FI80181B - Filtersystem foer en videobild av reducerad resolution. - Google Patents

Filtersystem foer en videobild av reducerad resolution. Download PDF

Info

Publication number
FI80181B
FI80181B FI861124A FI861124A FI80181B FI 80181 B FI80181 B FI 80181B FI 861124 A FI861124 A FI 861124A FI 861124 A FI861124 A FI 861124A FI 80181 B FI80181 B FI 80181B
Authority
FI
Finland
Prior art keywords
signal
frequency
chrominance
components
samples
Prior art date
Application number
FI861124A
Other languages
English (en)
Swedish (sv)
Other versions
FI861124A0 (fi
FI80181C (fi
FI861124A (fi
Inventor
Russell Thomas Fling
Todd J Christopher
Original Assignee
Rca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rca Corp filed Critical Rca Corp
Publication of FI861124A0 publication Critical patent/FI861124A0/fi
Publication of FI861124A publication Critical patent/FI861124A/fi
Publication of FI80181B publication Critical patent/FI80181B/fi
Application granted granted Critical
Publication of FI80181C publication Critical patent/FI80181C/fi

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/445Receiver circuitry for the reception of television signals according to analogue transmission standards for displaying additional information
    • H04N5/45Picture in picture, e.g. displaying simultaneously another television channel in a region of the screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4084Scaling of whole images or parts thereof, e.g. expanding or contracting in the transform domain, e.g. fast Fourier transform [FFT] domain scaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • H04N5/205Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic
    • H04N5/208Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic for compensating for attenuation of high frequency components, e.g. crispening, aperture distortion correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/641Multi-purpose receivers, e.g. for auxiliary information

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Picture Signal Circuits (AREA)
  • Processing Of Color Television Signals (AREA)
  • Image Processing (AREA)
  • Color Television Systems (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Studio Circuits (AREA)
  • Color Television Image Signal Generators (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Endoscopes (AREA)

Description

1 80131
Videosignaalin käsittelylaite
Esillä oleva keksintö kohdistuu patenttivaatimuksen 5 1 mukaiseen laitteeseen sellaisen videosignaalin käsitte lemiseksi, joka on alinäytteenotettu pienennetyn erottelu-tarkkuuden omaavan näytön tuottamiseksi.
Kuva kuvassa -näytössä (pix-in-pix display) lisä-signaalista tuotettu erottelutarkkuudeltaan pienempi kuva 10 liitetään sisäkuvana pääsignaalin tuottaman kuvan osaksi. Kuva kuvassa -näytön omaava televisiovastaanotin on esitetty esimerkiksi US-patenttijulkaisussa 4 298 891, "Television Receiver".
Tyypillisessä kuva kuvassa -televisiovastaanot-15 timessa käytetään erillisiä virittimiä, välitaajuusvah-vistimia ja videosignaalin demodulaattoreita kaksien va-lotiheys- ja värierosignaalien aikaansaamiseksi, yhdet pääkuvalle ja yhdet lisäkuvalle. Lisäsignaali käsitellään tyypillisesti valetoiston estosuodattimien kautta 20 ja alinäytteenotetaan sekä vaaka- että pystysuunnassa kooltaan pienennettyä kuvaa edustavan signaalin tuottamiseksi .
Valetoiston estosuodattimia käytetään pienentämään signaalin kaistanleveyttä sekä vaaka- että pys-25 tysuunnissa alinäytteenoton aiheuttamien häiriökompo-nenttien pienentämiseksi. Näitä häiriökomponentteja kutsutaan myös valetoistokomponenteiksi. Ne esiintyvät kun signaalia näytteenotetaan taajuudella, joka on pienempi kuin tunnetun Nyquistin näytteenottokritee-30 rin määrittämä taajuus. Valetoistokomponentit ovat alkuperäisessä signaalissa olevia taajuuksia, jotka ovat alinäytteenotetun signaalin taajuusspektrin ulkopuolella ja jotka alinäytteenottoprosessi on muun- 2 80181 tanut toisille taajuuksille, jotka ovat alinäytteenote-tun signaalin taajuusalueella. Vaikka valetoiston es-tosuodattimet ovat toivottavia alinäytteenottojärjestelmässä, voi niillä olla ei-toivottavia epäterävyyttä ai-5 heuttavia sivuvaikutuksia toistetussa kuvassa.
Tyypillinen kuva kuvassa -televisiovastaanotin sisältää huomattavasti enemmän piirejä kuin tavallinen yhden kuvan vastaanotin ja on siten kalliimpi valmistaa. Merkittävän osan tästä ylimääräisestä piiristöstä 10 muodostaa muisti, kuten varaussiirtorekisteri tai suo- rasaantimuisti (RAM), joka tallettaa yhden tai useamman alinäytteenotetun kuvan kentän. Muistia käytetään tahdistamaan sopivasti lisäsignaaleja pääsignaalien suhteen vakaan lisäkuvan toistamiseksi.
15 Lisänäytteet kirjoitetaan muistiin tahdistetusti lisäsignaalin kanssa ja luetaan muistista näyttöä varten pääsignaalin suhteen tahdistetusti. Koska pää- ja lisäsignaalit voivat olla toisiinsa liittymättömiä, saattaa olla tarve kirjoittaa näytteet muistiin ja lukea 20 näytteet muistista samaan aikaan. Muistijärjestelyt, jotka on rakennettu välttämään nämä lukemiseen ja kirjoittamiseen liittyvät ristiriidat, pyrkivät olemaan kalliita.
Toinen tekijä muistin kustannuksissa on suhteel-25 lisen suuri kuva-alkiota varten olevien muistialkioi- den määrä, joka tarvitaan lisäkuvan säilyttämiseksi. Esimerkiksi digitaalinen NTSC-televisiovastaanotin, jonka näytteenottotaajuus on neljä kertaa väriapukanto-aallon taajuus, tuottaa 910 näytettä vaakajuovaa kohti. 30 Videosignaalin yksi kenttä sisältää 262,5 juovaa. Jos kuva alinäytteenotetaan suhteessa yhden suhde kolmeen, sekä vaaka- että pystysuunnassa, ja jos vain 70 prosenttia juovista ja 75 prosenttia kunkin juovan näytteistä käsitellään, kehitetään kutakin kenttää kohti 35 13935 kuva-alkiota. Koska kukin kuva-alkio voi sisältää
II
3 80181 kahdeksan bittiä valotiheysinformaatiota ja kuusi bittiä värikkyysinformaatiota, vaatii kyseinen kuva kuvassa -järjestelmä 195090 bittiä muistia kooltaan pienennetyn lisäsignaalin yhden kentän tallettamiseksi.
5 Esillä olevan keksinnön tarkoituksena on aikaan saada kooltaan pienennetyn videokuvan alinäytteenotta-miseksi ja näyttämiseksi laite, joka tuottaa kuvan koon pienennyksen, joka on pienempi kuin alinäytteenottosuhde.
Esillä oleva keksintö on toteutettu kuva kuvassa 10 -televisiosignaalin näyttölaitteessa, joka näyttää lisä- kuvan liitteenä pääkuvassa. Järjestelmä sisältää laitteen lisäsignaalin kullakin juovalla olevien kuva-alkioiden alinäytteenottamiseksi taajuudella, joka on 1/N kertaa lisäsignaalin kuva-alkion taajuus. Järjestelmä sisällä tää edelleen laitteen näiden kuva-alkioiden näyttämisek si taajuudella, joka on M/N kertaa pääsignaalin kuva-alkion näyttötaajuus 1/M:n suuruisen näkyvän koon pienennyksen saavuttamiseksi kussakin vaakajuovassa. N ja M ovat positiivisia reaalilukuja.
20 Kuvio 1 esittää yleisenä lohkokaaviona kuva ku vassa -televisiovastaanotinta, joka on esillä olevan keksinnön suoritusmuodon mukainen.
Kuviot 2A ja 2B esittävät vastaavasti lohkokaavioina valotiheyden ja värikkyyden vaakajuovan signaa-25 linkäsittelijöitä, jotka sopivat käytettäväksi kuvios sa 1 esitetyssä televisiovastaanottimessa.
Kuviot 3A ja 3B esittävät vastaavasti lohkokaaviona valotiheyden ja värikkyyden pystysuunnan signaa-linkäsittelijöitä, jotka sopivat käytettäväksi kuvios-30 sa 1 esitetyssä televisiovastaanottimessa.
Kuvio 4 esittää lohkokaaviona datakooderia, jota voidaan käyttää kuviossa 1 esitetyssä televisiovastaanottimessa .
4 80181
Kuvio 5 esittää lohkokaaviona ottomuistiosoite-ja kellosignaaligeneraattoria, joka sopii käytettäväksi kuviossa 1 esitetyssä vastaanottaessa.
Kuvio 6 esittää lohkokaaviona datadekooderia, 5 jota voidaan käyttää kuviossa 1 esitetyssä vastaanotti-messa.
Kuvio 7 esittää lohkokaaviona antomuistiosoite-ja kellosignaaligeneraattoria, joka sopii käytettäväksi kuviossa 1 esitetyssä vastaanottimessa.
10 Kuvio 8 esittää ajastuskaaviota, joka on hyödyk si selostettaessa kuviossa 1 esitetyn vastaanottimen toimintaa.
Piirustuksissa leveät nuolet edustavat monibit-tisten rinnakkaisten digitaalisignaalien väyliä. Nuoli-15 viivat edustavat analogisten signaalien tai yksibittis- ten digitaalisignaalien yhteyksiä. Laitteiden käsittelynopeudesta riippuen voidaan tietyissä signaaliteissä tarvita kompensointiviiveitä. Digitaalisen piirisuunnittelun ammattimiehelle on ilmeistä, missä kyseisiä 20 viiveitä tarvitaan tietyssä järjestelmässä.
Kuvio 1 esittää lohkokaaviona kuva kuvassa -kä-sittelypiirin pääelementtejä. Ensisijaista tai pääku-vaa edustava videosignaali saadaan lähteestä 40. Lähde 40 saattaa sisältää vastaanottoantennin yleisradio-25 videosignaaleja varten, sekä kaikki tavanomaisen tele-visiovastaanottimen käsittelypiirit, joita tarvitaan punaisen R, vihreän G ja sinisen B värisignaalin muodostamiseksi näyttölaitteen (ei esitetty) ohjaamiseksi. Pääsignaalin lähde 40 aikaansaa RGB-pääsignaaleja ensim-30 mäiseen multiplekserin 38 ottosignaalinapojen sarjaan. Lisäksi pääsignaalin lähde 40 muodostaa vaaka-, MAIN HSYNC-, ja pysty-, MAIN VSYNC-, tahdistussignaaleja, jotka syötetään kuva kuvassa -alinäytteenotto- ja tah-distuspiiriin 11.
u 5 80181
Lisäsignaalien lähde 10, joka sisältää esimerkiksi tavanomaisen digitaalisen televisiovastaanotti-men virittimen, välitaajuusvahvistimen, videoilmaisimen, tahtierotuspiirin ja valotiheys/värikkyys-signaalin 5 erotuspiirin aikaansaa vastaavasti kahdeksanbittiset va- lotiheys- ja värikkyyslisäsignaalit Y ja Ca. Lähteen 10 piirit kehittävät myös ylimääräisiä vaaka- ja pysty-tahtipulsseja, vastaavasti AUX VSYNC ja AUX HSYNC, sekä kellosignaalin 4F . Kellosignaali lukitaan lisäsingaa-1° Iin väritahdistuspurskekomponentin kanssa vaiheeseen ja sen taajuus on 4f , neljä kertaa väriapukantoaal-
b V
lon taajuus f . Valotiheyden ja värikkyyden lisäsignaalit YA ja CA syötetään kuva kuvassa -alinäytteen-otto- ja tahdistuspiiriin 11. Alinäytteenotto- ja tah-15 distuspiiri 11 pienentää sekä valotiheys- että värik- kyyskomponenttien Yft ja CA informaatiosisältöä, koska lisäsignaali toistetaan kooltaan pienennettynä kuvana. Näytteenotto- ja tahdistuspiiri 11 aikaansaa myös sen, että lisäsignaalikomponentit voidaan sijoittaa pääsig-20 naalin ennalta määrättyyn osaan pääsignaalin ennal ta määrättyyn määrään peräkkäisiä juovia.
Piiristä 11 saatavat lisäsignaalin valotiheys- ja värikkyysnäytteet syötetään digitaalianalogiamuuntimeen (DAC) ja matriisipiiriin 36. DAC ja matriisipiiri 36 25 muuntavat lisäsignaalin digitaaliset valotiheys- ja vä- rikkyyssignaalit vastaaviksi analogisiksi signaaleiksi ja yhdistävät ne sopivissa suhteissa punaisen R, vihreän G ja sinisen B värisignaalin tuottamiseksi näyttölaitteen (ei esitetty) ohjausta varten. Nämä RGB-30 värisignaalit kytketään multiplekserin 38 toiseen otto- napojen sarjaan.
Piiristä 11 saatavalle signaalille MUX CONTROL vasteellisena syöttää multiplekseri 38 valikoivasti vuorotellen lähteestä 40 saatavat päävärisignaalit 35 ja DACrista ja matriisipiiristä 36 saatavat lisäväri- signaalit näyttölaitteeseen kuva kuvassa -näytön tuottamiseksi .
6 80181 Lähteestä 10 saatavat signaalit Yft ja CA syötetään alinäytteenotto- ja tahdistuspiirin 11 vaakajuova-signaalin käsittelypiiriin 14. Katsojan säädettävissä oleva korostustason lähde 12, joka on esimerkiksi neli-5 asentoinen kytkin, aikaansaa digitaalisen korostussignaa-lin PL vaakajuovan käsittelijään 14. Korostussignaalil-la PL voi olla arvot 0, 1/4, 1/2 tai 1. Ottomuistiosoite-ja kellosignaaligeneraattori 20 (selostettu edempänä) aikaansaavat käsittelijälle 14 kellosignaalit 4F , S o 10 2F , 4F /5 ja F /5 väylän CS. kautta. Kellosingaa-
uv SC SC I
leiliä 4F„ . 2F , 4F /5 ja F /5 on vastaavasti taajuu-det, jotka ovat neljä kertaa, kaksi kertaa, neljä viidesosaa ja yksi viidesosa väriapukantoaallon taajuudesta.
Kuviot 2A ja 2B ovat lohkokaavioita, jotka esit-15 tävät vastaavasti vaakajuovan käsittelijän 14 valotiheys- ja värikkyyslohkoja. Kuviossa 2A lisävalotiheyssignaa- li Y ja kellosignaali 4F syötetään FIR-alipäästösuo-h se dattimeen 210. Alipäästösuodatin 210 on tavanomaista rakennetta ja sen siirtofunktio H(Yh) määritellään yhtälöllä 20 H(Yh) = (1+Z-2)2 * (1+Z-3)2/16,
missä Z tarkoittaa tavanomaista Z-muunnosesitysmuotoa, ja Z 1 edustaa viivejaksoa, joka on yhtä suuri kuin 4F
SO
kellosignaalin i jaksoa. Suodatin 210 on valetoiston estosuodatin. Se vaimentaa lisävalotiheyssingaalin Y^ 25 suuritaajuisia komponentteja suhteessa pienitaajuisiin komponentteihin valetoistovääristymän pienentämiseksi lisävalotiheyssignaalia alinäytteenotettaessa.
Suodattimen 210 antonäytteet syötetään salpaan 212, joka on ajastettu osoite- ja kellosignaaligeneraat-30 torin aikaansaamalla 4f /5-kellosignaalilla. Siten sai- o e pa 212 alinäytteenottaa suodatetun valotiheyssignaalin valotiheysnäytteiden tuottamiseksi taajuudella 4Fsc/5, joka vastaa sen ottoon syötettyjen näytteiden 4f -näyt- S o teenottotaajuudesta saatavaa pienennystekijää 1/5.
35 7 80181 NTSC-järjestelmässä on noin 14,32 MHz:in taajuudella esiintyville näytteille alipäästösuodattimen 210 taajuusvasteessa 3 dB:n piste noin taajuudella 750 kHz ja rajataajuus noin taajuudella 2,3 MHz. Nyquistin näyt-5 teenottokirteerion mukaan suurin signaalitaajuus NTSC- signaalin alinäytteenottamiseksi 4f /5-taajuudella on S o 1,43 MHz. Siten alipäästösuodatin 210 poistaa vain osittain valetoistokomponentit, halutulle signaalispektril-le takaisin kerrostuneet valetoistokomponentit ovat kui-10 tenkin merkittävästi pienentyneet.
Kellosignaali 4Fsc/5 on aktiivinen kunkin vaaka-juovan aktiivisen osan vain noin 80 prosentin aikana sammutusinformaation käsittelyn estämiseksi. Lisävideo-signaalin kullekin juovalle aikaansaadaan vain 128 valo-15 tiheysnäytettä.
Salvasta 212 saatava alinäytteenotettu lisävalo-tiheyssignaali syötetään korostussuodattimeen 220. Kellosignaali 4F /5 ja katsojan säädettävissä oleva ko-se rostustaso PL syötetään myös korostussuodattimeen 220.
20 Digitaalisen suodatinsuunnittelun ammattimiehelle on ilmeistä nähdä piirustuksista, että tämän suodattimen siirtofunktio T voidaan ilmaista muodossa P -1 -1 -2 T = Z 1 + PL(-1+2Z -Z z)
P
Z-muunnosesitysmuodossa.
25 Korostussuodatin vahvistaa suodatettujen ja ali- näytteenotettujen valotiheyssignaalien suuritaajuisia komponentteja pienitaajuisiin komponentteihin nähden. Tällä suodattimena on se vaikutus, että se terävöittää pystysuoria reunoja toistetussa kuvassa. Korostus-30 suodatin vahvistaa sitä alinäytteenotetun lisäsignaa lin osaa, johon valetoistokomponentit kerrostuvat. Va-letoistokomponentteja sisältävän taajuusspektrin vahvistaminen voi näyttää vaikutukseltaan haitalliselta. Subjektiivisissa kokeiluissa on kuitenkin havaittu, 35 että alipäästösuodattimen 210 ja korostussuodattimen 8 80181 220 sisältävän järjestelmän tuottama kuva on miellyttävämpi kuin ilman korostussuodatinta tuotettu kuva. Lisäksi säätämällä korostustasoa PL sen neljän mahdollisen arvon puitteissa voi katsoja lisätä tai pienentää 5 määrää, jolla suuritaajuisia komponentteja korostetaan sellaisen kuvan tuottamiseksi, joka subjektiivisesti miellyttää häntä eniten. Voidaan huomata, että korostuksen tason PL arvolla nolla on valetoistokomponenteis-ta aiheutuva vääristymä minimoitu, kuitenkin suurierotte-10 lutarkkuuksisten kuvakomponenttien kirkkaus tai kontras ti on pieni. Lisäämällä korostustasoa lisääntyy suuri-erottelutarkkuuksisten kuvakomponenttien kirkkaus muodostaen tasaisemman kuvan sekä hieman lisääntyneen vääristymän. Subjektiivisten kokeiden perusteella on pää-15 telty, että on toivottavampaa lisätä näiden komponent tien kirkkautta ja kärsiä lisääntyneestä vääristymästä kuin päinvastoin.
Korostussuodattimen 220 aikaansaamat näytteet ovat kahdeksan bitin levyisiä. Taloudellisista syistä 20 johtuen on toivottavaa pienentää valotiheysnäytteiden bittileveyttä kahdeksasta bitistä viiteen bittiin ennen niiden kirjoittamista muistiin. Esillä olevassa suoritusmuodossa tämä pienennys tehdään kolmessa vaihessa.
i
Ensimmäisessä vaiheessa vähennetään mustantason 25 asetuksen kanssa oleellisesti yhtä suuri arvo kustakin suodattimen 220 aikaansaamasta näytteestä. Mustantason asetus voidaan ajatella vakioarvona, joka edustaa mustaa väriä toistetussa kuvassa. Tämä arvo on suurempi kuin nolla, jotta ohjausinformaatiota kuten vaaka-30 ja pystytahtipulsseja voidaan multipleksoida signaa lin kanssa, jotka edustavat kuvainformaatiota tasoilla, jotka ovat mustantason alapuolella. Mustantason asetusta ei tarvitse tallettaa muistiin kuvainformaation kanssa, koska tämä ohjausinformaatio ei ole talletetul-35 le kuvalle merkityksellistä.
9 80181
Kaistanleveyden pienennysprosessin toisessa ja kolmannessa vaiheessa jaetaan vastaavasti kukin näyte tekijällä neljä ja rajoitetaan kunkin näytteen maksimiarvo arvoon 31.
5 Todellisessa laitteessa, joka suorittaa tämän kaistanleveyden pienennyksen, syötetään kahdeksanbittisiä lisävalotiheysnäytteitä vähentäjän 230 vähennettävän ottoporttiin, vähentäjän ottoportin ollessa kytketty vastaanottamaan summaimesta 236 värinäsignaalin 10 arvon, joka edustaa mustantason asetusta. Digitaaliar- voinen lähde 234 syöttää arvon 28 summaimen 236 yhteen ottoporttiin ja värinägeneraattori 232 syöttää näennäis-satunnaisen kaksibittisen värinäsignaalin summaimen 236 toiseen ottoporttiin. Värinägeneraattori 232 on 15 esimerkiksi tavanomainen kaksibittinen siirtorekisteri, jonka antonapa on kytketty sen ottonapaan ivertterin kautta.
Vähentäjän 230 aikaansaamat näytteet syötetään jakajaan 238. Jakaja 238 katkaisee näytteet kahdek-20 sanbittisistä kuusibittisiksi poistamalla kaksi vähi ten merkitsevää bittiä. Näytteen katkaisusta johtuva kvantisointitasojen menetys säilytetään osittain väri-nägeneroimalla mustantason asetusarvoa. Menetelmä kvanti-sointitason säilyttämiseksi dither-signaalia värinäsig-25 naalia hyväksi käyttämällä on alalla ennestään tunnet tu, eikä sitä selosteta tässä.
Jakajasta 238 saatavat kuusibittiset näytteet pienennetään viisibittisiksi näytteiksi rajoitinpiiril-lä 240. Rajoitin 240 muuttaa kaikki arvoa 31 suuremmat 30 digitaaliset arvot arvoksi 31 ja päästää arvoa 31 pienemmät arvot muuttumattomina. Alan ammattimies voi rakentaa rajoittimen 240 tavanomaisista komponenteista. Sitä ei ole selostettu koska sen rakenne ei muodosta keksinnön osaa.
10 801 81
Kuviossa 2B lähteestä 10 saatavat kahdeksanbittiset värikkyysnäytteet ja 4F -kellosignaali syöte- s c tään värikkyyden demultiplekseriin 250. Kuten tunnettua, kun NTSC-värikkyyssignaaleja näytteenotetaan sopivasti 5 kellosignaalilla, joka on lukittu väritahdistuspurske- vertailukomponentin vaiheeseen ja jonka taajuus on 4f , 9 L» voi värikkyysnäytteitä edustaa sarja (R-Y), (B-Y), -(R-Y), (R-Y)... jne., missä merkit osoittavat näytteen- ottovaiheen, eivät näytteen polariteettia. Värikkyyden 10 demodulaattori 250 esimerkiksi erottaa tämän sarjan sarjaan näytteitä (R-Y) ja sarjaan näytteitä (B-Y) ja kääntää vuorottaisten näytteiden polariteetit kummassakin kahdessa sarjassa. Demodulaattorin 250 aikaansaamat kaksi näytteiden sarjaa edustavat vastaavasti 15 peruskaistaisia värierosignaaleja (R-Y) ja (B-Y). Vä rikkyyden demodulaattori 250 on tavanomaista rakennetta.
Demodulaattorin 250 aikaansaamat näytteet (R-Y) ja (B-Y) käsitellään kahdella identtisellä valetoiston estosuodattimella 260 ja 270 ja alinäytteenotetaan 20 taajuudesta 2f taajuuteen f /5 identtisillä sai-
Dv SO
voilla 262 ja 272.
Demodulaattori 250 syöttää kahdeksanbittisiä v (R-Y) näytteitä FIR-alipäästösuodattimen 260 ottoport- tiin. Osoite- ja muistisignaaligeneraattorista 20 saa-25 tava 2F -kellosignaali syötetään suodattimen 260 kel-
b O
lon ottonapaan. Tämän suodattimen siirtofunktio voidaan ilmaista lausekkeella T260=(1 + Z'8>/16 Z-muunnosesitysmuodossa. Suodatin 260 vaimentaa (R-Y)-30 näytteiden suuritaajuisia komponentteja suhteessa pie- nitaajuisiin komponentteihin ja aikaansaa kuusibitti-siä näytteitä antoporttiinsa. Suodattimesta 260 saatava digitaalinen (R-Y) signaali syötetään salpaan 262, joka alinäytteenottaa signaalin taajuudella fsc/5.
35 Kellosignaali Fgc syötetään salvan 262 kellon ottonapaan.
11 80181
Kellosignaalille F /5 vasteellinen salpa 262 välit- S c see joka kymmenennen alipäästösuodattimen 260 aikaansaaman näytteen ja tuottaa antoonsa nämä näytteet ali-näytteenotettuna signaalina (R-Y). Vaakasammutusinfor-maation käsittelyn estämiseksi on tämä kellosignaali aktiivinen kunkin vaakajuovan aktiivisen osan vain noin 80 prosentin aikana. Siten videonäytteiden kutakin juovaa kohti aikaansaadaan vain 32 (R-Y) näytettä.
Valetoiston estosuodatin 270 ja salpa 272 ovat 10 samanlaisia kuin suodatin 260 ja salpa 262 ja ne tuottavat alinäytteenotetun signaalin (B-Y).
Viitaten taas kuvioon 1 kytketään vaakajuovan käsittelijästä 14 saatavat lisäsignaalit Y, (R-Y) ja ^ (B-Y) ja osoite- ja kellosignaaligeneraattorista 20 väylän CS^ kautta kytketyt kello- ja ohjaussignaalit pystysignaalin käsittelijään 16. Kuviot 3A ja 3B esittävät vastaavasti käsittelijän 16 valotiheys- ja värik-kyyssignaalin käsittelyosan lohkokaavioita. Pystysignaalin käsittelijä 16 on äärellisen impulssivasteen 20 omaava (IIR) alipäästösuodatin, joka pienentää vale-toistovääristymää pystysuunnassa kun pystyjuovia ali-näytteenotetaan suhteessa yhden suhde kolmeen.
- Toiminnallisesti suodattimena 16 on kolme loh koa, yksi lisävalotiheyssignaalia varten ja yksi kum-25 paakin lisävärierosignaalia varten. Kukin näistä kolmesta lohkosta suorittaa alinäytteenotetun videosignaalin kolmesta vaakakuvajuovasta saatavan signaalin keskiarvon oton seuraavalla menetelmällä. Ensimmäinen juova talletetaan siirtorekisteriin modifioimattomana. 30
Kun toisen juovan kukin näyte syötetään suodattimeen vähennetään siitä vastaava näyte ensimmäisestä juovasta ja näytteiden arvojen välinen ero skaalataan arvolla puoli. Vastaava näyte ensimmäisestä juovasta lisätään silloin tähän skaalattuun eroarvoon ja 35 yhdistetty näyte talletetaan siirtorekisteriin.
12 801 81
Kun kolmannen juovan näytteet syötetään suodat-timeen vähennetään vastaavat yhdistetyt näytteet kolmannen juovan näytteistä ja näiden näytteiden arvojen välinen erotus skaalataan tekijällä 3/8. Vastaava yhdistetty näyte lisätään sen jälkeen tähän skaalattuun eroarvoon näytteen keskiarvon muodostamiseksi, joka talletetaan siirtorekiteriin. Tässä keskiarvon suoritus-menetelmässä käytetään siirtorekistereitä, joilla on sama bittileveys kuin näytteillä joille keskiarvo ote- 10 taan, ja silti sen katkaisuvirhe on pienempi kuin yksinkertaisella keskiarvon ottavalla suodattimena, joka kerää yhteen näytteiden kolmen juovan summan, joista jokainen on skaalattu tekijällä yksi kolmasosa.
Lisäksi tässä menetelmässä käytetyt skaalaustekijät 1, 15 1/2 ja 3/8 voidaan kohdistaa näytteisiin yksinkertaisella siirto- ja summaustekniikalla. Tämä menetelmä ei muodosta näytteiden kolmen juovan tarkkaa keskiarvoa, mutta sen tuottaman keskiarvon on havaittu olevan subjektiivisesti miellyttävän.
20
Kussakin kolmessa suodatinlohkossa käytetään kahta siirtorekisteriä, jotka vuorottelevat toimintojen välillä. Kun toinen kahdesta siirtorekisteristä muodostaa näytteiden keskiarvoja käytetään toista siirtorekisteriä näytteiden tulostamiseksi lisäkuvakentän 25 muistia 22 varten, kuten edempänä on selostettu.
Kuvio 3A esittää pystysignaalin käsittelijän 16 valotiheyssignaalin käsittelyasteen lohkokaaviota.
Vaakasignaalin käsittelijästä 14 saatavia viisibitti- siä valotiheysnäytteitä syötetään vähentäjän 310 vä-30 hennettävän ottoporttiin. Viisibittiset näytteet siirtorekisteristä 328 siirtorekisteristä 330 sen mukaan kumpi sillä hetkellä toimii signaalin keskiarvomuo-dossa kytketään multiplekserin 334 kautta vähentäjän 310 vähentäjän ottoporttiin. Vähentäjä 310 muodostaa 35 tulevien näytteiden ja siirtorekisterin aikaansaamien
II
13 801 81 näytteiden väliset erot ja syöttää nämä eronäytteet näytteenskaalaimeen 320, joka kertoo kunkin eronäyt-teen sopivalla skaalaustekijällä K. Skaalaustekijät K muodostaa osoite- ja kellosignaaligeneraattori 20.
5 Siirtorekisterin 328 (330) aikaansaamat näytteet ovat nolla-arvoisia näytteitä kolmen juovan keskiarvon otto-prosessin ensimmäisen juovajakson aikana ja vastaavat pystysuoraan suuntautuneita kuva-alkiota vastaavasti edeltävältä sekä kahdelta edeltävältä juovalta keski-10 arvoprosessin vastaavasti toisen ja kolmannen juova- ajan aikana. Kuten edellä on esitetty skaalaustekijäl-lä on arvot 1, 1/2 tai 3/8 riippuen siitä ovatko näytteet pystysignaalin käsittelijään 16 syötetyn kolmen juovan ryhmän vastaavasti ensimmäiseltä, toiselta vai 15 kolmannelta juovalta. Skaalaimen 320 aikaansaamat näyt teet syötetään summaimen 322 yhteen ottoporttiin. Siir-torekisteristä 328 (330) saatavat näytteet kytketään multiplekserin 334 ja viive-elementin 323 kautta summaimen 322 toiseen ottoporttiin. Viive-elementti 323 20 kompensoi vähentäjän 310 ja näytteenskaalaimen 320 käsittelyajan. Summain 322 yhdistää skaalatut ja viivästetyt näytteet ja syöttää näiden näytteiden summan demultiplekseriin 324. Demultiplekseriä 324 ohjataan signaalilla, jonka taajuus (f^/6) on yksi kuudes-25 osa vaakajuovan pyyhkäisytaajuudesta fH ja 50 prosent tia toimintajaksosta.
Kolmella vaakajuovan jaksolla kun FH/6-ohjaus-signaali on loogisesti suuressa tilassa syöttää demul-tiplekseri 324 viisibittisiä valotiheysnäytteitä siir-30 torekisteriin 328. Seuraavan kolmen vaakajuovajakson ai kana ohjaussignaali on loogisesti pienessä tilassa ja demultiplekseri 324 syöttää valotiheysnäytteitä siir-torekisteriin 330. Ohjaussignaali FHy6 kehitetään syöttämällä osoite- ja kellosignaaligeneraattorin 20 muodosta-35 ma F„/3-pulssisignaali taajuudenjakajaan 326.
il 14 801 81
Siirtorekisterit 328 ja 330 ovat identtisiä. Kumpikin sisältää 128 viisibittistä muistipaikkaa. Kellosignaalit siirtorekistereille 328 ja 330 aikaansaadaan kytkimellä 332. Kellosignaali 4F /5 ja muistiin 5 se kirjoituksen kellosignaali WCLK syötetään kytkimen 332 ottonapoihin. Signaali Fu/3 ohjaa kytkintä 332 kytke-mään 4Fsc/5-kellosignaalin siirtorekisteriin, joka vastaanottaa dataa demultiplekseristä, sekä kytkemään WCLK-signaalin toiseen siirtorekisteriin.
Kummankin siirtorekisterin 328 ja 330 antoportit kytketään kummankin multiplekserin 334 ja 336 kahteen ottoporttiin. Taajuudenjakajan 326 muodostama signaali FH/6 syötetään multiplekserin 336 ohjausottonapaan ja invertteriin 338. (nvertterin 338 antosignaali syöte-15 tään multiplekserin 334 ohjausottonapaan. Multiplekse-riä 334 ohjataan dataa vastaanottavan siirtorekisterin kytkemiseksi demultiplekseristä 324 vähentäjään 310 ja viive-elementtiin 323. Samanaikaisesti multiplekse-riä 336 ohjataan toisen siirtorekisterin kytkemiseksi 20 datan koodauspiiriin 18, kuten edempänä on selostettu.
Kuvio 3B esittää pystysignaalin käsittelijöiden lohkokaavioita värierosignaaleille (R-Y) ja (B-Y).
Käsittelijät (R-Y) ja (B-Y) ovat vastaavia kuin valo- tiheyssignaalin käsittelijä. Edellisiltä juovilta 25 vastaavasti talletetut näytteet (R-Y) vähennetään tulevista näytteistä (R-Y) vähentäjässä 350 ja edellisiltä juovilta vastaavasti talletetut näytteet (B-Y) vähennetään tulevista näytteistä (B-Y) vähentäjässä 360.
Näytteen skaalain 352 kertoo eroarvot (R-Y) ja näytteen 30 skaalain 362 kertoo eroarvot (B-Y) skaalaustekijöillä K. Skaalaustekijät K ovat samoja skaalaustekijöitä jotka on syötetty skaalauspiiriin 320 kuviossa 3A. Näytteiden (R-Y) ja (B-Y) skaalatut eroarvot lisätään vastaaviin talletettuihin näytteisiin vastaavasti summai-35 millä 354 ja 364.
is 80181 Tässä kohdin värierosignaalin käsittelijät eroavat valotiheyssignaalin käsittelijästä. Järjestelmän kustannusten pienentämiseksi käytetään vain yhtä siir-torekisterien paria 374 ja 376 tallettamaan sekä R-Y 5 että B-Y värierosignaalit. Näiden siirtorekistereiden bittileveyden pitämiseksi pienenä erotetaan summaimis-ta 354 ja 364 saatavat kuusibittiset näytteet (R-Y) ja (B-Y) vastaavasti demultipleksereillä 356 ja 366 kolme-bittisten näytteiden sarjoihin kaksinkertaisella kuulo sibittisten näytesarjojen taajuudella. Vastaavat näyt teet kustakin demultiplekserien 356 ja 366 kolmibitti-sistä sarjoista liitetään yhteen peräkkäin kuusibittis-ten sarjan muodostamiseksi, joka syötetään demultiplek-seriin 370.
15 Siirtorekisterien 374 ja 376 multiplekserien 380 ja 384 kautta aikaansaamat näytteet eivät ole yksittäisten värierosignaalien näytteitä vaan multipleksoituja näytteitä, joissa kolme eniten merkitsevää bittiä (MSB) ovat puolet näytteestä (R-Y) ja kolme vähiten merkit-20 sevää bittiä (LSB) ovat puolet näytteestä (B-Y).
Kuusibittisten näytteiden multiplekseristä 382 saatavat kolme MSBstä syötetään multiplekseriin 358, joka F /5-kellosginaalin ohjauksen alaisena yhdistää kolmebittisten MSB näytteiden peräkkäiset parit kuusi-25 bittisten (R-Y) näytteiden uudelleen kehittämiseksi, jotka syötetään vähentäjään 350 ja summaimeen 354 kompensoivan viive-elementin 355 kautta. Vastaavasti multiplekseristä 382 saatavien kuusibittisten näytteiden kolme LSB:tä syötetään multiplekseriin 368, joka sig-30 naalin F /5 ohjauksessa kehittää uudelleen kuusibit-
9 O
tisiä näytteitä (B-Y) kolmen LSB:n peräkkäisisä päreistä vähentäjään 360 syöttämistä ja viive-elementin 365 kautta summaimeen 364 syöttämistä varten.
Demultiplekseri 370, siirtorekisterit 374 ja 35 376 ja multiplekserit 380 ja 382 suorittavat samat i6 801 81 toiminnot kuin kuvion 3A vastaava demultiplekseri 324, siirtorekisterit 328 ja 330 ja multiplekserit 336 ja 334, paitsi että kumpikin siirtorekisteri 374 ja 376 sisältävät vain 64 kuusibittistä muistialkiota ja ne 5 on vuorottaisesti ajastettu kellosignaaleilla 2F /5 ja S c WCLK/2. Taajuudenjakajan 372, kytkimen 378 ja invertterin 384 sisältävä tukipiiri suorittaa samat toiminnot kuin taajuudenjakaja 326, kytkin 332 ja invertteri 338, jotka on selostettu kuvioon 3A viitaten.
10 Multiplekserin 380 aikaansaamat kuusibittiset näytteet jaetaan kahteen kolmibittiseen komponenttiin (R-Y) ja (B-Y) ja syötetään kuvion 1 datakooderiin 18.
Datakooderi 18 yhdistää viisibittiset valotiheys-näytteet kolmebittisten värierosignaalien näytteiden 15 kanssa kahdeksanbittisten näytteiden tuottamiseksi, jotka syötetään lisäkuvakentän muistiin 22. Datakooderi 18 liittää myös ylimääräisen ohjausinformaation sig-naalidataan kuvan jokaiselle vaakajuovalle.
Ylimääräinen ohjausinformaatio liitetään muis-20 tiin talletettuun lisäsignaaliin seuraavasta syystä.
Voidaan nähdä, että laatikolla lohkolla 11 ympäröity järjestelmä pystytään toteuttamaan integroituja piirejä käyttäen. Piirit jaetaan kolmeen erilliseen piiriin, joista yksi on kaupallisesti saatavilla oleva muistilaite. Toinen piiri voi sisältää vaaka- ja pys-25 tysignaalin käsittelijät 14 ja 16, datakooderin 18 ja ottomuistiosoite- ja kellosignaaligeneraattorin 20. Kolmas piiri voi sisältää datadekooderin 34, antomuis-tiosoite- ja kellosignaaligeneraattorin 26 ja joitakin ylimääräisiä piirejä, joita ei ole esitetty 30 kuviossa 1 ja jotka eivät ole osana keksintöä. Otet taessa huomioon nämä ylimääräiset piirit voidaan nähdä, että integroidussa piirissä ei ole saatavilla riittävästi otto/anto-liitäntöjä vaadittavan ohjausinformaation syöttämiseksi kolmanteen integroituun piiriin.
35 Siten ohjausinformaatio tulee syöttää kolmanteen integ- 1’ 80181 roituun piiriin muistilaitteen avulla. Lisäksi ohjaus-informaatio koodataan samalla tavoin kuin signaali-informaatio sen vaatimuksen välttämiseksi, että muistiosoi-tus täytyisi suorittaa erityisellä tavalla kolmannen 5 piirin käyttämän ohjausinformaation erottamiseksi.
Kuvio 4 esittää datakooderin 18 lohkokaaviota. Pystysignaalin käsittelijästä 16 saatavat kolmebitti-set näytteet (R-Y) ja (B-Y) syötetään multiplekserin 410 kahteen datan ottonapaan, ohjausottonapaan olles-10 sa kytketty kellosignaali WCLK/2. Tässä rakenteessa multiplekseri 410 aikaansaa vuorottaisesti väriero-signaalien (R-Y) ja (B-Y) näytteitä, yhden kullekin WCLK-signaalin pulssille. Multiplekseristä 410 saatavat kolmebittiset värieronäytteet liitetään yhteen 15 peräkkäin pystysignaalin käsittelijän 16 aikaansaamien biisibittisten valotiheysnäytteiden kanssa kahdeksanbittisten yhdistettyjen näytteiden muodostamiseksi, jotka syötetään multiplekserin 412 yhteen ottoporttiin. Jokainen neljä peräkkäistä multiplekseriin 412 syötet-20 tyä näytettä sisältävät informaation neljästä viisi- bittisestä valotiheysnäytteestä, yhdestä kuusibittises-tä (R-Y)-näytteestä ja yhdestä kuusibittisestä (B-Y)-näytteestä. Multiplekseriin syötetyt näytteet muotoillaan neljään näytesarjaan kuten Y^ & (R-Y) 25 Y2S(B-Y)1MBS, y3s(R-y)1lsb, Y4S(B-Y)1LSB,‘missä “s" osoittaa viisibittisen valotiheysnäytteen Y liittämisen yhteen peräkkäin kolmebittisen värieronäytteen kanssa.
Mikroprosessori 414 on kytketty esimerkiksi vas-30 taanottamaan katsojan säätimistä 413 informaatiota, joka liittyy katsojan mieltymyksiin kirkkaustasojen ja sisäkuvan paikan suhteen, ja signaaleista WCLK ja WCLK/2 informaatiota, joka liittyy talletettavan ensimmäisen värikkyysnäytteen vaiheeseen. Mikro-35 prosessori 414 kehittää tästä datasta ohjausinformaa- i8 801 81 tion edellä selostetuille muistin antoprosessoreille. Signaalien H START, V START ja BRT arvot kehitetään katsojan säätimestä 413 saaduista arvoista ja arvo 0 tai 2 talletetaan PHASE-rekisteriin riippuen siitä, 5 onko WCLK/2 pieni tai suuri vastaanotettaessa WCLK- signaalin ensimmäinen pulssi kullekin näytteiden juovalle. Ohjausinformaation neljä näytettä kirjoitetaan neliasteiseen siirtorekisteriin 416 tahdistetusti mikroprosessorin 414 muodostaman kellosignaalin kanssa.
10 Tämä kellosignaali syötetään siirtorekister-in 416 TAI-veräjän 424 kautta. TAI-veräjään 424 syötetty toinen kellosignaali ohjaa datan siirtoa siirtorekiste-ristä 416 multiplekseerin 412 toiseen datan ottoport-tiin. Tämän kellosignaalin muodostavat JA-veräjä 422, 15 laskuri 418 ja invertteri 420.
Osoite- ja kellosignaaligeneraattorin 20 väylän CS^ kautta aikaansaama signaali F^/3 kytketään laskurin 418 palautusottonapaan. Laskurin 418 antonapa on kytketty multiplekserin 412 ohjausottonapaan ja in-20 vertteriin 420. Invertterin 420 antonapa on kytketty JA-veräjän 422 yhteen ottonapaan. Osoite- ja kello-signaaligeneraattorista 20 kirjoituksen kellosignaali WCLK kytketään JA-veräjän 422 toiseen ottonapaan. Veräjän 422 anto on kytketty laskurin 418 ottonapaan 25 ja TAI-veräjän 424 yhteen ottonapaan.
Kun signaali Fu/3 palauttaa laskurin 418 on uusi juova dataa saatavilla pystysignaalin käsittelijästä 16 kentän muistiin 22 kirjoittamista varten. Koska laskuri 418 on palautettu, syötetään loogises-30 ti pieni signaali multiplekserin 412 ohjausottonapaan, mikä saa multiplekserin johtamaan dataa siirtorekis-teristä 416 kolmiasteiseen puskuriin 426. Laskurista 418 saatava loogisesti pieni signaali komplementoi-daan invertterillä 420 loogisesti suureksi signaalik-35 si, joka sallii JA-veräjän 422 päästää kellosignaali- 11 i9 801 81 pulsseja WCLK laskuriin 418 ja TAI-veräjään 424. Neljä ensimmäistä WCLK-signaalin pulssia siirtävät neljä ohjausinformaation näytettä siirtorekisteristä 416 multiplekserin 412 dataottoon. Tämä ohjausinformaatio si-5 sältää kolme kahdeksanbittistä arvoa, jotka edustavat sisäkuvan kirkkautta, sisäkuvan pysty- ja vaaka-aloituspaikkoja ja neljättä arvoa, joka edustaa ensimmäisen värierosignaalin näytteen vaihetta sen hetkisessä juovassa (joko R-Y tai B-Y). WCLK-signaalin viides 10 pulssi saa laskurin 418 annon muuttumaan loogisesti suureksi. Tämä signaali estää JA-veräjän 422 ja saa multiplekserin 412 johtamaan kuvanäytteitä käsittelijästä 16 kolmiasteiseen puskuriin 426. Kolmiasteista puskuria 426 ohjataan MEM FREE -signaalilla, jonka muo-15 dostavat antomuistiosoite- ja kellosignaaligeneraatto- ri 26 ja joka aikaansaadaan datakooderille 18 väylän CS^ kautta osoite- ja kellosignaaligeneraattorista 20.
MEM FREE on loogisesti suuressa tilassa silloin kun data voidaan kirjoittaa muistiin. Kun MEM FREE on loo-20 gisesti suuressa tilassa aikaansaa puskuri 426 seon ot- toporttiin syötetyn datan muistin 22 dataväylään. Kuitenkin, kun MEM FREE on loogisesti pienessä tilassa, muodostaa puskurin 426 antoportti suuren impedanssin dataväyIälle.
25 Kuvio 5 esittää ottomuistiosoite- ja kellosig- naaligeneraattorin 20 lohkokaaviota. Lisäsignaaliläh-teestä 10 saatavat vaaka- ja pystylisätahdistussignaa-lit AUX HSYNC ja AUX VSYNC syötetään laskurin 510 vastaaviin otto- ja palautusnapoihin. AUX VSYNC -signaali 30 palauttaa laskurin 510 lisäsignaalin kunkin kentän alus sa. Kullekin kentälle laskuri 510 laskee lisävaakatahti-pulsseja kolmen ryhmissä. Laskuri 510 aikaansaa kaksibit-tisen antosignaalin, joka on yhtä suuri kuin lisäkentän sen hetkisen juovan juovanumeron modulo 3. Esillä ole-35 vassa suoritusmuodossa tämä kaksibittinen signaali syö- 20 801 81 tetään lukumuistiin (ROM) 511, joka muuntaa kyseiset kolme juovanumeroa kolmeksi signaalin K arvoksi (1, 1/2 ja 3/8) , jotka syötetään pystysignaalin käsittelijään kuten edellä on esitetty. Laskuri 510 tuottaa myös anto-5 pulssisignaalin, jonka taajuus on fH^3, yksi kolmasosa AUX HSYNC -signaalin taajuudesta. Tämä antopulssisignaa-li syötetään viive-elementtiin 512 ja D-tyypin kiikun 514 kellosignaalin ottonapaan. Kiikun 514 D-ottonapa on kytketty loogisesti suureen signaaliin. Viive-ele-10 mentin 512 antonapa on kytketty kiikun 514 palautuksen ottonapaan. Tässä rakenteessa kiikku 514 tuottaa kapean pulssin, jonka pulssinleveys on oleellisesti yhtä suuri kuin viive-elementin 512 aikaansaama viive. Tämä pulssi esiintyy samanaikaisesti laskurin 512 antopulssin etureu-15 nan kanssa. Kiikun 514 aikaansaama signaali on edellä viitatty signaali F„/3.
rl
Laskurista 510 saatava antopulssisignaali syötetään myös JA-veräjän 516 yhteen ottonapaan. Invertteri 520 aikaansaa JA-veräjän 516 toiseen ottonapaan syötet-20 tävän signaalin. JA-veräjän 516 antonapa on kytketty laskurin 518 ottonapaan, laskurin antonavan ollessa kytketty invertterin 520 ottonapaan. Laskuri 520 palautetaan kunkin kentän alussa sen palautusnapaan syötetyn AUX VSYNC -signaalin avulla.
25 Kun laskuri on palautettu on sen antosignaali loogisesti pienessä tilassa aiheuttaen invertterin 520 antosignaalin olemisen loogisesti suuressa tilassa. Tämä signaali sallii JA-veräjän 516 johtaa laskurin 510 aikaansaamia antopulssisignaaleja laskurin 518 ottoon.
30 Kun kuusitoista tällaista pulssia on syötetty laskuriin 518, muuttuu sen antosignaali loogisesti suureen tilaan estäen JA-veräjää 516 johtamasta signaaleja laskurin 518 ottonapaan. Siten laskurin 518 antosignaali pysyy loogisesti suuressa tilassa kunnes seuraava AUX VSYNC 35 -pulssi palauttaa laskurin.
Il 2i 80181
Laskurin 518 antosignaali syötetään JA-veräjän 522 yhteen ottonapaan. Kiikusta 514 saatava F„/3-sig-naali syötetään toiseen ottonapaan, ja invertterin 526 antosignaali syötetään JA-veräjän 522 kolmanteen otto-5 napaan. JA-veräjä 522 aikaansaa ottosignaalin laskuriin 524. Laskuri 524 tuottaa seitsemänbittisen antosignaa-lin. Tämän signaalin MSB syötetään invertterin 526 ottonapaan .
Laskuri 524 palautetaan kunkin lisäkentän alus-10 sa sen palautusnapaan syötetyllä AUX VSYNC -signaalilla.
Kun laskuri 524 on palautettu on sen antosignaalin MSB pieni, saaden invertterin 526 syöttämään loogisesti suuren signaalin JA-veräjään 522. F„/3-signaalin 16 rl pulssin jälkeen ja kun laskurin 518 antosignaali muut-15 tuu loogisesti suureen tilaan, syöttää JA-veräjä 522 F„/3-signaalin laskuriin 524. Laskuri 524 laskee F„/3- n n signaalin 64 pulssia ennen kuin sen antosignaalin MSB muuttuu loogisesti suureksi estäen JA-veräjää 522 johtamasta FH/3-signaalia. Laskurin 524 aikaansaaman sig-20 naalin kuusi LSB:tä ovat riviosoitettuja kentän muistil le 22. Nämä osoitteet syötetään kolmetilaiseen puskuriin 528, jota ohjataan MEM FREE -signaalilla. Puskuri 528 aikaansaa osoitteet muistiosoiteväylään kun MEM FREE on loogisesti suuressa tilassa sekä aikaansaa suu-25 ren impedanssin osoiteväylälle kun MEM FREE on pieni.
Kukin näistä riviosoitteista vastaa yhtä lisäkuvan kes-kiarvoistettua vaakajuovaa eli lähteen 10 aikaansaaman signaalin kolmea vaakajuovaa.
Kuten edellä on esitetty pienenee lisäkuva noin 30 20 prosenttia pystysuorassa suunnassa pystysammutusin- formaation poistamiseksi ja sen jälkeen se alinäytteen-otetaan niin, että näytetyn kuvan jokainen juova vastaa kolmea alkuperäisen signaalin juovaa.Kiikun 514 aikaansaama F^/3-signaali syötetään pystysignaalin käsitteli-35 jään 16, joka alinäytteenottaa lisäsignaalin pystysuo- 22 801 81 rassa suunnassa. Laskurin 524 kehittämät ja kolmiastei-sella puskurilla 528 kentän muistiin 22 syötetyt rivi-osoitteet rajoittavat kutakin kenttää varten talletettujen juovien lukumäärän 64:ään, tai noin 80 prosenttiin 5 80 aktiivisesta juovasta, jotka pystysingaalin käsitte lijä 16 on aikaansaanut lisäsignaalin kutakin kenttää varten. Laskuri 518 eliminoi käsittelijän 16 aikaansaamat ensimmäiset 16 juovaa lisäkuvan keskittämiseksi pystysuorassa suunnassa. Lukumäärä 16 on valittu to-10 teutuksen yksinkertaistamiseksi. On kuitenkin huomat tava, että myös muita arvoja voidaan käyttää.
Kenttämuistin rivit vastaavat lisäkuvan juovia ja sarakkeet vastaavat kuva-alkiota kussakin juovassa. Edempänä on selostettu laite kehittää sarakeosoitteet 15 ja muistiin kirjoituksen kellosignaalit WCLK ja WCLK/2 kuva-alkioiden käsittelemiseksi ja niiden kirjoittamiseksi muistiin 22. Lähteestä 10 saatavat 4F -kellosig-
SO
naalit, jotka on tahdistettu lisäsignaalin värivertai-lupurskekomponentin kanssa, syötetään taajuudenjakajaan 20 530, joka tuottaa kellosignaalin 2Fsc, jonka taajuus on puolet 4F -kellosignaalin taajuudesta. Sekä 4F -sig-
SO SO
naali että 2F -signaali syötetään vaakasignaalin kä-S o sittelijään 14 ohjaussignaalin väylän CS^ kautta. Signaali 2F syötetään myös JA-veräjän 532 toiseen 25 ottonapaan. JA-veräjän 532 toiset kaksi ottosignaalia ovat MEM FREE ja invertterin 542 aikaansaama signaali. JA-veräjän 532 antonapa on kytketty taajuudenjakajan 534 ottonapaan. Taajuudenjakaja 534 tuottaa antosig-naalin, jonka taajuus on yksi kolmasosa sen ottosig-30 naalin taajuudesta. Taajuudenjakajan 534 antonapa on kytketty sekä laskurin 538 että taajuudenjakajan 536 ottonapoihin. Laskuri 538 laskee sen ottonapaan syötettyjä kellopulsseja ja tulostaa tämän laskun kahdeksanbittisenä antosignaalina. Tämän antosignaalin MSB 35 on kytketty invertterin 542 ottonapaan.
23 801 81
Taajuudenjakajät 534 ja 536 sekä laskuri 538 palautetaan F„/3-signaalilla. Kun laskuri 538 on palau-tettu on sen antosignaalin MSB loogisesti pieni saaden invertterin 542 syöttämään loogisesti suuren signaalin 5 JA-veräjään 532. Kun MEM FREE -signaali on myös suuri osoittaen että data voidaan kirjoittaa muistiin, johtaa JA-veräjä 532 2F -kellosignaalin jakajasta 530 taajuu-denjakajaan 534. Taajuudenjakaja 534 kehittää kellosignaalin WCLK, jonka taajuus on 2f /3. Tämä signaali on 10 kirjoituksen kellosignaali kentän muistille 22. Lasku ri 538 laskee WCLK-signaalin pulsseja seitsemänbitti-sen sarakkeen osoitesignaalin tuottamiseksi kentän muistille 22. Tämän osoitesignaalin jokainen bitti syötetään erilliseen JA-veräjään 540. Kunkin JA-veräjän 540 toi-15 set ottosignaalit ovat laskurin 518 antosignaali ja invertterin 526 antosignaali. Kullakin JA-veräjällä 540 on kolmetilaiset annot. Veräjiä 540 ohjataan signaalilla MEM FREE sarakeosoitteiden aikaansaamiseksi laskurista 538 lisäkentän muistin 22 osoiteväylään kun MEM FREE 20 loogisesti suuressa tilassa ja suuren impedanssin aikaansaamiseksi dataväylälle kun MEM FREE on pieni.
Taajuudenjakaja 536, joka palautetaan FH/3-signaa-lilla, puolittaa WCLK-signaalin taajuuden WCLK/2-signaa-lin aikaansaamiseksi, joka syötetään pystysignaalin kä-25 sittelijään 16 ja datakooderiin 18 väylän CS^ kautta.
JA-veräjä 550 kehittää kirjoituksen sallintasig-naalin WE lisäkentän muistille 22. JA-veräjään 550 syötetyt signaalit ovat laskurin 518 antosignaali, invertte-rien 526 ja 542 antosignaalit ja signaali MEM FREE. Las-30 kurin 518 ja invertterin 526 aikaansaamat signaalit ovat molemmat suuria vain silloin kun pystysuoraan alinäytteen-otetun kuvan keskimmäiset 64 juovaa syötetään muistiin. Invertterin 542 anto on suuri vain silloin kun kooderis-ta 18 saatavat 128 arvoa syötetään muistiin. MEM FREE -sig-35 naali estää JA-veräjän 550 aikaansaaden WE-signaalin pieneksi silloin kun dataa ei kirjoiteta lisäkentän muistiin 22.
24 801 81 MEM FREE-signaalin kehittää antomuistiosoite- ja kellosignaaligeneraattori 26, kuten edempänä on selostettu. Lyhyesti esitettynä, tämä signaali on loogisesti pienessä tilassa kun dataa luetaan muistista 22 ja loogi-5 sesti suuressa tilassa muulloin. Kuten edellä on esitet ty, kun MEM FREE on pieni se saa kolmiasteisen puskurin 528 ja JA-veräjän 540 aikaansaamaan suuren impedanssin muistin 22 dataväylälle. Lisäksi kun MEM FREE on loogisesti pienessä tilassa on JA-veräjä 532 estynyt siten, 10 että WCLK- ja WCLK/2-signaaleja ei kehitetä ja sarake- osoite ei kehity. Siten kun MEM FREE on pieni keskeytyy datan siirto pystysignaalin käsittelijästä 16 datakoo-derille 18 sekä datakooderista 18 lisäkentän muistille 22. Kun MEM FREE muuttuu loogisesti suureen tilaan ei 15 toiminta aiheuta datan menetystä. Laitteen tahdistamis ta datan kirjoittamiseksi muistiin 22 ja lukemiseksi muistista 22 selostetaan edempänä kuvaan 8 liittyen.
Muistin ottomuistiosoite- ja kellosignaaligene- raattorin 20 viimeinen osa aikaansaa 4F /5-, 2F /5- sc se 20 ja F /5-kellosignaaleja, joita käyttävät vaakasignaa- S o
Iin käsittelijä 14 ja pystysignaalin käsittelijä 16. Lähteestä 10 saatava 4F -kellosignaali syötetään JA-ve-
• · SO
räjän 560 yhteen ottonapaan, veräjän toisen ottonavan ollessa kytketty invertterin 564 antonapaan. JA-veräjän 25 560 antonapa on kytketty laskurin 562 ottonapaan, las kurin antonavan ollessa kytketty invertterin 564 otto-napaan. Laskuri 562 palautetaan lisäsignaalin kunkin vaakajuovan alussa AUX HSYNC -signaalilla. Kun laskuri on palautettu on sen antosignaali pieni, invertterin 30 564 antosignaali on suuri ja JA-veräjä 560 syöttää 4Fsc~ kellosignaalin laskurin 562 ottonapaan. Laskuri 562 aikaansaa loogisesti suuren antosignaalin kun se on laskenut 128 kellopulssia. Laskurin 562 antonavassa oleva loogisesti suuri tila invertoidaan invertterillä
II
25 80181 564 JA-veräjän 560 estämiseksi syöttämästä 4Fgc-kello-signaalia laskuriin 562. Siten laskurin 562 antosignaa-li pysyy suurena kunnes seuraava lisävaakatahtipulssi palauttaa laskurin.
5 Laskurin 562 antonapa kytketään JA-veräjän 566 yhteen ottonapaan. JA-veräjän 566 toinen ottonapa kytketään invertterin 576 antonapaan ja kolmanteen otto-napaan kytketään 4F -kellosignaali. Kun JA-veräjä 566 O w on sallittu kytketään 4F -kellosignaali sarjaan kyt- O C· 1° kettyihin taajuudenjakajiin 568, 569, 570 ja 572. Kaik ki nämä taajuudenjakajat sekä laskuri 574 palautetaan AUX HSYNC -signaalilla lisäsignaalin kunkin vaakajuo-van alussa. Kun laskuri 574 on palautettu se syöttää loogisesti pienen signaalin invertteriin 576, joka 15 syöttää loogisesti suuren signaalin JA-veräjään 566.
Kun laskuri 562 aikaansaa loogisesti suuren antosignaa-lin syöttää JA-veräjä 566 4FSc-kellosignaalin taajuu-denjakajaan 568. Taajuudenjakaja 568 jakaa 4F -kello- signaalin viidellä signaalin 4F /5 tuottamiseksi.
S o 20 Kellosignaali 4F /5 syötetään taajuudenjakajaan 569, S c joka jakaa signaalin kahdella kellosignaalin 2F /5 S c tuottamiseksi. Taajuudenjakaja 569 syöttää tämän kellosignaalin taajuudenjakajaan 570, joka jakaa 2Fsc/5- kellosignaalin kahdella F /5-kellosignaalin tuotta- se 25 miseksi. Kellosignaali Fsc/5 syötetään taajuudenjaka- jaan 572, joka jakaa F /5-kellosignaalin taajuuden koi-
SO
mellakymmenelläkahdella. Taajuudenjakajän 572 antosig-naali muuttuu loogisesti pienestä tilasta loogisesti suureksi tilaksi kun 4F -kellosignaalin 640 pulssia S o 30 on syötetty taajuudenjakajaketjuun. Kukin 640 pulssista vastaa lisäsignaalin yhtä näytettä, joka on käsitelty vaakasignaalin käsittelijällä 14 ja pystysignaa-lin 16 käsittelijällä. Taajuudenjakajän 572 antosignaa-li syötetään JA-veräjän 573 yhteen ottonapaan, veräjän 35 toisen ottonavan ollessa kytketty taajuudenjakajan 568 26 801 81 antonapaan. Taajuudenjakajan 572 antonavassa oleva loogisesti suuri signaali sallii JA-veräjän 573 syöttää 4F /5-kellosignaalin käsittelyviiveen laskuriin 574.
S o
Laskuri 574 laskee ennalta määrätyn lukumäärän 4F /5-
SO
5 kellopulsseja ja salpaa antosignaalin suureksi. Tämä
suuri signaali saa invertterin 576 syöttämään pienen signaalin JA-veräjään 566 estäen sitä syöttämästä 4F
SO
kellosignaalia taajuudenjakajaan 568, ja siten estäen kellosignaalin 4F /5, 2F /5 ja F /5.
SO SO SO
10 Kuten edellä on esitetty, muodostetaan lisäkuvan kukin juova noin 80 prosentista näytteitä lisäsignaalin juovan aktiivisesta osasta, tai 640 näytteestä taajuudella 4Fgc otetuista 910 näytteestä. Taajuudenjakajat 568, 569, 570, 572 aikaansaavat riittävän määrän 15 kellopulsseja 640 näytteen käsittelemiseksi ja käsittelyviiveen laskuri 574 pitkittää kellosignaaleja riittävällä aikamäärällä kunkin juovan viimeisen näytteen sallimiseksi edetä vaaka- ja pystysignaalin käsittely-piirien kautta. Laskurin 574 aikaansaaman viiveen määrä 20 riippuu käytettävien laitteiden käsittelynopeudesta.
Digitaalisen suunnittelun ammattimiehelle on ilmeistä tietää, kuinka paljon viivettä tarvitaan tietyssä järjestelmässä.
Laskuri 562 viivästyttää kehitettyjen kellosig-25 naalien alkua vaakatahtipulssiin nähden 640 näytteen keskittämiseksi lisäkuvan aktiivisessa alueessa. 128 näytteen viive valitaan toteutuksen yksinkertaistamiseksi. On kuitenkin huomattava, että myös muita viiveitä voidaan käyttää.
30 Lisäkentän muisti 22 hyväksyy näytteitä, jotka edustavat datakooderista 18 saatavaa lisäkuvaa yhtäaikaisesti kirjoituskellosignaalin WCLK pulssien kanssa, ja syöttää vaadittavat näytteet datadekooderiin 34 yhtäaikaisesti lukukellosignaalin RCLK pulssien kanssa. 35 Ottomuistiosoite- ja kellosignaaligeneraattori 20 syöt- 27 801 81 tää WCLK-signaalin muistiin 22 kolmiasteisen puskurin 24 kautta. Puskuria 24 ohjataan signaalilla MEM FREE signaalin WCLK aikaansaamiseksi muistin 22 kellosignaalin ottonapaan kun MEM FREE on suuri ja suuren impedanssin 5 aikaansaamiseksi kun MEM FREE on pieni.
Vastaavasti antomuistiosoite- ja kellosignaali-generaattori 26 syöttää lukukellosignaalin RCLK muistin 22 kello-ottonapaan kolmiasteisen puskurin 30 kautta. Puskuria 30 ohjataan invertterin 28 aikaansaamalla 10 invertoidulla MEM FREE -signaalilla. Siten puskuri 30 syöttää RCLK-signaalin muistiin kun MEM FREE on pieni ja suuren impedanssin kun MEM FREE on suuri.
Yleisesti on edullista että muistin lukutoimin-not tapahtuvat päävaakajuovan huolellisesti ohjatun 15 osan aikana siten, että lisäkuva voidaan näyttää ilman epätasaisia reunoja. Siten esillä olevassa suoritusmuodossa muistin lukutoimintoja ohjataan kellolla, joka on lukittu pääsignaalin vaakajuovan tahdistuspuls-sien kanssa saamaan taajuuteen ja vaiheeseen. Lisäkuva-20 datan yhdelle juovalle suoritetaan muistin kirjoitustoi-minnot kolmen päävaakajuovajakson aikana aikajaksoina, jolloin dataa ei lueta muistista. Antomuistiosoite- ja kellosignaaligeneraattori 26 aikaansaa signaalin MEM FEE, joka osoittaa milloin data voidaan kirjoittaa muis-25 tiin. Kun MEM FREE muuttuu suuresta pieneksi keskeyttää ottomuistiosoite- ja kellosignaaligeneraattori kirjoi-tuskellosignaalien WCLK ja WCLK/2 kehittämisen ja muuttaa kirjoituksen sallintasignaalin WE datan sallimiseksi lukea muistista. Kun muistin lukutoiminta on saatet-30 tu päätökseen muuttuu MEM FREE pienestä suureksi ja kirjoitustoiminta palaa kuva-alkioon ja osoitteen arvoihin, joita se oli käsittelemässä kun kirjoitustoiminta keskeytettiin. Kirjoitustoiminta jatkaa tällä tavoin kunnes kaikki 128 näytettä, jotka edustavat yhden 35 juovan ohjausdataa ja lisäkuvan kuva-alkioita, on kir joitettu muistiin.
28 80 1 81
Lisäkentän muisti 22 voi olla tavanomainen 8K:n kahdeksanbittinen suorasaantimuisti. Näytteet kirjoitetaan muistiin dataväylältä kun muisti on ajastettu ja kirjoituksen sallintasignaali WE on suuri. Esillä ole-5 vassa suoritusmuodossa muistin kirjoituskellolla on taa juus 2F /3. NTSC-järjestelmässä tämä kirjoituskellotaa- S o juus antaa aikaa noin 420 ns kunkin näytteen kirjoittamiseksi muistiin. Esillä olevassa suoritusmuodossa käytetty lukukello toimii taajuudella 12Fgc/5, joka 10 antaa noin 115 ns aikaa kunkin näytteen lukemiseksi muistista. Nämä luku- ja kirjoitusajastussignaalit mahtuvat hyvin kaupallisesti saatavilla olevien suora-saantimuistien puitteisiin.
Kun aikaa on 420 ns näytettä kohti vaaditaan 15 noin 54 yus tai 0,85 H 128 näytteen kirjoittamiseksi muistiin. Kun aikaa on 115 ns näytettä kohti, tarvitaan kuitenkin vain noin 14 ^us tai noin 0,23H 128 näytteen lukemiseksi muistista. Kuvio 8 esittää ajastuskaa-viota, joka osoittaa kuinka lisäsignaalin juovat ali-20 näytteenotetaan ja talletetaan lisäkentän muistiin.
Lisäsignaalin kolme peräkkäistä yhden kentän juovaa suodatetaan ja alinäytteenotetaan 128 näytteeseen, jotka edustavat noin 80 prosenttia informaatiosta lisävideosignaalin juovan aktiivisen osan alueella.
25 124 näistä näytteistä sekä ohjausinformaatiota sisäl tävät neljä näytettä kirjoitetaan muistiin muistin luku-toimintojen välisinä aikajaksoina. Kuviossa 8 esitetyssä esimerkissä lisäkuva keskitetään vaakasuunnassa pää-kuvaan nähden siten, että muistin lukutoiminnot tapah-30 tuvat pääsignaalin vaakajuovajakson keskimmäisen nel jänneksen aikana.
Viitaten kuvioon 8, yksi näistä lukutoiminnois-ta alkaa ajanhetkenä ja päättyy ajanhetkenä T2.
Koska ajanhetkenä T2 ei ole mitään merkittävää lukutoi-35 mintoa, on muisti vapaana ajanhetkeen saakka. Ajan hetkenä on uusi näytteiden juova kirjoitettavissa li 29 80181 muistiin 22. Koska siellä ei ole mitään lukutoimintoa parhaillaan meneillään kirjoitetaan näytteet muistiin ajanhetkien ja välillä. Ajanhetkenä tapahtuu lukutoiminto ja kirjoitustoiminto keskeytyy. Ajanhetke-5 nä Tg lukutoiminto päättyy. Muut näytteet kirjoitetaan muistiin ajanhetkien Tg ja Tg välillä. Muisti on vapaa-tilassa ajanhetkestä Tg ajanhetkeen T^, jolloin luku-toiminta alkaa.
Esillä olevassa suoritusmuodossa on käytettä-10 vissä noin 143 ^us tai 2,25 H lisäsignaalin kunkin juo van kirjoittamiseksi muistiin 22. Tämä aika on riittävä sen varmistamiseksi, että lisäsignaalin juova voidaan kirjoittaa muistiin lisäsignaalin sallitun kolmen vaakajuovajakson aikana samalla, kun dataa luetaan muis-15 tista pääsignaalin kanssa tahdistetusti näyttämistä var ten, huolimatta pää- ja lisäsignaalien suhteellisista ajastuksista.
Kuten edellä on esitetty tulostetaan data muistista 22 lukukellon (RCLK) ja muistin lukuosoitteiden 20 valikoivalla käytöllä. Data syötetään dekooderiin 34.
Datadekooderi 34 hyväksyy koodatun signaalida-tan muistista 22, erottaa ohjausinformaation kunkin talletetun lisäkuvan juovan alusta ja erottaa valoti-heys- ja värierosignaalit skaalattujen rinnakkaisten 25 valotiheys- ja värierosignaalien tuottamiseksi.
Kuvio 6 esittää datadekooderin 34 esimerkinomaista piiriä. Kuviossa 6 syötetään näytteenottotaajuuden kello PCLK ja muistiosoite- ja kellosignaaligeneraatto-rista 26 saatava ohjaussignaali MEM RED sekä ohjaus-30 data H START ja V START generaattoriin 26 väylän CS2 kautta. Näytteenottotaajuuden kello PCLK sisältää pulsseja vain muistin lukujaksojen aikana.
Datan luku muistista 22 syötetään JA-veräjiin 610, jotka sallitaan valikoivasti muistin lukusig-35 naalilla MEM READ. JA-veräjiä 610 käytetään dataväylän 3o 80181 DATA kuormituksen pienentämiseksi ja häiriödatan syöttämisen estämiseksi multiplekseriin 612 kun dataa ei lueta muistista 22. JA-veräjien 610 anto syötetään mul-5 tiplekserin 612 ottoporttiin, jonka laskurin 616 anto sallii kytkeä ensimmäiset neljä datanäytettä datan kustakin kuvajuovasta rekisteriin 622 ja kytkeä muut näytteet datan kustakin kuvajuovasta salpaan 632 ja demul-tiplekseriin 626. Kuten aikaisemmin on selostettu si-sältävät kunkin kuvajuovan neljä ensimmäistä näytettä informaatiota antomuistiosoite- ja kellosignaaligene-raattorin 26 ohjaamiseksi. Nämä neljä näytettä ajastetaan neliasteiseen sarja/rinnan-rekisteriin 622 neljällä kellopulssilla, jotka JA-veräjä 614 syöttää kun-15 kin juovan alussa. Kukin rekisterin 622 aste on rin- nakkaisbittinen aste vastaavien ohjausnäytteiden kaikkien bittien sovittamiseksi. Vastaavat ohjausnäytteet on saatavilla väylillä H START, V START ja BRT sinä aikana, kun sen hetkisen lisäsignaalin kuvajuovan lop-20 puosaa luetaan muistista. Rekisteriin 622 kunkin lisä- signaalin kentän viimeisestä juovasta ladattu ohjaus-data säilyy kunnes seuraavan lisäsignaalin kentän ensimmäinen juova luetaan datadekooderiin. Yhden kentän viimeisestä juovasta saatava ohjausdata ohjaa lisä-25 signaalin ensimmäisen juovan luvun ajastusta seuraa- valta kentältä.
Kun esitetty järjestelmä aluksi käynnistetään ei datadekooderi 34 ole vastaanottanut sopivia H START ja V START parametreja lisäkuvan ensimmäisen kentän 30 näyttämiseksi. Rekisteri 622 sisältää kuitenkin joi takin arvoja. Vaikka arvot olisivat kaikki nollia ovat ne riittäviä ohjausdatan lataamiseksi ainakin yhdestä muistiin talletetun kuvadatan juovasta muodostaen sen jälkeen sopivan referenssin järjestelmälle. Varsinai-35 sesti tämä käyntiinlähtö tapahtuu ennen kuin vastaan otin on saatettu näyttämään lisäkuvaa.
3i 80181
Multiplekseriin 612 laskurista 616 syötetty ohjaussignaali on muodostettu pääsignaalin vaakatahtipuls-seista MAIN HSYNC ja näytteenottokellosta PCLK. MAIN HSYNC -signaali palauttaa laskurin 616 kunkin vaakakuva-5 juovan alussa. Palautustoiminta saa laskurin tulostamaan loogisesti pienen signaalin. Multiplekseriin 612 syötetty loopisesti pieni signaali saa sen johtamaan ottosig-naalin rekisteriin 622 ja loogisesti suuri signaali saa sen johtamaan ottosignaalin demultiplekseriin 626.
10 Laskurista 616 saatava antosignaali komplementoi- daan loogisessa invertterissä 618 ja syötetään JA-verä-jän 614 yhteen ottonapaan. Laskurista 616 saatava loogisesti pieni anto sallii JA-veräjän 614 kytkeä näytteenottotaajuuden kellon PCLK laskurin 616 kellonottonapaan. 15 Laskuri 616 pysyy palautustilassa kunnes muistin luku- jakso alkaa ja pulssit esiintyvät PCLK-liitännässä. Laskuri 616 laskee ensimmäiset neljä PCLK-pulssia ja tulostaa sen jälkeen loogisesti suuren signaalin. Loogisesti suuri anto estää JA-veräjää 614 syöttämästä edelleen 20 PCLK-pulsseja laskuriin 616, pitäen antonsa loogisesti suuressa tilassa kunnes MAIN HSYNC -signaali esiintyy seuraavan kerran.
JA-veräjän 614 anto on myös kytketty rekisterin 622 kellonottonapaan. Ensimmäiset neljä esiintyvää 25 PCLK-pulssia kytketään rekisteriin 622 siinä olevan datan siirtämiseksi samanaikaisesti multiplekserin 612 kanssa ensimmäisen neljän datanäytteen kytkemiseksi rekisterin 622 ottoon.
Ensimmäisen neljän PCLK-pulssin jälkeen kytke-30 tään muistin 22 dataväylästä saatavat näytteet demul tiplekseriin 626 ja tahdistamattomaan asynkroniseen salpaan 632. Kunkin näytteen valotiheys- ja värikkyys-komponentit erotetaan ohjaamalla kunkin näytteen viisi : eniten merkitsevää bittiä salpaan 632 ja kunkin näyt- 35 teen kolme vähiten merkitsevää bittiä demultiplekse- 32 801 81 riin 626. Salpa 632 on kahdeksanbittinen salpa ja viisibittiset valotiheysnäytteet tuodaan salvan viiteen eniten merkitsevään bittipaikkaan. Kahdeksanbittisen salvan 632 kolmeen vähiten merkitsevään bitti-5 paikkaan syötetään nolla-arvot. Salvasta 632 saata vat kahdeksanbittiset antonäytteet vastaavat tekijällä kahdeksan skaalattua ottoon tuotua valotiheys-komponenttia.
Valotiheysnäytteet syötetään summaimeen 633.
10 Rekisteristä 622 saatava lisäsignaalin kirkkausdata BRT tuodaan summaimen 633 toiseen ottoon. Summaimen 63 anto "Y" käsittää valotiheysnäytteitä, jotka esiintyvät PCLK-taajuudella ja jotka on modifioitu kirkkauden ohjausdatalla. Antosignaali "Y" kytketään kuvion 1 15 digitaalianalogiamuuntimen ja matriisipiirin 36 valo- tiheyssignaalin ottoon.
Huomioiden että datadekooderiin tuleva data on muotoiltu neljään näytesarjaan Yn&(R-Y)nMSB'
Yn+1S(B-Y)nMSB' Yn*2S<R-Y>„LSB' Υη*3&(Β-γ)nLSB' koos- 20 tuu demultiplekseriin 626 syötetty data kolmebitti- sistä neljän näytteen sarjoista (R-Y)nMSB, (Β-Υ)ηΜΒβ, (R-Y)nLSB, (B“Y)nLSB Demultiplekseri 626 yhdistää kunkin sarjan ensimmäiset ja kolmannet näytteet (R-Y) -värieronäytteiden uudelleen konstruoimiseksi ja yhdis-25 tää kunkin sarjan ensimmäiset, toiset ja neljännet näyt teet värieronäytteiden (B-Y) uudelleen konstruoimiseksi. Demultiplekserissä 626 kytketään kolmebittinen näytteen-ottosignaalin data salpojen 626A-626D datan ottonapoihin. Neljän vaihekellogeneraattorin 624 neljä vaihekello-30 signaalia syötetään salpojen 626A-626D vastaaviin kellon ottonapoihin. Kullakin neljällä vaiheella on PCLK-pulssitaajuuden yhden neljänneksen pulssitaajuus. Kellovaiheet on järjestetty siten, että näytteet *r-y*msb' *r-y*lsb' *b“y*msb (B"Y)lSB ladataan vas~ 35 taavasti salpoihin 626A, 626B, 626C ja 626D.
33 801 81
Salvasta 626 saatavat kolme MSB (R-Y) -näytettä yhdistetään salvasta 626B saatavien kolmen LSB (R-Y) -näytteen kanssa kuusibittisten (R-Y) -näytteiden muodostamiseksi. Nämä näytteet kytketään kahdeksanbittisen 5 salvan 626E kuuteen MSB-datan ottoliitäntään. Salvan 626E kahteen LSB-datan ottoliitäntään tuodaan nolla-arvot. Kun jokainen neljän näytteen sarja on ladattu salpoihin 626A-626D, ajastetaan salpa 626E lataamaan sen ottoon syötetty yhdistetty (R-Y)-näyte. Vastaa-10 vasti salvoista 626C ja 626D saatavat yhdistetyt (B-Y) -näytteet ladataan salpaan 626F.
Kuten on esitettu kuvassa lataa kellovaihe Φ4 kunkin neljän näytteen sarjan viimeisen näytteen (B-Y)TC,_. salpaan 626D. Tässä kohdassa ovat tietyn
i_j OJD
15 sarjan neljä näytettä vastaavissa salvoissaan 626A- 626D. Kun kellovaihe φ on pieni ajastaa se salvoista 626A ja 626B saatavan datan salpaan 626E sekä samanaikaisesti datan salvoista 626C ja 626D salpaan 626F.
Salvoista 626E ja 626F saatavat antosignaalit 20 ovat vastaavasti kahdeksanbittisiä näytteitä, jotka esiintyvät PCLK-taajuuden yhden neljänneksen taajuudella. Nämä signaalit vastaavat värierosignaaleja (R-Y) ja (B-Y), joista kukin on skaalattu tekijällä neljä sijoittamalla kuusibittiset yhdistetyt näytteet 25 kahdeksanbittisten salpojen 626E ja 626F kuuteen MSB- paikkaan.
Nelivaiheinen kellogeneraattori 624 on esiase-tettava ja rakenteeltaan tavanomainen. Esiasetettava arvo aikaansaadaan rekisteristä 622 saatavalla PHASE-30 ohjausdatalla. Tämä vaihedata ladataan kellogeneraat- torin 624 vasteena sille, että invertterin 618 anto-signaali on loogisesti suuressa tilassa. Siten neljän kellojakson lopussa, jolloin ohjausdata ladataan siirtorekisteriin 622, kellogeneraattori 624 on esi-- 35 asetettu juovan vaiheen arvoon. Kellogeneraattori 624 34 801 81 ajastetaan lukukellon PCLK pulsseilla ja se tuottaa kellon vaihepulsseja oleellisesti samanaikaisesti PCLK:n pulssien esiintymisien kanssa. Kellogeneraat-tori 624 tulee esiasettaa, koska ensimmäinen väriero-5 näyte datan kullakin juovalla voi olla näyte (R-Y)
MSB
tai näyte (B-Y)MSB· Vaiheen ohjausdata koodataan osoittamaan, kumpi näyte ensimmäinen näyte sattuu olemaan. Tämä vaiheen ohjausdata esiasettaa kelloge-neraattorin kellovaiheisiin φΛ , φ2, φ3 ja φΑ vastaa-10 vasti näytteiden (R-Y)MSB, (B“Y)MSB' (r-Y)lSB
(B-Y)TOt, kanssa sen hetkiselle kuva juovalle.
LiSB
Summaimesta 633 saatavat valotiheysnäytteet "Y" ja vastaavasti salvoista 626E Ja 626F saatavat väerieronäytteet (R-Y)” ja (B-Y)" kytketään digitaali lianalogiamuuntimen ja matriisipiirin 36 vastaaviin ottoportteihin. Piirissä 36 vastaavat digitaaliset näytteet muunnetaan analogisiksi valotiheys- ja värierosignaaleiksi. Nämä analogiset signaalit yhdistetään sopivissa suhteissa punaisen R, vihreän G ja 20 sinisen B värisignaalin muodostamiseksi näyttölait teen ohjaamiseksi (ei esitetty).
RGB-signaalit on kytketty multiplekserin 38 vastaavien ottonapojen yhteen sarjaan. Päävideosignaa-lin lähteestä 40 saatavat RGB-signaalit kytketään 25 multiplekserin 38 vastaavien ottonapojen toiseen sarjaan. Ottomuistiosoite- ja kellosignaaligeneraat-torin 26 liitännästä MUX CONTROL saatavalla signaalilla ohjattava multiplekseri 38 korvaa valikoivasti sen antonapoihin tuotetuilla RGB-lisäsignaaleilla 30 RGB-pääsignaalit.
Kuvio 7 esittää esimerkinomaisesti piiriä lukukellon ja lukuosoitekoodien kehittämiseksi antoda-talle muistista 22. Lisäksi se kehittää kuvan asetuksen ohjauksen multiplekserille 38 ja PCLK-datakoode-35 rille.
35 801 81
Kuviossa 7 vaihelukittu silmukka (PLL) 710 kehittää kellotaajuuden päävideosignaalin vaakatahdin kanssa tahdistetusta. Esillä olevassa suoritusmuodossa kellotaajuus on 1092 kertaa pääsignaalin vaakataa-5 juus. Tämä taajuus jaetaan kahdella jakajassa 712 taa juuden tuottamiseksi, joka on 546 kertaa pääsignaalin vaakatahtitaajuus. Taajuus 546H on taajuus, jolla näytteitä luetaan muistista ja näytetään toistetussa kuvassa. Pyyhkäisemällä talletettuja lisäsignaalinäyt-10 teitä juovaa kohden tällä taajuudella tuotetaan lisä- kuva, joka on supistunut yhteen kolmasosaan alkuperäisestä kuvasta, jonka vaakajuovan käsittelijä 14 on näytteenottanut. Siten lisäkuva on supistettu yhtä paljon sekä pysty- että vaakasuunnassa.
15 Jakajasta 712 saatava kello 564H syötetään JA- veräjiin 718 ja 720. JA-veräjät 718 ja 720 sallitaan JA-veräjästä 742 saatavalla muistin luvun sallinta-signaalilla MEM READ. JA-veräjä 720 aikaansaa luku-kellon RCLK muistiin 22 muistin läpikäymiseksi syötet-20 tyjen lukuosoitteiden mukaisesti. Lukukellopulssi- taajuus on aina 546H. JA-veräjä 718 aikaansaa näytteenottotaajuuden kellon PCLK datadekooderille 34. PCLK-piiri on tehty erilliseksi RCLK-piiriin nähden sen varalta, että järjestelmän tietyissä sovellutuksissa 25 voi olla toivottavaa, että PCLK-signaalin taajuus on kaksi kertaa RCLK-signaalin taajuus. Tässä tapauksessa JA-veräjä 718 on kytketty suoraan PLL-piirin 710 antoon mieluummin kuin piirin 712 kahdella jakavaan antoon.
30 Kellosignaali 546H kytketään vaakasuunnan pai kan ilmaisimeen, joka käsittää laskurin 714 ja vertaili jän 726. Laskuri 714 palautetaan pääsignaalin pystytahtisignaalilla MAIN VSYNC pääsignaalin kunkin kentän alussa, minkä jälkeen se alkaa laskea 546H-35 kellopulsseja. Laskuri 714 syöttää binäärisen annon 36 801 81 vertailijan 726 yhteen ottoon. Binäärinen anto vastaa laskurin 714 ottoon syötettyjen 546H-pulssien kumulatiivista laskua viimeisen palautuspulssin jälkeen. Jokainen 546H-kellosignaalin peräkkäinen pulssi vastaa 5 peräkkäistä vaakasuuntaista kuva-alkion paikkaa sen het kisen pääkuvan juovalla. Vaakasuuntainen kuva-alkion paikka H START, jossa lisäkuvan vasemman reunan on määrä alkaa, syötetään vertailijan 726 toiseen ottoon. Kun kumulatiivinen lasku laskurissa 714 saavuttaa arvon 10 H START, tuottaa vertailija 726 loogisesti suuren annon.
Vertailijan 726 anto pysyy suurena kunnes laskuri on seuraavalla juovalla palautettu.
Vertailijan 726 anto syötetään JA-veräjän 734 yhteen ottoon. Kellosignaali 546H syötetään JA-veräjän 734 15 to iseen ottoon ja EI-JA-veräjän 740 anto syötetään JA- veräjän 734 kolmanteen ottoon. EI-JA-veräjän 740 otto-navat on kytketty binäärilaskurin 736 vastaaviin anto-bittilinjoihin. Binäärilaskurista 736 saatavat mahdolliset binääriset annot ovat alueella nollasta 172:ään 20 (de simaalilukuna). EI-JA-veräjän 740 anto on loogises ti suuri kaikille binäärilaskurin 736 antoarvoille paitsi arvolle 127 (desimaalilukuna), joka saa EI-JA-veräjän 740 tuottamaan loogisesti pienen annon.
JA-veräjä 734 on sallittu 546H-signaalin kytke-25 miseksi binäärilaskurin 736 kello-ottoon aina kun las kurin 736 annon arvo on pienempi kuin 127 ja vaakasuuntaisen aloituspaikan on osoitettu esiintyvän vertaili-jasta 726 saatavalla loogisesti suurella signaalilla.
Binäärilaskuri 736 palautetaan nollaan kunkin 30 kuvajuovan alussa signaalilla MAIN HSYNC. Kun vertaili jan 726 anto tulee suureksi aloittaa binäärilaskuri 736 laskemaan ja tuottaa peräkkäisiä antoarvoja nollasta 127:ään. Kun se saavuttaa arvon 127 se estetään muuttumasta toiseen tilaan EI-JA-veräjän 740 annon tul-33 lessa pieneksi.
Il 37 80181
Binäärilaskurista 736 saatavat binääriset anto-arvot kytketään kolmetilaiseen veräjään 744. Kolmeti-laisen veräjän 744 anto kytketään muistin 22 osoitteen ottoporttiin. Kun JA-veräjä 742 on sallinut kolmetilai-5 sen veräjän 744, vastaavat binäärilaskurin 736 antoar- vot sarakeosoitesanoja datan lukemiseksi muistista.
Laskuri 714 tuottaa toisen antosignaalin liitäntään 715. Tämä antosignaali on pulssi, joka on pienempi kuin 546H-kellojakso ja joka esiintyy kun laskuri 10 714 laskee 546 pulssia. 546 pulssin lasku vastaa yhtä pääkuvan vaakajuovaa. Laskuri 714 palautetaan sisäisesti nollaan kun liitäntään 715 tuotetaan pulssi.
Laskurin 714 toinen anto syötetään binäärilaskurin 716 kellon ottonapaan. Laskuri 716 on järjestet-15 ty laskemaan nollasta arvoon 262 (desimaalilukuna) ja sen jälkeen pysähtymään kunnes seuraava MAIN VSYNC -pulssi suorittaa palautuksen. Laskuri 716 tuottaa siten binäärisen annon, joka vastaa sen hetkistä vaakakuva juovien kumulatiivista lukumäärää viimeisen MAIN 20 VSYNC -pulssin jälkeen, eli sen hetkisen vaakajuovan numeroa (vähennettynä yhdellä). Laskurin 716 binäärinen anto on kytketty vähentäjän 728 yhteen ottoporttiin ja vertailijan 732 yhteen ottoporttiin. Data-dekooderista 34 saatava arvo V START, joka vastaa 25 ylempää vaakakuvajuovaa josta lisäkuvan näyttö tu lee aloittaa, syötetään vertailijan 732 toiseen ottoporttiin ja vähentäjän 728 vähentäjän ottoporttiin.
Vertailija 732 tuottaa loogisesti suuren annon kun laskurista 716 saatava kumulatiivinen arvo on yhtä 30 suuri kuin arvo V START. Vertailijan 732 anto pysyy suurena kunnes seuraava MAIN VSYNC -pulssi palauttaa binäärilaskurin 716.
38 801 81 Vähentäjän 728 tuottamat antoarvot kytketään kolmetilaiseen veräjään 730, jonka anto on kytketty muistin 22 osoitteen ottoportin riviosoiteliitäntään. Vähentäjästä 728 saatavat arvot ovat yhtä suuria 5 kuin sen hetkinen juovan numero vähennettynä arvolla V START. Niiden jaksojen aikana kun muisti on sallittu lukemaan dataa, eli jaksoina jolloin kolmetilainen veräjä 730 on sallittu, arvot muodostavat peräkkäisen sarjan nollasta 63:een.
10 Lisäsignaalin data sisältyy muistipaikkoihin, joita voidaan osoittaa 64:llä riviosoitekoodisanalla, ja se näytetään 64 peräkkäisessä pääkuvan kuvajuovassa. Siksi on tarpeen laskea 64 juovaa alkaen ja mukaanlukien pystyaloitusjuova, signaalin kehittämiseksi, 15 jota voidaan käyttää kolmetilaisten veräjien 730 ja 744 sallimiseksi vain 64 vaakajuovan aikana välittömästi pystyaloituspaikan esiintymisen jälkeen. Laskuri 750, JA-veräjä 746 ja invertteri 748 on järjestetty laskemaan 64 juovajaksoa. Laskuri 750 laskee vaa-20 kapulsseja laskurin 714 antoliitännästä 715 JA-verä-jän 746 kautta. JA-veräjän 746 vastaavat ottonavat on liitetty vertailijan 732 antoon ja invertterin 748 antoon. Invertterin 748 otto on kytketty laskurin 750 antoon. Laskuri 750 palautetaan pystypulsseilla MAIN 25 VSYNC, jotka saavat sen annon loogisesti pieneksi.
Vastaavasti invertterin 748 anto on suuri. Näissä olosuhteissa JA-veräjä 746 on sallittu johtamaan vaakajuovapulsseja laskuriin 750 sen jälkeen kun vertailija 732 ilmaisee aloitusvaakajuovan. Sen jäl-30 keen kun 64 juovapulssia on kytketty laskuriin 750 kehittää se loogisesti suuren signaalin. Tämä aikaansaa invertterin 748 annon pieneksi estäen JA-veräjän 746. Invertterin 748 anto on siksi suuri vastaavan kenttäjakson alusta lähtien ja tulee pieneksi 35 lisäkuvan viimeisen juovan jälkeen.
39 801 81
Kolmetilaiset veräjät 730, 744 ja JA-veräjät 718 ja 720 salliva ohjaussignaali on pieni vain niiden aikajaksojen aikana, jolloin lisäkuvasignaalia todella näytetään, jotta muisti 22 voisi olla vapaa maksimiai-5 kamäärän uuden datan kirjoittamista varten. Siten JA- veräjän 742 anto on suuri niiden vaakajuovien lukupaikkojen aikana kun vertailijan 732 arvo tulee suureksi, eli pystyaloitusjuovasta lähtien, kunnes 64 juovaa on luettu muistista, eli kunnes laskuri 750 tuottaa anto-10 pulssin. Siten vertailijasta 726, EI-JA-veräjästä 740, vertailijasta 732 ja invertteristä 748 saatavat anto-signaalit kytketään JA-veräjän 742 vastaaviin ottona-poihin.
JA-veräjän 742 kehittämä antosignaali määrit-15 tää muistin lukujaksot. Tämän signaalin komplementti määrittää siten aikajaksot, jolloin muisti on vapaa uuden datan kirjoittamista varten. JA-veräjän 742 antoon kytketty invertteri 752 tuottaa signaalin MEM FREE, joka on MEM READ -signaalin komplementti.
20 On kuitenkin mahdollista, että dataa voidaan lukea muistista pääkuvan kunkin vaakajuovan osan aikana. Tässä vaihtoehtoisessa suoritusmuodossa muistista luettu data käsitellään ja näytetään vain silloin kun lisäkuva näytetään. Muistin lukutoimin-25 not uudistavat jaksollisesti talletetun datan, jol loin muistissa 22 voidaan käyttää halpoja dynaamisia RAM-muisteja.
Multiplekseri 38 korvaa lisävideosignaaleilla (RGB) päävideosignaalit (RGB) niiden aikajaksojen ai-30 kana, jolloin lisäsignaaleja luetaan muistista. Nämä jaksot vastaavat signaalin MEM READ loogisesti suuria jaksoja. Kuitenkin huomautetaan, että muistista luetut neljä ensimmäistä näytettä juovaa kohden sisältävät ohjausinformaatiota. Näiden neljän näytteen 35 varaamaa aikaa varten lyhennetään MEM READ -signaa lin kutakin loogisesti suurta jaksoa neljällä näyt- 40 80 1 81 teenottojaksolla ohjaussignaalin kehittämiseksi, MUX CONTROL, multiplekserille 38. Tämä toteutetaan kytkemällä signaali MEM READ JA-veräjän 724 yhteen ottonapaan. MEM READ -signaalia viivästetään 722 5 neljällä näytteenottojaksolla ja se syötetään JA-ve räjän 724 toiseen ottonapaan, joka veräjä kehittää signaalin MUX CONTROL kehittävän JA-veräjän 724 toiseen ottonapaan.

Claims (10)

41 80181
1. Videosignaalin käsittelylaite kuvaa edustavan peruskaistaisen videosignaalin käsittelemiseksi, pienen-5 netyn erottelutarkkuuden omaavaa kuvaa edustavan videosignaalin tuottamiseksi, joka käsittelylaite käsittää laitteen (10) mainitun peruskaistaisen videosignaalin syöttämiseksi, tunnettu suodatinlaitteesta (210), joka on kytketty mainitun 10 peruskaistaisen videosignaalin syöttävään laitteeseen peruskaistaisen signaalin niiden komponenttien vaimentamiseksi, joiden taajuudet ovat suurempia kuin ennalta määrätty taajuus komponentteihin nähden, joiden taajuudet ovat pienempiä kuin mainittu ennalta määrätty taajuus; 15 alinäytteenottolaitteesta (212), joka on kytketty suodatinlaitteeseen suodatetun videosignaalin alinäytteen-ottamiseksi ennalta määrätyllä alinäytteenottotaajuudella videosignaalin tuottamiseksi, joka edustaa pienennetyn erottelutarkkuuden omaavaa kuvaa, mainitulla alinäytteen-20 ottotaajudella tapahtuvan alinäytteenoton pyrkiessä tuot tamaan valetoistokomponentteja siihen videosignaalin taa-juusspektrin osaan, joka edustaa mainittua pienennetyn erottelutarkkuuden omaavaa kuvaa; ja signaalin korostuslaitteen (220), joka on kytketty 25 alinäytteenottolaitteeseen mainittua pienennetyn erottelu-tarkkuuden omaavaa kuvaa edustavan videosignaalin taajuus-spektrin sen osan vahvistamiseksi, joka sisältää mainittuja valetoistokomponentteja suuritaajuisten siirtymien korostamiseksi pienennetyn erottelutarkkuuden omaavassa 30 kuvassa, jolloin mainittu ennalta määrätty taajuus valitaan siten, että alinäytteenotetun signaalin taajuusspekt-rin puitteissa olevat suuritaajuiset signaalikomponentit käsitellään signaalin korostuslaitteella toistetun kuvan tuottamiseksi, jolla on suhteellisen tasainen kirkkaus 35 spatiaalisten taajuuksien erottelukykyisellä alueella pie- 42 80181 riennetyn erottelutarkkuuden omaavassa kuvassa.
2. Patenttivaatimuksen 1 mukainen käsittelylaite, jossa peruskaistainen videosignaali on värikkyyden vertai-lutaajuussignaalin sisältävästä yhdistetystä videosignaa- 5 lista johdettu valotiheyssignaalikomponentti, tunnettu siitä, että alinäytteenottolaite (212) alinäyt-teenottaa suodatettua valotiheyssignaalia taajuudella, joka on neljä viidesosaa mainitun värikkyyden vertailusig-naalin taajuudesta ja että suodatinlaitteen (210) mainittu 10 ennalta määrätty taajuus on kaksi viidesosaa mainitusta värikkyyden vertailutaajuudesta sekä merkittävästi pienempi kuin suodatinlaitteen rajataajuus.
3. Patenttivaatimuksen 2 mukainen käsittelylaite, tunnettu siitä, että signaalin korostuslaitteella 15 (220) on siirtofunktio Tp , jota edustaa yhtälö Tp = Z'1 +K( -1+2Z~1 -Z2 ) missä Z merkitsee tavanomaista Z-muunnosta ja Z'1 edustaa aiinäytteenottotaajuuden yhden jakson yksikköviivettä ja K on muuttuva skaalaustekijä; ja että 20 mainitun suodatinlaitteen (210) siirtofunktiota TF edustaa yhtälö Tp * (1+Z-2 )2 (1+Z-" )(1+Z*n )/16 missä Z'1 vastaa taajuuden, joka on neljä viidesosaa värikkyyden vertailutaajuudesta, yhden jakson yksikköviivet-25 tä ja m ja n ovat positiivisia kokonaislukuja.
4. Patenttivaatimuksen 1 mukainen videosignaalin käsittelylaite, tunnettu siitä, että alinäytteenottolaite (212) alinäytteenottaa suodatettua videosignaalia aiinäytteenottotaajuudella, joka on oleellisesti yhtä 30 suuri kuin kaksi kertaa mainittu ennalta määrätty taajuus videosignaalin tuottamiseksi, joka edustaa mainittua pienennetyn erottelukyvyn omaavaa kuvaa ja joka omaa taajuus-spektrin, joka vastaa suodatinlaitteen (210) aikaansaaman signaalin taajuusspektriä mainitun ennalta määrätyn taa-35 juuden yläpuolella, mainitulle ennalta määrätylle taajuu- 43 80181 delle kerrostuneena; ja että signaalin korostuslaite (220) vahvistaa mainitun alinäytteenotetun videosignaalin komponentteja, jotka ovat taajuuskaistalla, joka vastaa mainittujen valetoistokom-5 ponenttien taajuusspektriä, suhteessa alinäytteenotetun videosignaalin komponentteihin, joiden taajuudet ovat mainitun taajuusalueen ulkopuolella, mainitun ennalta määrätyn taajuuden ollessa valittu niin, että alinäytteenotettu videosignaali käsitellään signaalin korostuslaitteella 10 (220) kuvan toiston aikaansaamiseksi, jolla on suhteelli sen tasainen kirkkaus spatiaalisten taajuuksien erottelukykyisellä alueella pienemmän erottelutarkkuuden omaavassa kuvassa.
5. Patenttivaatimuksen 4 mukainen käsittelylaite, 15 mainitun peruskaistaisen videosignaalin ollessa värikkyyden vertailutaajuussignaalin sisältävästä yhdistetystä videosignaalista johdettu valotiheyssignaalikomponentti, tunnettu siitä, että alinäytteenottolaite (212) alinäytteenottaa suodatettua valotiheyssignaalia taajuu-20 della, joka on neljäs viidesosaa mainitun värikkyyden ver-tailusignaalin taajuudesta ja että suodatinlaitteen (210) mainittu ennalta määrätty taajuus on kaksi viidesosaa mainitusta värikkyyden vertailutaajuudesta sekä merkittävästi pienempi kuin suodatinlaitteen rajataajuus.
6. Patenttivaatimuksen 5 mukainen käsittelylaite, tunnettu siitä, että signaalin korostuslaitteella (220) on siirtofunktio Tp, jota edustaa yhtälö Tp - Z-1 +K(-1+2Z-1 -Z2 ) missä Z merkitsee tavanomaista Z-muunnosta ja Z~1 edustaa 30 alinäytteenottotaajuuden yhden jakson yksikköviivettä ja K on muuttuva skaalaustekijä; ja että suodatinlaitteen (210) siirtofunktiota edustaa yhtälö Tp « (1+Z-2 )2 (1+Z-3 )2 /16 35 missä Z*1 vastaa taajuuden, joka on neljä viidesosaa vä- 44 801 81 rikkyyden vertailutaajuudesta, yhden jakson yksikköviivet-tä.
7. Patenttivaatimuksen 1 mukainen videosignaalin käsittelylaite, käsiteltävän mainitun videosignaalin ol-5 lessa peruskaistainen yhdistetty videosignaali, joka sisältää ennalta määrätyllä taajuuskaistalla olevia valoti-heyssignaalikomponentteja sekä ensimmäisen ja toisen vä-rikkyyssignaalikomponentin, joista kumpikin on taajuuskaistalla, joka on vähemmän kuin puolet niin leveä kuin 10 mainitun valotiheyssignaalikomponentin taajuuskaista, pienennetyn erottelutarkkuuden omaavaa kuvaa edustavien videosignaalien tuottamiseksi, tunnettu laitteesta, joka liittyy mainittuun videosignaalin syöttävään laitteeseen (10) valotiheys- ja värikkyyskompo-15 nenttien erottamiseksi siitä; suodatinlaitteesta (210), joka sisältää mainittuun erotuslaitteeseen kytketyn valotiheyssignaalin suodatin-laitteen mainitun valotiheyssignaalin niiden komponenttien amplitudin pienentämiseksi, joiden taajuus on suurempi 20 kuin ennalta määrätty taajuus komponentteihin nähden, joiden taajuus on pienempi kuin mainittu ennalta määrätty taajuus; valotiheyssignaalin alinäytteenottolaitteesta (212), joka on kytketty valotiheyssignaalin suodatinlait-25 teeseen suodatetun valotiheyssignaalin näytteehottamiseksi taajuudella, joka on oleellisesti yhtä suuri kuin kaksi kertaa mainittu ennalta määrätty taajuus valotiheyssignaalin tuottamiseksi, joka edustaa pienennetyn erottelutarkkuuden omaavaa kuvaa, mainitulla näytteenottotaajuudella 30 tapahtuvan alinäytteenoton pyrkiessä tuottamaan mainittuun alinäytteenotettuun valotiheyssignaalin valetoistokompo-nentteja, joiden taajuusspektri vastaa mainitun valotihey-den suodatinlaitteen aikaansaaman signaalin taajusspektriä mainitun ennalta määrätyn taajuuden yläpuolella, kerros-35 tuneena mainitulle ennalta määrätylle taajuudelle; ja 45 801 81 signaalin korostuslaitteesta (220), joka on kytketty alinäytteenottolaitteeseen (212) mainitun näytteenotetun valotiheyssignaalin niiden komponenttien vahvistamiseksi, jotka ovat sillä valotiheyssignaalin taajuuskais-5 talla joka vastaa mainittujen valetoistokomponenttien kaistaa, valotiheyssignaalin mainitun taajuuskaistan ulkopuolella oleviin komponentteihin nähden, mainittu ennalta määrätty taajuus valittaessa niin, että mainittujen näytteenotettujen videosignaalien komponentit käsitellään 10 riittävällä amplitudilla kuvan toiston aikaansaamiseksi, jolla on suhteellisen tasainen kirkkaus spatiaalisten taajuuksien erottelukykyisellä alueella pienennetyn erottelu-tarkkuuden omaavassa kuvassa.
8. Patenttivaatimuksen 7 mukainen laite, t u n -15 n e t t u siitä, että suodatinlaite edelleen käsittää: värikkyyssignaalin suodatinlaitteen (260, 270), joka on kytketty mainittuun erotuslaitteeseen ja joka on vasteellinen yhdelle mainituista ensimmäisestä ja toisesta värikkyyssignaalista mainitun värikkyyssignaalin niiden 20 komponenttien amplitudin pienentämiseksi, joiden taajuudet ovat suurempia kuin värikkyyden rajataajuus niihin komponentteihin nähden, joiden taajuudet ovat pienempiä kuin mainittu värikkyyden rajataajuus; ja alinäytteenottolaitteen (262, 272), joka on kytket-25 ty värikkyyssignaalin suodatinlaitteeseen (260, 270) suodatetun värikkyyssignaalin näytteenottamiseksi taajuudella, joka on oleellisesti yhtä suuri kuin kaksi kertaa mainittu värikkyyden rajataajuus mainittua pienennetyn erot-telutarkkuuden omaavaa kuvaa edustavan värikkyyssignaalin 30 tuottamiseksi.
9. Patenttivaatimuksen 8 mukainen laite mainittujen värikkyyssignaalikomponenttien sisältäessä värikkyyden vertailutaajuussignaalin, tunnettu siitä, että mainittu valotiheyssignaalin alinäytteenottava lai-35 te (212) näytteenottaa mainittuja suodatettuja valotiheys- 46 801 81 signaaleja taajuudella, joka on oleellisesti neljä viidesosaa mainitun värikkyyden vertailusignaalin taajuudesta; mainittu ennalta määrätty taajuus on oleellisesti yhtä suuri kuin kaksi viidesosaa mainitusta värikkyyden 5 vertailutaajuudesta; mainittu värikkyyssignaalin alinäytteenottava laite (262, 272) näytteenottaa mainittua suodatettua värikkyys-signaalia taajuudella, joka on oleellisesti yksi viidesosa mainitusta värikkyyden vertailutaajuudesta; ja että mai-10 nittu värikkyyden rajataajuus on oleellisesti yksi kymmenesosaa mainitusta värikkyyden vertailutaajuudesta.
10. Patenttivaatimuksen 9 mukainen laite, tunnettu siitä, että signaalin korostuslaitteella (220) on siirtofunktio Tp, jota edustaa yhtälö 15 Tp = Z-1+K(-1+2Z-1-Z2 ) missä Z merkitsee tavanomaista Z-muunnosta ja Z1 edustaa aiinäytteenottotaajuuden yhden jakson yksikköviivettä ja K on nollan ja ykkösen välillä oleva reaaliluku; mainitun valotiheyssignaalin suodatinlaitteen (210) 20 siirtofunktiota Tp L edustaa yhtälö TrL - (1+Z"2 )2 (1+Z-3 )2 /16 missä Z"1 vastaa taajuuden, joka on neljä viidesosaa värikkyyden vertailutaajuudesta, yhden jakson yksikköviivettä; ja että 25 mainittuja värikkyyden näytteitä syötetään mainit tuun värikkyyssignaalin suodatinlaitteeseen (260, 270) taajuudella, joka on kaksi kertaa värikkyyden vertailutaa-juus ja mainittua värikkyyssignaalin suodatinlaitteen siirtofunktiota TFC edustaa yhtälö 30 Trc = (1+Z-1)(l+Z-e)/4 missä Z”1 vastaa taajuuden, joka on yhtä suuri kuin kaksi kertaa värikkyyden vertailutaajuus, yhden jakson yksikkö-viivettä. 47 801 81
FI861124A 1985-03-25 1986-03-18 Videosignalbehandlingsanordning. FI80181C (fi)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71581985 1985-03-25
US06/715,819 US4652908A (en) 1985-03-25 1985-03-25 Filtering system for processing a reduced-resolution video image

Publications (4)

Publication Number Publication Date
FI861124A0 FI861124A0 (fi) 1986-03-18
FI861124A FI861124A (fi) 1986-09-26
FI80181B true FI80181B (fi) 1989-12-29
FI80181C FI80181C (fi) 1990-04-10

Family

ID=24875617

Family Applications (1)

Application Number Title Priority Date Filing Date
FI861124A FI80181C (fi) 1985-03-25 1986-03-18 Videosignalbehandlingsanordning.

Country Status (14)

Country Link
US (1) US4652908A (fi)
EP (1) EP0196826B1 (fi)
JP (1) JPH07118787B2 (fi)
KR (1) KR930011594B1 (fi)
CN (1) CN1008872B (fi)
AT (1) ATE65148T1 (fi)
AU (1) AU590256B2 (fi)
CA (1) CA1233231A (fi)
DE (1) DE3680131D1 (fi)
DK (1) DK134986A (fi)
ES (1) ES8800557A1 (fi)
FI (1) FI80181C (fi)
HK (1) HK123796A (fi)
ZA (1) ZA862176B (fi)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2183118B (en) * 1985-11-19 1989-10-04 Sony Corp Image signal processing
US4750039A (en) * 1986-10-10 1988-06-07 Rca Licensing Corporation Circuitry for processing a field of video information to develop two compressed fields
JPH07114478B2 (ja) * 1986-12-29 1995-12-06 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン テレビジヨン受像機
EP0281642B1 (de) * 1987-03-07 1992-08-12 Deutsche ITT Industries GmbH Daten-Compander für digitale Videosignale
US4789995A (en) * 1987-05-01 1988-12-06 Silicon Systems Inc. Synchronous timer anti-alias filter and gain stage
US4771279A (en) * 1987-07-10 1988-09-13 Silicon Graphics, Inc. Dual clock shift register
US5043815A (en) * 1988-01-29 1991-08-27 Canon Kabushiki Kaisha Video signal processing device
JPH0250682A (ja) * 1988-08-12 1990-02-20 Sanyo Electric Co Ltd 複画面表示制御回路及びそれを備えた映像機器
JP2702988B2 (ja) * 1988-09-30 1998-01-26 株式会社日立製作所 画像信号処理回路及びこれを用いた装置
US4947253A (en) * 1989-04-18 1990-08-07 Rca Licensing Corporation Brightness modulator for closed loop compensation of black level
JPH03203475A (ja) * 1989-12-29 1991-09-05 Nec Home Electron Ltd 多画面ディスプレイ装置
US5107341A (en) * 1990-04-30 1992-04-21 Thompson Consumer Electronics, Inc. Color television apparatus with picture-in-picture processing and with variable chrominance signal filtering
GB9012326D0 (en) * 1990-06-01 1990-07-18 Thomson Consumer Electronics Wide screen television
US5374963A (en) * 1990-06-01 1994-12-20 Thomson Consumer Electronics, Inc. Picture resolution enhancement with dithering and dedithering
US5361098A (en) * 1992-11-30 1994-11-01 Scientific Atlanta, Inc. Methods and apparatus for generating a picture-in-picture digital television frame by inserting a mean-only frame into a full-size frame
JPH07135612A (ja) * 1993-11-11 1995-05-23 Tasuko Denki Kk 画像信号変換装置、sstv信号復調装置及び映像信号復調装置
US5477345A (en) * 1993-12-15 1995-12-19 Xerox Corporation Apparatus for subsampling chrominance
US5528301A (en) * 1995-03-31 1996-06-18 Panasonic Technologies, Inc. Universal video format sample size converter
US5587742A (en) * 1995-08-25 1996-12-24 Panasonic Technologies, Inc. Flexible parallel processing architecture for video resizing
JP3801242B2 (ja) * 1995-10-31 2006-07-26 株式会社日立製作所 縮小画像表示装置
US5793426A (en) * 1996-06-24 1998-08-11 Tektronix, Inc. Video compression enhancement
US6175592B1 (en) 1997-03-12 2001-01-16 Matsushita Electric Industrial Co., Ltd. Frequency domain filtering for down conversion of a DCT encoded picture
US6788347B1 (en) 1997-03-12 2004-09-07 Matsushita Electric Industrial Co., Ltd. HDTV downconversion system
CN1170438C (zh) 1997-03-12 2004-10-06 松下电器产业株式会社 数字视频信号下变换系统的运动补偿处理器及上升抽样方法
US6618443B1 (en) 1997-03-12 2003-09-09 Matsushita Electric Industrial Co., Ltd. Upsampling filter for a down conversion system
CN1058823C (zh) * 1997-05-20 2000-11-22 致伸实业股份有限公司 可自动去除图象文件中波纹图形的图象处理系统
US6487249B2 (en) 1998-10-09 2002-11-26 Matsushita Electric Industrial Co., Ltd. Efficient down conversion system for 2:1 decimation
US20060033831A1 (en) * 1999-09-14 2006-02-16 Nikon Corporation Electronic still camera
US6657677B1 (en) * 2000-01-12 2003-12-02 Koninklijke Philips Electronics N.V. Method and apparatus for improving conversion from SD to HDTV
EP1292133A1 (en) * 2001-09-06 2003-03-12 Koninklijke Philips Electronics N.V. Multi-picture display
CN102256157B (zh) * 2010-05-20 2013-04-03 北京创毅视讯科技有限公司 一种判断移动模拟电视视频信号畸变的方法和装置
US10341713B2 (en) 2014-12-15 2019-07-02 Comcast Cable Communications, Llc Methods and systems for providing content
CN113705553B (zh) * 2020-05-20 2024-01-26 深圳清华大学研究院 视觉任务执行方法、装置、电子设备、存储介质及系统
CN117854256A (zh) * 2024-03-05 2024-04-09 成都理工大学 基于无人机视频流分析的地质灾害监测方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030121A (en) * 1975-12-02 1977-06-14 Faroudja Y C Video crispener
US4075661A (en) * 1976-08-19 1978-02-21 The Magnavox Company Automatic peaking circuit
US4081836A (en) * 1976-11-30 1978-03-28 The Magnavox Company Luminance signal processor for providing signal enhancement
GB1600043A (en) * 1978-03-30 1981-10-14 Marconi Co Ltd Video signal processing arrangement
US4301473A (en) * 1980-02-22 1981-11-17 Atari, Inc. Method and apparatus for video signal resolution enhancement
ES509061A0 (es) * 1981-02-02 1983-06-16 Rca Corp Perfeccionamientos introducidos en una instalacion de tratamiento de senales de television digitales.
SE8202741L (sv) * 1981-05-11 1982-11-12 Rca Corp Kompatibelt, transkodningsbart och hierarkaliskt digitaltelevisionssystem
US4438452A (en) * 1981-05-11 1984-03-20 Rca Corporation Transcoder for sampled television signals
US4517586A (en) * 1982-11-23 1985-05-14 Rca Corporation Digital television receiver with analog-to-digital converter having time multiplexed gain

Also Published As

Publication number Publication date
ES553113A0 (es) 1987-10-16
EP0196826B1 (en) 1991-07-10
CA1233231A (en) 1988-02-23
ES8800557A1 (es) 1987-10-16
AU5481386A (en) 1986-10-02
JPH07118787B2 (ja) 1995-12-18
FI861124A0 (fi) 1986-03-18
KR860007823A (ko) 1986-10-17
CN86101876A (zh) 1986-09-24
DK134986A (da) 1986-09-26
ATE65148T1 (de) 1991-07-15
EP0196826A1 (en) 1986-10-08
CN1008872B (zh) 1990-07-18
AU590256B2 (en) 1989-11-02
DK134986D0 (da) 1986-03-24
DE3680131D1 (de) 1991-08-14
US4652908A (en) 1987-03-24
FI80181C (fi) 1990-04-10
JPS61224679A (ja) 1986-10-06
ZA862176B (en) 1986-11-26
KR930011594B1 (ko) 1993-12-13
HK123796A (en) 1996-07-19
FI861124A (fi) 1986-09-26

Similar Documents

Publication Publication Date Title
FI80181B (fi) Filtersystem foer en videobild av reducerad resolution.
FI80180B (fi) Kompression av bildelement i en videobild av reducerad storlek.
US5552826A (en) Digital video camera with external chrominance signal digitized at subcarrier frequency multiple
KR100195361B1 (ko) 와이드 스크린 텔레비젼
US5229855A (en) System and method for combining multiple composite video signals
US4654695A (en) Apparatus for reducing the resolution of video samples by truncating the most significant bits
US4656516A (en) Vertical subsampling and memory synchronization system for a picture within a picture television receiver
KR100200702B1 (ko) 디지탈 비디오 시스템의 디지탈 비디오 인코더
JPS63104582A (ja) テレビジョン信号処理回路
US4717951A (en) Adaptive digital filter
JP3731502B2 (ja) 映像信号処理装置
JPH0223076B2 (fi)
JPH0496595A (ja) 映像信号処理回路
JP3112787B2 (ja) 走査線変換装置
JPH048094A (ja) テレビジョン信号変換装置
JPS6184196A (ja) ビデオ信号デイジタル処理方法
JPH06141344A (ja) テレビジョン信号多重伝送方式
JPH0394595A (ja) 映像信号変換装置
JPH01132281A (ja) テレビジヨン受像機
JPS62272793A (ja) カラ−テレビジヨン信号の順次走査変換装置

Legal Events

Date Code Title Description
MM Patent lapsed

Owner name: RCA LICENSING CORPORATION