EP4315487A1 - Revetement de separateur pour batteries li-ion a base de latex acrylate de pvdf - Google Patents

Revetement de separateur pour batteries li-ion a base de latex acrylate de pvdf

Info

Publication number
EP4315487A1
EP4315487A1 EP22715135.4A EP22715135A EP4315487A1 EP 4315487 A1 EP4315487 A1 EP 4315487A1 EP 22715135 A EP22715135 A EP 22715135A EP 4315487 A1 EP4315487 A1 EP 4315487A1
Authority
EP
European Patent Office
Prior art keywords
separator
coating
acrylate
coating according
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22715135.4A
Other languages
German (de)
English (en)
Inventor
François Beaume
Anthony Bonnet
Thomas Fine
Keisuke Yamada
Denis KATO DE ALMEIDA
Yuanqin LIU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4315487A1 publication Critical patent/EP4315487A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention generally relates to the field of the storage of electrical energy in rechargeable secondary batteries of the Li-ion type. More specifically, the invention relates to a coating based on an acrylated fluoropolymer latex comprising inorganic particles, said coating having a very good compromise between, on the one hand, dry adhesion and wet adhesion, and on the other hand, between adhesion and ionic conductivity. This coating is intended for a separator application, in particular for Li-ion batteries. The invention also relates to a Li-ion battery comprising a separator covered with such a coating.
  • separators for electrochemical devices are dominated by the use of polyolefins (eg Celgard ® or Hipore ® ) produced by extrusion and/or stretching via dry or wet processes.
  • the separators must at the same time have small thicknesses, an optimum affinity for the electrolyte and sufficient mechanical and temperature resistance.
  • polymers presenting a better affinity with respect to standard electrolytes have been proposed, in order to reduce the internal resistances of the system, such as poly(methylmethacrylate) (PMMA), poly( vinylidene fluoride) (PVDL) and poly(vinylidene fluoride-hexafluoropropene) (P(VDL-co-HPP)).
  • PMMA poly(methylmethacrylate)
  • PVDL poly(vinylidene fluoride)
  • PVDL-co-HPP poly(vinylidene fluoride-hexafluoropropene)
  • the main criteria for evaluating a separator coating are: dry adhesion, wet adhesion, ionic conductivity and heat stability.
  • the dry adhesion is measured after assembly, by pressing or lamination, of the coated separator with an electrode. This adhesion increases with the temperature and the pressure applied post coating. However, it is desirable to use mild pressing/lamination conditions: reduced pressure to avoid/limit pore closure and therefore minimize the impact on ionic conductivity, moderate temperature to limit energy consumption and maintain line speed /high productivity.
  • the wet adhesion of the coating to the separator is measured after impregnation with the electrolyte. This adhesion decreases when the coating is softened by the electrolyte solvents, leading to the swelling of the polymer present in the coating, possibly until the dissolution of the coating. The percentage of swelling or even dissolution or loss of integrity are used as a first indication of wet adhesion performance.
  • the ionic conductivity represents the migration of Li ions through the separator and its coating, thanks to the porosity.
  • this porosity corresponds to the interstices between the solid particles which constitute the coating: polymer particles (from latex or from a powder redispersed in water) and/or ceramic particles.
  • this porosity is created by the phase inversion (exposure to humidity of the acetone-based coating, for example) necessary before or during drying; without phase inversion, a simple evaporation of the solvent forms a continuous non-porous coating.
  • Gurley air permeability is used as a first indication of ionic conduction.
  • Heat stability is low for polyolefin separators alone (in PE or PP or PP/PE/PP multilayer), which exhibit significant temperature shrinkage.
  • the thermal stability can be significantly improved by a coating containing inorganic particles.
  • PVDF Poly(vinylidene fluoride)
  • P(VDF-co-HFP) copolymer copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP)
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • the preparation of the coating requires a preliminary step of dissolving the PVDF and the acrylic polymer in a common solvent (dimethylacetamide and tripropylene glycol), which makes the process more laborious and more difficult to apply on an industrial scale with environmental constraints. important.
  • a common solvent dimethylacetamide and tripropylene glycol
  • the object of the invention is therefore to remedy at least one of the drawbacks of the prior art, namely to propose a polymeric coating for a separator capable of preventing swelling or dissolution in an electrolyte solvent(s), while maintaining good adhesion properties and good ionic conductivity.
  • the invention also aims to provide a process for the manufacture of this polymeric coating by aqueous means.
  • Another object of the invention is a separator for an electrochemical device, such as a battery, a capacitor, an electrical double-layer capacitor, a membrane-electrode (MEA) assembly for a fuel cell, in particular a separator for a secondary Li battery. - ion, comprising said coating.
  • an electrochemical device such as a battery, a capacitor, an electrical double-layer capacitor, a membrane-electrode (MEA) assembly for a fuel cell, in particular a separator for a secondary Li battery. - ion, comprising said coating.
  • MEA membrane-electrode
  • the invention aims to provide electrochemical devices, such as a rechargeable Li-ion secondary battery, a capacitor, an electric double-layer capacitor, a membrane-electrode assembly (MEA) for a fuel cell, comprising such a separator .
  • electrochemical devices such as a rechargeable Li-ion secondary battery, a capacitor, an electric double-layer capacitor, a membrane-electrode assembly (MEA) for a fuel cell, comprising such a separator .
  • the object of the invention is to provide a material having an improved adhesive property for a separator coating when used in an electronic device application, in particular a lithium-ion battery.
  • the material is used as a polymer binder or adhesion component on the separator.
  • a hybrid latex made up of particles containing both a fluorinated polymer and an acrylic polymer, and added with inorganic particles, provides a better compromise of properties used as a single-layer coating in aqueous route. , compared to known coatings.
  • the invention relates firstly to a monolayer coating for a separator, said coating containing a fluoro-acrylic hybrid polymer resin and inorganic particles, the fluoropolymer part of said resin being based on vinylidene difluoride.
  • the fluorinated-acrylic hybrid polymer resin is in the form of a latex, defined as being a colloidal dispersion of polymers dispersed in a continuous phase (generally aqueous).
  • the latex particles exhibit an interpenetrating network (IPN) type morphology with fluoropolymer and acrylic polymer chains, intimately mixed.
  • IPN interpenetrating network
  • the fluoro-acrylic hybrid polymer resin comprises a fluoropolymer modified with an acrylic polymer.
  • Said fluorinated polymer based on polyvinylidene fluoride, is chosen from the group of polyvinylidene fluoride homopolymers and copolymers based on polyvinylidene fluoride and at least one comonomer compatible with vinylidene fluoride, in particular with hexafluoropropylene .
  • the acrylic phase of the resin may contain residues of monomers having functional groups, which allows the acrylic phase to crosslink.
  • the invention also relates to a separator for an electrochemical device chosen from the group: Li-ion battery, capacitor, electric double-layer capacitor, and membrane-electrode assembly for a fuel cell, said separator comprising a porous support and at least one single-layer coating as defined above.
  • said separator is suitable for use in a Li-ion rechargeable battery.
  • Another object of the invention is an electrochemical device chosen from the group: Li-ion battery, capacitor, electric double-layer capacitor, and membrane-electrode assembly (MEA) for fuel cell, comprising said separator.
  • Li-ion battery Li-ion battery, capacitor, electric double-layer capacitor, and membrane-electrode assembly (MEA) for fuel cell, comprising said separator.
  • MEA membrane-electrode assembly
  • the invention finally relates to a Li-ion battery comprising a negative electrode, a positive electrode and a separator, in which said separator comprises a porous support and at least one monolayer coating as defined above.
  • the present invention makes it possible to overcome the drawbacks of the state of the art. It more particularly provides a monolayer adhesive coating for a separator, capable of preventing excessive swelling or dissolution in an electrolyte solvent(s), while maintaining good adhesion properties to the support of the separator and to an electrode. , good permeability and good ionic conductivity.
  • the invention relates to a monolayer coating for a separator, said coating containing a fluorinated-acrylic hybrid polymer resin and inorganic particles.
  • said coating comprises the following characters, possibly combined.
  • the contents indicated are expressed by weight, unless otherwise indicated. For all ranges shown, terminals are included, unless otherwise stated.
  • the fluoro-acrylic hybrid polymer resin is made of an acrylated fluoropolymer.
  • the fluorinated polymers used in the invention as seed for acrylic polymerization are based on vinylidene difluoride and are generically designated by the abbreviation PVDF.
  • the PVDF is poly(vinylidene fluoride) homopolymer.
  • the PVDF is a copolymer of vinylidene difluoride with at least one comonomer compatible with vinylidene difluoride.
  • Comonomers compatible with vinylidene difluoride can be halogenated (fluorinated, chlorinated or brominated) or non-halogenated.
  • fluorinated comonomers examples include: vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, trifluoropropenes and in particular 3,3,3-trifluoropropene, tetrafluoropropenes and in particular 2,3,3,3-tetrafluoropropene or 1 , 3,3,3-tetrafluoropropene, hexafluoroisobutylene, perfluorobutylethylene, pentafluoropropenes and in particular 1,1,3,3,3-pentafluoropropene or 1,2,3,3,3-pentafluoropropene, perfluoroalkylvinylethers and in particular those of general formula Rf-0-CF-CF2, Rf being an alkyl group, preferably C1 to C4 (preferred examples being perfluoropropylvinylether and perfluoromethylvinylether).
  • the fluorinated comonomer can contain a chlorine or bromine atom. It can in particular be chosen from bromotrifluoroethylene, chlorofluoroethylene, chlorotrifhioroethylene and chlorotrifluoropropene.
  • Chlorofluoroethylene can denote either 1-chloro-1-fluoroethylene or 1-chloro-2-fluoroethylene.
  • the 1-chloro-1-thioroethylene isomer is preferred.
  • the chlorotrifluoropropene is preferably 1-chloro-3,3,3-trifluoropropene or 2-chloro-3,3,3-trifluoropropene.
  • the VDF copolymer can also comprise non-halogenated monomers such as ethylene, and/or acrylic or methacrylic comonomers.
  • the fluoropolymer preferably contains at least 50 mole percent vinylidene difluoride.
  • the PVDF is a copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP)) (P(VDF-HFP)), having a percentage by weight of hexafluoropropylene monomer units of 2 to 23%, preferably from 4 to 15% by weight relative to the weight of the copolymer.
  • the PVDF is a copolymer of vinylidene fluoride and tetrafluoroethylene (TFE).
  • the PVDF is a copolymer of vinylidene fluoride and chlorotrifluoroethylene (CTFE).
  • the PVDF is a VDF-TFE-HFP terpolymer.
  • the PVDF is a VDF-TrFE-TFE terpolymer (TrFE being trifluoroethylene).
  • the mass content of VDF is at least 10%, the comonomers being present in variable proportions.
  • the PVDF comprises monomer units bearing at least one of the following functions: carboxylic acid, carboxylic acid anhydride, carboxylic acid esters, epoxy groups (such as glycidyl), amide, hydroxyl, carbonyl, mercapto, sulfide, oxazoline, phenolics, ester, ether, siloxane, sulfonic, sulfuric, phosphoric, phosphonic.
  • Fa function is introduced by a chemical reaction which may be grafting, or copolymerization of the fluorinated monomer with a monomer bearing at least one of said functional groups and a vinyl function capable of copolymerizing with the fluorinated monomer, according to techniques well known by the man of the trade.
  • the functional group bears a carboxylic acid function which is a group of (meth)acrylic acid type chosen from acrylic acid, methacrylic acid, hydroxyethyl (meth)acrylate, hydroxypropyl (meth) acrylate and hydroxyethylhexyl (meth)acrylate.
  • a carboxylic acid function which is a group of (meth)acrylic acid type chosen from acrylic acid, methacrylic acid, hydroxyethyl (meth)acrylate, hydroxypropyl (meth) acrylate and hydroxyethylhexyl (meth)acrylate.
  • the units carrying the carboxylic acid function also comprise a heteroatom chosen from oxygen, sulphur, nitrogen and phosphorus.
  • the functionality is introduced via the transfer agent used during the synthesis process.
  • the transfer agent is a polymer with a molar mass less than or equal to 20,000 g/mol and carrying functional groups chosen from the groups: carboxylic acid, carboxylic acid anhydride, carboxylic acid esters, epoxy groups (such as glycidyl), amide, hydroxyl, carbonyl, mercapto, sulfide, oxazoline, phenolics, ester, ether, siloxane, sulfonic, sulfuric, phosphoric, phosphonic.
  • An example of such a transfer agent are acrylic acid oligomers.
  • the transfer agent is an acrylic acid oligomer with a molar mass of less than or equal to 20,000 g/mol.
  • the content of functional groups of the PVDF is at least 0.01% molar, preferably at least 0.1% molar, and at most 15% molar, preferably at most 10% molar.
  • the PVDF preferably has a high molecular weight.
  • high molecular weight as used herein, is meant a PVDF having a melt viscosity greater than 100 Pa.s, preferably greater than 500 Pa.s, more preferably greater than 1000 Pa.s, according to the ASTM D-3835 method measured at 232°C and 100 sec 1 .
  • PVDF homopolymers and the VDF copolymers used in the invention can be obtained by known polymerization methods such as emulsion or suspension polymerization.
  • they are prepared by an emulsion polymerization process in the absence of fluorinated surfactant.
  • Polymerization of PVDF results in a latex generally having a solids content of 10 to 60% by weight, preferably 10 to 50%, and having a weight average particle size of less than 1 micrometer, preferably less than 1000 nm , preferably less than 800 nm, and more preferably less than 600 nm.
  • the weight average size of the particles is generally at least 20 nm, preferably at least 50 nm, and advantageously the average size is in the range of 100 to 400 nm.
  • the polymer particles can form agglomerates whose average size by weight is from 1 to 30 micrometers, and preferably from 2 to 10 micrometers. Agglomerates can break down into discrete particles during formulation and application to a substrate.
  • the PVDF homopolymer and the VDF copolymers are composed of bio-based VDF.
  • bio-based VDF means “derived from biomass”. This improves the ecological footprint of the membrane.
  • Bio-based VDF can be characterized by a renewable carbon content, i.e. carbon of natural origin and coming from a biomaterial or from biomass, of at least 1 atomic % as determined by the content of 14C according to standard NF EN 16640.
  • renewable carbon indicates that the carbon is of natural origin and comes from a biomaterial (or biomass), as indicated below.
  • the bio-carbon content of the VDF can be greater than 5%, preferably greater than 10%, preferably greater than 25%, preferably greater than or equal to 33%, preferably greater than 50% , preferably greater than or equal to 66%, preferably greater than 75%, preferably greater than 90%, preferably greater than 95%, preferably greater than 98%, preferably greater than 99%, advantageously equal to 100% .
  • the fluoro-acrylic hybrid polymer resin is synthesized by emulsion polymerization of acrylate/methacrylate monomers using a latex of said fluoro polymer as a seed, resulting in a fluoro-acrylic polymer hybrid composition.
  • the acrylic part of the acrylic-modified fluoropolymer is optionally capable of crosslinking (depending on the choice of acrylic monomers used).
  • the alkyl acrylate with an alkyl group having from 1 to 18 carbon atoms used as monomer to be polymerized in emulsion in the presence of the PVDF polymer particles, comprises: methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, n-dodecyl acrylate, amyl acrylate, isoamyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, diacetone acrylamide, lauryl acrylate, and n-octyl acrylate.
  • alkyl acrylates with an alkyl group having 1 to 8 carbon atoms are preferred, and alkyl acrylates with an alkyl group having 1 to 5 carbon atoms are more preferable.
  • These compounds can be used alone or in a mixture of two or more.
  • acrylate herein includes both acrylates and methacrylates.
  • the optional ethylenically unsaturated compound copolymerizable with the alkyl acrylate and the alkyl methacrylate includes:
  • the alkenyl compound (A) containing a functional group includes, for example, ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid, methacrylic acid, fumaric acid, crotonic acid, itaconic acid and similar; vinyl ester compounds such as vinyl acetate, vinyl neodecanoate and the like; amide compounds such as acrylamide, methacrylamide, N-methylacrylamide, N-methylmethacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, N-alkylacrylamide, N-alkylmethacrylamide, N,N-dialkylacrylamide, N,N-dialkylmethacrylamide, diacetone acrylamide and the like; acrylic acid esters such as 2-hydroxyethyl acrylate, N-dialkylaminoethyl acrylate, glycidyl acrylate, n-dodecyl acrylate, fluoroalkyl acrylate and the like; methacrylic
  • acrylic acid methacrylic acid, itaconic acid, fumaric acid, N-methylolacrylamide, N-methylolmethacrylamide, diacetone acrylamide, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and allyl glycidyl ether.
  • acrylic acid methacrylic acid, itaconic acid, fumaric acid, N-methylolacrylamide, N-methylolmethacrylamide, diacetone acrylamide, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and allyl glycidyl ether.
  • the functional group-free alkenyl compound (B) includes, for example, conjugated dienes such as 1,3-butadiene, isoprene and the like; divinyl hydrocarbon compounds such as divinyl benzene and the like; and alkenyl cyanides such as acrylonitrile, methacrylonitrile and the like. Of these, preferred are 1,3-butadiene, and acrylonitrile. These compounds can be used alone or in a mixture of two or more.
  • the alkenyl functional compound (A) is used in a proportion of less than 50% by weight based on the weight of the monomer mixture and that the alkenyl compound without functional group (B) is used in a proportion of less than 30% by weight relative to the weight of the monomer mixture.
  • the acrylic modified fluoropolymer resin used in the context of the invention can crosslink either by self-condensation of its functional groups, or by reaction with a catalyst and/or a crosslinking agent, such as melamine resins, epoxy resins and the like, as well as known low molecular weight crosslinking agents such as di- or higher polyisocyanates, polyaziridines, polycarbodiimides, polyoxazolines, dialdehydes such as glyoxal, acetoacetates, malonates , di- and trifunctional acetals, thiols and acrylates, cycloaliphatic epoxy molecules, organosilanes such as epoxysilanes and amino silanes, carbamates, diamines and triamines, inorganic chelating agents such as certain zinc salts and zirconium, titaniums, glycouriles and other aminoplasts.
  • a catalyst and/or a crosslinking agent such as melamine resins, epoxy resins and the like
  • functional groups from other polymerization ingredients such as surfactants, initiators, seed particles, may be involved in the crosslinking reaction.
  • the pairs of complementary reactive groups are, for example, hydroxyl-isocyanate, acid-epoxy, amine-epoxy, hydroxyl-melamine, acetoacetate-acid.
  • the fluoro-acrylic polymer resin comprises a crosslinking agent chosen from the group consisting of isocyanates, diamines, adipic acid, dihydrazides and their combinations.
  • the fluoro-acrylic polymer resin does not crosslink, and is present in non-crosslinked form in the coating for a separator according to the invention.
  • the fluorinated-acrylic hybrid polymer resin is an aqueous dispersion obtained by emulsion polymerization of 5 to 100, preferably 5-95 parts by weight of a mixture of monomers having at least one monomer chosen from the group consisting of acrylates of alkyl whose alkyl groups have 1-18 carbon atoms and alkyl methacrylates whose alkyl groups have 1-18 carbon atoms and optionally an ethylenically unsaturated compound copolymerizable with alkyl acrylates and alkyl methacrylates, in an aqueous medium in the presence of 100 parts by weight of particles of a vinylidene fluoride polymer as defined above. PVDF particles serve as seeds for the polymerization of acrylic monomers.
  • PVDF particles can be added in any state to the polymerization system, as long as they are dispersed in an aqueous medium as particles. Since the vinylidene fluoride polymer is generally produced as an aqueous dispersion, it is convenient for the aqueous dispersion as produced to be used as seed particles.
  • the particle sizes of the vinylidene fluoride are preferably in the range of 0.04 to 2.9 micrometers. In a preferred embodiment, the diameter of the polymer particles is preferably 50 nm to 700 nm.
  • the product of the polymerization is a latex which can be used in this form, usually after filtration of the solid by-products of the polymerization process.
  • the latex may be stabilized by the addition of a surfactant, which may be the same as or different from the surfactant present during polymerization (if any).
  • This subsequently added surfactant can, for example, be an ionic or nonionic surfactant.
  • the PVDF particles used as seed can have a homogeneous or heterogeneous character or gradient between the core and the surface of the particles, in terms of composition (content of HFP comonomer, for example) and/or molecular mass.
  • the PVDF/acrylic polymer mass ratio varies from 95/5 to 5/95, preferably from 75/25 to 25/75, advantageously from 60/40 to 40/60.
  • the average particle diameter is 0.05-3 ⁇ m, preferably 0.05-1 ⁇ m, more preferably 0.1-1 ⁇ m.
  • the fluorinated-acrylic hybrid polymer resin is characterized by an intimate mixture between the fluorinated polymer chains and the acrylic polymer chains.
  • the separator coating according to the invention contains, in addition to the described fluorinated-acrylic hybrid polymer resin, inorganic particles which serve to form micropores in the coating (the interstices between inorganic particles). The assembly of these inorganic particles also contributes to heat resistance.
  • said coating comprises from 50 to 99 weight percent inorganic particles, based on the weight of the coating.
  • the powdery inorganic materials preferably have high ionic conductivity. Low density materials are preferred over higher density materials because the weight of the produced battery can be reduced.
  • the dielectric constant is preferably equal to or greater than 5.
  • said inorganic particles are chosen from the group consisting of: BaTiCL, Pb(Zr,Ti)03, Pb i- x La x Zr y 03 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), PBMg3Nb2/3)3,PbTi03, hafnia (HfO (Hft> 2 ), SrTiO 3 , Sn0 2 , Ce0 2 , MgO, NiO, CaO, ZnO, Y 2 0 , bohemite (y-AlO(OH)), ALO3, Ti0 2 , SiC, Zr0 2 , boron silicate, BaSCL, nano-clays, or mixtures thereof.
  • the ratio of polymer solids to inorganic particles is 0.5 to 30 parts by weight of fluoro-acrylic hybrid polymer resin solids per 70 to 99.5 parts by weight of particles.
  • inorganic particles preferably from 0.5 to 25, then 0.5 to 20, then from 0.5 to 15 parts by weight of polymer solids per 85 to 99.5 parts by weight of inorganic particles, more preferably from 1 to 10 parts by weight polymer solids per 90 to 99 parts by weight inorganic particles, and in one embodiment 0.5 to 8 parts by weight polymer solids per 92 to 99.5 parts by weight inorganic particles .
  • the separator coating of the invention may optionally comprise 0 to 15 percent by weight based on the polymer, and preferably 0.1 to 10 percent by weight of additives, selected from thickeners, pH adjustment, anti-sedimentation agents, surfactants, wetting agents, fillers, anti-foam agents and transient or non-transient adhesion promoters.
  • additives selected from thickeners, pH adjustment, anti-sedimentation agents, surfactants, wetting agents, fillers, anti-foam agents and transient or non-transient adhesion promoters.
  • the coating for separator of the invention presents an excellent compromise of properties for the application of coating for separator by aqueous route, monolayer, with inorganic particles: good dry adhesion, good resistance to solvent (s) d electrolyte characterized by good retained integrity and moderate swelling, and good Gurley permeability. Methods that can be used to characterize these properties are described in the examples.
  • the coating described above is used to coat the support of a separator, on at least one face, in the form of a monolayer.
  • the application of the coating according to the invention is done by aqueous route.
  • a porous separator is coated on at least one side with the coating composition according to the invention.
  • the separator substrate which is coated with the aqueous coating composition of the invention, as long as it is a porous substrate having pores.
  • the porous substrate can take the form of a membrane or a fibrous fabric.
  • the porous substrate may be a nonwoven web forming a porous web, such as a web obtained by direct spinning or melt-blown (of the “spunbond” or “melt blown” type).
  • porous substrates useful in the invention as a separator include, but are not limited to: polyolefins, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone , polyether sulfone, poly(phenylene oxide), poly(phenylene sulfide), polyethylene naphthalene or mixtures thereof.
  • polyolefins polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone , polyether sulfone, poly(phenylene oxide), poly(phenylene sulfide), polyethylene naphthalene or mixtures thereof.
  • other heat-resistant engineering plastics can be used without particular limitation.
  • Non-woven materials of natural and synthetic materials can also be used as the substrate of the separator.
  • the porous substrate is generally 1 to 50 mih thick, and are typically membranes obtained by extrusion and stretching (wet or dry processes) or cast from nonwovens.
  • the porous substrate preferably has a porosity between 5% and 95%.
  • the average pore size (diameter) is preferably between 0.001 and 50 mih, more preferably between 0.01 and 10 mih.
  • a method for preparing a coated separator according to the invention comprises the following steps: a) coating in an aqueous way by immersion, by spraying, by etching or by slotting at least one side of the separator with a coating monolayer as described above, b) drying said coated separator at a temperature of 25 to 85°C, to form a dry adhesive layer, on the separator.
  • the aqueous implementation of the coating makes it possible to obtain a porous/discontinuous coating having a character permeable to Li ions.
  • the pores correspond to the interstices left between particles.
  • the choice of particles makes it possible to adjust the compromise of desired properties with, as guidelines: inorganic particles which can improve temperature resistance and polymer particles which can provide adhesion while resisting electrolyte solvent(s).
  • the thickness of said coating on at least one side of the separator is from 0.5 to 10 micrometers.
  • the invention also relates to a separator for an electrochemical device chosen from the group: Li-ion battery, capacitor, electrical double-layer capacitor, and membrane-electrode assembly (MEA) for a fuel cell, said separator comprising a porous support and at least a monolayer coating as described above.
  • a separator for an electrochemical device chosen from the group: Li-ion battery, capacitor, electrical double-layer capacitor, and membrane-electrode assembly (MEA) for a fuel cell, said separator comprising a porous support and at least a monolayer coating as described above.
  • the invention relates to a separator for a Li-ion battery coated with the adhesive monolayer coating described above.
  • the invention also relates to an electrochemical device chosen from the group: Li-ion battery, capacitor, electric double-layer capacitor, and membrane-electrode assembly (MEA) for a fuel cell, said device comprising a separator coated with the adhesive monolayer coating described above.
  • an electrochemical device chosen from the group: Li-ion battery, capacitor, electric double-layer capacitor, and membrane-electrode assembly (MEA) for a fuel cell, said device comprising a separator coated with the adhesive monolayer coating described above.
  • the electrochemical device can be manufactured by a conventional method known to those skilled in the art.
  • the electrochemical device is provided by forming an electrode assembly from the organic/inorganic composite porous separator interposed between a cathode and an anode, then injecting an electrolyte into the together.
  • Another object of the invention is a Li-ion secondary battery comprising a negative electrode, a positive electrode and a separator, in which said separator is coated with the adhesive monolayer coating described above.
  • the transfer agent makes it possible to incorporate acrylic acid functions into the P(VDF-HFP) copolymer.
  • the solids content of this latex is about 30-40% by weight.
  • Acrylic latex is obtained in the same way except that no seeds are used.
  • a P(VDF-HFP) copolymer latex was used as a seed to synthesize a latex containing a fluoro-acrylic polymer composition by an emulsion polymerization process in the presence of propane as a transfer agent and poly (ethylene glycol) as a surfactant which does not introduce functionalization as described in the present application.
  • aqueous formulation Preparation of the aqueous formulation, at room temperature ⁇ 22°C: 10g of alumina (Sumitomo Chemical AES-11) are added to 20g of an aqueous solution of CMC (Nippon paper FT-3) at 0.5% by weight , then dispersed in a mixer (Filmix Model 40-L) for 30 sec at 30 m/s.
  • the latex (or the 2 latexes in the case of mixtures of PVDF latex and acrylic latex according to the ratio indicated in the table) so as to incorporate 4g of the corresponding polymer(s) (quantity of latex adjusted according to the rate of solid of each latex in the 30-45% range) and deionized water to make up to a total of 50g of preparation.
  • the mixture is then homogenized with a vertical stirrer (IKA, Euro-ST) for 10 min at 600 rpm.
  • 0.24g of wetting agent (BYK349) is added, intended to facilitate the spreading of the formulation on the separator, by mixing under the same conditions as for the latex.
  • the dispersion obtained is stable and does not show any sedimentation visible to the eye after 30 min at rest.
  • the aqueous formulation is applied at room temperature ⁇ 22°C using a manual applicator (bar coater Hohsen Corp., thickness of the wet deposit ⁇ 23pm, manual application speed approximately 100mm/sec) on a sample of Celgard 2400 separator (single layer PP, thickness 25um, width 89mm, length about 30cm), then dried on a plate at 65°C for 10min.
  • the dry deposit has a thickness measured at 5-6miti according to the samples (micrometer Mitsutoyo Digimatic Indicator IDH053D).
  • the separator obtained has a width of 89 mm and a length of 30 cm.
  • Gurley air permeability the Gurley permeability (Gurley 41 ION densometer with 4320EN auto-timer) of each coated separator is measured, then the permeability of the support (measured at 575sec/100cc) is subtracted to obtain the permeability value of the coating listed in Table 1. A coating permeability of ⁇ 85sec/100cc is considered satisfactory.
  • Polymer weight gain (%) [(Wl-Wlref)-(W0-W0ref)]/(W0-W0ref)* 100*0.286
  • Dry adhesion a 40x90mm sample of coated separator is brought into contact on its coated side with a cathode (NMC111 with PVDF binder, prepared by Elexcel). This assembly is then pressed between 2 rollers (Tester Sangyo, Model: SA-602) at 90° C. and 1.5 kgf/cm with a speed of 2.4 m/min in order to bond the coated separator and the cathode. The assembly is then cut to the dimensions 30x80mm, then fixed by the rear face of the cathode (aluminum collector) on a rigid metal support using double-sided tape applied over the entire surface. On the other side, a single-sided tape is attached to the coating of the separator, leaving the tape to protrude a few cm.
  • a cathode NMC111 with PVDF binder, prepared by Elexcel
  • the free end of the single-sided tape and that of the metal support are taken in the upper and lower jaws, respectively, of the traction bench (Autograph AGS-X, 10 N load cell).
  • the 180° peel test is carried out at room temperature (about 22°C) at a speed of 50mm/sec.
  • the peel force (in N) is measured at the plateau of the curve. This value is related to the width of the sample then indicated in table 1 (in N/m).
  • the separator coating according to the invention has an excellent compromise of properties for the intended application: good dry adhesion, good resistance to electrolyte solvent(s), characterized by good integrity retained and moderate swelling. , and good Gurley permeability.
  • the comparative examples show at least one very unfavorable property for each of the latexes: the PVDF latex alone has low dry adhesion;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Composite Materials (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne un revêtement à base d'un latex de polymère fluoré acrylaté comprenant des particules inorganiques, ledit revêtement présentant un très bon compromis entre, d'une part, adhésion à sec et adhésion à l'état humide, et d'autre part, entre adhésion et conductivité ionique. Ce revêtement est destiné à une application de séparateur, notamment pour les batteries Li-ion. L'invention concerne aussi une batterie Li-ion comprenant un séparateur recouvert d'un tel revêtement.

Description

REVETEMENT DE SEPARATEUR POUR BATTERIES LI-ION A BASE DE LATEX
ACRYLATE DE PVDF
DOMAINE DE L'INVENTION
La présente invention a trait de manière générale au domaine du stockage d’énergie électrique dans des batteries secondaires rechargeables de type Li-ion. Plus précisément, l’invention concerne un revêtement à base d’un latex de polymère fluoré acrylaté comprenant des particules inorganiques, ledit revêtement présentant un très bon compromis entre, d’une part, adhésion à sec et adhésion à l'état humide, et d’autre part, entre adhésion et conductivité ionique. Ce revêtement est destiné à une application de séparateur, notamment pour les batteries Li-ion. L’invention concerne aussi une batterie Li-ion comprenant un séparateur recouvert d’un tel revêtement.
ARRIERE-PLAN TECHNIQUE
Le marché des séparateurs pour dispositifs électrochimiques est dominé par l’utilisation de polyoléfines (par exemple Celgard® ou Hipore®) produits par extrusion et/ou étirement via des procédés sec ou humide. Les séparateurs doivent à la fois présenter de faibles épaisseurs, une affinité optimale pour l’électrolyte et une tenue mécanique et en température suffisante. Parmi les alternatives les plus intéressantes aux polyoléfines, des polymères présentant une meilleure affinité vis-à-vis des électrolytes standards ont été proposés, afin de diminuer les résistances internes du système, tels que le poly(méthylméthacrylate) (PMMA), le poly(fluorure de vinylidène) (PVDL) et le poly(fluorure de vinylidène-hexafluoropropène) (P(VDL-co-HPP)). Une autre option consiste à déposer un revêtement sur une ou deux faces du séparateur en polyoléfine.
Les principaux critères d’évaluation d’un revêtement pour séparateur sont : l’adhésion à sec, l’adhésion à l’état humide, la conductivité ionique et la stabilité à la chaleur.
L’adhésion à sec est mesurée après assemblage, par pressage ou lamination, du séparateur revêtu avec une électrode. Cette adhésion augmente avec la température et la pression appliquée post revêtement. Toutefois, il est souhaitable d’utiliser des conditions de pressage/lamination douces : pression réduite pour éviter/limiter la fermeture des pores et donc minimiser l’impact sur la conductivité ionique, température modérée pour limiter la consommation énergétique et maintenir une vitesse de ligne/productivité élevée. L’adhésion à l’état humide du revêtement sur le séparateur est mesurée après imprégnation par l’électrolyte. Cette adhésion diminue lorsque le revêtement est ramolli par les solvants d’électrolytes, conduisant au gonflement du polymère présent dans le revêtement, éventuellement jusqu’à la dissolution du revêtement. Le pourcentage de gonflement voire la dissolution ou perte d’intégrité sont utilisés comme une première indication des performances d’adhésion à l’état humide.
La conductivité ionique représente la migration des ions Li à travers le séparateur et son revêtement, grâce à la porosité. Dans le revêtement en voie aqueuse, cette porosité correspond aux interstices entre les particules solides qui constituent le revêtement : particules de polymère (issu du latex ou d’une poudre redispersée dans l’eau) et/ou de céramiques. Dans le revêtement en voie solvant, cette porosité est créée par l’inversion de phase (exposition à l’humidité du revêtement base acétone, par exemple) nécessaire avant ou pendant le séchage ; sans inversion de phase, une simple évaporation du solvant forme un revêtement continu non-poreux. La perméabilité à l’air Gurley est utilisée comme une première indication de la conduction ionique. Au-delà de la perméabilité à l’air du séparateur revêtu initial, d’autres aspects peuvent affecter la conductivité ionique : l’interaction avec l’électrolyte (favorable lorsqu’un léger gonflement du polymère permet d’améliorer la mouillabilité/affinité pour l’électrolyte, défavorable lorsque trop de gonflement du polymère conduit à réduire/boucher les pores), l’effet du pressage ou lamination (réduit/bouche les pores).
La stabilité à la chaleur est faible pour les séparateurs en polyoléfine seuls (en PE ou PP ou multicouche PP/PE/PP), qui présentent un retrait important en température. La stabilité thermique peut être nettement améliorée par un revêtement contenant des particules inorganiques.
Le poly(fluorure de vinylidène) (PVDF) et ses dérivés présentent un intérêt comme matériau constitutif principal du séparateur et aussi comme revêtement de séparateur en polyolefine, pour leur stabilité électrochimique, et pour leur constante diélectrique élevée qui favorise la dissociation des ions et donc la conductivité. Le copolymère P(VDF-co-HFP) (copolymère de fluorure de vinylidène (VDF) et d’hexafluoropropylène (HFP)) présente une cristallinité inférieure au PVDF. De ce fait, l’intérêt de ces copolymères de P(VDF-co-HFP) est qu’ils favorisent la conductivité.
Des mélanges de latex de PVDF et de latex acrylique, pour une application en tant que revêtement de séparateur, sont connus. Le document US 2018/0233727 décrit un séparateur pour batterie, contenant un substrat poreux et une couche poreuse adhésive qui est prévue sur un côté ou les deux côtés du substrat poreux et contient un mélange d’une résine de type acrylique comprenant du styrène, et d’une résine de type fluorure de polyvinylidène, la teneur de la résine de type acrylique dans la couche poreuse adhésive étant de 2 à 40% en masse par rapport à une masse totale de la résine de type acrylique et de la résine de type fluorure de polyvinylidène. Ce séparateur présente une bonne adhérence à une électrode par thermopression à sec. Cependant, la préparation du revêtement nécessite une étape préalable de dissolution du PVDF et du polymère acrylique dans un solvant commun (diméthylacétamide et tripropylène glycol), ce qui rend le procédé plus laborieux et plus difficile à appliquer à l’échelle industrielle avec des contraintes environnementales importantes.
Il existe toujours un besoin de développer de nouveaux revêtements pour séparateurs qui soient mis en œuvre facilement et qui présentent un bon compromis entre l’adhésion à sec, l’adhésion à l’état humide, la conductivité ionique et la stabilité à la chaleur.
L’invention a donc pour but de remédier à au moins un des inconvénients de l’art antérieur, à savoir proposer un revêtement polymérique pour séparateur apte à prévenir le gonflement ou la dissolution dans un(des) solvant(s) d’électrolyte, tout en gardant de bonnes propriétés d’adhésion et une bonne conductivité ionique.
L’invention vise également à fournir un procédé de fabrication de ce revêtement polymérique en voie aqueuse.
Un autre objet de l’invention est un séparateur pour dispositif électrochimique, tel qu'une batterie, un condensateur, un condensateur électrique à double couche, un assemblage membrane- électrode (AME) pour pile à combustible, notamment un séparateur pour batterie secondaire Li- ion, comprenant ledit revêtement.
Enfin, l’invention vise à fournir des dispositifs électrochimiques, tels qu'une batterie secondaire Li-ion rechargeable, un condensateur, un condensateur électrique à double couche, un assemblage membrane-électrode (AME) pour pile à combustible, comprenant un tel séparateur.
RESUME DE L’INVENTION
L'objet de l'invention est de fournir un matériau ayant une propriété adhésive améliorée pour un revêtement de séparateur lorsqu'il est utilisé dans une application de dispositif électronique, notamment de batterie lithium-ion. Le matériau est utilisé comme liant polymère ou composant d'adhésion sur le séparateur.
De manière surprenante, il a été trouvé qu’un latex hybride, constitué de particules contenant à la fois un polymère fluoré et un polymère acrylique, et additionné de particules inorganiques, apporte un meilleur compromis de propriétés utilisé en tant que revêtement monocouche en voie aqueuse, par rapport aux revêtements connus. L’invention concerne en premier lieu un revêtement monocouche pour séparateur, ledit revêtement contenant une résine polymère hybride fluoré-acrylique et des particules inorganiques, la partie polymère fluoré de ladite résine étant à base de difluorure de vinylidène.
La résine polymère hybride fluoré-acrylique est sous forme d’un latex, défini comme étant une dispersion colloïdale de polymères dispersés dans une phase continue (généralement aqueuse). Les particules de latex présentent une morphologie de type réseau interpénétré (IPN) avec des chaînes de polymère fluoré et de polymère acrylique, intimement mélangées. La résine polymère hybride fluoré-acrylique comprend un polymère fluoré modifié par un polymère acrylique. Ledit polymère fluoré, à base de fluorure de polyvinylidène, est choisi dans le groupe des homopolymères de fluorure de polyvinylidène et des copolymères à base de fluorure de polyvinylidène et d’au moins un comonomère compatible avec le fluorure de vinylidène, notamment avec l’hexafluoropropylène. La phase acrylique de la résine peut contenir des résidus de monomères ayant des groupes fonctionnels, ce qui permet à la phase acrylique de se réticuler.
L’invention concerne également un séparateur pour dispositif électrochimique choisi dans le groupe : batterie Li-ion, condensateur, condensateur électrique à double couche, et assemblage membrane-électrode pour pile à combustible, ledit séparateur comprenant un support poreux et au moins un revêtement monocouche tel que défini ci-dessus.
Selon un mode de réalisation, ledit séparateur convient pour une utilisation dans une batterie rechargeable Li-ion.
Un autre objet de l’invention est un dispositif électrochimique choisi dans le groupe : batterie Li-ion, condensateur, condensateur électrique à double couche, et assemblage membrane- électrode (AME) pour pile à combustible, comprenant ledit séparateur.
L’invention à trait enfin à une batterie Li-ion comprenant une électrode négative, une électrode positive et un séparateur, dans laquelle ledit séparateur comprenant un support poreux et au moins un revêtement monocouche tel que défini ci-dessus.
La présente invention permet de surmonter les inconvénients de l’état de la technique. Elle fournit plus particulièrement un revêtement adhésif monocouche pour séparateur, capable de prévenir le gonflement excessif ou la dissolution dans un(des) solvant(s) d’électrolyte, tout en gardant de bonnes propriétés d’adhésion au support du séparateur et à une électrode, une bonne perméabilité et une bonne conductivité ionique.
DESCRIPTION DE MODES DE REALISATION DE L’INVENTION
L’invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit. Selon un premier aspect, l’invention concerne un revêtement monocouche pour séparateur, ledit revêtement contenant une résine polymère hybride fluoré-acrylique et des particules inorganiques.
Selon diverses réalisations, ledit revêtement comprend les caractères suivants, le cas échéant combinés. Les teneurs indiquées sont exprimées en poids, sauf si indiqué autrement. Pour toutes les gammes indiquées, les bornes sont comprises, sauf si indiqué autrement.
La résine polymère hybride fluoré-acrylique est constituée d’un polymère fluoré acrylaté. Les polymères fluorés utilisés dans l'invention comme semence pour la polymérisation acrylique sont à base de difluorure de vinylidène et sont désignés génériquement par l’abréviation PVDF.
Selon un mode de réalisation, le PVDF est le poly(fluorure de vinylidène) homopolymère.
Selon un mode de réalisation, le PVDF est un copolymère du difluorure de vinylidène avec au moins un comonomère compatible avec le difluorure de vinylidène.
Les comonomères compatibles avec le difluorure de vinylidène peuvent être halogénés (fluorés, chlorés ou bromés) ou non-halogénés.
Des exemples de comonomères fluorés appropriés sont : le fluorure de vinyle, le tétrafluoroéthylène, l’hexafluoropropylène, les trifluoropropènes et notamment le 3,3,3- trifluoropropène, les tétrafluoropropènes et notamment le 2,3,3,3-tétrafluoropropène ou le 1, 3,3,3- tétrafluoropropène, l’hexafluoroisobutylène, le perfluorobutyléthylène, les pentafluoropropènes et notamment le 1,1,3,3,3-pentafluoropropène ou le 1,2,3,3,3-pentafluoropropène, les perfluoroalkylvinyléthers et notamment ceux de formule générale Rf-0-CF-CF2, Rf étant un groupement alkyle, de préférence en Cl à C4 (des exemples préférés étant le perfluoropropylvinyléther et le perfluorométhylvinyléther).
Le comonomère fluoré peut comporter un atome de chlore ou de brome. Il peut en particulier être choisi parmi le bromotrifluoroéthylène, le chlorofluoroethylène, le chlorotrifhioroéthylène et le chlorotrifluoropropène. Le chlorofluoroéthylène peut désigner soit le 1-chloro-l-fluoroéthylène, soit le l-chloro-2-fluoroéthylène. L’isomère 1-chloro-l-fhioroéthylène est préféré. Le chlorotrifluoropropène est de préférence le l-chloro-3,3,3-trifluoropropène ou le 2- chloro-3,3,3-trifluoropropène.
Le copolymère de VDF peut aussi comprendre des monomères non halogénés tels que l’éthylène, et/ou des comonomères acryliques ou méthacryliques.
Le polymère fluoré contient de préférence au moins 50 % en moles difluorure de vinylidène. Selon un mode de réalisation, le PVDF est un copolymère de fluorure de vinylidène (VDF) et d’hexafluoropropylène (HFP)) (P(VDF-HFP)), ayant un pourcentage en poids d'unités monomères d'hexafluoropropylène de 2 à 23 %, de préférence de 4 à 15 % en poids par rapport au poids du copolymère.
Selon un mode de réalisation, le PVDF est un copolymère de fluorure de vinylidène et de tétrafluoroéthylène (TFE).
Selon un mode de réalisation, le PVDF est un copolymère de fluorure de vinylidène et de chlorotrifluoroéthylène (CTFE).
Selon un mode de réalisation, le PVDF est un terpolymère de VDF-TFE-HFP. Selon un mode de réalisation, le PVDF est un terpolymère VDF-TrFE-TFE (TrFE étant le trifluoroéthylène). Dans ces terpolymères, la teneur massique en VDF est d’au moins 10%, les comonomères étant présents en proportions variables.
Selon un mode de réalisation, le PVDF comprend des unités monomères portant au moins l’une des fonctions suivantes: acide carboxylique, anhydride d’acide carboxylique, esters d’acide carboxylique, groupes époxy (tel que le glycidyle), amide, hydroxyle, carbonyle, mercapto, sulfure, oxazoline, phénoliques, ester, éther, siloxane, sulfonique, sulfurique, phosphorique, phosphonique. Fa fonction est introduite par une réaction chimique qui peut être du greffage, ou une copolymérisation du monomère fluoré avec un monomère portant au moins un desdits groupes fonctionnels et une fonction vinylique capable de copolymériser avec le monomère fluoré, selon des techniques bien connues par l’homme du métier.
Selon un mode de réalisation, le groupement fonctionnel est porteur d’une fonction acide carboxylique qui est un groupe de type acide (méth) acrylique choisi parmi l’acide acrylique, l’acide méthacrylique, hydroxyéthyl(méth)acrylate, hydroxypropyl(méth)acrylate et hydroxyéthylhexyl (méth) acrylate .
Selon un mode de réalisation, les unités portant la fonction acide carboxylique comprennent en outre un hétéroatome choisi parmi l’oxygène, le soufre, l’azote et le phosphore.
Selon un mode de réalisation, la fonctionnalité est introduite par l’intermédiaire de l’agent de transfert utilisé lors du procédé de synthèse. F’ agent de transfert est un polymère de masse molaire inférieure ou égale à 20000 g/mol et porteur de groupes fonctionnels choisis parmi les groupes : acide carboxylique, anhydride d’acide carboxylique, esters d’acide carboxylique, les groupes époxy (tel que le glycidyle), amide, hydroxyle, carbonyle, mercapto, sulfure, oxazoline, phénoliques, ester, éther, siloxane, sulfonique, sulfurique, phosphorique, phosphonique. Un exemple d’agent de transfert de ce type sont les oligomères d’acide acrylique. Selon un mode de réalisation préféré, l’agent de transfert est un oligomère d’acide acrylique de masse molaire inférieure ou égale à 20000 g/mol.
La teneur en groupes fonctionnels du PVDF est d’au moins 0,01% molaire, de préférence d’au moins 0,1 % molaire, et au plus de 15% molaire, de préférence au plus 10% molaire.
Le PVDF a de préférence un poids moléculaire élevé. Par poids moléculaire élevé, tel qu'utilisé ici, on entend un PVDF ayant une viscosité à l'état fondu supérieure à 100 Pa.s, de préférence supérieure à 500 Pa.s, plus préférablement supérieure à 1000 Pa.s, selon la méthode ASTM D-3835 mesurée à 232°C et 100 sec 1.
Les PVDF homopolymères et les copolymères de VDF utilisés dans l’invention peuvent être obtenus par des méthodes de polymérisation connues comme la polymérisation en émulsion ou en suspension.
Selon un mode de réalisation, ils sont préparés par un procédé de polymérisation en émulsion en l’absence d’agent tensioactif fluoré.
La polymérisation du PVDF aboutit à un latex ayant généralement une teneur en solides de 10 à 60 % en poids, de préférence de 10 à 50 %, et ayant une taille de particule moyenne en poids inférieure à 1 micromètre, de préférence inférieure à 1000 nm, de préférence inférieure à 800 nm, et plus préférablement inférieure à 600 nm. La taille moyenne en poids des particules est généralement d'au moins 20 nm, de préférence d'au moins 50 nm, et avantageusement la taille moyenne est comprise dans la gamme de 100 à 400 nm. Les particules de polymère peuvent former des agglomérats dont la taille moyenne en poids est de 1 à 30 micromètres, et de préférence de 2 à 10 micromètres. Les agglomérats peuvent se briser en particules discrètes pendant la formulation et l'application sur un substrat.
Selon certains modes de réalisation, le PVDF homopolymère et les copolymères de VDF sont composés de VDF biosourcé. Le terme « biosourcé » signifie « issu de la biomasse ». Ceci permet d’améliorer l’empreinte écologique de la membrane. Le VDF biosourcé peut être caractérisé par une teneur en carbone renouvelable, c’est-à-dire en carbone d’origine naturelle et provenant d’un biomatériau ou de la biomasse, d'au moins 1 % atomique comme déterminé par la teneur en 14C selon la norme NF EN 16640. Le terme de « carbone renouvelable » indique que le carbone est d’origine naturelle et provient d'un biomatériau (ou de la biomasse), comme indiqué ci-après. Selon certains modes de réalisation, la teneur en bio-carbone du VDF peut être supérieure à 5%, de préférence supérieure à 10%, de préférence supérieure à 25%, de préférence supérieure ou égale à 33%, de préférence supérieure à 50%, de préférence supérieure ou égale à 66%, de préférence supérieure à 75%, de préférence supérieure à 90%, de préférence supérieure à 95%, de préférence supérieure à 98%, de préférence supérieure à 99%, avantageusement égale à 100%. La résine polymère hybride fluoré- acrylique est synthétisée par polymérisation en émulsion de monomères acrylate/méthacrylate en utilisant un latex dudit polymère fluoré comme semence, ce qui donne une composition hybride polymère fluoré- acrylique. La partie acrylique du polymère fluoré modifié par l'acrylique est éventuellement capable de réticulation (selon le choix des monomères acryliques utilisés).
Selon un mode de réalisation, l'acrylate d'alkyle avec un groupe alkyle ayant de 1 à 18 atomes de carbone, utilisé comme monomère à polymériser en émulsion en présence des particules de polymère de PVDF, comprend : l'acrylate de méthyle, l'acrylate d'éthyle, l'acrylate de propyle, l'acrylate de n-butyle, l'acrylate d'isobutyle, l’acrylate de t-butyle, l’acrylate de n-dodécyle, l'acrylate d'amyle, l'acrylate d'isoamyle, l'acrylate d'hexyle, l'acrylate de 2-éthylhexyle, l'acrylamide de diacétone, l'acrylate de lauryle, et l’acrylate de n-octyle. Parmi ceux-ci, les acrylates d'alkyle avec un groupe alkyle ayant de 1 à 8 atomes de carbone sont préférés, et les acrylates d'alkyle avec un groupe alkyle ayant de 1 à 5 atomes de carbone sont plus préférables. Ces composés peuvent être utilisés seuls ou en mélange de deux ou plusieurs.
Le terme « acrylate » comprend ici et les acrylates et les méthacrylates.
Le composé éthyléniquement insaturé facultatif copolymérisable avec l'acrylate d'alkyle et le méthacrylate d'alkyle comprend :
- (A) un composé alcényle contenant un groupe fonctionnel, et
- (B) un composé alcényle sans groupe fonctionnel.
Le composé alcényle (A) contenant un groupe fonctionnel comprend, par exemple, des acides carboxyliques a,b-insaturés tels que l'acide acrylique, l'acide méthacrylique, l'acide fumarique, l'acide crotonique, l'acide itaconique et similaires ; des composés esters vinyliques tels que l'acétate de vinyle, le vinyle néodécanoate et similaires ; les composés amides tels que l'acrylamide, le méthacrylamide, le N-méthylacrylamide, le N-méthylméthacrylamide, le N- méthylolacrylamide, le N-méthylolméthacrylamide, le N-alkylacrylamide, le N- alkylméthacrylamide, le N,N-dialkylacrylamide, le N,N-dialkylméthacrylamide, le diacétone acrylamide et similaires ; les esters d'acide acrylique tels que l'acrylate de 2-hydroxyéthyle, l'acrylate de N-dialkylaminoéthyle, l'acrylate de glycidyle, l'acrylate de n-dodecyl, l'acrylate de fluoroalkyle et similaires ; les esters d'acide méthacrylique tels que le méthacrylate de dialkylaminoéthyle, le méthacrylate de fluoroalkyle, le méthacrylate de 2-hydroxyéthyle, le méthacrylate de n-octyle, t-butyl méthacrylate, le méthacrylate de glycidyle, le diméthacrylate d'éthylène glycol et similaires ; l’anhydride maléique, et les composés d'éther de glycidyle alcénylique tels que l'éther de glycidyle allylique et similaires. Parmi ceux-ci, on préfère l'acide acrylique, l'acide méthacrylique, l'acide itaconique, l'acide fumarique, le N-méthylolacrylamide, le N-méthylolméthacrylamide, l'acrylamide de diacétone, l'acrylate de 2-hydroxyéthyle, le méthacrylate de 2-hydroxyéthyle et l'éther glycidylique d'allyle. Ces composés peuvent être utilisés seuls ou en mélange de deux ou plusieurs.
Le composé alcénylique sans groupe fonctionnel (B) comprend, par exemple, des diènes conjugués tels que le 1,3-butadiène, l'isoprène et similaires ; des composés hydrocarbonés divinyliques tels que le benzène divinylique et similaires ; et des cyanures alcényliques tels que l'acrylonitrile, le méthacrylonitrile et similaires. Parmi ceux-ci, les préférés sont le 1,3-butadiène, et l'acrylonitrile. Ces composés peuvent être utilisés seuls ou en mélange de deux ou plusieurs.
Il est préférable que le composé alcényle fonctionnel (A) soit utilisé dans une proportion inférieure à 50% en poids par rapport au poids du mélange de monomères et que le composé alcényle sans groupe fonctionnel (B) soit utilisé dans une proportion inférieure à 30% en poids par rapport au poids du mélange de monomères.
Selon un mode de réalisation, la résine polymère fluoré modifiée acrylique utilisée dans le cadre de l’invention peut se réticuler soit par auto-condensation de ses groupes fonctionnels, soit par réaction avec un catalyseur et/ou un agent de réticulation, tels que les résines mélamine, les résines époxy et similaires, ainsi que les agents de réticulation connus de faible poids moléculaire tels que les polyisocyanates di- ou supérieurs, les polyaziridines, les polycarbodiimides, les polyoxazolines, les dialdéhydes tels que le glyoxal, les acétoacétates, les malonates, les acétals, les thiols et les acrylates di- et trifonctionnels, les molécules époxy cycloaliphatiques, les organosilanes tels que les époxysilanes et les amino silanes, les carbamates, les diamines et les triamines, les agents chélateurs inorganiques tels que certains sels de zinc et de zirconium, les titanes, les glycouriles et d'autres aminoplastes. Dans certains cas, des groupes fonctionnels provenant d'autres ingrédients de polymérisation, tels que les tensioactifs, les initiateurs, les particules d'ensemencement, peuvent être impliqués dans la réaction de réticulation. Lorsque deux ou plusieurs groupes fonctionnels sont impliqués dans le processus de réticulation, les paires de groupes réactifs complémentaires sont, par exemple, hydroxyle-isocyanate, acide-époxy, amine- époxy, hydroxyle-mélamine, acétoacétate-acide.
Les monomères d'acrylate et/ou de méthacrylate ne contenant pas de groupes fonctionnels capables d'entrer dans des réactions de réticulation après la polymérisation, doivent, de préférence, représenter 70 % ou plus en poids du mélange total de monomères, et plus préférablement, doivent être supérieurs à 90 % en poids. Selon un mode de réalisation, la résine polymère fluoré- acrylique comprend un agent de réticulation choisi dans le groupe constitué par les isocyanates, les diamines, l'acide adipique, les dihydrazides et leurs combinaisons.
Selon un mode de réalisation, la résine polymère fluoré- acrylique ne réticule pas, et est présente sous forme non-réticulée dans le revêtement pour séparateur selon l’invention.
La résine polymère hybride fluoré- acrylique est une dispersion aqueuse obtenue par polymérisation en émulsion de 5 à 100, de préférence 5-95 parties en poids d'un mélange de monomères ayant au moins un monomère choisi dans le groupe constitué par les acrylates d'alkyle dont les groupes alkyle ont 1-18 atomes de carbone et les méthacrylates d'alkyle dont les groupes alkyle ont 1-18 atomes de carbone et éventuellement un composé éthyléniquement insaturé copolymérisable avec les acrylates d'alkyle et les méthacrylates d'alkyle, dans un milieu aqueux en présence de 100 parties en poids de particules d'un polymère de fluorure de vinylidène tel que défini ci-dessus. Les particules de PVDF servent de semence à la polymérisation des monomères acryliques.
Les particules de PVDF peuvent être ajoutées dans n'importe quel état au système de polymérisation, tant qu'elles sont dispersées dans un milieu aqueux sous forme de particules. Comme le polymère de fluorure de vinylidène est généralement produit sous forme de dispersion aqueuse, il est pratique que la dispersion aqueuse telle que produite soit utilisée comme particules d'ensemencement. Les diamètres des particules de fluorure de vinylidène se situent dans la gamme de préférence de 0,04 à 2,9 micromètres. Dans un mode de réalisation préféré, le diamètre des particules de polymère est de préférence de 50 nm à 700 nm.
Le produit de la polymérisation est un latex qui peut être utilisé sous cette forme, généralement après filtration des sous-produits solides du processus de polymérisation. Pour l'utilisation sous forme de latex, le latex peut être stabilisé par l'addition d'un agent tensioactif, qui peut être identique ou différent de l'agent tensioactif présent pendant la polymérisation (le cas échéant). Ce tensioactif ajouté ultérieurement peut, par exemple, être un tensioactif ionique ou non ionique.
Les particules de PVDF utilisées comme semence peuvent avoir un caractère homogène ou hétérogène ou gradient entre le cœur et la surface des particules, en termes de composition (teneur en comonomère HFP, par exemple) et/ou de masse moléculaire.
Dans la résine polymère hybride fluoré-acrylique, le rapport massique PVDF/polymère acrylique varie de 95/5 à 5/95, de préférence de 75/25 à 25/75, avantageusement de 60/40 à 40/60.
Dans la résine polymère hybride fluoré-acrylique, le diamètre moyen des particules est de 0,05-3 pm, de préférence de 0,05-1 pm, plus préférentiellement de 0,1-1 pm. La résine polymère hybride fluoré- acrylique se caractérise par un mélange intime entre les chaînes de polymère fluoré et les chaînes de polymère acrylique.
Le revêtement pour séparateur selon l’invention contient, en plus de la résine polymère hybride fluoré-acrylique décrite, des particules inorganiques qui servent à former des micropores dans le revêtement (les interstices entre particules inorganiques). L’assemblage de ces particules inorganiques contribuent également à la résistance à la chaleur.
Selon un mode de réalisation, ledit revêtement comprend de 50 à 99 pour cent en poids de particules inorganiques, par rapport au poids du revêtement.
Ces particules inorganiques doivent être électrochimiquement stables (non soumises à l'oxydation et/ou à la réduction dans la gamme des tensions utilisées). En outre, les matériaux inorganiques pulvérulents ont de préférence une conductivité ionique élevée. Les matériaux de faible densité sont préférés aux matériaux de densité plus élevée, car le poids de la batterie produite peut être réduit. La constante diélectrique est de préférence égale ou supérieure à 5.
Selon un mode de réalisation, lesdites particules inorganiques sont choisies dans le groupe consistant en : BaTiCL, Pb(Zr,Ti)03, Pb i-x LaxZry03 (0<x<l, 0<y<l), PBMg3Nb2/3)3,PbTi03, hafnie (HfO (Hft>2), SrTiO 3, Sn02, Ce02, MgO, NiO, CaO, ZnO, Y20 , bohémite (y-AlO(OH)), ALO3, Ti02, SiC, Zr02, silicate de bore, BaSCL, nano-argiles, ou leurs mélanges.
Dans le revêtement pour séparateur selon l’invention, le rapport des solides du polymère aux particules inorganiques est de 0,5 à 30 parties en poids de solides de la résine polymère hybride fluoré-acrylique pour 70 à 99,5 parties en poids de particules inorganiques, de préférence de 0,5 à 25, puis 0,5 à 20, puis de 0,5 à 15 parties en poids de solides du polymère pour 85 à 99,5 parties en poids de particules inorganiques, plus préférablement de 1 à 10 parties en poids de solides du polymère pour 90 à 99 parties en poids de particules inorganiques, et dans un mode de réalisation de 0,5 à 8 parties en poids de solides du polymère pour 92 à 99,5 parties en poids de particules inorganiques.
Le revêtement pour séparateur de l'invention peut éventuellement comprendre de 0 à 15 pour cent en poids sur la base du polymère, et de préférence 0,1 à 10 pour cent en poids d'additifs, choisis parmi les épaississants, les agents d'ajustement du pH, les agents anti-sédimentation, les tensioactifs, les agents mouillants, les charges, les agents anti-mousse et les promoteurs d'adhésion fugitive ou non.
Le revêtement pour séparateur de l'invention présente un excellent compromis de propriétés pour l’application de revêtement pour séparateur en voie aqueuse, monocouche, avec particules inorganiques: une bonne adhérence à sec, une bonne résistance au(x) solvant(s) d’électrolyte caractérisée par une bonne intégrité conservée et un gonflement modéré, et une bonne perméabilité Gurley. Des méthodes pouvant être utilisées pour caractériser ces propriétés sont décrites dans les exemples.
Le revêtement décrit ci-dessus est utilisé pour enrober le support d’un séparateur, sur au moins une face, sous forme d’une monocouche.
Avantageusement, l’application du revêtement selon l’invention se fait en voie aqueuse.
Un séparateur poreux est revêtu sur au moins une face avec la composition de revêtement selon l’invention. Il n'y a pas de limitation particulière dans le choix du substrat séparateur qui est revêtu de la composition aqueuse de revêtement de l'invention, tant qu'il s'agit d'un substrat poreux ayant des pores.
Le substrat poreux peut prendre la forme d'une membrane ou d'un tissu fibreux. Lorsque le substrat poreux est fibreux, il peut s'agir d'un voile non tissé formant un voile poreux, tel qu'un voile obtenu par filature directe ou fusion- soufflage (de type « spunbond » ou « melt blown »).
Des exemples de substrats poreux utiles dans l'invention en tant que séparateur comprennent, sans s'y limiter : les polyoléfines, le polyéthylène téréphtalate, le polybutylène téréphtalate, le polyester, le polyacétal, le polyamide, le polycarbonate, le polyimide, la polyétheréthercétone, la polyéther sulfone, le poly(oxyde de phénylène), le poly(sulfure de phénylène), le polyéthylène naphtalène ou leurs mélanges. Cependant, d'autres plastiques techniques résistants à la chaleur peuvent être utilisés sans limitation particulière. Des matériaux non tissés en matériaux naturels et synthétiques peuvent également être utilisés comme substrat du séparateur.
Le substrat poreux a généralement une épaisseur de 1 à 50 mih, et sont typiquement des membranes obtenues par extrusion et étirage (procédés humide ou à sec) ou coulées de non-tissés. Le substrat poreux a de préférence une porosité comprise entre 5% et 95%. La taille moyenne des pores (diamètre) est de préférence comprise entre 0,001 et 50 mih, plus préférablement entre 0,01 et 10 mih.
Selon un mode de réalisation, un procédé de préparation d’un séparateur revêtu selon l’invention comprend les étapes suivantes : a) enduire en voie aqueuse par immersion, par pulvérisation, par gravure ou par fente au moins un côté du séparateur avec un revêtement monocouche tel que décrit ci-dessus, b) sécher ledit séparateur revêtu à une température de 25 à 85°C, pour former une couche adhésive sèche, sur le séparateur.
La mise en œuvre en voie aqueuse du revêtement permet d’obtenir un revêtement poreux/discontinu ayant un caractère perméable aux ions Li. Les pores correspondent aux interstices laissés entre particules. Le choix des particules permet d’ajuster le compromis de propriétés souhaité avec, comme lignes directrices : des particules inorganiques qui peuvent améliorer la tenue en température et des particules polymères qui peuvent apporter de l’adhésion tout en résistant au(x) solvant(s) d’électrolyte.
Selon un mode de réalisation, l'épaisseur dudit revêtement sur au moins un côté du séparateur est de 0,5 à 10 micromètres.
L’invention concerne également un séparateur pour dispositif électrochimique choisi dans le groupe : batterie Li-ion, condensateur, condensateur électrique à double couche, et assemblage membrane-électrode (AME) pour pile à combustible, ledit séparateur comprenant un support poreux et au moins un revêtement monocouche tel que décrit ci-dessus.
Selon un mode de réalisation, l’invention concerne un séparateur pour batterie Li-ion enrobé du revêtement monocouche adhésif décrit ci-dessus.
L’invention concerne également un dispositif électrochimique choisi dans le groupe : batterie Li-ion, condensateur, condensateur électrique à double couche, et assemblage membrane- électrode (AME) pour pile à combustible, ledit dispositif comprenant un séparateur enrobé du revêtement monocouche adhésif décrit ci-dessus.
Le dispositif électrochimique peut être fabriqué par une méthode conventionnelle connue de l'homme de l'art. Dans un mode de réalisation du procédé de fabrication du dispositif électrochimique, le dispositif électrochimique est fourni en formant un ensemble d'électrodes à partir du séparateur poreux composite organique/inorganique interposé entre une cathode et une anode, puis en injectant un électrolyte dans l'ensemble.
Un autre objet de l’invention est une batterie secondaire Li-ion comprenant une électrode négative, une électrode positive et un séparateur, dans laquelle ledit séparateur est enrobé du revêtement monocouche adhésif décrit ci-dessus.
EXEMPLES
Les exemples suivants illustrent de façon non limitative la portée de l’invention.
Les exemples selon l’invention et exemples comparatifs décrits ci-dessous ont été réalisés selon le même protocole, mais en utilisant un latex - ou un mélange de deux latex - différent pour chaque exemple. Le tableau 1 récapitule les différents latex utilisés, leur caractéristique principale, et les résultats obtenus pour chacun. Préparation des latex : Un latex de copolymère P(VDF-HFP) a été utilisé comme semence pour synthétiser un latex contenant une composition polymère fluoré-acrylique par un procédé de polymérisation en émulsion en présence d’un agent de transfert de type oligomères d’acide acrylique de masse molaire inférieur à 20000 g/mol (exemple 1 et 2). L’agent de transfert permet d’incorporer des fonctions acide acrylique dans le copolymère P(VDF-HFP). La teneur en solides de ce latex est d'environ 30 à 40 % en poids. Le latex acrylique est obtenu de la même manière excepté qu’aucune semence n’est utilisée. A l’exemple 3, un latex de copolymère P(VDF-HFP) a été utilisé comme semence pour synthétiser un latex contenant une composition polymère fluoré- acrylique par un procédé de polymérisation en émulsion en présence de propane comme agent de transfert et de poly(ethylene glycol) comme surfactant qui n’introduit pas de fonctionnalisation telle que décrit dans la présente demande.
Préparation de la formulation aqueuse, à température ambiante ~22°C: 10g d’alumine (Sumitomo Chemical AES-11) sont ajoutés dans 20g d’une solution aqueuse de CMC (Nippon paper FT-3) à 0,5% en poids, puis dispersés dans un mélangeur (Filmix Model 40-L) pendant 30sec à 30m/s. A cette dispersion on ajoute le latex (ou les 2 latex dans le cas des mélanges de latex PVDF et latex acrylique selon le ratio indiqué dans le tableau) de sorte à incorporer 4g du ou des polymères correspondants (quantité de latex ajustée selon le taux de solide de chaque latex dans la gamme 30-45%) et de l’eau déminéralisée pour compléter à un total de 50g de préparation. Le mélange est ensuite homogénéisé avec un agitateur vertical (IKA, Euro-ST) pendant 10min à 600rpm. A 48g de ce mélange, on ajoute 0,24g d’agent mouillant (BYK349), destiné à faciliter l’étalement de la formulation sur le séparateur, en mélangeant dans les mêmes conditions que pour le latex. La dispersion obtenue est stable et ne montre pas de sédimentation visible à l’œil après 30min au repos.
Préparation du séparateur revêtu: la formulation aqueuse est appliquée à température ambiante ~22°C à l’aide d’un applicateur manuel (bar coater Hohsen Corp., épaisseur du dépôt humide ~23pm, vitesse d’application manuelle environ lOOmm/sec) sur un échantillon de séparateur Celgard 2400 (PP monocouche, épaisseur 25um, largeur 89mm, longueur environ 30cm), puis séchée sur une plaque à 65°C pendant 10min. Le dépôt sec a une épaisseur mesurée à 5-6miti selon les échantillons (micromètre Mitsutoyo Digimatic Indicator IDH053D). Le séparateur obtenu a une largeur de 89 mm et une longueur de 30 cm. Perméabilité à l’air Gurley: on mesure la perméabilité Gurley (densomètre Gurley 41 ION avec auto-timer 4320EN) de chaque séparateur revêtu, puis on soustrait la perméabilité du support (mesurée à 575sec/100cc) pour obtenir la valeur de perméabilité du revêtement indiquée dans le tableau 1. Une perméabilité de revêtement <85sec/100cc est considérée satisfaisante.
Résistance aux solvants d’électrolyte, évaluée via le gonflement voire dissolution du liant de revêtement et/ou la perte d’intégrité: un échantillon de 50x60mm de chaque séparateur revêtu est pesé (W0) puis immergé dans un mélange de solvants d’électrolyte EC/EMC=3/7 en volume, à température ambiante ~22°C, pendant 96h. Il est ensuite sorti du bain et essuyé sur ses deux faces, puis pesé (Wl). Enfin on le place à l’étuve à 120°C pendant 24h, puis le pèse une dernière fois (W2). La même opération est réalisée avec un échantillon du séparateur non-revêtu comme référence, et conduit aux pesées notées WOref, Wlref, W2ref. Enfin, puisque le revêtement contient 28,6% de polymère issu du latex, on calcule les grandeurs suivantes :
Prise en poids du polymère (%): [(Wl-Wlref)-(W0-W0ref)]/(W0-W0ref)* 100*0,286
Gonflement du polymère (%):[(W1-Wlref)-(W2-W2ref)]/(W2-W2ref)*100*0,286
Extractible du polymère (dissout) (%):[(W0-W0ref)-(W2-W2ref)]/(W0-W0ref)*100*0,286
Ces grandeurs supposent que seul le polymère issu du latex gonfle ou est dissout par les solvants d’électrolyte, et que l’alumine (composant majoritaire du revêtement) reste dans le revêtement. On vérifie donc aussi visuellement s’il reste des solides ou particules dans le bain et/ou si le revêtement s’est détaché du séparateur support ou se détache facilement en frottant légèrement avec le doigt (perte d’intégrité), auquel cas la résistance aux solvants d’électrolyte est considérée insuffisante et aucune autre indication (prise en poids, gonflement, extractible du polymère) n’est reportée dans le tableau.
Adhésion sèche: un échantillon de 40x90mm de séparateur revêtu est mis en contact sur sa face revêtue avec une cathode (NMC111 avec liant PVDF, préparée par Elexcel). Cet assemblage est ensuite pressé entre 2 rouleaux (Tester Sangyo, Model: SA-602) à 90°C et l,5kgf/cm avec une vitesse de 2,4m/min afin de coller le séparateur revêtu et la cathode. L’assemblage est ensuite découpé aux dimensions 30x80mm, puis fixé par la face arrière de la cathode (collecteur en aluminium) sur un support métallique rigide grâce à un scotch double face appliqué sur toute la surface. Sur l’autre face, un scotch simple face est fixé sur le revêtement du séparateur en laissant dépasser le scotch de quelques cm. L’extrémité libre du scotch simple face et celle du support métallique sont prises dans les mors haut et bas, respectivement, du banc de traction (Autograph AGS-X, cellule de force 10 N). Le test de pelage à 180° est réalisé à température ambiante (environ 22°C) à une vitesse de 50mm/sec. La force de pelage (en N) est mesurée au plateau de la courbe. Cette valeur est rapportée à la largeur de l’échantillon puis indiquée dans le tableau 1 (en N/m).
Tableau 1]
Le revêtement pour séparateur selon l'invention présente un excellent compromis de propriétés pour l’application visée : une bonne adhérence à sec, une bonne résistance au(x) solvant(s) d’électrolyte caractérisée par une bonne intégrité conservée et un gonflement modéré, et une bonne perméabilité Gurley.
A contrario, les exemples comparatifs montrent au moins une propriété très défavorable pour chacun des latex : - le latex de PVDF seul présente une faible adhésion sèche ;
- le latex d’acrylique seul présente une faible résistance au solvant d’électrolyte, et
- le mélange de ces deux types de latex présente une faible résistance au solvant d’électrolyte.

Claims

REVENDICATIONS
1. Revêtement monocouche pour séparateur, ledit revêtement comprenant une résine polymère hybride fluoré- acrylique et des particules inorganiques, le polymère fluoré étant choisi dans le groupe des homopolymères de fluorure de polyvinylidène et des copolymères à base de fluorure de polyvinylidène et d’au moins un comonomère compatible avec le fluorure de vinylidène.
2. Revêtement selon la revendication 1, dans lequel lesdits comonomères sont choisi parmi : le fluorure de vinyle, le tétrafluoroéthylène, l’hexafluoropropylène, les trifluoropropènes, les tétrafluoropropènes, l’hexafluoroisobutylène, le perfhiorobutyléthylène, les pentafluoropropènes, les perfhioroalkylvinyléthers le bromotrifluoroéthylène, le chlorofluoroethylène, le chlorotrifhioroéthylène, le chlorotrifluoropropène et l’éthylène.
3. Revêtement selon l’une des revendications 1 ou 2, dans lequel ledit polymère fluoré est un copolymère de fluorure de polyvinylidène-hexafluoropropylène ayant un pourcentage en poids d'unités monomères d'hexafluoropropylène de 2 à 23 %, de préférence de 4 à 15 % en poids par rapport au poids du copolymère.
4. Revêtement selon l’une quelconque des revendications 1 à 3, dans lequel ledit polymère fluoré comprend des unités monomères portant au moins l’une des fonctions suivantes: acide carboxylique, anhydride d’acide carboxylique, esters d’acide carboxylique, groupes époxy, amide, hydroxyle, carbonyle, mercapto, sulfure, oxazoline, phénoliques, ester, éther, siloxane, sulfonique, sulfurique, phosphorique, ou phosphonique.
5. Revêtement selon l’une quelconque des revendications 1 à 4, dans lequel la partie acrylique contient un monomère choisi dans le groupe constitué par l'acrylate de méthyle, l'acrylate d'éthyle, l'acrylate de propyle, l'acrylate de n-butyle, l'acrylate d'isobutyle, l’acrylate de t-butyle, l’acrylate de n-dodécyle, l'acrylate d'amyle, l'acrylate d'isoamyle, l'acrylate d'hexyle, l'acrylate de 2-éthylhexyle, l'acrylamide de diacétone, l'acrylate de lauryle, l’acrylate de n-octyle, et leurs combinaisons.
6. Revêtement selon l’une quelconque des revendications 1 à 5, dans lequel dans la résine polymère hybride fluoré-acrylique, le rapport massique PVDF/polymère acrylique varie de 95/5 à 5/95, de préférence de 75/25 à 25/75, avantageusement de 60/40 à 40/60.
7. Revêtement selon l’une quelconque des revendications 1 à 6, dans lequel lesdites particules inorganiques sont choisies dans le groupe consistant en : BaTi03, Pb(Zr,Ti)03, Pb i-x LaxZry03 (0<x<l, 0<y<l), PBMg3Nb2/3)3,PbTi0 , hafnie (HfO (Hf02), SrTiO 3, Sn02, Ce02, MgO, NiO, CaO, ZnO, Y20 , bohémite (y-AlO(OH)), A1203, Ti02, SiC, Zr02, silicate de bore, BaSCE, nano-argiles, ou leurs mélanges.
8. Revêtement selon l’une quelconque des revendications 1 à 7 comprenant de 50 à 99 pour cent en poids de particules inorganiques.
9. Revêtement selon l’une des revendications 1 à 8, dans lequel le rapport des solides du polymère aux particules inorganiques est de 0,5 à 30 parties en poids de solides de la résine polymère hybride fluoré-acrylique pour 70 à 99,5 parties en poids de particules inorganiques.
10. Revêtement selon l’une des revendications 1 à 9, dans lequel l'épaisseur dudit revêtement sur au moins un côté du séparateur est de 0,5 à 10 micromètres.
11. Séparateur pour dispositif électrochimique choisi dans le groupe : batterie Li-ion, condensateur, condensateur électrique à double couche, et assemblage membrane- électrode (AME) pour pile à combustible, ledit séparateur comprenant un support poreux et au moins un revêtement monocouche selon l’une quelconque des revendications 1 à 10.
12. Procédé de préparation d’un séparateur revêtu comprend les étapes suivantes : a) enduire en voie aqueuse par immersion, par pulvérisation, par gravure ou par fente au moins un côté du séparateur avec un revêtement monocouche selon l’une quelconque des revendications 1 à 10, b) sécher ledit séparateur revêtu à une température de 25 à 85°C, pour former une couche adhésive sèche, sur le séparateur.
13. Dispositif électrochimique choisi dans le groupe : batterie Li-ion, condensateur, condensateur électrique à double couche, et assemblage membrane-électrode (AME) pour pile à combustible, ledit dispositif comprenant un séparateur selon la revendication 11.
14. Batterie secondaire Li-ion comprenant une anode, une cathode et un séparateur, dans laquelle ledit séparateur est selon la revendication 11.
EP22715135.4A 2021-03-23 2022-03-21 Revetement de separateur pour batteries li-ion a base de latex acrylate de pvdf Pending EP4315487A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2102901A FR3121147A1 (fr) 2021-03-23 2021-03-23 Revetement de separateur pour batteries li-ion a base de latex acrylate de pvdf
PCT/FR2022/050518 WO2022200724A1 (fr) 2021-03-23 2022-03-21 Revetement de separateur pour batteries li-ion a base de latex acrylate de pvdf

Publications (1)

Publication Number Publication Date
EP4315487A1 true EP4315487A1 (fr) 2024-02-07

Family

ID=75539648

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22715135.4A Pending EP4315487A1 (fr) 2021-03-23 2022-03-21 Revetement de separateur pour batteries li-ion a base de latex acrylate de pvdf

Country Status (8)

Country Link
US (1) US20240141198A1 (fr)
EP (1) EP4315487A1 (fr)
JP (1) JP2024511117A (fr)
KR (1) KR20230160282A (fr)
CN (1) CN117044025A (fr)
FR (1) FR3121147A1 (fr)
TW (1) TW202242041A (fr)
WO (1) WO2022200724A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3139572A1 (fr) * 2022-09-09 2024-03-15 Arkema France Composition sous forme de poudre à base d’au moins un polymère fluoré et d’au moins un polymère hydrophile pour revêtement de séparateur
FR3139575A1 (fr) * 2022-09-09 2024-03-15 Arkema France Composition à base d’au moins un polymère fluoré et d’au moins un polymère hydrophile pour revêtement de séparateur ou liant de cathode
FR3139573A1 (fr) * 2022-09-09 2024-03-15 Arkema France Composition à base d’au moins un polymère fluoré et d’au moins un polymère hydrophile pour revêtement de séparateur
FR3139570A1 (fr) * 2022-09-09 2024-03-15 Arkema France Composition à base d’au moins un polymère fluoré et d’au moins un polymère hydrophile pour revêtement de séparateur
FR3139571A1 (fr) * 2022-09-09 2024-03-15 Arkema France Composition sous forme de poudre à base d’au moins un polymère fluoré et d’au moins un polymère hydrophile pour revêtement de séparateur ou liant de cathode
FR3139574A1 (fr) * 2022-09-09 2024-03-15 Arkema France Composition sous forme de poudre à base d’au moins un polymère fluoré et d’au moins un polymère hydrophile pour revêtement de séparateur

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101785263B1 (ko) * 2013-12-02 2017-10-16 삼성에스디아이 주식회사 바인더 조성물, 이에 의해 형성된 바인더를 포함하는 세퍼레이터, 상기 세퍼레이터를 포함하는 리튬 전지, 및 상기 바인더 조성물의 제조방법
CN108448032B (zh) 2017-02-16 2022-10-18 帝人株式会社 非水系二次电池用隔膜及非水系二次电池
KR20220024179A (ko) * 2019-06-25 2022-03-03 알케마 인코포레이티드 리튬 이온 전지를 위한 플루오로중합체로 코팅된 분리막
EP3991231A4 (fr) * 2019-06-25 2024-04-03 Arkema Inc Fluoropolymères fonctionnels hybrides pour batterie au lithium-ion

Also Published As

Publication number Publication date
WO2022200724A1 (fr) 2022-09-29
CN117044025A (zh) 2023-11-10
US20240141198A1 (en) 2024-05-02
TW202242041A (zh) 2022-11-01
FR3121147A1 (fr) 2022-09-30
KR20230160282A (ko) 2023-11-23
JP2024511117A (ja) 2024-03-12

Similar Documents

Publication Publication Date Title
EP4315487A1 (fr) Revetement de separateur pour batteries li-ion a base de latex acrylate de pvdf
JP7381459B2 (ja) リチウムイオンバッテリーセパレーター
US20220311091A1 (en) Coated separator with fluoropolymers for lithium ion battery
CA2378622C (fr) Elements de batteries lithium-ion fabriques a partir d&#39;une poudre microcomposite a base d&#39;une charge et d&#39;un fluoropolymere
US20220311098A1 (en) Hybrid functional fluoropolymers for lithium ion battery
WO2021152269A1 (fr) Formulation d&#39;electrode pour batterie li-ion et procede de fabrication d&#39;electrode sans solvant
EP2553746B1 (fr) Procédé de formation d&#39;un film en polymère fluoré de type polyfluorure de vinylidène utilisable comme séparateur pour accumulateur au lithium
EP4097778A1 (fr) Formulation d&#39;electrode pour batterie li-ion et procede de fabrication d&#39;electrode sans solvant
WO2024052627A1 (fr) Composition à base d&#39;au moins un polymère fluoré et d&#39;au moins un polymère hydrophile pour revêtement de séparateur
WO2024052625A1 (fr) Composition à base d&#39;au moins un polymère fluoré et d&#39;au moins un polymère hydrophile pour revêtement de séparateur
WO2024052626A1 (fr) Composition sous forme de poudre à base d&#39;au moins un polymère fluoré et d&#39;au moins un polymère hydrophile pour revêtement de séparateur
WO2024052628A1 (fr) Composition sous forme de poudre à base d&#39;au moins un polymère fluoré et d&#39;au moins un polymère hydrophile pour revêtement de séparateur
WO2024052623A1 (fr) Composition à base d&#39;au moins un polymère fluoré et d&#39;au moins un polymère hydrophile pour revêtement de séparateur ou liant de cathode
WO2023227846A1 (fr) Dispositif électrochimique comprenant un séparateur contenant du pvdf et une composition électrolytique à viscosité élevée ou à haute polarité
WO2024052624A1 (fr) Composition sous forme de poudre à base d&#39;au moins un polymère fluoré et d&#39;au moins un polymère hydrophile pour revêtement de séparateur ou liant de cathode
EP4334983A1 (fr) Liant polymere fluore
FR3135167A1 (fr) Liant pour électrode revêtue à sec

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231002

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR