HK1131260A1 - Selective spacer formation on transistors of different classes on the same device - Google Patents
Selective spacer formation on transistors of different classes on the same deviceInfo
- Publication number
- HK1131260A1 HK1131260A1 HK09110883.0A HK09110883A HK1131260A1 HK 1131260 A1 HK1131260 A1 HK 1131260A1 HK 09110883 A HK09110883 A HK 09110883A HK 1131260 A1 HK1131260 A1 HK 1131260A1
- Authority
- HK
- Hong Kong
- Prior art keywords
- transistors
- same device
- different classes
- spacer formation
- selective spacer
- Prior art date
Links
- 230000015572 biosynthetic process Effects 0.000 title 1
- 125000006850 spacer group Chemical group 0.000 title 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7842—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
- H01L29/7843—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823864—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823807—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/6653—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/6656—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/479,762 US7541239B2 (en) | 2006-06-30 | 2006-06-30 | Selective spacer formation on transistors of different classes on the same device |
PCT/US2007/015224 WO2008005377A2 (en) | 2006-06-30 | 2007-06-28 | Selective spacer formation on transistors of different classes on the same device |
Publications (1)
Publication Number | Publication Date |
---|---|
HK1131260A1 true HK1131260A1 (en) | 2010-01-15 |
Family
ID=38877197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HK09110883.0A HK1131260A1 (en) | 2006-06-30 | 2009-11-20 | Selective spacer formation on transistors of different classes on the same device |
Country Status (7)
Country | Link |
---|---|
US (3) | US7541239B2 (xx) |
KR (1) | KR101065827B1 (xx) |
CN (1) | CN101454884B (xx) |
DE (1) | DE112007001161B4 (xx) |
HK (1) | HK1131260A1 (xx) |
TW (1) | TWI347641B (xx) |
WO (1) | WO2008005377A2 (xx) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7541239B2 (en) * | 2006-06-30 | 2009-06-02 | Intel Corporation | Selective spacer formation on transistors of different classes on the same device |
US7456066B2 (en) * | 2006-11-03 | 2008-11-25 | Taiwan Semiconductor Manufacturing Co., Ltd. | Variable width offset spacers for mixed signal and system on chip devices |
US20080179636A1 (en) * | 2007-01-27 | 2008-07-31 | International Business Machines Corporation | N-fets with tensilely strained semiconductor channels, and method for fabricating same using buried pseudomorphic layers |
US8058123B2 (en) * | 2007-11-29 | 2011-11-15 | Globalfoundries Singapore Pte. Ltd. | Integrated circuit and method of fabrication thereof |
JP5331618B2 (ja) * | 2009-08-28 | 2013-10-30 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
US8436404B2 (en) | 2009-12-30 | 2013-05-07 | Intel Corporation | Self-aligned contacts |
US8389300B2 (en) * | 2010-04-02 | 2013-03-05 | Centre National De La Recherche Scientifique | Controlling ferroelectricity in dielectric films by process induced uniaxial strain |
US8669617B2 (en) | 2010-12-23 | 2014-03-11 | Intel Corporation | Multi-gate transistors |
US8896030B2 (en) | 2012-09-07 | 2014-11-25 | Intel Corporation | Integrated circuits with selective gate electrode recess |
CN103730468B (zh) * | 2012-10-16 | 2017-12-01 | 中芯国际集成电路制造(上海)有限公司 | 半导体结构及其形成方法、sram存储单元、sram存储器 |
US10868141B2 (en) * | 2015-12-31 | 2020-12-15 | Taiwan Semiconductor Manufacturing Company Ltd. | Spacer structure and manufacturing method thereof |
US10032906B2 (en) * | 2016-04-29 | 2018-07-24 | Samsung Electronics Co., Ltd. | Vertical field effect transistor and method of fabricating the same |
WO2019221706A1 (en) | 2018-05-15 | 2019-11-21 | Hewlett-Packard Development Company, L.P. | Fluidic die with monitoring circuit fault protection structure |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US710765A (en) * | 1902-03-28 | 1902-10-07 | Andrew Chase Cunningham | Floating dry-dock. |
JPH03257962A (ja) * | 1990-03-08 | 1991-11-18 | Fujitsu Ltd | 半導体装置の製造方法 |
KR950000141B1 (ko) * | 1990-04-03 | 1995-01-10 | 미쓰비시 뎅끼 가부시끼가이샤 | 반도체 장치 및 그 제조방법 |
KR950034830A (ko) * | 1994-04-29 | 1995-12-28 | 빈센트 비. 인그라시아 | 전계 효과 트랜지스터 및 이 트랜지스터의 제조 방법 |
JP3761918B2 (ja) * | 1994-09-13 | 2006-03-29 | 株式会社東芝 | 半導体装置の製造方法 |
US5710450A (en) * | 1994-12-23 | 1998-01-20 | Intel Corporation | Transistor with ultra shallow tip and method of fabrication |
US6417550B1 (en) * | 1996-08-30 | 2002-07-09 | Altera Corporation | High voltage MOS devices with high gated-diode breakdown voltage and punch-through voltage |
US5898202A (en) | 1996-12-03 | 1999-04-27 | Advanced Micro Devices, Inc. | Selective spacer formation for optimized silicon area reduction |
AU1040397A (en) * | 1996-12-04 | 1998-06-29 | Hitachi Limited | Semiconductor device |
KR19980078235A (ko) * | 1997-04-25 | 1998-11-16 | 문정환 | 반도체 소자의 제조 방법 |
TW359005B (en) | 1997-09-01 | 1999-05-21 | United Microelectronics Corp | Method for manufacturing mixed circuit bi-gap wall structure |
KR100487504B1 (ko) | 1997-12-12 | 2005-07-07 | 삼성전자주식회사 | 서로 다른 게이트 스페이서 형성 방법 |
US6121100A (en) * | 1997-12-31 | 2000-09-19 | Intel Corporation | Method of fabricating a MOS transistor with a raised source/drain extension |
US6198142B1 (en) * | 1998-07-31 | 2001-03-06 | Intel Corporation | Transistor with minimal junction capacitance and method of fabrication |
US6239472B1 (en) | 1998-09-01 | 2001-05-29 | Philips Electronics North America Corp. | MOSFET structure having improved source/drain junction performance |
US6887762B1 (en) * | 1998-11-12 | 2005-05-03 | Intel Corporation | Method of fabricating a field effect transistor structure with abrupt source/drain junctions |
US7629028B2 (en) * | 1999-03-19 | 2009-12-08 | Battelle Memorial Insitute | Methods of making monolayers |
KR100332106B1 (ko) * | 1999-06-29 | 2002-04-10 | 박종섭 | 반도체 소자의 트랜지스터 제조 방법 |
JP2001093984A (ja) * | 1999-09-20 | 2001-04-06 | Matsushita Electronics Industry Corp | 半導体装置およびその製造方法 |
US6255152B1 (en) * | 1999-10-01 | 2001-07-03 | United Microelectronics Corp. | Method of fabricating CMOS using Si-B layer to form source/drain extension junction |
US7391087B2 (en) * | 1999-12-30 | 2008-06-24 | Intel Corporation | MOS transistor structure and method of fabrication |
US6541343B1 (en) * | 1999-12-30 | 2003-04-01 | Intel Corporation | Methods of making field effect transistor structure with partially isolated source/drain junctions |
US6372583B1 (en) * | 2000-02-09 | 2002-04-16 | Intel Corporation | Process for making semiconductor device with epitaxially grown source and drain |
JP2001244469A (ja) * | 2000-03-02 | 2001-09-07 | Oki Electric Ind Co Ltd | 半導体装置およびその製造方法 |
US6368926B1 (en) * | 2000-03-13 | 2002-04-09 | Advanced Micro Devices, Inc. | Method of forming a semiconductor device with source/drain regions having a deep vertical junction |
US6495402B1 (en) * | 2001-02-06 | 2002-12-17 | Advanced Micro Devices, Inc. | Semiconductor-on-insulator (SOI) device having source/drain silicon-germanium regions and method of manufacture |
US6734109B2 (en) | 2001-08-08 | 2004-05-11 | International Business Machines Corporation | Method of building a CMOS structure on thin SOI with source/drain electrodes formed by in situ doped selective amorphous silicon |
US6890824B2 (en) * | 2001-08-23 | 2005-05-10 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and manufacturing method thereof |
US6621131B2 (en) * | 2001-11-01 | 2003-09-16 | Intel Corporation | Semiconductor transistor having a stressed channel |
KR100406537B1 (ko) * | 2001-12-03 | 2003-11-20 | 주식회사 하이닉스반도체 | 반도체장치의 제조 방법 |
US6506642B1 (en) * | 2001-12-19 | 2003-01-14 | Advanced Micro Devices, Inc. | Removable spacer technique |
FR2838237B1 (fr) * | 2002-04-03 | 2005-02-25 | St Microelectronics Sa | Procede de fabrication d'un transistor a effet de champ a grille isolee a canal contraint et circuit integre comprenant un tel transistor |
US7473947B2 (en) * | 2002-07-12 | 2009-01-06 | Intel Corporation | Process for ultra-thin body SOI devices that incorporate EPI silicon tips and article made thereby |
DE10246718A1 (de) | 2002-10-07 | 2004-04-22 | Infineon Technologies Ag | Feldeffekttransistor mit lokaler Source-/Drainisolation sowie zugehöriges Herstellungsverfahren |
US6743684B2 (en) * | 2002-10-11 | 2004-06-01 | Texas Instruments Incorporated | Method to produce localized halo for MOS transistor |
US6806584B2 (en) * | 2002-10-21 | 2004-10-19 | International Business Machines Corporation | Semiconductor device structure including multiple fets having different spacer widths |
US6864135B2 (en) | 2002-10-31 | 2005-03-08 | Freescale Semiconductor, Inc. | Semiconductor fabrication process using transistor spacers of differing widths |
US6943077B2 (en) * | 2003-04-07 | 2005-09-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Selective spacer layer deposition method for forming spacers with different widths |
FR2854276A1 (fr) | 2003-04-24 | 2004-10-29 | Koninkl Philips Electronics Nv | Dispositif semiconducteur comprenant des extensions realisees en un materiau a faible temperature de fusion. |
US7045408B2 (en) * | 2003-05-21 | 2006-05-16 | Intel Corporation | Integrated circuit with improved channel stress properties and a method for making it |
US20040262683A1 (en) * | 2003-06-27 | 2004-12-30 | Bohr Mark T. | PMOS transistor strain optimization with raised junction regions |
US7279746B2 (en) | 2003-06-30 | 2007-10-09 | International Business Machines Corporation | High performance CMOS device structures and method of manufacture |
US7019326B2 (en) * | 2003-11-14 | 2006-03-28 | Intel Corporation | Transistor with strain-inducing structure in channel |
US6946709B2 (en) | 2003-12-02 | 2005-09-20 | International Business Machines Corporation | Complementary transistors having different source and drain extension spacing controlled by different spacer sizes |
US7101765B2 (en) | 2004-03-31 | 2006-09-05 | Intel Corporation | Enhancing strained device performance by use of multi narrow section layout |
US7112859B2 (en) * | 2004-05-17 | 2006-09-26 | Intel Corporation | Stepped tip junction with spacer layer |
JP2006041118A (ja) * | 2004-07-26 | 2006-02-09 | Toshiba Corp | 半導体装置及びその製造方法 |
US20060065937A1 (en) * | 2004-09-30 | 2006-03-30 | Thomas Hoffmann | Short channel effect of MOS devices by retrograde well engineering using tilted dopant implantation into recessed source/drain regions |
US7335959B2 (en) | 2005-01-06 | 2008-02-26 | Intel Corporation | Device with stepped source/drain region profile |
US7541239B2 (en) | 2006-06-30 | 2009-06-02 | Intel Corporation | Selective spacer formation on transistors of different classes on the same device |
-
2006
- 2006-06-30 US US11/479,762 patent/US7541239B2/en not_active Expired - Fee Related
-
2007
- 2007-06-28 CN CN2007800198792A patent/CN101454884B/zh active Active
- 2007-06-28 TW TW096123560A patent/TWI347641B/zh not_active IP Right Cessation
- 2007-06-28 WO PCT/US2007/015224 patent/WO2008005377A2/en active Application Filing
- 2007-06-28 KR KR1020087031908A patent/KR101065827B1/ko active IP Right Grant
- 2007-06-28 DE DE112007001161T patent/DE112007001161B4/de not_active Expired - Fee Related
-
2009
- 2009-04-06 US US12/419,242 patent/US8154067B2/en not_active Expired - Fee Related
- 2009-11-20 HK HK09110883.0A patent/HK1131260A1/xx not_active IP Right Cessation
-
2011
- 2011-03-04 US US13/040,951 patent/US8174060B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE112007001161T5 (de) | 2009-05-20 |
TWI347641B (en) | 2011-08-21 |
KR101065827B1 (ko) | 2011-09-20 |
DE112007001161B4 (de) | 2013-03-28 |
CN101454884A (zh) | 2009-06-10 |
US20090189193A1 (en) | 2009-07-30 |
US8174060B2 (en) | 2012-05-08 |
US8154067B2 (en) | 2012-04-10 |
US20080003746A1 (en) | 2008-01-03 |
WO2008005377A3 (en) | 2008-02-21 |
TW200824008A (en) | 2008-06-01 |
US7541239B2 (en) | 2009-06-02 |
US20110157854A1 (en) | 2011-06-30 |
KR20090028565A (ko) | 2009-03-18 |
WO2008005377A2 (en) | 2008-01-10 |
CN101454884B (zh) | 2012-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI347641B (en) | Selective spacer formation on transistors of different classes on the same device | |
EG25248A (en) | Can opening device. | |
GB0616984D0 (en) | Transistor | |
GB0616985D0 (en) | Transistor | |
EP1901341A4 (en) | FIELD EFFECT TRANSISTOR | |
EP1901342A4 (en) | FIELD EFFECT TRANSISTOR | |
GB0617934D0 (en) | Transistor | |
EP1979079A4 (en) | MICROFLUIDIC DEVICES | |
EP2003686A4 (en) | FIELD EFFECT TRANSISTOR | |
EP2046023A4 (en) | AV DEVICE | |
GB0617068D0 (en) | Transistor | |
EP1980953A4 (en) | CHARACTER INPUT DEVICE | |
GB0602743D0 (en) | Microfluidic device | |
EP1811573A4 (en) | Field effect transistor | |
EP2033568A4 (en) | DEVICE FOR INTRODUCTION TO A SAMPLE | |
ZA200608695B (en) | Extrusion device | |
HK1103456A1 (en) | Field device | |
EP2057751A4 (en) | DEVICE FOR SEIZING CHARACTERS | |
EP2034117A4 (en) | DOOR DEVICE | |
PT2425947T (pt) | Dispositivo de extrusão | |
DE502007000710D1 (de) | Belüftungsvorrichtung | |
HK1129477A1 (en) | In-vehicle device | |
EP1990838A4 (en) | FIELD EFFECT TRANSISTOR | |
ITMI20060335A1 (it) | Dispositivo porta-cristallizzatore | |
TWI346855B (en) | Gate driving circuit and the driving method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC | Patent ceased (i.e. patent has lapsed due to the failure to pay the renewal fee) |
Effective date: 20160628 |