⁇ 100 ⁇ oriented grains, which are relatively coarse grains, be 500 ⁇ m or less.
  • the average grain size of ⁇ 100 ⁇ oriented grains is more preferably 400 ⁇ m or less, still more preferably 300 ⁇ m or less, and particularly preferably 200 ⁇ m or less.
  • the lower limit of the average crystal grain size of ⁇ 100 ⁇ orientation grains is 40 ⁇ m or more, assuming that sufficient preferential growth of ⁇ 100 ⁇ orientation grains is ensured. It is preferably 60 ⁇ m or more, and still more preferably 80 ⁇ m or more.
  • the characteristics of the steel sheet are specified by specifying the strain of the steel sheet by the KAM value.
  • the steel sheet described in Embodiment 1 or 2 is annealed for a sufficiently long period of time, and the steel sheet is grain-grown. In such a steel sheet, the strain-induced grain growth is almost completed, and as a result, the strain is almost completely released, resulting in very favorable characteristics.
  • the steel sheet in which ⁇ 100 ⁇ orientation grains are grown by strain-induced grain growth and then normal grain growth is performed by the second heat treatment until the strain is almost completely released is a steel sheet with a stronger accumulation in the ⁇ 100 ⁇ orientation. becomes.
  • the steel sheet according to Embodiment 1 or 2 is used as a material, and the steel sheet obtained by performing the second heat treatment (that is, the non-oriented electrical steel sheet after skin pass rolling is subjected to the first heat treatment.
  • the crystal orientation and grain size of the non-oriented electrical steel sheet subjected to the second heat treatment from (1) or the non-oriented electrical steel sheet subjected to the second heat treatment, omitting the first heat treatment, will be described.
  • the area ratio S tyl /S tot is less than 0.55.
  • the total area S tyl may be zero.
  • the upper limit of the area ratio S tyl /S tot is determined as one of the parameters indicating the degree of growth of ⁇ 100 ⁇ oriented grains.
  • the fact that the area ratio S tyl /S tot is 0.55 or more indicates that oriented grains having a Taylor factor exceeding 2.8, which should be eroded in the stage of strain-induced grain growth, are not sufficiently eroded. there is In this case, the magnetic properties are not sufficiently improved.
  • the area ratio S tyl /S tot is preferably 0.40 or less, more preferably 0.30 or less. Since it is preferable that the area ratio S tyl /S tot is as small as possible, the lower limit is not specified and may be 0.00.
  • the area ratio S 100 /S tot is set to more than 0.30. If the area ratio S 100 /S tot is 0.30 or less, the magnetic properties are not sufficiently improved.
  • the area ratio S 100 /S tot is preferably 0.40 or more, more preferably 0.50 or more.
  • the situation where the area ratio S 100 /S tot is 1.00 is the situation where the crystal structure is entirely ⁇ 100 ⁇ oriented grains and no other oriented grains exist. This embodiment also applies to this situation. and
  • the relationship between the ⁇ 100 ⁇ oriented grains and the ⁇ 100 ⁇ oriented grains, which are considered to compete with the ⁇ 100 ⁇ oriented grains in the strain-induced grain growth, is also important.
  • the area ratio S 100 /S tra is sufficiently large, the superiority of growth of ⁇ 100 ⁇ oriented grains is ensured even in the state of normal grain growth after strain-induced grain growth, resulting in good magnetic properties.
  • the area ratio S 100 /S tra is less than 0.60, ⁇ 100 ⁇ oriented grains do not develop sufficiently due to strain-induced grain growth, and grains other than ⁇ 100 ⁇ oriented grains do not develop sufficiently under conditions of normal grain growth after strain-induced grain growth.
  • the area ratio S 100 /S tra is set to 0.60 or more.
  • the area ratio S 100 /S tra is preferably 0.70 or more, more preferably 0.80 or more.
  • there is no particular upper limit to the area ratio S 100 /S tra and all oriented grains having a Taylor factor of 2.8 or less may be ⁇ 100 ⁇ oriented grains.
  • the average grain size d 100 of ⁇ 100 ⁇ oriented grains is at least 0.95 times the average grain size of other grains.
  • These ratios in formulas (23) and (24) are preferably 1.00 or more, more preferably 1.10 or more, and still more preferably 1.20 or more.
  • the upper limits of these ratios are not particularly limited, grains other than ⁇ 100 ⁇ oriented grains also grow during normal grain growth. ⁇ The oriented grains are coarse and have a so-called size advantage. Since ⁇ 100 ⁇ oriented grains are advantageous in coarsening even in the normal grain growth process, the above ratio is kept within a sufficiently characteristic range. Therefore, the practical upper limit is about 10.00. If either of these ratios exceeds 10.00, mixed grains may occur, which may cause processing-related problems such as punchability.
  • This formula indicates that the average crystal grain size d 100 of grains in the ⁇ 100 ⁇ orientation, which is preferentially grown, is relatively large.
  • the ratio in formula (25) is more preferably 1.00 or more, still more preferably 1.10 or more, and particularly preferably 1.20 or more.
  • the upper limit of this ratio is not particularly limited.
  • crystal grains other than ⁇ 100 ⁇ oriented grains also grow.
  • the oriented grains are coarse and have a so-called size advantage. Since ⁇ 100 ⁇ oriented grains are advantageous in coarsening even in the normal grain growth process, the above ratio is kept within a sufficiently characteristic range. Therefore, the practical upper limit is about 10.00. If either of these ratios exceeds 10.00, mixed grains may occur, which may cause processing-related problems such as punchability.
  • the range of the average crystal grain size is not particularly limited, but if the average crystal grain size is too coarse, it becomes difficult to avoid deterioration of the magnetic properties. Therefore, as in the second embodiment, the practical average grain size of ⁇ 100 ⁇ oriented grains, which are relatively coarse grains, in the present embodiment is preferably 500 ⁇ m or less.
  • the average grain size of ⁇ 100 ⁇ oriented grains is more preferably 400 ⁇ m or less, still more preferably 300 ⁇ m or less, and particularly preferably 200 ⁇ m or less.
  • the lower limit of the average crystal grain size of ⁇ 100 ⁇ orientation grains is 40 ⁇ m or more, assuming that sufficient preferential growth of ⁇ 100 ⁇ orientation grains is ensured. It is preferably 60 ⁇ m or more, and still more preferably 80 ⁇ m or more.
  • the non-oriented electrical steel sheet according to the present embodiment has the chemical composition and metallographic structure controlled as described above, excellent magnetic properties (low iron loss) can be obtained even after shearing. Moreover, when considering the application to a motor, it is preferable that the anisotropy of iron loss is small. Therefore, W15/50 (C)/W15/50 (L), which is the ratio of W15/50 in the C direction (width direction) and W15/50 in the L direction (rolling direction), is less than 1.3 is preferred.
  • the magnetic measurement may be performed by the measurement method described in JIS C 2550-1 (2011) and JIS C 2550-3 (2019), or may be performed by the measurement method described in JIS C 2556 (2015).
  • the electromagnetic circuit is measured using a device that can measure a 55 mm square test piece according to JIS C 2556 (2015) or an even smaller test piece. You can
  • the non-oriented electrical steel sheet according to the present embodiment is obtained through manufacturing processes including a hot rolling process, a hot rolled sheet annealing process, a cold rolling process, an intermediate annealing process, and a skin pass rolling process.
  • a non-oriented electrical steel sheet according to another embodiment is manufactured by a manufacturing process including a hot rolling process, a hot rolled plate annealing process, a cold rolling process, an intermediate annealing process, a skin pass rolling process, and a first heat treatment. can get.
  • the non-oriented electrical steel sheet according to another embodiment includes a hot rolling process, a hot rolled plate annealing process, a cold rolling process, an intermediate annealing process, a skin pass rolling process, and a first heat treatment performed as necessary. obtained by a manufacturing method including a second heat treatment step.
  • a steel material having the chemical composition described above is heated and hot rolled.
  • the steel material is, for example, a slab produced by normal continuous casting.
  • the slab heating temperature for hot rolling is around 1150°C (1100-1200°C)
  • the finish rolling temperature is around 850°C (750-950°C)
  • the coiling temperature is around 600°C (500-700°C).
  • the hot rolled steel sheet (hot rolled steel sheet) is subjected to, for example, hot rolled sheet annealing at over 1000° C. to 1100° C. for 1 to 100 seconds. If the hot-rolled sheet annealing temperature is 1000° C. or less, the formation of ⁇ 111 ⁇ oriented grains is promoted rather than ⁇ 100 ⁇ oriented grains, making it difficult to obtain a favorable texture.
  • the hot-rolled steel sheet is pickled and cold-rolled.
  • Intermediate annealing is performed on the steel plate after cold rolling (cold-rolled steel plate).
  • intermediate annealing is performed at a temperature of 700 to 900° C. for 1 second to 100 seconds.
  • the grain size before cold rolling is 200 ⁇ m or more and cold rolling is performed at a rolling reduction of 90%, ⁇ 100 ⁇ orientation grains abundant in the rolling structure are preferentially recrystallized. If the intermediate annealing temperature is too low, recrystallization may not occur, and ⁇ 100 ⁇ oriented grains may not grow sufficiently, resulting in a low magnetic flux density.
  • the intermediate annealing temperature exceeds 900° C.
  • the crystal grains become too large, making it difficult to grow during subsequent skin-pass rolling and strain-induced grain growth, making it difficult to grow ⁇ 100 ⁇ oriented grains. Therefore, it is preferable to set the temperature of the intermediate annealing to 700 to 900°C.
  • a first heat treatment is then performed to promote strain-induced grain growth.
  • the first heat treatment is preferably performed at 700-950° C. for 1-100 seconds. If the heat treatment temperature is less than 700° C., strain-induced grain growth does not occur. Moreover, when the temperature exceeds 950° C., not only strain-induced grain growth but also normal grain growth occurs, and the metal structure described in the second embodiment cannot be obtained. Moreover, if the heat treatment time (holding time) exceeds 100 seconds, the production efficiency drops significantly, which is not realistic. Since it is industrially difficult to set the holding time to less than 1 second, the holding time is set to 1 second or more.
  • the second heat treatment is preferably performed for 1 second to 100 seconds when the temperature is in the range of 950 to 1050°C, or for more than 1000 seconds when the temperature is in the range of 700 to 900°C.
  • the second heat treatment may be performed on the steel sheet after the skin-pass rolling process omitting the first heat treatment, or may be performed on the steel sheet after the first heat treatment process.
  • the non-oriented electrical steel sheet according to this embodiment can be manufactured.
  • this manufacturing method is an example of a method of manufacturing the non-oriented electrical steel sheet according to the present embodiment, and does not limit the manufacturing method.
  • non-oriented electrical steel sheet of the present invention will be specifically described with reference to examples.
  • the examples shown below are merely examples of the non-oriented electrical steel sheet of the present invention, and the non-oriented electrical steel sheet of the present invention is not limited to the following examples.
  • the hot-rolled steel sheets were subjected to hot-rolled steel annealing for 30 seconds under the conditions shown in Table 1B, scale was removed by pickling, and cold rolling was carried out at the rolling reduction shown in Table 1B. Then, intermediate annealing was performed in a non-oxidizing atmosphere, and the intermediate annealing was performed at 800° C. for 30 seconds. Then, the second cold rolling (skin pass rolling) was performed at the rolling reduction shown in Table 1B. Although not shown in the table, the average grain size after skin-pass rolling was within the range of 25 to 30 ⁇ m.
  • the steel plate was annealed at 800° C. for 2 hours as a second heat treatment.
  • a 55 mm square sample piece was taken as a measurement sample from the steel plate after the second heat treatment. Sampling was performed using shears.
  • the magnetic characteristic iron loss W10/400 maximum magnetic flux density 1.0 T, average value of energy loss generated in the test piece in the rolling direction and width direction when excited at a frequency of 400 Hz
  • W15/50 (C) maximum magnetic flux W15/50 (L) (maximum magnetic flux density 1.5T, energy loss occurring in the test piece when excited at a frequency of 50 Hz) value in the rolling direction
  • W15/50 (C) was divided by W15/50 (L) to obtain W15/50 (C)/W15/50 (L). Table 2 shows the measurement results.
  • No. 123 satisfies any of formulas (3) to (6) because at least one of the temperature in hot-rolled plate annealing, the reduction in cold rolling, and the reduction in skin pass rolling was not optimal. As a result, the iron loss W10/400 was high. Moreover, No. 1, which is a comparative example. In No. 119, cracks occurred due to the excessive reduction in cold rolling, and the subsequent steps could not be carried out. No. 142 to No. In No. 150, the chemical composition was out of the range of the present invention, so that the formulas (3) and (4) were not satisfied and the iron loss W10/400 was increased, or cracks occurred during cold rolling.
  • the hot-rolled steel sheets were subjected to hot-rolled steel annealing for 30 seconds under the conditions shown in Table 3B, scales were removed by pickling, and cold rolling was carried out at the rolling reduction shown in Table 3B. Then, intermediate annealing was performed in a non-oxidizing atmosphere, and the intermediate annealing was performed at the annealing temperature shown in Table 3B for 30 seconds. Then, the second cold rolling (skin pass rolling) was performed at the rolling reduction shown in Table 3B.
  • the steel sheet after skin pass rolling was subjected to the first heat treatment under the conditions shown in Table 3B.
  • the first heat treatment in order to investigate the texture, a part of the steel plate was excised, the excised test piece was reduced in thickness to 1/2, and the machined surface was subjected to EBSD observation.
  • EBSD observation the area, average KAM value and average grain size of the types shown in Table 4 were determined.
  • the steel plate was annealed at a temperature of 800°C for 2 hours as a second heat treatment.
  • a 55 mm square sample piece was taken as a measurement sample from the steel plate after the second heat treatment. Sampling was performed using shears. Then, in the same manner as in the first embodiment, the magnetic characteristic iron loss W10/400 (average value in the rolling direction and width direction), W15/50 (C), and W15/50 (L) were measured, and W15/50 ( C)/W15/50 (L) was obtained. Table 4 shows the measurement results.
  • the hot-rolled steel sheets were subjected to hot-rolled steel annealing for 30 seconds under the conditions shown in Table 5B, scales were removed by pickling, and cold rolling was carried out at the rolling reduction shown in Table 5B. Then, intermediate annealing was performed in a non-oxidizing atmosphere, and the intermediate annealing was performed at 800° C. for 30 seconds. Then, the second cold rolling (skin pass rolling) was performed at the rolling reduction shown in Table 5B.
  • the steel sheets after skin-pass rolling were subjected to the second heat treatment under the conditions shown in Table 5B without being subjected to the first heat treatment.
  • the second heat treatment in order to investigate the texture, a part of the steel plate was excised, the excised test piece was processed to reduce the thickness to 1/2, and the processed surface was subjected to EBSD observation.
  • EBSD observation the area and average grain size of the types shown in Table 6 were determined.
  • a 55 mm square sample piece was taken as a measurement sample from the steel plate after the second heat treatment. Sampling was performed using shears. Then, in the same manner as in the first embodiment, the magnetic characteristic iron loss W10/400 (average value in the rolling direction and width direction), W15/50 (C), and W15/50 (L) were measured, and W15/50 ( C)/W15/50 (L) was determined. Table 6 shows the measurement results.
  • 315 does not satisfy at least one of formulas (20) to (24) because the temperature in hot-rolled plate annealing and/or the reduction rate in cold rolling was not optimal, and as a result, iron loss W10/400 was high.
  • the hot-rolled steel sheets were subjected to hot-rolled steel annealing for 30 seconds under the conditions shown in Table 7B, scales were removed by pickling, and cold rolling was carried out at the rolling reduction shown in Table 7B. Then, intermediate annealing was performed in a non-oxidizing atmosphere, and the intermediate annealing was performed at 800° C. for 30 seconds. Then, the second cold rolling (skin pass rolling) was performed at the rolling reduction shown in Table 7B.
  • a first heat treatment was performed at 800° C. for 30 seconds.
  • the excised test piece was processed to reduce the thickness to 1/2, and the processed surface was observed by EBSD (step interval: 100 nm).
  • step interval 100 nm.
  • the steel plate after the first heat treatment was subjected to the second heat treatment under the conditions shown in Table 7B.
  • the second heat treatment in order to investigate the texture, a part of the steel plate was excised, the excised test piece was processed to reduce the thickness to 1/2, and the processed surface was subjected to EBSD observation.
  • EBSD observation the area and average grain size of the types shown in Table 8 were determined.
  • the hot-rolled steel sheets were subjected to hot-rolled steel annealing for 30 seconds under the conditions shown in Table 9B, scales were removed by pickling, and cold rolling was carried out at the rolling reduction shown in Table 9B. Then, intermediate annealing was performed in a non-oxidizing atmosphere, and the intermediate annealing was performed at 800° C. for 30 seconds. Then, the second cold rolling (skin pass rolling) was performed at the rolling reduction shown in Table 9B.
  • the steel plate was annealed at a temperature of 800°C for 2 hours as a second heat treatment.
  • a 55 mm square sample piece was taken as a measurement sample from the steel plate after the second heat treatment. Sampling was performed using shears. Then, in the same manner as in the first embodiment, the magnetic characteristic iron loss W10/400 (average value in the rolling direction and width direction), W15/50 (C), and W15/50 (L) were measured, and W15/50 ( C)/W15/50 (L) was obtained. Table 10 shows the measurement results.
  • the area and area ratio of the specific crystal orientation in the cross section parallel to the steel sheet surface are appropriate, so excellent magnetic properties can be obtained even after shearing. Therefore, the present invention has high industrial applicability.

Abstract

この無方向性電磁鋼板は、所定の化学組成を有し、鋼板表面に平行な面でEBSDにより観察したときにおいて、全面積をStot、{100}方位粒の面積をS100、テイラー因子Mが2.8超となる方位粒の面積をStyl、前記テイラー因子Mが2.8以下となる方位粒の合計面積をStra、{100}方位粒の平均KAM値をK100、前記テイラー因子Mが2.8超となる方位粒の平均KAM値をKtylとした場合に、0.20≦Styl/Stot≦0.85、0.05≦S100/Stot≦0.80、S100/Stra≧0.5、K100/Ktyl≦0.990を満たす。

Description

無方向性電磁鋼板およびその製造方法
 本発明は、無方向性電磁鋼板およびその製造方法に関する。
 本願は、2021年03月19日に、日本に出願された特願2021-046004号に基づき優先権を主張し、その内容をここに援用する。
 無方向性電磁鋼板は、例えばモータの鉄心に使用され、無方向性電磁鋼板には、その板面に平行な方向において優れた磁気特性、例えば低鉄損及び高磁束密度が要求される。
 このためには、結晶の磁化容易軸(<100>方位)が板面内方向に一致するように鋼板の集合組織を制御することが有利である。一般的には、板面内方向に多くの磁化容易軸を持つ{100}方位は特に好ましい代表的な方位であり、板面内方向に磁化容易軸を持たない{111}方位は避けるべき代表的な方位である。このような集合組織制御に関しては、例えば特許文献1~5に記載の技術のように、{100}方位、{110}方位、{111}方位などを制御する技術が多く開示されている。
 集合組織を制御する方法としては、様々な方法が考案されているが、その中に「歪誘起粒成長」を活用する技術がある。特定の条件での歪誘起粒成長においては{111}方位の集積を抑制することができるため、無方向性電磁鋼板では有効に活用されている。これらの技術については、特許文献6~10などに開示されている。
 しかしながら、これらの無方向性電磁鋼板を剪断したときに、特性が変動してしまう可能性がある。
日本国特開2017-193754号公報 日本国特開2011-111658号公報 国際公開第2016/148010号 日本国特開2018-3049号公報 国際公開第2015/199211号 日本国特開平8-143960号公報 日本国特開2002-363713号公報 日本国特開2011-162821号公報 日本国特開2013-112853号公報 日本国特許第4029430号公報
 本発明は上述の問題点を鑑み、剪断後であっても優れた磁気特性(低い鉄損等)を得ることができる無方向性電磁鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、歪誘起粒成長を活用して無方向性電磁鋼板にとって好ましい集合組織を形成する技術とそれにより得られる鋼板の特性について検討した。その中で、歪誘起粒成長を活用した無方向性電磁鋼板では、特性評価のサンプルを切り出す際の加工条件によって特性(特に鉄損)の変動が大きくなる場合があることを認識した。この現象を詳細に観察すると、特性が低くなる場合にはサンプルの断面が粗く、剪断時の破断挙動が影響している可能性が考えられた。
 本発明者らがこの断面の状態と結晶組織との関連を詳細に検討したところ、断面が粗い鋼板では結晶組織が混粒となっており、さらに歪誘起粒成長で蚕食する方位となる{100}方位粒および{110}方位粒と蚕食される方位となる{111}方位粒との粒径の違いが特徴的であることが判明した。
 本発明者らは、上記課題を解決すべく鋭意検討を行った。この結果、歪誘起粒成長において特に{100}方位粒を優先的に成長させた優れた磁気特性を有する無方向性電磁鋼板を製造でき、剪断による磁気特性への悪影響を抑制するためには、鋼板面(鋼板表面)に平行な面で観察した際の{100}方位粒と{111}方位粒との面積および面積比を適切なものとすることが重要であることが明らかになった。
 また、このような無方向性電磁鋼板を製造するためには、歪誘起を引き起こす歪を付与した段階で、鋼板面に平行な面で観察した際の、テイラー因子が小さな方位粒と大きな方位粒との面積および面積比並びにそれらに付与された歪量を所定の範囲内に制御し、歪誘起粒成長を発生させることが重要であることも明らかになった。
 本発明者らは、このような知見に基づいて更に鋭意検討を重ねた。その結果、以下に示す発明の諸態様に想到した。
[1]
 本発明の一態様に係る無方向性電磁鋼板は、
 質量%で、
 Si:1.50%~4.00%、
 Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%未満、
 C:0.0100%以下、
 sol.Al:4.00%以下、
 S:0.0400%以下、
 N:0.0100%以下、
 Sn:0.00%~0.40%、
 Sb:0.00%~0.40%、
 P:0.00%~0.40%、
 Cr:0.001%~0.100%、
 B:0.0000%~0.0050%、
 O:0.0000%~0.0200%、及び
 Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、
 Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の(1)式を満たし、
 残部がFeおよび不純物からなる化学組成を有し、
 さらに、鋼板表面に平行な面でEBSDにより観察したときにおいて、全面積をStot、{100}方位粒の面積をS100、以下の(2)式に従うテイラー因子Mが2.8超となる方位粒の面積をStyl、前記テイラー因子Mが2.8以下となる方位粒の合計面積をStra、前記{100}方位粒の平均KAM値をK100、前記テイラー因子Mが2.8超となる方位粒の平均KAM値をKtylとした場合に、以下の(3)~(6)式を満たす。
 ([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])≦0.00%   ・・・(1)
 M=(cosφ×cosλ)-1   ・・・(2)
 0.20≦Styl/Stot≦0.85   ・・・(3)
 0.05≦S100/Stot≦0.80   ・・・(4)
 S100/Stra≧0.50   ・・・(5)
 K100/Ktyl≦0.990   ・・・(6)
 ここで、(2)式中のφは応力ベクトルと結晶のすべり方向ベクトルのなす角を表し、λは応力ベクトルと結晶のすべり面の法線ベクトルのなす角を表す。
[2]
 上記[1]に記載の無方向性電磁鋼板は、さらに、前記テイラー因子Mが2.8以下となる方位粒の平均KAM値をKtraとした場合、以下の(7)式を満たしてもよい。
 K100/Ktra<1.010   ・・・(7)
[3]
 上記[1]又は2に記載の無方向性電磁鋼板は、さらに、{110}方位粒の面積をS110とした場合に、以下の(8)式を満たしてもよい。
 S100/S110≧1.00   ・・・(8)
 ここで、(8)式は面積比S100/S110が無限大に発散しても成り立つものとする。
[4]
 上記[1]~[3]のいずれかに記載の無方向性電磁鋼板さらに、{110}方位粒の平均KAM値をK110とした場合に、以下の(9)式を満たしてもよい。
 K100/K110<1.010   ・・・(9)
[5]本発明の別の態様に係る無方向性電磁鋼板は、
 質量%で、
 Si:1.50%~4.00%、
 Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%未満、
 C:0.0100%以下、
 sol.Al:4.00%以下、
 S:0.0400%以下、
 N:0.0100%以下、
 Sn:0.00%~0.40%、
 Sb:0.00%~0.40%、
 P:0.00%~0.40%、
 Cr:0.001%~0.100%、
 B:0.0000%~0.0050%、
 O:0.0000%~0.0200%、及び
 Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、
 Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の(1)式を満たし、
 残部がFeおよび不純物からなる化学組成を有し、
 さらに、鋼板表面に平行な面でEBSDにより観察したときにおいて、全面積をStot、{100}方位粒の面積をS100、以下の(2)式に従うテイラー因子Mが2.8超となる方位粒の面積をStyl、前記テイラー因子Mが2.8以下となる方位粒の合計面積をStra、前記{100}方位粒の平均KAM値をK100、前記テイラー因子Mが2.8超となる方位粒の平均KAM値をKtyl、観察領域の平均結晶粒径をdave、前記{100}方位粒の平均結晶粒径をd100、前記テイラー因子Mが2.8超となる方位粒の平均結晶粒径をdtylとした場合に、以下の(10)~(15)式を満たす。
 ([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])≦0%   ・・・(1)
 M=(cosφ×cosλ)-1   ・・・(2)
 Styl/Stot≦0.70   ・・・(10)
 0.20≦S100/Stot   ・・・(11)
 S100/Stra≧0.55   ・・・(12)
 K100/Ktyl≦1.010   ・・・(13)
 d100/dave>1.00   ・・・(14)
 d100/dtyl>1.00   ・・・(15)
 ここで、(2)式中のφは応力ベクトルと結晶のすべり方向ベクトルのなす角を表し、λは応力ベクトルと結晶のすべり面の法線ベクトルのなす角を表す。
[6]
 上記[5]に記載の無方向性電磁鋼板は、さらに、前記テイラー因子Mが2.8以下となる方位粒の平均KAM値をKtraとした場合に、以下の(16)式を満たしてもよい。
 K100/Ktra<1.010   ・・・(16)
[7]
 上記[5]又は[6]に記載の無方向性電磁鋼板は、さらに、前記テイラー因子Mが2.8以下となる方位粒の平均結晶粒径をdtraとした場合に、以下の(17)式を満たしてもよい。
 d100/dtra>1.00   ・・・(17)
[8]
 上記[5]~[7]のいずれかに記載の無方向性電磁鋼板は、さらに、{110}方位粒の面積をS110とした場合に、以下の(18)式を満たしてもよい。
 S100/S110≧1.00   ・・・(18)
 ここで、(18)式は面積比S100/S110が無限大に発散しても成り立つものとする。
[9]
  上記[5]~[8]のいずれかに記載の無方向性電磁鋼板は、さらに、{110}方位粒の平均KAM値をK110とした場合に、以下の(19)式を満たしてもよい。
 K100/K110<1.010   ・・・(19)
[10]
 本発明の一態様に係る無方向性電磁鋼板の製造方法は、上記[5]~[9]のいずれかに記載の無方向性電磁鋼板の製造方法であって、
 上記[1]~[4]のいずれかに記載の無方向性電磁鋼板に対して700℃~950℃の温度で1秒~100秒の条件で熱処理を行う。
[11]
 本発明の別態様に係る無方向性電磁鋼板は、
 質量%で、
 Si:1.50%~4.00%、
 Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%未満、
 C:0.0100%以下、
 sol.Al:4.00%以下、
 S:0.0400%以下、
 N:0.0100%以下、
 Sn:0.00%~0.40%、
 Sb:0.00%~0.40%、
 P:0.00%~0.40%、
 Cr:0.001%~0.100%、
 B:0.0000%~0.0050%、
 O:0.0000%~0.0200%、及び
 Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、
 Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の(1)式を満たし、
 残部がFeおよび不純物からなる化学組成を有し、
 さらに、鋼板表面に平行な面でEBSDにより観察したときにおいて、全面積をStot、{100}方位粒の面積をS100、以下の(2)式に従うテイラー因子Mが2.8超となる方位粒の面積をStyl、前記テイラー因子Mが2.8以下となる方位粒の合計面積をStra、観察領域の平均結晶粒径をdave、前記{100}方位粒の平均結晶粒径をd100、前記テイラー因子Mが2.8超となる方位粒の平均結晶粒径をdtylとした場合に、以下の(20)~(24)式を満たす。
 ([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])≦0%   ・・・(1)
 M=(cosφ×cosλ)-1   ・・・(2)
 Styl/Stot<0.55   ・・・(20)
 S100/Stot>0.30   ・・・(21)
 S100/Stra≧0.60   ・・・(22)
 d100/dave≧0.95   ・・・(23)
 d100/dtyl≧0.95   ・・・(24)
[12]
 上記[11]に記載の無方向性電磁鋼板は、さらに、前記テイラー因子Mが2.8以下となる方位粒の平均結晶粒径をdtraとした場合に、以下の(25)式を満たしてもよい。
 d100/dtra≧0.95   ・・・(25)
 ここで、(2)式中のφは応力ベクトルと結晶のすべり方向ベクトルのなす角を表し、λは応力ベクトルと結晶のすべり面の法線ベクトルのなす角を表す。
[13]
 本発明の別の態様に係る無方向性電磁鋼板の製造方法は、
 上記[1]~[9]のいずれかに記載の無方向性電磁鋼板に対して、950℃~1050℃の温度で1秒~100秒の条件、もしくは700℃~900℃の温度で1000秒超の条件で熱処理を行う。
 本発明の上記態様によれば、鋼板面に平行な断面での特定の結晶方位の面積および面積比が適切であるため、剪断加工後であっても優れた磁気特性を有する、無方向性電磁鋼板と、その製造方法とを提供することができる。
 以下、本発明の実施形態について説明する。本実施形態に係る無方向性電磁鋼板は、鋳造等によって製造された鋼材が、熱間圧延工程、熱間圧延板焼鈍工程、冷間圧延工程、中間焼鈍工程、スキンパス圧延工程を経て製造される。この段階では、後述する実施形態1に記載の金属組織を有する。
 さらに、その後、第1の熱処理工程を経て製造される。この段階では後述する実施形態2に記載の金属組織を有する。
 さらに、スキンパス圧延後、または第1の熱処理後の無方向性電磁鋼板に、第2の熱処理を行うことで製造される。この段階では、後述する実施形態3に記載の金属組織を有する。
 スキンパス圧延後の熱処理(第1の熱処理及び/または第2の熱処理)により、鋼板は歪誘起粒成長をし、その後正常粒成長をする。歪誘起粒成長及び正常粒成長は第1の熱処理工程で起きても良いし、第2の熱処理工程で起きても良い。
 スキンパス圧延後の鋼板は、歪誘起粒成長後の鋼板の原板及び正常粒成長後の鋼板の原板という関係にある。また、歪誘起粒成長後の鋼板は正常粒成長後の鋼板の原板という関係にある。以下、熱処理前後を問わず、スキンパス圧延後の鋼板、歪誘起粒成長後の鋼板、及び正常粒成長後の鋼板は、いずれも無方向性電磁鋼板として説明する。
 化学組成については、熱間圧延工程、熱間圧延板焼鈍工程、冷間圧延工程、中間焼鈍工程、スキンパス圧延工程、第1の熱処理工程、第2の熱処理工程を通じて変化しない。
 まず、本実施形態に係る無方向性電磁鋼板及びその製造方法で用いられる鋼材の化学組成について説明する。以下の説明において、無方向性電磁鋼板又は鋼材に含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。本実施形態に係る無方向性電磁鋼板及び鋼材は、Si:1.50%~4.00%、Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%未満、C:0.0100%以下、sol.Al:4.00%以下、P:0.00%~0.40%、S:0.0400%以下、N:0.0100%以下、Sn:0.00%~0.40%、Sb:0.00%~0.40%、Cr:0.001%~0.100%、B:0.0000%~0.0050%、O:0.0000%~0.0200%、及びMg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、及びCdからなる群から選ばれる1種以上:総計で0.0000~0.0100%を含有し、残部がFeおよび不純物からなる化学組成を有する。不純物としては、鉱石やスクラップ等の原材料に含まれるもの、製造工程において含まれるもの、が例示される。
 (Si:1.50%~4.00%)
 Siは、電気抵抗を増大させて、渦電流損を減少させ、鉄損を低減したり、降伏比を増大させて、鉄心への打ち抜き加工性を向上したりする。Si含有量が1.50%未満では、これらの作用効果を十分に得られない。従って、Si含有量は1.50%以上とする。Si含有量は、好ましくは2.00%以上、より好ましくは2.10%以上、さらに好ましくは2.30%以上である。
 一方、Si含有量が4.00%超では、磁束密度が低下したり、硬度の過度な上昇により打ち抜き加工性が低下したり、冷間圧延が困難になったりする。従って、Si含有量は4.00%以下とする。
 (Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%未満)
 これらの元素は、オーステナイト相(γ相)安定化元素であり、多量に含有すると鋼板の熱処理中にフェライト-オーステナイト変態(以下、α-γ変態)が生じるようになる。本実施形態に係る無方向性電磁鋼板の効果は、鋼板面に平行な断面での特定の結晶方位の面積および面積比を制御することで発揮されるものと考えているが、熱処理中にα-γ変態が生じると、変態により上記面積および面積比が大きく変化し、所定の金属組織を得ることができない。このため、Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上の含有量の総計を2.50%未満とする。含有量の総計は、好ましくは2.00%未満、より好ましくは1.50%未満である。これらの元素の含有量の総計の下限は特に限定しない(0.00%でもよい)が、Mnに関しては磁気特性を悪くするMnSの微細析出抑制という理由から、0.10%以上とすることが好ましい。
 また、α-γ変態が生じない条件として、さらに以下の条件を満たしているものとする。つまり、Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の(1)式を満たすものとする。
 ([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])≦0.00%   ・・・(1)
 (C:0.0100%以下)
 Cは、鉄損を高めたり、磁気時効を引き起こしたりする。従って、C含有量は低ければ低いほどよい。このような現象は、C含有量が0.0100%超で顕著である。このため、C含有量は0.0100%以下とする。C含有量の下限は特に限定しないが、精錬時の脱炭処理のコストを踏まえ、C含有量を0.0005%以上とすることが好ましい。
 (sol.Al:4.00%以下)
 sol.Alは、電気抵抗を増大させて、渦電流損を減少させ、鉄損を低減する。sol.Alは、飽和磁束密度に対する磁束密度B50の相対的な大きさの向上にも寄与する。ここで、磁束密度B50とは、5000A/mの磁場における磁束密度である。sol.Al含有量が0.0001%未満では、これらの作用効果を十分に得られない。また、Alには製鋼での脱硫促進効果もある。従って、上記効果を得る場合、sol.Al含有量は0.0001%以上とすることが好ましい。sol.Al含有量は、より好ましくは0.30%以上とする。
 一方、sol.Al含有量が4.00%超では、磁束密度が低下したり、降伏比が低下して、打ち抜き加工性が低下したりする。このため、sol.Al含有量は4.00%以下とする。sol.Al含有量は好ましくは2.50%以下、より好ましくは1.50%以下である。
 (S:0.0400%以下)
 Sは、必須元素ではなく、例えば鋼中に不純物として含有される。Sは、微細なMnSの析出により、焼鈍における再結晶及び結晶粒の成長を阻害する。従って、S含有量は低ければ低いほどよい。このような再結晶及び結晶粒成長の阻害による鉄損の増加および磁束密度の低下は、S含有量が0.0400%超で顕著である。このため、S含有量は0.0400%以下とする。S含有量は、好ましくは0.0200%以下、より好ましくは0.0100%以下とする。S含有量の下限は特に限定しないが、精錬時の脱硫処理のコストを踏まえ、S含有量は、0.0003%以上とすることが好ましい。
 (N:0.0100%以下)
 NはCと同様に、磁気特性を劣化させるので、N含有量は低ければ低いほどよい。したがって、N含有量は0.0100%以下とする。N含有量の下限は特に限定しないが、精錬時の脱窒処理のコストを踏まえ、N含有量は、0.0010%以上とすることが好ましい。
 (Sn:0.00%~0.40%、Sb:0.00%~0.40%、P:0.00%~0.40%)
 SnやSbは過剰に含まれると鋼を脆化させる。したがって、Sn含有量、Sb含有量はいずれも0.40%以下とする。また、Pは過剰に含まれると鋼の脆化を招く。したがって、P含有量は0.40%以下とする。
 一方、Sn、Sbは、冷間圧延、再結晶後の集合組織を改善して、その磁束密度を向上させる効果を有する。また、Pは、再結晶後の鋼板の硬度を確保するために有効な元素である。そのため、これらの元素を必要に応じて含有させてもよい。その場合には、0.02%~0.40%のSn、0.02%~0.40%のSb、及び0.02%~0.40%のPからなる群から選ばれる1種以上を含有することが好ましい。
 (Cr:0.001%~0.100%)
 Crは、鋼中の酸素と結合し、Crを生成する。このCrは集合組織の改善に寄与する。上記効果を得るため、Cr含有量を0.001%以上とする。
 一方、Cr含有量が0.100%を超えると、Crが焼鈍時の粒成長を阻害し、結晶粒径が微細となり、鉄損増加の要因となる。そのため、Cr含有量は0.100%以下とする。
 (Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、及びCdからなる群から選ばれる1種以上:総計で0.0100%以下)
 Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdは、溶鋼の鋳造時に溶鋼中のSと反応して硫化物若しくは酸硫化物又はこれらの両方の析出物を生成する。以下、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdを総称して「粗大析出物生成元素」ということがある。粗大析出物生成元素の析出物の粒径は1μm~2μm程度であり、MnS、TiN、AlN等の微細析出物の粒径(100nm程度)よりはるかに大きい。このため、これら微細析出物は粗大析出物生成元素の析出物に付着し、歪誘起粒成長での結晶粒の成長を阻害しにくくなる。これらの作用効果を十分に得るためには、これらの粗大析出物生成元素の含有量の総計が0.0005%以上であることが好ましい。
 一方、これらの元素の含有量の総計が0.0100%を超えると、硫化物若しくは酸硫化物又はこれらの両方の総量が過剰となり、歪誘起粒成長での結晶粒の成長が阻害される。従って、粗大析出物生成元素の含有量は総計で0.0100%以下とする。
 (B:0.0000%~0.0050%)
 Bは、少量で集合組織の改善に寄与する。そのため、Bを含有させてもよい。上記効果を得る場合、B含有量を0.0001%以上とすることが好ましい。
 一方、B含有量が0.0050%を超えると、Bの化合物が焼鈍時の粒成長を阻害し、結晶粒径が微細となり、鉄損増加の要因となる。そのため、B含有量は0.0050%以下とする。
 (O:0.0000%~0.0200%)
 Oは、鋼中のCrと結合し、Crを生成する。このCrは集合組織の改善に寄与する。そのため、Oを含有させてもよい。上記効果を得る場合、O含有量を0.0010%以上とすることが好ましい。
 一方、O含有量が0.0200%を超えると、Crが焼鈍時の粒成長を阻害し、結晶粒径が微細となり、鉄損増加の要因となる。そのため、O含有量は0.0200%以下とする。
 次に、本実施形態に係る無方向性電磁鋼板の板厚について説明する。本実施形態に係る無方向性電磁鋼板の厚さ(板厚)は、0.10mm~0.50mmであることが好ましい。厚さが0.50mm超であると、優れた鉄損を得ることができない場合がある。従って、厚さは0.50mm以下とすることが好ましい。厚さが0.10mm未満であると、無方向性電磁鋼板表面からの磁束漏れ等の影響が大きくなり磁気特性が劣化する場合がある。また、厚さが0.10mm未満であると、焼鈍ラインの通板が困難になったり、一定の大きさの鉄心に必要とされる無方向性電磁鋼板の数が増加して、工数の増加に伴う生産性の低下及び製造コストの上昇が引き起こされたりする可能性がある。従って、厚さは0.10mm以上とすることが好ましい。より好ましくは厚さが0.20mm~0.35mmである。
 次に、本実施形態に係る無方向性電磁鋼板の金属組織について説明する。以下、スキンパス圧延後の無方向性電磁鋼板の金属組織、第1の熱処理後の無方向性電磁鋼板の金属組織、および第2の熱処理後の無方向性電磁鋼板の金属組織について説明する。
 まず、特定する金属組織およびその特定方法について説明する。本実施形態で特定する金属組織は、鋼板の板面に平行な断面で特定されるもので、以下の手順によって特定する。
 まず、板厚中心が表出するように研磨し、その研磨面(鋼板表面に平行な面)をEBSD(Electron Back Scattering Diffraction)にて2500μm以上の領域について観察を行う。観察は合計面積が2500μm以上であれば、いくつかの小区画に分けた数カ所で行っても良い。測定時のstep間隔は50~100nmが望ましい。EBSDの観察データから一般的な方法により、以下の種類の面積、KAM(Kernel Average Misorientation)値及び平均結晶粒径を得る。
 Stot:全面積(観察面積)
 Styl:以下の(2)式に従うテイラー因子Mが2.8超となる方位粒の合計面積
 Stra:以下の(2)式に従うテイラー因子Mが2.8以下となる方位粒の合計面積
 S100:{100}方位粒の合計面積
 S110:{110}方位粒の合計面積
 Ktyl:以下の(2)式に従うテイラー因子Mが2.8超となる方位粒の平均KAM値
 Ktra:以下の(2)式に従うテイラー因子Mが2.8以下となる方位粒の平均KAM値
 K100:{100}方位粒の平均KAM値
 K110:{110}方位粒の平均KAM値
 dave:観察領域の平均結晶粒径
 d100:{100}方位粒の平均結晶粒径
 dtyl:以下の(2)式に従うテイラー因子Mが2.8超となる方位粒の平均結晶粒径
 dtra:以下の(2)式に従うテイラー因子Mが2.8以下となる方位粒の平均結晶粒径
 ここで、結晶粒の方位裕度に関しては15°とする。また、以降方位粒が出る際も、方位裕度は15°とする。
 ここで、テイラー因子Mは、以下の(2)式に従うものとする。
 M=(cosφ×cosλ)-1   ・・・(2)
φ:応力ベクトルと結晶のすべり方向ベクトルのなす角
λ:応力ベクトルと結晶のすべり面の法線ベクトルのなす角
 上記のテイラー因子Mは、結晶のすべり変形がすべり面{110}、すべり方向<111>で起きると仮定し、板厚方向と圧延方向に平行な面内での面内歪において板厚方向への圧縮変形を行う場合のテイラー因子である。以降、特に断らない場合は、(2)式に従うテイラー因子にて、結晶学的に等価なすべての結晶に関して求めた平均値を単に「テイラー因子」と呼称する。
 次に、以下の実施形態1~3において、上記の面積、KAM値、平均結晶粒径により特徴を規定する。
(実施形態1)
 まず、スキンパス圧延後の無方向性電磁鋼板の金属組織について説明する。この金属組織は、歪誘起粒成長を起こすのに十分な歪を蓄積しており、歪誘起粒成長が起こる前の初期段階の状態と位置付けることができる。スキンパス圧延後の鋼板の金属組織の特徴は、大まかには、目的とする方位の結晶粒が発達するための方位と、歪誘起粒成長を起こすため十分に蓄積された歪に関する条件とで規定される。
 本実施形態に係る無方向性電磁鋼板では所定の方位粒の面積が、以下の(3)~(5)式を満たす。
 0.20≦Styl/Stot≦0.85   ・・・(3)
 0.05≦S100/Stot≦0.80   ・・・(4)
 S100/Stra≧0.50   ・・・(5)
 Stylは、テイラー因子が十分に大きい方位の存在量である。歪誘起粒成長過程では、テイラー因子が小さく加工による歪が蓄積しにくい方位が、テイラー因子が大きく加工による歪が蓄積した方位を蚕食しながら優先的に成長する。このため、歪誘起粒成長により特殊な方位を発達させるには、Stylはある程度の量が存在する必要がある。本実施形態においては、全面積に対する面積比Styl/Stotとして規定し、本実施形態では面積比Styl/Stotを0.20以上とする。面積比Styl/Stotが0.20未満では、歪誘起粒成長によって目的とする結晶方位が十分に発達しなくなる。好ましくは面積比Styl/Stotが0.30以上、より好ましくは0.50以上である。
 面積比Styl/Stotの上限は、以下で説明する歪誘起粒成長過程で発達させるべき結晶方位粒の存在量と関連するが、その条件は単純に優先成長する方位と蚕食される方位の比率のみで決定されるものではない。まず、後述するように、歪誘起粒成長で発達させるべき{100}方位粒の面積比S100/Stotが0.05以上であることから、必然的に面積比Styl/Stotは0.95以下となる。しかし、面積比Styl/Stotの存在量が過多となると、後述する歪との関連で、{100}方位粒の優先成長が起きなくなる。歪量との関連は後で詳述するが、本実施形態においては、面積比Styl/Stotは0.85以下となる。好ましくは面積比Styl/Stotが0.75以下、より好ましくは0.70以下である。
 その後の歪誘起粒成長過程では、{100}方位粒を優先的に成長させる。{100}方位はテイラー因子が十分に小さく加工による歪が蓄積しにくい方位の1つであり、歪誘起粒成長過程において優先的に成長しうる方位である。本実施形態では、{100}方位粒の存在は必須であり、本実施形態では、{100}方位粒の面積比S100/Stotを0.05以上とする。{100}方位粒の面積比S100/Stotが0.05未満では、その後の歪誘起粒成長によって{100}方位粒が十分に発達しなくなる。好ましくは面積比S100/Stotが0.10以上、より好ましくは0.20以上である。
 面積比S100/Stotの上限は、歪誘起粒成長で蚕食されるべき結晶方位粒の存在量に応じて決定される。本実施形態では歪誘起粒成長で蚕食されるべきテイラー因子が2.8超となる方位の面積比Styl/Stotが0.20以上であることから、面積比S100/Stotは0.80以下となる。ただし、歪誘起粒成長前の{100}方位粒の存在量が低い方が、効果が顕著となり、{100}方位粒をより発達させることが可能になる。これを考慮すれば、好ましくは面積比S100/Stotは0.60以下、より好ましくは0.50以下、さらに好ましくは0.40以下である。
 優先的に成長させるべき方位粒として{100}方位粒を中心として説明したが、{100}方位粒と同様にテイラー因子が十分に小さく加工による歪が蓄積しにくい方位であって、歪誘起粒成長において優先的に成長しうる方位粒は他にも多く存在する。このような方位粒は、優先的に成長させるべき{100}方位粒とは競合する。一方でこれら方位粒は、鋼板面内の磁化容易軸方向(<100>方向)が{100}方位粒ほどは多くないため、歪誘起粒成長でこれら方位が発達してしまうと磁気特性が劣化して不都合となる。このため、本実施形態においては、テイラー因子が十分に小さく加工による歪が蓄積しにくい方位の中での{100}方位粒の存在比が確保されるよう規定する。
 本発明においては、歪誘起粒成長において{100}方位粒と競合すると考えられる方位粒を含む、テイラー因子が2.8以下となる方位粒の面積をStraとする。そして、(5)式に示すように、面積比S100/Straを0.50以上とし、{100}方位粒の成長の優位性を確保する。この面積比S100/Straが0.50未満では、歪誘起粒成長によって{100}方位粒が十分に発達しなくなる。好ましくは面積比S100/Straが0.80以上、より好ましくは0.90以上である。一方、面積比S100/Straの上限は特に限定する必要がなく、テイラー因子が2.8以下となる方位粒がすべて{100}方位粒(すなわちS100/Stra=1.00)であっても構わない。
 さらに本実施形態では、特に、歪誘起粒成長で成長しやすい方位として知られている{110}方位粒との関係を規定する。{110}方位は、熱間圧延鋼板での結晶粒径を大きくして冷間圧延で再結晶させたり、比較的低い圧下率で冷間圧延して再結晶させたりするなど汎用的な方法においても比較的容易に発達しやすく、優先的に成長させるべき{100}方位粒との競合においては特に配慮すべき方位である。歪誘起粒成長で{110}方位粒が発達してしまうと、特性の鋼板面内異方性が非常に大きくなり不都合となる。このため、本実施形態においては、{100}方位粒と{110}方位粒との面積比S100/S110が(8)式を満足するように制御して、{100}方位粒の成長の優位性を確保することが好ましい。
 S100/S110≧1.00   ・・・(8)
 歪誘起粒成長によって{110}方位粒が不用意に発達してしまうことをより確実に回避するには、面積比S100/S110が1.00以上であることが好ましい。より好ましくは面積比S100/S110が2.00以上、さらに好ましくは4.00以上である。面積比S100/S110の上限は特に限定する必要がなく、{110}方位粒の面積率はゼロであっても構わない。つまり、(8)式は面積比S100/S110が無限大に発散しても成り立つものとする。
 本実施形態は、上述の結晶方位に加えて、以下に説明する歪を組み合わせることでより優れた磁気特性を得ることができる。本実施形態において、歪に関する規定として、以下の(6)式を満たす必要がある。
 K100/Ktyl≦0.990   ・・・(6)
 歪に関する要件は(6)式によって規定される。(6)式は{100}方位粒に蓄積される歪(平均KAM値)とテイラー因子が2.8超となる方位粒に蓄積される歪(平均KAM値)との比である。ここで、KAM値は同一粒内で隣接する測定点との方位差であり、歪の多い箇所ではKAM値は高くなる。結晶学的な観点において、例えば板厚方向と圧延方向に平行な面内での平面歪状態で板厚方向への圧縮変形を行う場合、つまり鋼板を単純に圧延する場合は、一般的にはK100とKtylとの比K100/Ktylは1よりも小さくなる。しかし現実的には隣接する結晶粒による拘束、結晶粒内に存在する析出物、さらには変形時の工具(圧延ロールなど)との接触を含めたマクロ的な変形変動などの影響のため、ミクロ的に観察される結晶方位に応じた歪は多様な形態となる。このため、テイラー因子による純粋に幾何学的な方位の影響が現れにくくなる。また、例えば、同じ方位の粒であっても、粒径、粒の形態、隣接粒の方位や粒径、析出物の状態、板厚方向での位置などにより非常に大きな変動が形成される。さらに、一つの結晶粒でさえ、粒界近傍と粒内、変形帯などの形成により歪分布は大きく変動する。
 このような変動を考慮した上で、本実施形態において優れた磁気特性を得るためには、K100/Ktylを0.990以下とする。このK100/Ktylが0.990超になると、蚕食されるべき領域の特殊性が失われる。そのため、歪誘起粒成長が起きにくくなる。好ましくはK100/Ktylが0.970以下、より好ましくは0.950以下である。
 優先的に成長させるべき{100}方位粒との競合において、テイラー因子が2.8以下となる方位粒との関係については、(7)式を満足することが好ましい。
 K100/Ktra<1.010   ・・・(7)
 {100}方位粒が優先的に成長するにはK100/Ktraを1.010未満とすることが好ましい。このK100/Ktraは、歪が蓄積しにくく優先成長する可能性がある方位間の競合に関する指標でもあり、K100/Ktraが1.010以上では、歪誘起粒成長における{100}方位の優先性が発揮されず、目的とする結晶方位が発達しない。K100/Ktraは、より好ましくは0.970以下、さらに好ましくは0.950以下である。
 優先的に成長させるべき{100}方位粒との競合において、{110}方位粒との関係については、面積と同様に歪においても配慮することが好ましい。この関係においては、{100}方位粒と{110}方位粒との平均KAM値の比K100/K110が(9)式を満足するように制御し、{100}方位粒の成長の優位性を確保することが好ましい。
 K100/K110<1.010   ・・・(9)
 歪誘起粒成長によって{110}方位粒が不用意に発達してしまうことをより確実に回避するには、K100/K110が1.010未満であることが好ましい。K100/K110は、より好ましくは0.970以下、さらに好ましくは0.950以下である。
 (9)式において、分母に相当する方位を持つ結晶粒が存在しない場合は、その式については数値による評価は行わず、その式を満足するものとする。
 本実施形態のスキンパス圧延後の状態での無方向性電磁鋼板の金属組織においては、結晶粒径については特に限定しない。これは、その後の第1の熱処理により適切な歪誘起粒成長が起きる状態において、結晶粒径との関係はそれほど強くないためである。つまり、目的とする適切な歪誘起粒成長が起きるかどうかは、鋼板の化学組成に加え、結晶方位毎の存在量(面積)の関係と、それぞれの方位毎の歪量の関係により、ほぼ決定できる。
 ただし、結晶粒径があまりに粗大となると、歪により誘起されているものの、実用的な温度域での十分な粒成長は生じにくくなる。また結晶粒径があまりに粗大になると磁気特性の劣化も回避し難くなる。このため実用的な平均結晶粒径は300μm以下とすることが好ましい。より好ましくは100μm以下、さらに好ましくは50μm以下、特に好ましくは30μm以下である。結晶粒径が細かいほど、結晶方位および歪の分布が適切に制御された際の歪誘起粒成長による目的とする結晶方位の発達は認識されやすい。ただし、あまりに微細となると、上述のように歪を付与する加工において隣接粒との拘束のため、結晶方位毎の歪量の差異を形成しにくくなる。この観点からは平均結晶粒径は3μm以上であることが好ましく、より好ましくは8μm以上、さらに好ましくは15μm以上である。
(実施形態2)
 次に、スキンパス圧延後の無方向性電磁鋼板にさらに、第1の熱処理を行うことで、歪誘起粒成長が起きた後(かつ歪誘起粒成長が完了する前)の、無方向性電磁鋼板の金属組織について説明する。本実施形態に係る無方向性電磁鋼板は歪誘起粒成長により歪の少なくとも一部が解放されており、歪誘起粒成長後の鋼板の金属組織の特徴は、結晶方位、歪および結晶粒径により規定される。
 本実施形態に係る無方向性電磁鋼板では、所定の方位粒の面積が、以下の(10)~(12)式を満たしている。これらの規定は、前述のスキンパス圧延後の無方向性電磁鋼板に関する(3)~(5)式と比較して数値範囲が異なっている。歪誘起粒成長に伴い、{100}方位粒が優先成長してその面積が増加するとともに、テイラー因子が2.8超となる方位粒が主として{100}方位粒に蚕食され、その面積が減少しているからである。
 Styl/Stot≦0.70   ・・・(10)
 0.20≦S100/Stot   ・・・(11)
 S100/Stra≧0.55   ・・・(12)
 面積比Styl/Stotの上限は、歪誘起粒成長の進行の程度を示すパラメータの一つとして決定される。面積比Styl/Stotが0.70超であることは、テイラー因子が2.8超となる方位粒の結晶粒が十分に蚕食されておらず、歪誘起粒成長が十分に起きていないことを示している。つまり、発達させるべき{100}方位粒の発達が不十分であるため、磁気特性が十分に向上しない。したがって、本実施形態では面積比Styl/Stotを0.70以下とする。好ましくは面積比Styl/Stotが0.60以下、より好ましくは0.50以下である。面積比Styl/Stotは小さい方が好ましいので下限は規定する必要がなく、0.00であってもよい。
 また、本実施形態では面積比S100/Stotを0.20以上とする。面積比S100/Stotの下限は、歪誘起粒成長の進行の程度を示すパラメータの一つとして決定され、面積比S100/Stotが0.20未満では、{100}方位粒の発達が不十分であるため、磁気特性が十分に向上しない。好ましくは面積比S100/Stotが0.40以上、より好ましくは0.60以上である。面積比S100/Stotは高い方が好ましいので上限は規定する必要はなく、1.00であってもよい。
 実施形態1と同様、歪誘起粒成長において{100}方位粒と競合すると考えられる方位粒と{100}方位粒との関係も重要である。面積比S100/Straが大きい場合は{100}方位粒の成長の優位性が確保されており、磁気特性が良好となる。この面積比S100/Straが0.55未満であることは、歪誘起粒成長によって{100}方位粒が十分に発達せず、テイラー因子が2.8超となる方位粒が{100}方位粒以外のテイラー因子が小さな方位により蚕食された状態であることを示している。この場合、磁気特性の面内異方性も大きくなる。したがって、本実施形態では面積比S100/Straを0.55以上とする。好ましくは面積比S100/Straが0.65以上、より好ましくは0.75以上である。一方、面積比S100/Straの上限は特に限定する必要がなく、テイラー因子が2.8以下である方位粒がすべて{100}方位粒であっても構わない。
 さらに本実施形態では、実施形態1と同様に、{110}方位粒との関係も規定する。本実施形態においては、{100}方位粒と{110}方位粒との面積比S100/S110が以下の(18)式を満たしており、{100}方位粒の成長の優位性が確保されていることが好ましい。
 S100/S110≧1.00   ・・・(18)
 (18)式に示すように、本実施形態においては、面積比S100/S110が1.00以上であることが好ましい。歪誘起粒成長で{110}方位粒が発達し、この面積比S100/S110が1.00未満になると、鋼板面内の異方性が非常に大きくなり特性上不都合となりやすい。より好ましくは面積比S100/S110が2.00以上、さらに好ましくは4.00以上である。面積比S100/S110の上限は特に限定する必要がなく、{110}方位粒の面積率はゼロであっても構わない。つまり、(18)式は面積比S100/S110が無限大に発散しても成り立つものとする。
 次に、本実施形態で満足すべき歪に関する規定について説明する。本実施形態に係る無方向性電磁鋼板での歪量は、実施形態1で説明したスキンパス圧延後の状態での歪量と比較すると大幅に減少し、その中で結晶方位毎の歪量において特徴を有する状態になっている。
 本実施形態における歪に関する規定は、前述のスキンパス圧延後の鋼板に関する(6)式と比較して数値範囲が異なっており、以下の(13)式を満たしている。
 K100/Ktyl≦1.010   ・・・(13)
 歪誘起粒成長が十分に進行すると、鋼板の歪の大きな部分は解放された状況になり、結晶方位毎の歪は均一化され歪の変動は十分に小さくなり、(13)式に示す比は1に近い値となる。
 このような変動を考慮した上で、本実施形態において優れた磁気特性を得るためには、K100/Ktylを1.010以下とする。K100/Ktylが1.010超では、歪の解放が十分でないことから、特に鉄損の低減が不十分になる。好ましくはK100/Ktylが0.990以下、より好ましくは0.970以下である。本実施形態に係る無方向性電磁鋼板が、前述の(6)式を満足する鋼板に対して第1の熱処理がなされて得られたものであるとしても、測定の誤差等により(13)式の値は1.000を超えることも考えられる。
 優先的に成長させるべき{100}方位粒との競合において、テイラー因子が2.8以下となる方位粒との関係については、(16)式を満足することが好ましい。
 K100/Ktra<1.010   ・・・(16)
 {100}方位粒が優先的に成長するにはK100/Ktraを1.010未満とすることが好ましい。このK100/Ktraが1.010以上では、歪の解放が十分でなく特に鉄損の低減が不十分になる。前述の(7)式を満足する無方向性電磁鋼板に対して第1の熱処理がなされることで、(16)式を満足する無方向性電磁鋼板が得られる。
 実施形態1では、{110}方位粒の歪との関係について配慮することが好ましいことを説明した。一方で、本実施形態においては、歪誘起粒成長が十分に進行し、鋼板の歪の大きな部分は解放された状況である。したがって、{110}方位粒に蓄積される歪に相当するK110の値は、K100と同程度にまで歪が解放された値となっており、(9)式と同様に、(19)式を満たすことが好ましい。
 K100/K110<1.010   ・・・(19)
 つまり、(9)式と同様に、K100/K110が1.010未満であることが好ましい。このK100/K110が1.010以上では、歪の解放が十分でなく特に鉄損の低減が不十分になる場合がある。前述の(9)式を満足する無方向性電磁鋼板に対して第1の熱処理がなされることで、(19)式を満足する無方向性電磁鋼板が得られる。
 (13)式及び(19)式において、分母に相当する方位を持つ結晶粒が存在しない場合は、その式については数値による評価は行わず、その式を満足するものとする。
 次に、本実施形態で満足すべき結晶粒径に関する規定について説明する。歪誘起粒成長が十分に進行して歪の大きな部分が解放された状況での金属組織においては、結晶方位毎の結晶粒径が磁気特性に大きな影響を及ぼす。歪誘起粒成長により優先的に成長した方位の結晶粒は粗大となり、これに蚕食される方位の結晶粒は微細となる。本実施形態では、平均結晶粒径の関係が(14)式及び(15)式を満たすものとする。
 d100/dave>1.00   ・・・(14)
 d100/dtyl>1.00   ・・・(15)
 これらの式は、優先成長した方位である{100}方位粒の平均結晶粒径d100が相対的に大きいことを示している。(14)式及び(15)式におけるこれらの比は、好ましくは1.30以上、より好ましくは1.50以上、さらに好ましくは2.00以上である。これらの比の上限は特に限定されないが、蚕食される方位の結晶粒も{100}方位粒に比べて成長速度が遅いが第1の熱処理中に粒成長するため、上記の比は過度に大きくなりにくく、実用的な上限は10.00程度である。
 また、本実施形態において、(17)式を満たすことが好ましい。
 d100/dtra>1.00   ・・・(17)
 この式は、優先成長した方位である{100}方位粒の平均結晶粒径d100が相対的に大きいことを示している。(17)式における比は、より好ましくは1.30以上、さらに好ましくは1.50以上、特に好ましくは2.00以上である。この比の上限は特に限定されないが、蚕食される方位の結晶粒も{100}方位粒に比べて成長速度が遅いが第1の熱処理中に粒成長するため、上記の比は過度に大きくなりにくく、実用的な上限は10.00程度である。
 また、平均結晶粒径の範囲については特に限定はしないが、平均結晶粒径があまりに粗大になると磁気特性の劣化も回避し難くなる。このため、本実施形態において相対的に粗大な粒である{100}方位粒の実用的な平均結晶粒径は、500μm以下とすることが好ましい。より好ましくは{100}方位粒の平均結晶粒径が400μm以下、さらに好ましくは300μm以下、特に好ましくは200μm以下である。一方、{100}方位粒の平均結晶粒径の下限は、{100}方位の十分な優先成長を確保している状態を想定すれば、{100}方位粒の平均結晶粒径が40μm以上であることが好ましく、より好ましくは60μm以上、さらに好ましくは80μm以上である。
 (15)式において、分母に相当する方位を持つ結晶粒が存在しない場合は、その式については数値による評価は行わず、その式を満足するものとする。
(実施形態3)
 上述の実施形態1および2では、鋼板の歪をKAM値で特定することで鋼板としての特徴を規定した。これに対し、本実施形態では、実施形態1又は2に記載の鋼板を十分に長時間焼鈍し、さらに粒成長させた鋼板について規定する。このような鋼板は、歪誘起粒成長がほぼ完了し、その結果、歪がほぼ完全に解放されるため、特性としては非常に好ましいものとなる。つまり、歪誘起粒成長で{100}方位粒を成長させ、さらに歪がほぼ完全に解放されるまで第2の熱処理で正常粒成長させた鋼板は、{100}方位への集積がより強い鋼板となる。本実施形態では、実施形態1または2に記載の鋼板を素材として、第2の熱処理を行って得られる鋼板(すなわち、スキンパス圧延後の無方向性電磁鋼板に対し、第1の熱処理を行ってから第2の熱処理を行った無方向性電磁鋼板、または、第1の熱処理は省略して、第2の熱処理を行った無方向性電磁鋼板)の結晶方位、および結晶粒径について説明する。
 第2の熱処理を行って得られる鋼板(無方向性電磁鋼板)は、各方位粒の面積が、以下の(20)~(22)式を満たす。これらの規定は、前述のスキンパス圧延後の鋼板に関する(3)~(5)式、及び第1の熱処理による歪誘起粒成長後の鋼板に関する(10)~(12)式と比較して数値範囲が異なっている。歪誘起粒成長およびその後の第2の熱処理に伴い、{100}方位粒がさらに成長してその面積が増加するとともに、テイラー因子が2.8超となる方位粒が主として{100}方位粒に蚕食され、その面積がさらに減少している。
 Styl/Stot<0.55   ・・・(20)
 S100/Stot>0.30   ・・・(21)
 S100/Stra≧0.60   ・・・(22)
 本実施形態では面積比Styl/Stotを0.55未満とする。合計面積Stylはゼロであっても構わない。面積比Styl/Stotの上限は{100}方位粒の成長の進行の程度を示すパラメータの一つとして決定される。面積比Styl/Stotが0.55以上であることは、歪誘起粒成長の段階で蚕食されるべきテイラー因子が2.8超となる方位粒が十分に蚕食されていないことを示している。この場合、磁気特性が十分に向上しない。好ましくは面積比Styl/Stotが0.40以下、より好ましくは0.30以下である。面積比Styl/Stotは少ない方が好ましいので、下限は規定されず、0.00であってもよい。
 また、本実施形態では面積比S100/Stotを0.30超とする。面積比S100/Stotが0.30以下では、磁気特性が十分に向上しない。好ましくは面積比S100/Stotが0.40以上、より好ましくは0.50以上である。面積比S100/Stotが1.00である状況とは、結晶組織のすべてが{100}方位粒であり、その他の方位粒が存在しない状況であるが、本実施形態はこの状況も対象とするものである。
 実施形態1及び2と同様、歪誘起粒成長において{100}方位粒と競合していたと考えられる方位粒と{100}方位粒との関係も重要である。面積比S100/Straが十分に大きい場合には、歪誘起粒成長後の正常粒成長の状況においても{100}方位粒の成長の優位性が確保されており、磁気特性が良好となる。この面積比S100/Straが0.60未満では、歪誘起粒成長によって{100}方位粒が十分に発達せず、歪誘起粒成長後の正常粒成長の状況において{100}方位粒以外のテイラー因子が小さな方位粒が相当程度に成長したことになり、磁気特性の面内異方性も大きくなる。したがって、本実施形態では面積比S100/Straを0.60以上とする。好ましくは面積比S100/Straが0.70以上、より好ましくは0.80以上である。一方、面積比S100/Straの上限は特に限定する必要がなく、テイラー因子が2.8以下である方位粒がすべて{100}方位粒であっても構わない。
 歪誘起粒成長およびその後の正常粒成長が十分に進行し、鋼板の歪がほとんど解放された状況での金属組織においても、結晶方位毎の結晶粒径は、磁気特性に大きな影響を及ぼす。歪誘起粒成長の時点で優先的に成長した{100}方位粒は、正常粒成長の後も粗大な結晶粒となる。本実施形態では、平均結晶粒径の関係が(23)式及び(24)式を満たすものとする。
 d100/dave≧0.95   ・・・(23)
 d100/dtyl≧0.95   ・・・(24)
 これらの式は、{100}方位粒の平均結晶粒径d100が他の粒の平均結晶粒径の0.95倍以上であることを示している。(23)式及び(24)式におけるこれらの比は、好ましくは1.00以上、より好ましくは1.10以上、さらに好ましくは1.20以上である。これらの比の上限は特に限定されないが、正常粒成長中には{100}方位粒以外の結晶粒も成長するが、正常粒成長に入る時点、すなわち歪誘起粒成長が終了する時点で{100}方位粒は粗大となり、いわゆるサイズアドバンテージを有している。{100}方位粒は正常粒成長過程でも粗大化が有利となるため、上記の比は十分に特徴的な範囲を保つ。したがって、実用的な上限は10.00程度である。これらの比のいずれかが10.00を超えると混粒となり打ち抜き性など加工に関連する問題を生じることがある。
 さらに、平均結晶粒径の関係で、以下の(25)式も満たしていることが好ましい。
 d100/dtra≧0.95   ・・・(25)
 この式は、優先成長した方位である{100}方位粒の平均結晶粒径d100が相対的に大きいことを示している。(25)式における比は、より好ましくは1.00以上、さらに好ましくは1.10以上、特に好ましくは1.20以上である。この比の上限は特に限定されないが、正常粒成長中には{100}方位粒以外の結晶粒も成長するが、正常粒成長に入る時点、すなわち歪誘起粒成長が終了する時点で{100}方位粒は粗大となり、いわゆるサイズアドバンテージを有している。{100}方位粒は正常粒成長過程でも粗大化が有利となるため、上記の比は十分に特徴的な範囲を保つ。したがって、実用的な上限は10.00程度である。これらの比のいずれかが10.00を超えると混粒となり打ち抜き性など加工に関連する問題を生じることがある。
 また、平均結晶粒径の範囲については特に限定はしないが、平均結晶粒径があまりに粗大になると磁気特性の劣化も回避し難くなる。このため、実施形態2と同様、本実施形態において相対的に粗大な粒である{100}方位粒の実用的な平均結晶粒径は、500μm以下とすることが好ましい。より好ましくは{100}方位粒の平均結晶粒径が400μm以下、さらに好ましくは300μm以下、特に好ましくは200μm以下である。一方、{100}方位粒の平均結晶粒径の下限は、{100}方位の十分な優先成長を確保している状態を想定すれば、{100}方位粒の平均結晶粒径が40μm以上であることが好ましく、より好ましくは60μm以上、さらに好ましくは80μm以上である。
 (24)式において、分母に相当する方位を持つ結晶粒が存在しない場合は、その式については数値による評価は行わず、その式を満足するものとする。
[特性]
 本実施形態に係る無方向性電磁鋼板は、上記の通り化学組成、金属組織を制御しているので、剪断後であっても、優れた磁気特性(低い鉄損)を得ることができる。
 また、モータへの適用を考慮した場合、鉄損の異方性が小さいことが好ましい。そのためC方向(幅方向)のW15/50と、L方向(圧延方向)のW15/50との比である、W15/50(C)/W15/50(L)が1.3未満であることが好ましい。
 磁気測定はJIS C 2550-1(2011)及びJIS C 2550-3(2019)に記載の測定方法で行ってもよいし、JIS C 2556(2015)に記載の測定方法で行っても良い。また、試料が微小であり、上記JISに記載の測定が出来ない場合、電磁回路はJIS C 2556(2015)に準じた55mm角の試験片や更に微小な試験片を測定できる装置を用いて測定しても良い。
[製造方法]
 次に、本実施形態に係る無方向性電磁鋼板の製造方法について説明する。本実施形態に係る無方向性電磁鋼板は、熱間圧延工程、熱間圧延板焼鈍工程、冷間圧延工程、中間焼鈍工程、スキンパス圧延工程、を含む製造工程によって得られる。
 また、別の本実施形態に係る無方向性電磁鋼板は、熱間圧延工程、熱間圧延板焼鈍工程、冷間圧延工程、中間焼鈍工程、スキンパス圧延工程、第1の熱処理を含む製造工程によって得られる。
 また、別の本実施形態に係る無方向性電磁鋼板は、熱間圧延工程、熱間圧延板焼鈍工程、冷間圧延工程、中間焼鈍工程、スキンパス圧延工程、必要に応じて行う第1の熱処理工程、第2の熱処理工程を含む製造方法によって得られる。
[熱間圧延工程]
 まず、上述した化学組成を有する鋼材を加熱し、熱間圧延を施す。鋼材は、例えば通常の連続鋳造によって製造されるスラブである。例えば、熱間圧延のスラブ加熱温度は1150℃周辺(1100~1200℃)、仕上げ圧延温度を850℃周辺(750~950℃)、巻取り温度を600℃周辺(500~700℃)で行う。
[熱間圧延板焼鈍工程]
 その後、熱間圧延後の鋼板(熱延鋼板)に対し、例えば熱間圧延板焼鈍を1000℃超~1100℃で1~100秒行う。熱間圧延板焼鈍温度が1000℃以下では、{100}方位粒よりも、{111}方位粒の生成が促進されることになり、好ましい集合組織を得ることが難しくなる。
[冷間圧延工程]
 次いで、熱延鋼板に対し、酸洗、冷間圧延を行う。冷間圧延では圧下率を90%~95%とすることが好ましい。圧下率が90%未満では、磁気特性が劣位な{111}方位粒が再結晶時に多くなる。
[中間焼鈍工程]
 冷間圧延後の鋼板(冷延鋼板)に対し、中間焼鈍を行う。本実施形態では、例えば中間焼鈍を700~900℃の温度で1秒~100秒行う。冷間圧延前の結晶粒径が200μm以上で90%の圧下率で冷間圧延を行うと、圧延組織に多い{100}方位粒が優先的に再結晶する。中間焼鈍の温度が低過ぎると、再結晶が生じず、{100}方位粒が十分に成長せず、磁束密度が高くならない場合がある。また、中間焼鈍の温度が900℃超では、結晶粒が大きくなり過ぎ、その後のスキンパス圧延、歪誘起粒成長時に成長しづらくなり、{100}方位粒を成長させづらくなる。したがって、中間焼鈍の温度は700~900℃とすることが好ましい。
[スキンパス圧延工程]
 中間焼鈍後の鋼板に、スキンパス圧延を行う。上述したように{100}結晶粒が多い状態で圧延を行うと、{100}結晶粒がさらに成長する。スキンパス圧延の圧下率は5%~25%とすることが好ましい。
 無方向性電磁鋼板において、前述した歪の分布を有するようにする場合には、冷間圧延の圧下率(%)をRm、スキンパス圧延時の圧下率(%)をRsとした場合に、90<Rm<95、かつ5<Rs<20を満たすように冷間圧延およびスキンパス圧延の圧下率を調整することがより好ましい。
[第1の熱処理工程]
 続いて、歪誘起粒成長を促進するための第1の熱処理を行う。第1の熱処理は700~950℃で1秒~100秒行うことが好ましい。
 熱処理温度が700℃未満では、歪誘起粒成長が発生しない。また、950℃超では、歪誘起粒成長だけでなく正常粒成長が起きて、上述した実施形態2に記載の金属組織を得られなくなる。
 また、熱処理時間(保持時間)が100秒超では、生産効率が著しく落ちるため、現実的ではない。保持時間を1秒未満とすることは工業的に容易ではないため、保持時間を1秒以上とする。
[第2の熱処理工程]
 第2の熱処理は950~1050℃の温度範囲とする場合には1秒~100秒、もしくは700~900℃の温度範囲とする場合には1000秒超行うことが好ましい。第2の熱処理は、第1の熱処理を省略したスキンパス圧延工程後の鋼板に行ってもよく、第1の熱処理工程後の鋼板に行っても良い。
 上記温度範囲及び時間で熱処理を行うことで、第1の熱処理を省略した場合は、歪誘起粒成長後に正常粒成長し、第1の熱処理の条件によってはその後の第2の熱処理で歪誘起粒成長をすることもある。
 以上のように本実施形態に係る無方向性電磁鋼板を製造することができる。ただし、この製造方法は、本実施形態に係る無方向性電磁鋼板を製造する方法の一例であり、製造方法を限定するものではない。
 次に、本発明の無方向性電磁鋼板について、実施例を示しながら具体的に説明する。以下に示す実施例は、本発明の無方向性電磁鋼板のあくまでも一例にすぎず、本発明の無方向性電磁鋼板が下記の例に限定されるものではない。
 (第1の実施例)
 溶鋼を鋳造することにより、以下の表1Aに示す化学組成を有するインゴットを作製した。ここで、(1)式左辺とは、前述の(1)式の左辺の値を表している。その後、作製したインゴットを1150℃まで加熱して熱間圧延を行い、表1Bに示す板厚になるように圧延した。そして、仕上げ圧延終了後に水冷し熱間圧延鋼板を巻き取った。この時の仕上げ圧延の最終パスの段階での温度(仕上温度)は830℃、巻取温度は500~700℃の範囲であった。
 次に、熱間圧延鋼板において表1Bに示す条件で熱間圧延板焼鈍を30秒行い、酸洗によりスケールを除去し、表1Bに示す圧下率で冷間圧延を行った。そして、無酸化雰囲気中で中間焼鈍を行い、中間焼鈍を800℃で30秒の条件で行った。次いで、表1Bに示す圧下率で2回目の冷間圧延(スキンパス圧延)を行った。表には示さないが、スキンパス圧延後の平均結晶粒径は25~30μmの範囲内であった。
 次に、集合組織を調査するため、鋼板の一部を切除し、その切除した試験片を1/2の厚みに減厚加工し、その加工面(鋼板表面に平行な面)について上述の要領でEBSD観察(step間隔:100nm)を行った。EBSD観察により、表2に示す種類の面積および平均KAM値を求めた。
 また、鋼板に第2の熱処理として、800℃で2時間の焼鈍を行った。第2の熱処理後の鋼板から、測定試料として、55mm角の試料片を採取した。試料採取はせん断機を用いて実施した。そして、磁気特性の鉄損W10/400(最大磁束密度1.0T、周波数400Hzで励磁時に試験片で生じたエネルギー損失の圧延方向と幅方向の平均値)、W15/50(C)(最大磁束密度1.5T、周波数50Hzで励磁時に試験片で生じたエネルギー損失の幅方向の値)、W15/50(L)(最大磁束密度1.5T、周波数50Hzで励磁時に試験片で生じたエネルギー損失の圧延方向の値)をJISC2556(2015)に準じて測定した。
 また、W15/50(C)をW15/50(L)で割り、W15/50(C)/W15/50(L)を求めた。
 測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1A、表1B及び表2中の下線は、本発明の範囲から外れた条件を示している。発明例であるNo.101~No.107、No.113~No.116、No.118、No.121、No.122、No.124~No.141、No.151は、いずれも鉄損W10/400は良好な値であった。
 一方、比較例であるNo.108はMn濃度が高く、(1)式左辺の値が0.00超(α-γ変態する組成)であり、そのことが起因し、面積比Styl/Stotと面積比S100/Stotがそれぞれ(3)式及び(4)式の範囲から外れた。その結果、鉄損W10/400は高かった。
 比較例であるNo.109~No.112、No.117、No.120、No.123は、熱間圧延板焼鈍での温度、冷間圧延での圧下率、スキンパス圧延での圧下率の少なくとも何れかが最適ではなかったため、(3)式~(6)式の何れかを満たさず、その結果、鉄損W10/400が高かった。
 また、比較例であるNo.119は、冷間圧延の圧下率が高すぎたことで、割れが生じ、その後の工程に進めなかった。
 No.142~No.150は、化学組成が本発明範囲を外れたことで、(3)式~(4)式を満たさず鉄損W10/400が高くなるか、冷間圧延時に割れが生じた。
 (第2の実施例)
 溶鋼を鋳造することにより、表3Aに示す化学組成を有するインゴットを作製した。ここで、(1)式左辺とは、前述の(1)式の左辺の値を表している。その後、作製したインゴットを1150℃まで加熱して熱間圧延を行い、表3Bに示す板厚になるように圧延した。そして、仕上げ圧延終了後に水冷し熱間圧延鋼板を巻き取った。この時の仕上げ圧延の最終パスの段階での温度(仕上温度)は830℃、巻取温度は500~700℃の範囲であった。
 次に、熱間圧延鋼板において表3Bに示す条件で熱間圧延板焼鈍を30秒行い、酸洗によりスケールを除去し、表3Bに示す圧下率で冷間圧延を行った。そして、無酸化雰囲気中で中間焼鈍を行い、中間焼鈍を表3Bに示す焼鈍温度で30秒行った。次いで、表3Bに示す圧下率で2回目の冷間圧延(スキンパス圧延)を行った。
 スキンパス圧延後の集合組織を調査するため、鋼板の一部を切除し、その切除した試験片を1/2の厚みに減厚加工し、その加工面について上述の要領でEBSD観察(step間隔:100nm)を行った。EBSD観察により得られた各方位粒の面積および平均KAM値から、Styl/Stot、S100/Stot、S100/Stra、K100/Ktylを求めた。
 また、スキンパス圧延後の鋼板に対し、第1の熱処理を表3Bに示す条件で行った。第1の熱処理後、集合組織を調査するため、鋼板の一部を切除し、その切除した試験片を1/2の厚みに減厚加工し、その加工面についてEBSD観察を行った。EBSD観察により、表4に示す種類の面積、平均KAM値及び平均結晶粒径を求めた。
 また、鋼板に第2の熱処理として、800℃の温度で2時間の焼鈍を行った。第2の熱処理後の鋼板から、測定試料として、55mm角の試料片を採取した。試料採取はせん断機を用いて実施した。そして、第1の実施例と同様に磁気特性の鉄損W10/400(圧延方向と幅方向の平均値)、W15/50(C)、W15/50(L)を測定し、W15/50(C)/W15/50(L)を求めた。測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表3A、表3B及び表4中の下線は、本発明の範囲から外れた条件を示している。発明例であるNo.201~No.207、No.215~No.237、No.247~No.250は、いずれも鉄損W10/400は良好な値であった。
 一方、比較例であるNo.208はMn濃度が高く、(1)式左辺の値が0.00超(α-γ変態する組成)であり、そのことが起因し、面積比Styl/Stotと面積比S100/Stotがそれぞれ(10)式及び(11)式の範囲から外れた。その結果、鉄損W10/400は高かった。比較例であるNo.209~No.214は、熱間圧延板焼鈍での温度、中間焼鈍での温度、冷間圧延での圧下率、スキンパス圧延での圧下率、第1の熱処理での温度の少なくとも何れかが最適ではなかったため、(10)式~(15)式の何れかを満たさず、その結果、鉄損W10/400が高かった。
 また、比較例であるNo.238~No.246は、化学組成が本発明範囲を外れたことで、(10)式~(11)式を満たさず鉄損W10/400が高くなるか、冷間圧延時に割れが生じた。
 (第3の実施例)
 溶鋼を鋳造することにより、表5Aに示す化学組成を有するインゴットを作製した。ここで、(1)式左辺とは、前述の(1)式の左辺の値を表している。その後、作製したインゴットを1150℃まで加熱して熱間圧延を行い、表5Bに示す板厚になるように圧延した。そして、仕上げ圧延終了後に水冷し熱間圧延鋼板を巻き取った。この時の仕上げ圧延の最終パスの段階での温度(仕上温度)は830℃、巻取温度は500~700℃の範囲であった。
 次に、熱間圧延鋼板において表5Bに示す条件で熱間圧延板焼鈍を30秒行い、酸洗によりスケールを除去し、表5Bに示す圧下率で冷間圧延を行った。そして、無酸化雰囲気中で中間焼鈍を行い、中間焼鈍を800℃で30秒の条件で行った。次いで、表5Bに示す圧下率で2回目の冷間圧延(スキンパス圧延)を行った。
 スキンパス圧延後の集合組織を調査するため、鋼板の一部を切除し、その切除した試験片を1/2の厚みに減厚加工し、その加工面について上述の要領でEBSD観察(step間隔:100nm)を行った。EBSD観察により得られた各方位粒の面積および平均KAM値から、Styl/Stot、S100/Stot、S100/Stra、K100/Ktylを求めた。
 また、スキンパス圧延後の鋼板に対し、第1の熱処理を行わずに第2の熱処理を表5Bに示す条件で行った。第2の熱処理後、集合組織を調査するため、鋼板の一部を切除し、その切除した試験片を1/2の厚みに減厚加工し、その加工面についてEBSD観察を行った。EBSD観察により、表6に示す種類の面積及び平均結晶粒径を求めた。
 また、上記の第2の熱処理後に、第2の熱処理後の鋼板から、測定試料として、55mm角の試料片を採取した。試料採取はせん断機を用いて実施した。そして、第1の実施例と同様に磁気特性の鉄損W10/400(圧延方向と幅方向の平均値)、W15/50(C)、W15/50(L)を測定し、W15/50(C)/W15/50(L)を求めた。測定結果を表6に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表5A、表5B及び表6中の下線は、本発明の範囲から外れた条件を示している。発明例であるNo.301~No.308、No.316~No.333、No.344は、いずれも鉄損W10/400は良好な値であった。
 一方、比較例であるNo.309はMn濃度が高く、(1)式左辺の値が0.00超(α-γ変態する組成)であり、そのことが起因し、Styl/StotとS100/Stotがそれぞれ(20)式及び(21)式の範囲から外れた。その結果、鉄損W10/400は高かった。
 比較例であるNo.310~No.315は、熱間圧延板焼鈍での温度、及び/又は冷間圧延での圧下率が最適ではなかったため、(20)式~(24)式の少なくとも1つを満たさず、その結果、鉄損W10/400が高かった。
 また、比較例であるNo.334~No.343は、化学組成が本発明範囲を外れたことで、(20)式~(21)式を満たさず鉄損W10/400が高くなるか、冷間圧延時に割れが生じた。
 (第4の実施例)
 溶鋼を鋳造することにより、表7Aに示す化学組成を有するインゴットを作製した。ここで、(1)式左辺とは、前述の(1)式の左辺の値を表している。その後、作製したインゴットを1150℃まで加熱して熱間圧延を行い、表7Bに示す板厚になるように圧延した。そして、仕上げ圧延終了後に水冷し熱間圧延鋼板を巻き取った。この時の仕上げ圧延の最終パスの段階での温度(仕上温度)は830℃、巻取温度は500~700℃の範囲であった。
 次に、熱間圧延鋼板において表7Bに示す条件で熱間圧延板焼鈍を30秒行い、酸洗によりスケールを除去し、表7Bに示す圧下率で冷間圧延を行った。そして、無酸化雰囲気中で中間焼鈍を行い、中間焼鈍を800℃で30秒の条件で行った。次いで、表7Bに示す圧下率で2回目の冷間圧延(スキンパス圧延)を行った。
 次に、第1の熱処理を800℃で30秒の条件で行った。
 第1の熱処理後、集合組織を調査するため、鋼板の一部を切除し、その切除した試験片を1/2の厚みに減厚加工し、その加工面についてEBSD観察(step間隔:100nm)を行った。EBSD観察により、方位粒の面積、平均KAM値及び平均結晶粒径を求め、Styl/Stot、S100/Stot、S100/Stra、K100/Ktyl、d100/dave、d100/dtylを求めた。
 また、第1の熱処理後の鋼板に対し、第2の熱処理を表7Bに示す条件で行った。第2の熱処理後、集合組織を調査するため、鋼板の一部を切除し、その切除した試験片を1/2の厚みに減厚加工し、その加工面についてEBSD観察を行った。EBSD観察により、表8に示す種類の面積及び平均結晶粒径を求めた。
 また、上記の第2の熱処理後に、第2の熱処理後の鋼板から、測定試料として、55mm角の試料片を採取した。試料採取はせん断機を用いて実施した。そして、第1の実施例と同様に磁気特性の鉄損W10/400(圧延方向と幅方向の平均値)、W15/50(C)、W15/50(L)を測定し、W15/50(C)/W15/50(L)を求めた。測定結果を表8に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表7A、表7B及び表8中の下線は、本発明の範囲から外れた条件を示している。発明例であるNo.401~No.408、No.421~No.438、No.448は、いずれも鉄損W10/400は良好な値であった。
 一方、比較例であるNo.409はMn濃度が高く、(1)式左辺の値が0.00超(α-γ変態する組成)であり、そのことが起因し、Styl/StotとS100/Stotがそれぞれ(20)式及び(21)式の範囲から外れた。その結果、鉄損W10/400は高かった。比較例であるNo.410~No.420は、熱間圧延板焼鈍での温度、及び/又は冷間圧延での圧下率が最適ではなかったため、(20)式~(24)式の少なくとも1つを満たさず、その結果、鉄損W10/400が高かった。
 また、比較例であるNo.439~No.447は、化学組成が本発明範囲を外れたことで、(20)式~(21)式を満たさず鉄損W10/400が高くなるか、冷間圧延時に割れが生じた。
 (第5の実施例)
 溶鋼を鋳造することにより、表9Aに示す化学組成を有するインゴットを作製した。ここで、(1)式左辺とは、前述の(1)式の左辺の値を表している。その後、作製したインゴットを1150℃まで加熱して熱間圧延を行い、表9Bに示す板厚になるように圧延した。そして、仕上げ圧延終了後に水冷し熱間圧延鋼板を巻き取った。この時の仕上げ圧延の最終パスの段階での温度(仕上温度)は830℃、巻取温度は500~700℃の範囲であった。
 次に、熱間圧延鋼板において表9Bに示す条件で熱間圧延板焼鈍を30秒行い、酸洗によりスケールを除去し、表9Bに示す圧下率で冷間圧延を行った。そして、無酸化雰囲気中で中間焼鈍を行い、中間焼鈍を800℃で30秒の条件で行った。次いで、表9Bに示す圧下率で2回目の冷間圧延(スキンパス圧延)を行った。
 次に、集合組織を調査するため、鋼板の一部を切除し、その切除した試験片を1/2の厚みに減厚加工し、その加工面について、EBSD観察(step間隔:100nm)を行った。EBSD観察により、表8に示す種類の面積および平均KAM値を求めた。
 また、鋼板に第2の熱処理として、800℃の温度で2時間の焼鈍を行った。第2の熱処理後の鋼板から、測定試料として、55mm角の試料片を採取した。試料採取はせん断機を用いて実施した。そして、第1の実施例と同様に磁気特性の鉄損W10/400(圧延方向と幅方向の平均値)、W15/50(C)、W15/50(L)を測定し、W15/50(C)/W15/50(L)を求めた。測定結果を表10に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 発明例であるNo.501~No.515は、いずれも(3)式~(9)式を満たし、いずれも鉄損W10/400は良好な値であった。
 本発明によれば、鋼板面に平行な断面での特定の結晶方位の面積および面積比が適切であるため、剪断加工後であっても優れた磁気特性を得ることができる。そのため、本発明は、産業上の利用性が高い。

Claims (13)

  1.  質量%で、
     Si:1.50%~4.00%、
     Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%未満、
     C:0.0100%以下、
     sol.Al:4.00%以下、
     S:0.0400%以下、
     N:0.0100%以下、
     Sn:0.00%~0.40%、
     Sb:0.00%~0.40%、
     P:0.00%~0.40%、
     Cr:0.001%~0.100%、
     B:0.0000%~0.0050%、
     O:0.0000%~0.0200%、及び
     Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、
     Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の(1)式を満たし、
     残部がFeおよび不純物からなる化学組成を有し、
     さらに、鋼板表面に平行な面でEBSDにより観察したときにおいて、全面積をStot、{100}方位粒の面積をS100、以下の(2)式に従うテイラー因子Mが2.8超となる方位粒の面積をStyl、前記テイラー因子Mが2.8以下となる方位粒の合計面積をStra、前記{100}方位粒の平均KAM値をK100、前記テイラー因子Mが2.8超となる方位粒の平均KAM値をKtylとした場合に、以下の(3)~(6)式を満たすことを特徴とする無方向性電磁鋼板。
     ([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])≦0.00%   ・・・(1)
     M=(cosφ×cosλ)-1   ・・・(2)
     0.20≦Styl/Stot≦0.85   ・・・(3)
     0.05≦S100/Stot≦0.80   ・・・(4)
     S100/Stra≧0.50   ・・・(5)
     K100/Ktyl≦0.990   ・・・(6)
     ここで、(2)式中のφは応力ベクトルと結晶のすべり方向ベクトルのなす角を表し、λは応力ベクトルと結晶のすべり面の法線ベクトルのなす角を表す。
  2.  さらに、前記テイラー因子Mが2.8以下となる方位粒の平均KAM値をKtraとした場合、以下の(7)式を満たすことを特徴とする請求項1に記載の無方向性電磁鋼板。
     K100/Ktra<1.010   ・・・(7)
  3.  さらに、{110}方位粒の面積をS110とした場合に、以下の(8)式を満たすことを特徴とする請求項1又は2に記載の無方向性電磁鋼板。
     S100/S110≧1.00   ・・・(8)
     ここで、(8)式は面積比S100/S110が無限大に発散しても成り立つものとする。
  4.  さらに、{110}方位粒の平均KAM値をK110とした場合に、以下の(9)式を満たすことを特徴とする請求項1~3のいずれか1項に記載の無方向性電磁鋼板。
     K100/K110<1.010   ・・・(9)
  5.  質量%で、
     Si:1.50%~4.00%、
     Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%未満、
     C:0.0100%以下、
     sol.Al:4.00%以下、
     S:0.0400%以下、
     N:0.0100%以下、
     Sn:0.00%~0.40%、
     Sb:0.00%~0.40%、
     P:0.00%~0.40%、
     Cr:0.001%~0.100%、
     B:0.0000%~0.0050%、
     O:0.0000%~0.0200%、及び
     Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、
     Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の(1)式を満たし、
     残部がFeおよび不純物からなる化学組成を有し、
     さらに、鋼板表面に平行な面でEBSDにより観察したときにおいて、全面積をStot、{100}方位粒の面積をS100、以下の(2)式に従うテイラー因子Mが2.8超となる方位粒の面積をStyl、前記テイラー因子Mが2.8以下となる方位粒の合計面積をStra、前記{100}方位粒の平均KAM値をK100、前記テイラー因子Mが2.8超となる方位粒の平均KAM値をKtyl、観察領域の平均結晶粒径をdave、前記{100}方位粒の平均結晶粒径をd100、前記テイラー因子Mが2.8超となる方位粒の平均結晶粒径をdtylとした場合に、以下の(10)~(15)式を満たすことを特徴とする無方向性電磁鋼板。
     ([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])≦0%   ・・・(1)
     M=(cosφ×cosλ)-1   ・・・(2)
     Styl/Stot≦0.70   ・・・(10)
     0.20≦S100/Stot   ・・・(11)
     S100/Stra≧0.55   ・・・(12)
     K100/Ktyl≦1.010   ・・・(13)
     d100/dave>1.00   ・・・(14)
     d100/dtyl>1.00   ・・・(15)
     ここで、(2)式中のφは応力ベクトルと結晶のすべり方向ベクトルのなす角を表し、λは応力ベクトルと結晶のすべり面の法線ベクトルのなす角を表す。
  6.  さらに、前記テイラー因子Mが2.8以下となる方位粒の平均KAM値をKtraとした場合に、以下の(16)式を満たすことを特徴とする請求項5に記載の無方向性電磁鋼板。
     K100/Ktra<1.010   ・・・(16)
  7.  さらに、前記テイラー因子Mが2.8以下となる方位粒の平均結晶粒径をdtraとした場合に、以下の(17)式を満たすことを特徴とする請求項5又は6に記載の無方向性電磁鋼板。
     d100/dtra>1.00   ・・・(17)
  8.  さらに、{110}方位粒の面積をS110とした場合に、以下の(18)式を満たすことを特徴とする請求項5~7のいずれか1項に記載の無方向性電磁鋼板。
     S100/S110≧1.00   ・・・(18)
     ここで、(18)式は面積比S100/S110が無限大に発散しても成り立つものとする。
  9.  さらに、{110}方位粒の平均KAM値をK110とした場合に、以下の(19)式を満たすことを特徴とする請求項5~8のいずれか1項に記載の無方向性電磁鋼板。
     K100/K110<1.010   ・・・(19)
  10.  請求項5~9のいずれか1項に記載の無方向性電磁鋼板の製造方法であって、
     請求項1~4のいずれか1項に記載の無方向性電磁鋼板に対して700℃~950℃の温度で1秒~100秒の条件で熱処理を行う、
    ことを特徴とする無方向性電磁鋼板の製造方法。
  11.  質量%で、
     Si:1.50%~4.00%、
     Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%未満、
     C:0.0100%以下、
     sol.Al:4.00%以下、
     S:0.0400%以下、
     N:0.0100%以下、
     Sn:0.00%~0.40%、
     Sb:0.00%~0.40%、
     P:0.00%~0.40%、
     Cr:0.001%~0.100%、
     B:0.0000%~0.0050%、
     O:0.0000%~0.0200%、及び
     Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、
     Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の(1)式を満たし、
     残部がFeおよび不純物からなる化学組成を有し、
     さらに、鋼板表面に平行な面でEBSDにより観察したときにおいて、全面積をStot、{100}方位粒の面積をS100、以下の(2)式に従うテイラー因子Mが2.8超となる方位粒の面積をStyl、前記テイラー因子Mが2.8以下となる方位粒の合計面積をStra、観察領域の平均結晶粒径をdave、前記{100}方位粒の平均結晶粒径をd100、前記テイラー因子Mが2.8超となる方位粒の平均結晶粒径をdtylとした場合に、以下の(20)~(24)式を満たす、
    ことを特徴とする無方向性電磁鋼板。
     ([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])≦0%   ・・・(1)
     M=(cosφ×cosλ)-1   ・・・(2)
     Styl/Stot<0.55   ・・・(20)
     S100/Stot>0.30   ・・・(21)
     S100/Stra≧0.60   ・・・(22)
     d100/dave≧0.95   ・・・(23)
     d100/dtyl≧0.95   ・・・(24)
     ここで、(2)式中のφは応力ベクトルと結晶のすべり方向ベクトルのなす角を表し、λは応力ベクトルと結晶のすべり面の法線ベクトルのなす角を表す。
  12.  さらに、前記テイラー因子Mが2.8以下となる方位粒の平均結晶粒径をdtraとした場合に、以下の(25)式を満たす、
    ことを特徴とする請求項11に記載の無方向性電磁鋼板。
     d100/dtra≧0.95   ・・・(25)
  13.  請求項1~9のいずれか1項に記載の無方向性電磁鋼板に対して、950℃~1050℃の温度で1秒~100秒の条件、もしくは700℃~900℃の温度で1000秒超の条件で熱処理を行う、
    ことを特徴とする無方向性電磁鋼板の製造方法。
PCT/JP2022/012760 2021-03-19 2022-03-18 無方向性電磁鋼板およびその製造方法 WO2022196807A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023507205A JPWO2022196807A1 (ja) 2021-03-19 2022-03-18
CN202280021420.0A CN116981792A (zh) 2021-03-19 2022-03-18 无取向性电磁钢板及其制造方法
EP22771552.1A EP4310203A1 (en) 2021-03-19 2022-03-18 Non-oriented electromagnetic steel sheet and method for manufacturing same
BR112023017003A BR112023017003A2 (pt) 2021-03-19 2022-03-18 Chapa de aço elétrico não orientada, e, método para fabricar a chapa de aço elétrico não orientada
KR1020237030906A KR20230144606A (ko) 2021-03-19 2022-03-18 무방향성 전자 강판 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021046004 2021-03-19
JP2021-046004 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022196807A1 true WO2022196807A1 (ja) 2022-09-22

Family

ID=83320522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012760 WO2022196807A1 (ja) 2021-03-19 2022-03-18 無方向性電磁鋼板およびその製造方法

Country Status (7)

Country Link
EP (1) EP4310203A1 (ja)
JP (1) JPWO2022196807A1 (ja)
KR (1) KR20230144606A (ja)
CN (1) CN116981792A (ja)
BR (1) BR112023017003A2 (ja)
TW (1) TWI817400B (ja)
WO (1) WO2022196807A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143960A (ja) 1994-11-16 1996-06-04 Nippon Steel Corp 磁束密度が高くかつ鉄損が低い無方向性電磁鋼板の製造方法
JP2000219917A (ja) * 1999-01-28 2000-08-08 Nippon Steel Corp 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法
JP2002363713A (ja) 2001-06-01 2002-12-18 Nippon Steel Corp 鉄損および磁束密度が極めて優れたセミプロセス無方向性電磁鋼板およびその製造方法
JP4029430B2 (ja) 1995-09-20 2008-01-09 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP2011111658A (ja) 2009-11-27 2011-06-09 Nippon Steel Corp 磁束密度の高い無方向性電磁鋼板の製造方法
JP2011162821A (ja) 2010-02-08 2011-08-25 Nippon Steel Corp 圧延方向の磁気特性に優れた無方向性電磁鋼板の製造方法
KR20120074394A (ko) * 2010-12-28 2012-07-06 주식회사 포스코 투자율이 우수한 세미프로세스 무방향성 전기강판 및 그 제조방법
JP2013112853A (ja) 2011-11-29 2013-06-10 Jfe Steel Corp 無方向性電磁鋼板の製造方法
WO2015199211A1 (ja) 2014-06-26 2015-12-30 新日鐵住金株式会社 電磁鋼板
WO2016148010A1 (ja) 2015-03-17 2016-09-22 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP2017193754A (ja) 2016-04-21 2017-10-26 新日鐵住金株式会社 直線移動鉄心用無方向性電磁鋼板およびその製造方法と、直線移動鉄心
JP2018003049A (ja) 2016-06-28 2018-01-11 新日鐵住金株式会社 占積率に優れる電磁鋼板およびその製造方法
JP2021509154A (ja) * 2017-12-26 2021-03-18 ポスコPosco 無方向性電磁鋼板およびその製造方法
JP2021046004A (ja) 2019-09-17 2021-03-25 トヨタ紡織株式会社 フットレスト

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6891707B2 (ja) * 2017-07-28 2021-06-18 日本製鉄株式会社 無方向性電磁鋼板、及びその製造方法
TWI682039B (zh) * 2019-03-20 2020-01-11 日商日本製鐵股份有限公司 無方向性電磁鋼板及其製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143960A (ja) 1994-11-16 1996-06-04 Nippon Steel Corp 磁束密度が高くかつ鉄損が低い無方向性電磁鋼板の製造方法
JP4029430B2 (ja) 1995-09-20 2008-01-09 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP2000219917A (ja) * 1999-01-28 2000-08-08 Nippon Steel Corp 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法
JP2002363713A (ja) 2001-06-01 2002-12-18 Nippon Steel Corp 鉄損および磁束密度が極めて優れたセミプロセス無方向性電磁鋼板およびその製造方法
JP2011111658A (ja) 2009-11-27 2011-06-09 Nippon Steel Corp 磁束密度の高い無方向性電磁鋼板の製造方法
JP2011162821A (ja) 2010-02-08 2011-08-25 Nippon Steel Corp 圧延方向の磁気特性に優れた無方向性電磁鋼板の製造方法
KR20120074394A (ko) * 2010-12-28 2012-07-06 주식회사 포스코 투자율이 우수한 세미프로세스 무방향성 전기강판 및 그 제조방법
JP2013112853A (ja) 2011-11-29 2013-06-10 Jfe Steel Corp 無方向性電磁鋼板の製造方法
WO2015199211A1 (ja) 2014-06-26 2015-12-30 新日鐵住金株式会社 電磁鋼板
WO2016148010A1 (ja) 2015-03-17 2016-09-22 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP2017193754A (ja) 2016-04-21 2017-10-26 新日鐵住金株式会社 直線移動鉄心用無方向性電磁鋼板およびその製造方法と、直線移動鉄心
JP2018003049A (ja) 2016-06-28 2018-01-11 新日鐵住金株式会社 占積率に優れる電磁鋼板およびその製造方法
JP2021509154A (ja) * 2017-12-26 2021-03-18 ポスコPosco 無方向性電磁鋼板およびその製造方法
JP2021046004A (ja) 2019-09-17 2021-03-25 トヨタ紡織株式会社 フットレスト

Also Published As

Publication number Publication date
KR20230144606A (ko) 2023-10-16
TW202242160A (zh) 2022-11-01
TWI817400B (zh) 2023-10-01
BR112023017003A2 (pt) 2023-09-26
JPWO2022196807A1 (ja) 2022-09-22
CN116981792A (zh) 2023-10-31
EP4310203A1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
CN110612358B (zh) 无方向性电磁钢板
CN110573640A (zh) 无方向性电磁钢板
CN110573639B (zh) 无方向性电磁钢板
JP7352082B2 (ja) 無方向性電磁鋼板
WO2022196807A1 (ja) 無方向性電磁鋼板およびその製造方法
JP7269527B2 (ja) 無方向性電磁鋼板およびその製造方法
WO2022196805A1 (ja) 無方向性電磁鋼板およびその製造方法
JP7415135B2 (ja) 無方向性電磁鋼板の製造方法
JP7415134B2 (ja) 無方向性電磁鋼板の製造方法
JP7415136B2 (ja) 無方向性電磁鋼板の製造方法
JP7415138B2 (ja) 無方向性電磁鋼板の製造方法
JP7428872B2 (ja) 無方向性電磁鋼板及びその製造方法
JP7211532B2 (ja) 無方向性電磁鋼板の製造方法
TWI753650B (zh) 無方向性電磁鋼板之製造方法
JP7428873B2 (ja) 無方向性電磁鋼板及びその製造方法
JP7295465B2 (ja) 無方向性電磁鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771552

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023507205

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18279757

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023017003

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237030906

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237030906

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280021420.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 112023017003

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230823

WWE Wipo information: entry into national phase

Ref document number: 2022771552

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022771552

Country of ref document: EP

Effective date: 20231019