EP4197022A1 - Spaltblende - Google Patents

Spaltblende

Info

Publication number
EP4197022A1
EP4197022A1 EP21739296.8A EP21739296A EP4197022A1 EP 4197022 A1 EP4197022 A1 EP 4197022A1 EP 21739296 A EP21739296 A EP 21739296A EP 4197022 A1 EP4197022 A1 EP 4197022A1
Authority
EP
European Patent Office
Prior art keywords
diaphragm
slit
elements
elongate
longitudinal ends
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21739296.8A
Other languages
English (en)
French (fr)
Inventor
Peter WEIPERT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Singulus Technologies AG
Original Assignee
Singulus Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Singulus Technologies AG filed Critical Singulus Technologies AG
Publication of EP4197022A1 publication Critical patent/EP4197022A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3417Arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3447Collimators, shutters, apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0455Diaphragms with variable aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0456Supports
    • H01J2237/0458Supports movable, i.e. for changing between differently sized apertures

Definitions

  • the present invention relates to a slit diaphragm, a slit diaphragm system with at least two slit diaphragms arranged adjacent to one another, and a coating module or a coating system with a slit diaphragm.
  • Slit diaphragms are used in different technical areas and are used, for example, in the area of coating systems.
  • the inactive targets are protected against contamination by means of closed screens.
  • the slit diaphragms used serve as shutters.
  • slit diaphragms are also used with a variable diaphragm slit, for example in order to be able to influence layer thickness profiles in a targeted manner (cf. for example EP 3 663 431 A1).
  • diaphragm bellows have a limited service life or last only a limited number of load changes.
  • Many of the relatively complex solutions contain a number of wearing parts, which can have a negative effect on operational safety, especially with regard to vacuum tightness. It is therefore an object of the present invention to provide an improved slit diaphragm, in particular for use in coating systems, which takes into account the disadvantages mentioned above. This object is achieved with a slit diaphragm described below and a slit diaphragm system according to claims 1 and 2, respectively. Preferred embodiments of the present invention are described in the dependent claims.
  • the present invention is directed to a slit diaphragm having two movably mounted, elongate diaphragm elements, each having first and second longitudinal ends.
  • An elongate aperture gap of variable width is formed between the elongate aperture elements.
  • the two first longitudinal ends of the elongate screen elements are connected to a rotary drive unit and the two second longitudinal ends of the elongate screen elements are coupled to one another.
  • a slit diaphragm is claimed with two movably mounted, elongate diaphragm elements which each have first and second longitudinal ends, an elongate diaphragm slit of variable width being formed between the elongate diaphragm elements.
  • the two elongate diaphragm elements are rotatably mounted and can be moved by a drive unit in such a way that the longitudinal alignment of the elongate diaphragm gap remains constant for different diaphragm gap widths.
  • the present invention is based, among other things, on the idea of replacing the linear drive of known slit diaphragms, which is problematic in many respects, with a rotary mounting of the diaphragm elements or with a rotary drive unit. Because the two first longitudinal ends of the diaphragm elements are connected to the rotary drive unit and the two second longitudinal ends are coupled to one another, the slit diaphragm can be opened and closed with a single drive unit.
  • the longitudinal alignment of the elongated aperture gap for different diaphragm slit widths remains constant, which is particularly important when the slit diaphragm is not only used as a shutter but, for example, a coating system is to work with different slit widths.
  • the rotary drive unit according to the invention and the rotary mounting of the panel elements can be implemented using simple means and at low cost.
  • the transition into the vacuum can be realized with the help of a simple rotary feedthrough, so that the problematic membrane bellows including the mechanics for a linear movement can be dispensed with.
  • the slit diaphragm according to the invention is extremely space-saving, which will be explained in detail below.
  • an elongate screen element is understood to mean a screen element in which the ratio of length to width is at least 4, preferably at least 6 and particularly preferably at least 8. The ratio can also be at least 10 or at least 12. The same applies to the understanding according to the invention of an elongate aperture slit, the dimensions at maximum slit width being decisive here.
  • the first and second longitudinal ends of the elongate screen elements are not only regarded as the exact end, but rather respective regions which are located at opposite ends of the screen elements.
  • the length of the respective longitudinal ends can be up to 20% of the length of the panel elements.
  • the coupling between the two second longitudinal ends of the elongate diaphragm elements can allow a relative movement of the two second longitudinal ends to one another in order to be able to vary the width of the elongate diaphragm gap.
  • the two second longitudinal ends are particularly preferably coupled to one another via a rotary bearing.
  • the two elongate diaphragm elements can preferably be moved by a single drive unit in such a way that the longitudinal orientation of the elongate diaphragm gap remains constant for different diaphragm gap widths.
  • the longitudinal alignment of the elongate diaphragm gap can be defined, for example, by the alignment of the central axis of the elongate diaphragm gap. It is further preferred that the width of the aperture slit is substantially constant along the length of the aperture slit.
  • the different diaphragm gap widths are preferably achieved in that all of the longitudinal ends of the diaphragm elements move on circular paths. These circular paths preferably all have the same radius, with the result that the elongate diaphragm elements remain parallel to one another and parallel to a constant longitudinal axis of the slit for different diaphragm slit widths.
  • first longitudinal ends of the two panel elements are attached to a first rotationally mounted element, preferably detachable without tools
  • the second longitudinal ends of the two panel elements are attached to a second rotationally mounted element, preferably detachable without tools.
  • first element can preferably be rotated with a drive unit about an axis which extends perpendicularly to the longitudinal alignment of the elongate diaphragm gap.
  • the second element can preferably rotate about an axis parallel thereto without being connected to a drive unit. Rather, the rotation of the second element is mediated by the relative movement of the two screen elements to one another when they are driven.
  • the first and second elements can be first and second arms, with the first arm and the second arm each being rotatably mounted centrally and/or the first and second longitudinal ends of the two screen members being attached to opposite ends of the first and second arms, respectively.
  • circular discs or other rotationally mounted elements can also be used.
  • the elongate diaphragm gap of variable width can preferably be converted from a fully closed state to a fully opened state with the aid of the drive unit.
  • the two panel elements preferably overlap one another. This overlap is preferably at least 1 mm, more preferably at least 3 mm and particularly preferably at least 5 mm.
  • the two screen elements are preferably at a distance of at least 5 cm, more preferably at least 8 cm and particularly preferably at least 10 cm from one another.
  • the distance between the two screen elements is defined according to the invention as the distance between the two edges that lie opposite one another, so that the distance between the two screen elements corresponds to the gap width of the elongated screen gap.
  • the two screen elements can preferably assume several, preferably stepless, intermediate states between the fully closed state and the fully open state.
  • the two panel elements preferably have a length of at least 50 cm, more preferably at least 75 cm and particularly preferably at least 100 cm.
  • the invention is also aimed at a slit diaphragm system with at least two slit diaphragms arranged adjacent to one another, as described above.
  • the two slit diaphragms arranged adjacent to one another are arranged and set up in such a way that a diaphragm element of a first slit diaphragm in its completely open state covers an area that is also at least partially covered by a diaphragm element of a second slit diaphragm in its fully open state.
  • the width of the area covered by the two screen elements preferably corresponds to at least 75%, more preferably at least 85% and particularly preferably at least 95% of the width of a screen element.
  • the present invention relates to a slit diaphragm system with at least two slit diaphragms arranged adjacent to one another as described above, the two slit diaphragms arranged adjacent to one another being arranged and set up in such a way that a diaphragm element of a first slit diaphragm in its fully open state essentially directly adjoins a diaphragm element a second slit in its fully closed state.
  • the distance between the two screen elements in this state preferably corresponds to at most 20%, more preferably at most 10% and particularly preferably at most 5% of the width of a screen element.
  • the distance between the two screen elements in this state is preferably at most 5 mm, more preferably at most 3 mm and particularly preferably at most 1 mm.
  • the solution according to the invention for the rotary bearing or the rotary drive allows an extremely space-saving arrangement. This is particularly important when two or more slit diaphragms are arranged adjacent to one another, as is necessary, for example, when a multilayer system is to be deposited using different sputter cathodes and different targets. Since two adjacent diaphragms are never fully open at the same time in such a system, adjacent slit diaphragms can be mounted directly adjacent to one another. This would not be possible with conventional slit diaphragms using, for example, a rack and pinion drive and the membrane bellows discussed above for the vacuum feedthrough, or only with great effort.
  • the present invention is directed to a coating module with a slit diaphragm as described above.
  • the coating module has a sputter cathode, a target, a storage and/or transport device for a substrate and a slit diaphragm, as described above, arranged between the target and the storage and/or transport device.
  • the storage and/or transport device can be, for example, a substrate support or “carrier”, a susceptor plate, a conveyor belt for substrates or the like.
  • the only decisive factor for the invention is that the substrate is in a position during the coating that ensures that the slit diaphragm is arranged between the substrate and the target.
  • the present invention is directed to a coating system with a slit diaphragm as described above or with a slit diaphragm system as described above.
  • the coating system preferably has a sputter cathode and a target, with the diaphragm gap width in the fully open state preferably being at least 100%, more preferably at least 110% and particularly preferably at least 120% of the width of the target. It is further preferred that the aperture gap width can be set variably between 0% and at least 100%, more preferably at least 110% and particularly preferably at least 120% of the width of the target.
  • the mounting of the longitudinal ends of the screen elements and the drive unit are preferably arranged beyond the coating area of the coating system, viewed in the longitudinal direction. This is also advantageous because the bearing and the drive unit cannot be contaminated with coating material, so that the system is less susceptible to maintenance.
  • the slit diaphragm according to the invention enables a number of advantages.
  • An expensive rack and pinion drive can thus be dispensed with and a pair of screen elements can be operated with just a single drive unit.
  • the linear guides from the prior The problem of jamming, which is known in the art, cannot occur with the rotary bearing and the expensive and fault-prone diaphragm bellows are no longer required.
  • the slit diaphragm according to the invention can be implemented using simple means and at low cost, requires little maintenance and is extremely space-saving.
  • FIG. 1 shows a perspective view of a slit diaphragm according to a preferred embodiment
  • FIG. 2 shows a sectional view through a coating system with a slit diaphragm according to FIG. 1;
  • Fig. 3 is a sectional view along Z-Z of Fig. 2;
  • FIG. 4 shows a plan view of the slit diaphragm according to FIG. 1;
  • FIG. 5 shows a view from above of the coating system according to FIG. 2;
  • FIG. 6 shows a view from above of an alternative coating system with two slit diaphragms according to a preferred embodiment
  • Fig. 7 is a sectional view along X-X of Fig. 6.
  • FIG. 1 shows a schematic view of a slit diaphragm according to the invention according to a preferred embodiment with two movably mounted, elongate diaphragm elements 1, each of which has first longitudinal ends 2 and second longitudinal ends 3, with an elongate diaphragm slit 4 of variable width being formed between the elongate diaphragm elements 1.
  • the two longitudinal ends 2 of the two The elongate screen elements 1 are connected to a rotary drive unit 5 and the two second longitudinal ends 3 of the elongate screen elements 1 are coupled to one another via a pivoted arm 6 .
  • the rotary drive unit 5 has a drive 5a and a rotary feedthrough 5b for carrying out the drive movement in the vacuum area.
  • FIG. 2 This can be seen particularly well in the schematic sectional view through a coating system according to FIG.
  • the substrate 9, the target 10 and the sputter cathode (not shown) of the coating system are located together with the slit diaphragm in a vacuum-tight area or vessel 8.
  • the drive 5a of the rotary drive unit 5 is located outside the vessel 8 and the torque provided by this for rotating the arm 6 is thereby introduced through the rotary bushing 5b into the vacuum region of the tank 8.
  • the slit diaphragm according to the invention is located between the substrate 9 and the target 10 (although the arrangement could also be reversed).
  • the substrate 9 can be located on a storage and/or transport device (not shown), for example on a carrier or on a susceptor plate.
  • the slit diaphragm is fully open, as shown in FIG. 1, the substrate 9 with material from the target 10, which has a length L and a width W (cf. FIG. 5), can pass through the elongated diaphragm slit 4 be coated.
  • the slit diaphragm is closed by rotating the arm 6 connected to the drive unit 5, the substrate 9 is protected from particles emitted from the target 10.
  • the slit can be operated as a simple shutter.
  • the two diaphragm elements 1 can also assume several, preferably stepless, intermediate states between the fully closed state and the fully opened state and thus act as an aperture diaphragm, the gap width of which can be varied with regard to the specific coating requirements.
  • the width of the elongate aperture gap 4 is defined by the distance D between the opposite side edges of the two elongate aperture elements 1, as indicated in FIG.
  • the panel elements 1 preferably have a step or a curved section 12 on at least one side edge (cf. Figs. 3 and 4), which is intended to ensure that the two panel elements 1 overlap one another when fully closed, as is shown in Fig. 7 you can see.
  • the two arms 6 are each rotatably mounted centrally and the first and second longitudinal ends of the panel elements are each attached to opposite ends of the first and second arm (cf. FIG. 4).
  • the first arm 6 at the first longitudinal ends 2 of the elongate screen elements 1 is rotated about a first axis 13a by the drive unit 5 (cf. Fig.
  • first longitudinal end and second longitudinal end are to be interpreted broadly insofar as a situation as shown in FIGS .
  • the two panel elements 1 can be attached to the rotator-mounted arm 6 so that they can be detached without tools, for example with the aid of simple plug-in connections, as indicated in FIG. 3 .
  • this facilitates the cleaning and maintenance of a corresponding coating system, since the panel elements can be removed and reattached in one easy step.
  • the present invention also relates to a slit diaphragm system with at least two, preferably at least three, more preferably at least four, slit diaphragms arranged adjacent to one another, as indicated schematically in FIGS.
  • a slit diaphragm system with at least two, preferably at least three, more preferably at least four, slit diaphragms arranged adjacent to one another, as indicated schematically in FIGS.
  • Fig. 6 shows a slit diaphragm system with two slit diaphragms arranged adjacent to one another, in which the right diaphragm element 1a of the left slit diaphragm in its fully open state (according to Fig. 6) essentially directly adjoins the left diaphragm element 1b of the right slit diaphragm in its fully closed state adjacent.
  • the left-hand slit diaphragm is completely open, so that the left-hand target 10a is completely exposed, whereas the right-hand target 10b is completely covered by the right-hand slit diaphragm, which is completely closed.
  • the left slit diaphragm is completely closed and the right slit diaphragm is completely opened.
  • the right-hand diaphragm element 1a of the left-hand slit diaphragm and the left-hand diaphragm element 1b of the right-hand slit diaphragm are essentially directly adjacent to one another.
  • the area covered by the right-hand diaphragm element 1a of the left-hand slit diaphragm in the state shown in FIG. 6 will then be covered by the left-hand diaphragm element 1b of the right-hand slit diaphragm.
  • B describes the maximum extension of a slit diaphragm in the direction of width
  • two slit diaphragms can be accommodated over a width extension of 1.75B.
  • the effective width of a diaphragm system with two slit diaphragms is accordingly reduced from 2B in conventional systems to 1.75B in systems according to the invention.
  • the effective width is (0.75 x n + 0.25) B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Diaphragms For Cameras (AREA)
  • Diaphragms And Bellows (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Spaltblende, ein Spaltblendensystem mit mindestens zwei benachbart zueinander angeordneten Spaltblenden sowie ein Beschichtungsmodul bzw. eine Beschichtungsanlage mit einer Spaltblende.

Description

Spaltblende
Die vorliegende Erfindung betrifft eine Spaltblende, ein Spaltblendensystem mit mindestens zwei benachbart zueinander angeordneten Spaltblenden sowie ein Beschichtungsmodul bzw. eine Beschichtungsanlage mit einer Spaltblende.
Spaltblenden finden in unterschiedlichen technischen Gebieten Verwendung und kommen beispielsweise im Bereich von Beschichtungsanlagen zum Einsatz. So werden beispielsweise bei der physikalischen Abscheidung von Schichtsystemen unter Verwendung unterschiedlicher Sputterkathoden und Targets die jeweils nicht aktiven Targets mithilfe von geschlossenen Blenden gegen eine Verschmutzung geschützt. In diesem Fall dienen die verwendeten Spaltblenden als Shutter. Spaltblenden kommen aber auch mit variablem Blendenspalt zum Einsatz, um beispielsweise gezielt Schichtdickenprofile beeinflussen zu können (vgl. beispielsweise EP 3 663 431 Al).
Verschiedene Blendensysteme zur Verwendung in Sputter- Anlagen sind beispielsweise aus JP H03 202466 A, US 2013/299345 Al, DE 10 2016 116 568 Al, EP 3 556 902 Al und EP 3 587 619 A1 bekannt. Allerdings weisen diese Spaltblenden unterschiedliche Nachteile auf. So sind beispielsweise Zahnstangenantriebe und Aktuatoren relativ kostspielig und erstere haben häufig mechanische Probleme. So können diese bspw. leicht verklemmen oder verkanten. Die in der EP 3 556 902 Al beschriebene Anordnung dahingegen beansprucht relativ viel Platz. Wegen des Betriebs im Vakuum sind häufig Membranbälge erforderlich, die jedoch fehleranfällig und daher wartungsintensiv sind. Ferner haben Membranbälge eine begrenzte Lebensdauer bzw. überdauern nur eine begrenzte Anzahl an Lastwechseln. Viele der relativ komplexen Lösungen beinhalten eine Reihe von Verschleißteilen, welche sich nachteilig auf die Betriebssicherheit, insbesondere im Hinblick auf die Vakuumdichtigkeit, auswirken können. Es ist daher eine Aufgabe der vorliegenden Erfindung, eine verbesserte Spaltblende, insbesondere zur Verwendung in Beschichtungsanlagen, bereitzustellen, die den oben genannten Nachteilen Rechnung trägt. Diese Aufgabe wird mit einer nachfolgend beschriebenen Spaltblende sowie einem Spaltblendensystem gemäß Anspruch 1 bzw. 2gelöst. Bevorzugte Ausführungsformen der vorliegenden Erfindung sind in den abhängigen Ansprüchen beschrieben.
Demnach richtet sich die vorliegende Erfindung auf eine Spaltblende mit zwei beweglich gelagerten, länglichen Blendenelementen, die jeweils erste und zweite Längsenden aufweisen. Zwischen den länglichen Blendenelementen wird ein länglicher Blendenspalt variabler Breite ausgebildet. Die beiden ersten Längsenden der länglichen Blendenelemente sind mit einer rotatorischen Antriebseinheit verbunden und die beiden zweiten Längsenden der länglichen Blendenelemente sind miteinander gekoppelt.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird eine Spaltblende mit zwei beweglich gelagerten, länglichen Blendenelementen beansprucht, die jeweils erste und zweite Längsenden aufweisen, wobei zwischen den länglichen Blendenelementen ein länglicher Blendenspalt variabler Breite ausgebildet wird. Die beiden länglichen Blendenelemente sind derart rotatorisch gelagert und können derart von einer Antriebseinheit bewegt werden, dass die Längsausrichtung des länglichen Blendenspalts für unterschiedliche Blendenspaltbreiten konstant bleibt.
Mit anderen Worten beruht die vorliegende Erfindung unter anderem auf der Idee, den in vielerlei Hinsicht problematischen Linearantrieb bekannter Spaltblenden durch eine rotatorische Lagerung der Blendenelemente bzw. durch eine rotatorische Antriebseinheit zu ersetzen. Dadurch, dass die beiden ersten Längsenden der Blendenelemente mit der rotatorischen Antriebseinheit verbunden sind und die beiden zweiten Längsenden miteinander gekoppelt sind, lässt sich die Spaltblende mit einer einzigen Antriebseinheit öffnen und schließen. Ferner wird durch die Kopplung sichergestellt, dass die Längsausrichtung des länglichen Blendenspalts für unterschiedliche Blendenspaltbreiten konstant bleibt, was insbesondere dann von Bedeutung ist, wenn die Spaltblende nicht nur als Shutter verwendet wird, sondern beispielsweise eine Beschichtungsanlage bei unterschiedlichen Spaltbreiten arbeiten soll.
Die erfindungsgemäße rotatorische Antriebseinheit sowie die rotatorische Lagerung der Blendenelemente lässt sich mit einfachen Mitteln und kostengünstig implementieren. Dabei lässt sich der Übergang ins Vakuum mithilfe einer einfachen Drehdurchführung realisieren, so dass auf die problematischen Membranbälge inkl. der Mechanik für eine lineare Bewegung verzichtet werden kann. Schließlich ist die erfindungsgemäße Spaltblende außerordentlich platzsparend, was nachfolgend noch im Detail erläutert werden wird.
Unter einem länglichen Blendenelement wird erfindungsgemäß ein Blendenelement verstanden, bei dem das Verhältnis von Länge zu Breite mindestens 4, bevorzugt mindestens 6 und besonders bevorzugt mindestens 8beträgt. Das Verhältnis kann auch mindestens 10 oder mindestens 12 betragen. Das Gleiche gilt für das erfindungsgemäße Verständnis von einem länglichen Blendenspalt, wobei hier die Dimensionen bei maximaler Spaltbreite maßgeblich sind.
Erfindungsgemäß wird unter den ersten und zweiten Längsenden der länglichen Blendenelemente nicht nur das exakte Ende angesehen, sondern jeweilige Bereiche, die sich an gegenüberliegenden Enden der Blendenelemente befinden. Die Länge der jeweiligen Längsenden kann dabei jeweils bis zu 20% der Länge der Blendenelemente betragen.
Erfindungsgemäß kann die Kopplung zwischen den beiden zweiten Längsenden der länglichen Blendenelemente eine Relativbewegung der beiden zweiten Längsenden zueinander zulassen, um so die Breite des länglichen Blendenspalts variieren zu können. Besonders bevorzugt sind die beiden zweiten Längsenden über eine rotatorische Lagerung miteinander gekoppelt.
Bevorzugt können die beiden länglichen Blendenelemente derart von einer einzigen Antriebseinheit bewegt werden, dass die Längsausrichtung des länglichen Blendenspalts für unterschiedliche Blendenspaltbreiten konstant bleibt. Die Längsausrichtung des länglichen Blendenspalts kann dabei beispielsweise durch die Ausrichtung der Mittelachse des länglichen Blendenspalts definiert werden. Es ist ferner bevorzugt, dass die Breite des Blendenspalts entlang der Länge des Blendenspalts im Wesentlichen konstant ist.
Bevorzugt werden die unterschiedlichen Blendenspaltbreiten dadurch erzielt, dass sich alle Längsenden der Blendenelemente auf Kreisbahnen bewegen. Bevorzugt haben diese Kreisbahnen alle denselben Radius, was zur Folge hat, dass die länglichen Blendenelemente für unterschiedliche Blendenspaltbreiten jeweils parallel zueinander und parallel zu einer konstanten Längsachse des Spalts bleiben.
Hierfür sind die ersten Längsenden der beiden Blendenelemente, bevorzugt werkzeugfrei lösbar, an einem ersten rotatorisch gelagerten Element angebracht und die zweiten Längsenden der beiden Blendenelemente, bevorzugt werkzeugfrei lösbar, an einem zweiten rotatorisch gelagerten Element angebracht. Das erste Element kann dabei bevorzugt mit einer Antriebseinheit um eine Achse gedreht werden, die sich senkrecht zur Längsausrichtung des länglichen Blendenspalts erstreckt. Das zweite Element kann sich bevorzugt um eine hierzu parallele Achse drehen, ohne dabei mit einer Antriebseinheit verbunden zu sein. Vielmehr wird die Drehung des zweiten Elements über die Relativbewegung der beiden Blendenelemente zueinander, wenn diese angetrieben werden, vermittelt.
Bei den ersten und zweiten Elementen kann es sich um erste und zweite Arme handeln, wobei der erste Arm und der zweite Arm jeweils mittig rotatorisch gelagert ist und/oder wobei die ersten bzw. zweiten Längsenden der beiden Blendenelemente jeweils an gegenüberliegenden Enden des ersten bzw. zweiten Arms angebracht sind. Anstelle von derartigen Armen können aber auch Kreisscheiben oder andere rotatorisch gelagerte Elemente zum Einsatz kommen. Um mit einer möglichst kleinen Drehbewegung eine möglichst große Variabilität in der Blendenspaltbreite erzielen zu können, ist es dabei bevorzugt, beide längliche Blendenelemente im selben Abstand von der Drehachse der rotatorisch gelagerten Elemente anzubringen.
Bevorzugt kann der längliche Blendenspalt variabler Breite mithilfe der Antriebseinheit von einem vollständig geschlossenen Zustand in einen vollständig geöffneten Zustand überführt werden. Im vollständig geschlossenen Zustand überlappen die beiden Blendenelemente einander bevorzugt. Dieser Überlapp beträgt bevorzugt mindestens 1 mm, stärker bevorzugt mindestens 3 mm und besonders bevorzugt mindestens 5 mm. Im vollständig geöffneten Zustand haben die beiden Blendenelemente bevorzugt einen Abstand von mindestens 5 cm, stärker bevorzugt von mindestens 8 cm und besonders bevorzugt von mindestens 10 cm voneinander. Der Abstand der beiden Blendenelemente zueinander wird dabei erfindungsgemäß als der Abstand der beiden Kanten, die einander gegenüberliegen, zueinander definiert, so dass der Abstand der beiden Blendenelemente der Spaltbreite des länglichen Blendenspalts entspricht. Bevorzugt können die beiden Blendenelemente mehrere, bevorzugt stufenlose, Zwischenzustände zwischen dem vollständig geschlossenen Zustand und dem vollständig geöffneten Zustand einnehmen.
Die beiden Blendenelemente weisen bevorzugt eine Länge von mindestens 50 cm, stärker bevorzugt mindestens 75 cm und besonders bevorzugt mindestens 100 cm auf.
Die Erfindung richtet sich ferner auf ein Spaltblendensystem mit mindestens zwei benachbart zueinander angeordneten Spaltblenden wie oben beschrieben. Dabei sind die zwei benachbart zueinander angeordneten Spaltblenden derart angeordnet und eingerichtet, dass ein Blendenelement einer ersten Spaltblende in deren vollständig geöffneten Zustand eine Fläche abdeckt, die von einem Blendenelement einer zweiten Spaltblende in deren vollständig geöffneten Zustand mindestens teilweise ebenfalls abgedeckt wird. Die Breite der von beiden Blendenelementen abgedeckte Fläche entspricht dabei bevorzugt mindestens 75%, stärker bevorzugt mindestens 85% und besonders bevorzugt mindestens 95% der Breite eines Blendenelements.
Ferner richtet sich die vorliegende Erfindung auf ein Spaltblendensystem mit mindestens zwei benachbart zueinander angeordneten Spaltblenden wie oben beschrieben, wobei die zwei benachbart zueinander angeordneten Spaltblenden derart angeordnet und eingerichtet sind, dass ein Blendenelement einer ersten Spaltblende in deren vollständig geöffneten Zustand im Wesentlichen direkt an ein Blendenelement einer zweiten Spaltblende in deren vollständig geschlossenen Zustand angrenzt. Der Abstand der beiden Blendenelemente in diesem Zustand entspricht dabei bevorzugt höchstens 20%, stärker bevorzugt höchstens 10% und besonders bevorzugt höchstens 5% der Breite eines Blendenelements. Bevorzugt beträgt der Abstand der beiden Blendenelemente in diesem Zustand höchstens 5 mm, stärker bevorzugt höchstens 3 mm und besonders bevorzugt höchstens 1 mm.
Mit anderen Worten erlaubt die erfindungsgemäße Lösung der rotatorischen Lagerung bzw. des rotatorischen Antriebs eine ausgesprochen platzsparende Anordnung. Dies kommt insbesondere dann zum Tragen, wenn zwei oder mehr Spaltblenden benachbart zueinander angeordnet werden, wie dies beispielsweise erforderlich ist, wenn mithilfe unterschiedlicher Sputterkathoden und unterschiedlicher Targets ein Mehrschichtsystem abgeschieden werden soll. Da bei einer solchen Anlage zwei benachbarte Blenden niemals gleichzeitig vollständig geöffnet sind, können hier benachbarte Spaltblenden direkt aneinander angrenzend montiert werden. Dies wäre mit herkömmlichen Spaltblenden unter Verwendung beispielsweise eines Zahnstangenantriebs und der eingangs diskutierten Membranbälge für die Vakuumdurchf hrung nicht oder nur mit sehr großem Aufwand möglich. Ferner richtet sich die vorliegende Erfindung auf ein Beschichtungsmodul mit einer Spaltblende wie oben beschrieben. Das Beschichtungsmodul weist eine Sputterkathode, ein Target, eine Lager- und/oder Transportvorrichtung für ein Substrat und eine zwischen Target und Lager- und/oder Transportvorrichtung angeordneten Spaltblende wie oben beschrieben auf. Bei der Lager- und/oder Transportvorrichtung kann es sich bspw. um einen Substratträger oder „Carrier“, eine Suszeptorplatte, ein Förderband für Substrate o.ä. handeln. Für die Erfindung entscheidend ist dabei lediglich, dass das Substrat während der Beschichtung in einer Position befindlich ist, die sicherstellt, dass die Spaltblende zwischen Substrat und Target angeordnet ist.
Ferner richtet sich die vorliegende Erfindung auf eine Beschichtungsanlage mit einer Spaltblende wie oben beschrieben oder mit einem Spaltblendensystem wie oben beschrieben. Bevorzugt weist die Beschichtungsanlage eine Sputterkathode und ein Target auf, wobei die Blendenspaltbreite im vollständig geöffneten Zustand bevorzugt mindestens 100%, stärker bevorzugt mindestens 110% und besonders bevorzugt mindestens 120% der Breite des Targets beträgt. Es ist ferner bevorzugt, dass die Blendenspaltbreite variabel zwischen 0% und mindestens 100%, stärker bevorzugt mindestens 110% und besonders bevorzugt mindestens 120% der Breite des Targets eingestellt werden kann.
Bevorzugt sind die Lagerung der Längsenden der Blendenelemente und die Antriebseinheit in Längsrichtung gesehen jenseits des Beschichtungsbereichs der Beschichtungsanlage angeordnet. Dies ist unter anderem auch deswegen von Vorteil, weil so die Lagerung und die Antriebseinheit nicht mit Beschichtungsmaterial verunreinigt werden können, so dass die Anlage weniger wartungsanfällig wird.
Wie aus den obigen Ausführungen deutlich geworden sein sollte, ermöglicht die erfindungsgemäße Spaltblende eine Reihe von Vorteilen. So kann auf einen teuren Zahnstangenantrieb verzichtet werden und ein Paar von Blendenelementen mit nur einer einzigen Antriebseinheit betrieben werden. Das von Linearführungen aus dem Stand der Technik bekannte Problem des Verklemmens kann bei der rotatorischen Lagerung nicht auftreten und die teuren und störanfälligen Membranbälge sind nicht weiter erforderlich. Die erfindungsgemäße Spaltblende kann mit einfachen Mitteln und kostengünstig realisiert werden, ist wartungsunanfällig und ausgesprochen platzsparend.
Nachfolgend sollen bevorzugte Ausfuhrungsformen der vorliegenden Erfindung unter Bezugnahme auf die Figuren näher beschrieben werden. Es zeigen:
Fig. 1 eine perspektivische Ansicht einer Spaltblende gemäß einer bevorzugten Ausfuhrungsform;
Fig. 2 eine Schnittansicht durch eine Beschichtungsanlage mit einer Spaltblende gemäß Fig. 1;
Fig. 3 eine Schnittansicht entlang Z-Z gemäß Fig. 2;
Fig. 4 eine Draufsicht auf die Spaltblende gemäß Fig. 1;
Fig. 5 eine Ansicht von oben auf die Beschichtungsanlage gemäß Fig. 2;
Fig. 6 eine Sicht von oben auf eine alternative Beschichtungsanlage mit zwei Spaltblenden gemäß einer bevorzugten Ausfuhrungsform; und
Fig. 7 eine Schnittansicht entlang X-X gemäß Fig. 6.
Fig. 1 zeigt eine schematische Ansicht einer erfindungsgemäßen Spaltblende gemäß einer bevorzugten Ausfuhrungsform mit zwei beweglich gelagerten, länglichen Blendenelementen 1, die jeweils erste Längsenden 2 und zweite Längsenden 3 aufweisen, wobei zwischen den länglichen Blendenelementen 1 ein länglicher Blendenspalt 4 variabler Breite ausgebildet wird. Die beiden Längsenden 2 der beiden länglichen Blendenelemente 1 sind mit einer rotatorischen Antriebseinheit 5 verbunden und die beiden zweiten Längsenden 3 der länglichen Blendenelemente 1 sind über einen drehbar gelagerten Arm 6 miteinander gekoppelt. Die rotatorische Antriebseinheit 5 weist einen Antrieb 5a sowie eine Drehdurchführung 5b zur Durchführung der Antriebsbewegung in den Vakuumbereich auf. Dies ist in der schematischen Schnittansicht durch eine Beschichtungsanlage gemäß Fig. 2 besonders gut zu erkennen. Wie in Fig. 2 zu sehen ist, befinden sich das Substrat 9, das Target 10 sowie die nicht dargestellte Sputterkathode der Beschichtungsanlage zusammen mit der Spaltblende in einem vakuumdichten Bereich oder Kessel 8. Der Antrieb 5a der rotatorischen Antriebseinheit 5 befindet sich dabei außerhalb des Kessels 8 und das von diesem bereitgestellte Drehmoment zum Drehen des Arms 6 wird dabei durch die Drehdurchfuhrung 5b in den Vakuumbereich des Kessels 8 eingeleitet. Hierbei handelt es sich um handelsübliche Drehdurchfuhrungen, die im Hinblick auf Herstellung und Wartung einfach und kostengünstig sind.
An den gegenüberliegenden zweiten Enden 3 der länglichen Blendenelemente 1 sind diese über einen Arm 6 mit einer rotatorischen Gegenlagerung 7 gekoppelt, die jedoch keiner Durchführung aus dem Vakuum- in den Außenbereich bedarf (vgl. Fig. 2).
In der in Fig. 2 dargestellten Beschichtungsanlage befindet sich die erfindungsgemäße Spaltblende zwischen dem Substrat 9 und dem Target 10 (wobei die Anordnung auch umgekehrt sein könnte). Das Substrat 9 kann sich während der Beschichtung auf einer nicht dargestellten Lager- und/oder Transportvorrichtung, bspw. auf einem Carrier oder auf einer Suszeptorplatte befinden. Im vollständig geöffneten Zustand der Spaltblende, wie er in Fig. 1 dargestellt ist, kann das Substrat 9 mit Material aus dem Target 10, welches eine Länge L und eine Breite W aufweist (vgl. Fig. 5), durch den länglichen Blendenspalt 4 hindurch beschichtet werden. Wird die Spaltblende jedoch durch Verdrehen des mit der Antriebseinheit 5 verbundenen Arms 6 geschlossen, so ist das Substrat 9 vor aus dem Target 10 emittierten Partikeln geschützt. In diesem Sinne kann die Spaltblende als ein einfacher Shutter betrieben werden. Zusätzlich oder alternativ können die beiden Blendenelemente 1 auch mehrere, bevorzugt stufenlose, Zwischenzustände zwischen dem vollständig geschlossenen Zustand und dem vollständig geöffneten Zustand einnehmen und so als Aperturblende wirken, deren Spaltbreite im Hinblick auf die konkreten Beschichtungsanforderungen variiert werden kann. Die Breite des länglichen Blendenspalts 4 wird dabei durch den Abstand D der einander gegenüberliegenden Seitenkanten der zwei länglichen Blendenelemente 1 definiert, wie dies in Fig. 4 angedeutet ist.
Die Blendenelemente 1 weisen dabei bevorzugt an mindestens einer Seitenkante eine Stufe oder einen gekrümmten Abschnitt 12 auf (vgl. Fig. 3 und 4), der sicherstellen soll, dass die beiden Blendenelemente 1 im vollständig geschlossenen Zustand einander überlappen, wie dies in Fig. 7 zu sehen ist. Die beiden Arme 6 sind jeweils mittig rotatorisch gelagert und die ersten bzw. zweiten Längsenden der Blendenelemente jeweils an gegenüberliegenden Enden des ersten bzw. zweiten Arms angebracht (vgl. Fig. 4). Dabei wird der erste Arm 6 an den ersten Längsenden 2 der länglichen Blendenelemente 1 von der Antriebseinheit 5 um eine erste Achse 13a gedreht (vgl. Fig.
4), wohingegen der zweite Arm 6 an den zweiten Längsenden 3 der länglichen Blendenelemente 1 frei beweglich um eine zweite Drehachse 13b drehbar ist (vgl. Fig.
5). Wird nun der erste Arm 6 durch die Antriebseinheit 5 gedreht, so wird durch Zug bzw. Schub in den beiden Blendenelementen 1 eine parallele Verdrehung des zweiten Arms 6 bewirkt (vgl. Fig. 5), so dass sich alle Längsenden der Blendenelemente 1 auf Kreisbahnen 14 bewegen, die in Fig. 5 angedeutet sind. Dabei bleibt die Längsausrichtung des länglichen Blendenspalts unabhängig vom Öffiiungsgrad der Blende konstant. D.h. der Winkel a (vgl. Fig. 6) zwischen der Längs- bzw. Mittelachse des Blendenspalts und der Breitenrichtung des Targets 10 beträgt bei dieser Ausführungsform immer 90°. Selbstverständlich kann die Ausrichtung des Blendenspalts gegenüber dem Target auch einen beliebigen anderen, aber konstanten Winkel einnehmen. Aus dieser Drehbewegung ergibt sich auch der Versatz zwischen den beiden Blendenelementen 1 (vgl. Fig. 1 und 5), der sicherstellen soll, dass die Länge der Blendenelemente 1 möglichst vollständig ausgenutzt wird, da ein Öffnen bzw. Schließen der Blende aufgrund der rotatorischen Lagerung zugleich eine Relativbewegung der Blendenelement entlang der Längsausdehnung des Spalts bewirkt. Dies wird anhand von Fig. 6 deutlich, wonach sich der Versatz vom vollständig geöffneten Zustand (links) beim Übergang in den vollständig geschlossenen Zustand (rechts) in sein Gegenteil verkehrt.
Demnach sind die Begriffe „erstes Längsende“ und „zweites Längsende“ weit auszulegen insofern, dass auch eine Situation, wie in den Fig. 1 und 5 gezeigt, so zu verstehen ist, dass die beiden ersten Längsenden 2 mit einer rotatorischen Antriebseinheit 5 verbunden sind.
Die beiden Blendenelemente 1 können werkzeugfrei lösbar an dem rotatorisch gelagerten Arm 6 angebracht sein, beispielsweise mithilfe einfacher Steckverbindungen, wie dies in Fig. 3 angedeutet ist. Dies erleichtert unter anderem die Reinigung und Wartung einer entsprechenden Beschichtungsanlage, da die Blendenelemente mit einem Handgriff entfernt und wieder befestigt werden können.
Die vorliegende Erfindung richtet sich auch auf ein Spaltblendensystem mit mindestens zwei, bevorzugt mindestens drei, stärker bevorzugt mindestens vier, benachbart zueinander angeordneten Spaltblenden, wie dies in den Fig. 6 und 7 schematisch angedeutet ist. Wie bereits erläutert wurde, macht sich hier der Vorteil der besonders platzsparenden Anordnung der erfindungsgemäßen Spaltblende besonders bemerkbar.
In Fig. 6 ist ein Spaltblendensystem mit zwei benachbart zueinander angeordneten Spaltblenden gezeigt, bei denen das rechte Blendenelement la der linken Spaltblende in deren vollständig geöffneten Zustand (entsprechend Fig. 6) im Wesentlichen direkt an das linke Blendenelement 1b der rechten Spaltblende in deren vollständig geschlossenen Zustand angrenzt. In diesem Zustand ist die linke Spaltblende vollständig geöffnet, so dass das linke Target 10a komplett freiliegt, wohingegen das rechte Target 10b durch die vollständig geschlossene rechte Spaltblende vollständig abgedeckt ist.
Werden nun die beiden Antriebseinheiten jeweils um knapp 90° verdreht, so wird die linke Spaltblende vollständig geschlossen und die rechte Spaltblende vollständig geöffnet. Auch in diesem Zustand werden dann das rechte Blendenelement la der linken Spaltblende und das linke Blendenelement 1b der rechten Spaltblende im Wesentlichen direkt aneinander angrenzen. Der von dem rechten Blendenelement la der linken Spaltblende im in Fig. 6 gezeigten Zustand abgedeckte Flächenbereich wird dann vom linken Blendenelement 1b der rechten Spaltblende abgedeckt sein.
Wenn B die maximale Ausdehnung einer Spaltblende in Breitenrichtung beschreibt, so können mit der erfindungsgemäßen Anordnung zwei Spaltblenden auf einer Breitenerstreckung von 1,75B untergebracht werden. Mit anderen Worten beträgt der Abstand der Beschichtungsbereiche, d.h. der Abstand zwischen den Mittelachsen der Beschichtungsbereiche bzw. zwischen den Mittelachsen der Sputterkathoden, dann A = 0,75B (vgl. Fig. 6). Die effektive Breite von einem Blendensystem mit zwei Spaltblenden reduziert sich demnach von 2B bei herkömmlichen Systemen auf 1,75B bei erfindungsgemäßen Systemen. Für ein Blendensystem mit n Spaltblenden ergibt sich die effektive Breite zu (0,75 x n + 0,25) B.

Claims

Ansprüche Spaltblendensystem mit mindestens zwei benachbart zueinander angeordneten Spaltblenden, wobei jede Spaltblende zwei beweglich gelagerte, längliche Blendenelemente (1) mit jeweils ersten und zweiten Längsenden (2, 3) aufweist, wobei zwischen den länglichen Blendenelementen (1) ein länglicher Blendenspalt (4) variabler Breite ausgebildet wird, wobei die beiden ersten Längsenden (2) mit einer rotatorischen Antriebseinheit (5) verbunden sind und wobei die beiden zweiten Längsenden (3) miteinander gekoppelt sind; wobei die zwei benachbart zueinander angeordneten Spaltblenden derart angeordnet und eingerichtet sind, dass ein Blendenelement (la) einer ersten Spaltblende in deren vollständig geöffneten Zustand eine Fläche abdeckt, die von einem Blendenelement (1b) einer zweiten Spaltblende in deren vollständig geöffneten Zustand zumindest teilweise ebenfalls abgedeckt wird. Spaltblendensystem mit mindestens zwei benachbart zueinander angeordneten Spaltblenden, wobei jede Spaltblende zwei beweglich gelagerte, längliche Blendenelemente (1) mit jeweils ersten und zweiten Längsenden (2, 3) aufweist, wobei zwischen den länglichen Blendenelementen (1) ein länglicher Blendenspalt (4) variabler Breite ausgebildet wird, wobei die beiden länglichen Blendenelemente (1) derart rotatorisch gelagert sind und derart von einer Antriebseinheit (5) bewegt werden können, dass die Längsausrichtung des länglichen Blendenspalts (4) für unterschiedliche Blendenspaltbreiten konstant bleibt; wobei die zwei benachbart zueinander angeordneten Spaltblenden derart angeordnet und eingerichtet sind, dass ein Blendenelement (la) einer ersten Spaltblende in deren vollständig geöffneten Zustand eine Fläche abdeckt, die von einem Blendenelement (1b) einer zweiten Spaltblende in deren vollständig geöffneten Zustand zumindest teilweise ebenfalls abgedeckt wird. Spaltblendensystem nach Anspruch 1 oder 2, wobei die beiden länglichen Blendenelemente (1) derart von einer einzigen Antriebseinheit (5) bewegt werden können, dass die Längsausrichtung des länglichen Blendenspalts (4) für unterschiedliche Blendenspaltbreiten konstant bleibt. Spaltblendensystem nach Anspruch 1, 2 oder 3, wobei unterschiedliche Blendenspaltbreiten dadurch erzielt werden, dass sich alle Längsenden (2, 3) der Blendenelemente (1) auf Kreisbahnen (14) bewegen. Spaltblendensystem nach einem der vorigen Ansprüche, wobei die ersten Längsenden (2) der beiden Blendenelemente (1), bevorzugt werkzeugff ei lösbar, an einem ersten rotatorisch gelagerten Element (6) angebracht sind und wobei die zweiten Längsenden (3) der beiden Blendenelemente (1), bevorzugt werkzeugfrei lösbar, an einem zweiten rotatorisch gelagerten Element (6) angebracht sind. Spaltblendensystem nach Anspruch 5, ferner mit einer Antriebseinheit (5), die dazu eingerichtet ist, das erste Element (6) um eine Achse (13a) zu drehen, die sich senkrecht zur Längsausrichtung des länglichen Blendenspalts (4) erstreckt. Spaltblendensystem nach Anspruch 5 oder 6, wobei die ersten und zweiten Elemente (6) erste und zweite Arme sind und wobei der erste Arm und der zweite Arm jeweils mittig rotatorisch gelagert ist und/oder wobei die ersten bzw. zweiten Längsenden (2, 3) der beiden Blendenelemente (1) jeweils an gegenüberliegenden Enden des ersten bzw. zweiten Arms angebracht sind. Spaltblendensystem nach einem der vorigen Ansprüche, wobei der längliche Blendenspalt (4) variabler Breite mit Hilfe der Antriebseinheit (5) von einem vollständig geschlossenen Zustand in einen vollständig geöffneten Zustand überführt werden kann. Spaltblendensystem nach Anspruch 8, wobei die beiden Blendenelemente (1) im vollständig geschlossenen Zustand einander überlappen, bevorzugt um mindestens 1 mm, stärker bevorzugt um mindestens 3 mm, besonders bevorzugt um mindestens 5 mm. Spaltblendensystem nach Anspruch 8 oder 9, wobei die beiden Blendenelemente (1) im vollständig geöffneten Zustand einen Abstand (D) von mindestens 5 cm, bevorzugt mindestens 10 cm und besonders bevorzugt mindestens 15 cm haben. Spaltblendensystem nach Anspruch 8, 9 oder 10, wobei die beiden Blendenelemente (1) mehrere, bevorzugt stufenlose, Zwischenzustände zwischen dem vollständig geschlossenen Zustand und dem vollständig geöffneten Zustand einnehmen können. Spaltblendensystem nach einem der vorigen Ansprüche, wobei die beiden Blendenelemente (1) eine Länge von mindestens 50 cm, bevorzugt mindestens 75 cm und besonders bevorzugt mindestens 100 cm aufweisen. Spaltblendensystem nach einem der vorigen Ansprüche, wobei die Breite der von beiden Blendenelementen (la, 1b) jeweils abgedeckte Fläche mindestens 75%, bevorzugt mindestens 85% und besonders bevorzugt mindestens 95% der Breite eines Blendenelements (1) entspricht. Spaltblendensystem nach einem der Ansprüche 1 bis 12, wobei die zwei benachbart zueinander angeordneten Spaltblenden derart angeordnet und eingerichtet sind, dass ein Blendenelement (la) einer ersten Spaltblende in deren vollständig geöffneten Zustand im Wesentlichen direkt an ein Blendenelement (1b) einer zweiten Spaltblende in deren vollständig geschlossenen Zustand angrenzt. Spaltblendensystem nach Anspruch 14, wobei der Abstand der beiden Blendenelemente (la, 1b) in diesem Zustand höchstens 20%, bevorzugt höchstens 10% und besonders bevorzugt höchstens 5% der Breite eines Blendenelements (1) entspricht. Beschichtungsmodul mit einer Sputterkathode, einem Target, einer Lager- und/oder Transportvorrichtung für ein Substrat und einer zwischen Target und Lager- und/oder Transportvorrichtung angeordneten Spaltblende mit zwei beweglich gelagerten, länglichen Blendenelementen (1), die jeweils erste und zweite Längsenden (2, 3) aufweisen, wobei zwischen den länglichen Blendenelementen (1) ein länglicher Blendenspalt (4) variabler Breite ausgebildet wird, wobei die beiden ersten Längsenden (2) mit einer rotatorischen Antriebseinheit (5) verbunden sind und wobei die beiden zweiten Längsenden (3) miteinander gekoppelt sind. Beschichtungsmodul mit einer Sputterkathode, einem Target, einer Lager- und/oder Transportvorrichtung für ein Substrat und einer zwischen Target und
15 Lager- und/oder Transportvorrichtung angeordneten Spaltblende mit zwei beweglich gelagerten, länglichen Blendenelementen (1), die jeweils erste und zweite Längsenden aufweisen (2, 3), wobei zwischen den länglichen Blendenelementen (1) ein länglicher Blendenspalt (4) variabler Breite ausgebildet wird, wobei die beiden länglichen Blendenelemente (1) derart rotatorisch gelagert sind und derart von einer Antriebseinheit (5) bewegt werden können, dass die Längsausrichtung des länglichen Blendenspalts (4) für unterschiedliche Blendenspaltbreiten konstant bleibt. Beschichtungsmodul nach Anspruch 16 oder 17, wobei die beiden länglichen Blendenelemente (1) derart von einer einzigen Antriebseinheit (5) bewegt werden können, dass die Längsausrichtung des länglichen Blendenspalts (4) für unterschiedliche Blendenspaltbreiten konstant bleibt. Beschichtungsmodul nach Anspruch 16, 17 oder 18, wobei unterschiedliche Blendenspaltbreiten dadurch erzielt werden, dass sich alle Längsenden (2, 3) der Blendenelemente (1) auf Kreisbahnen (14) bewegen. Beschichtungsmodul nach einem der Ansprüche 16 bis 19, wobei die ersten Längsenden (2) der beiden Blendenelemente (1), bevorzugt werkzeugfrei lösbar, an einem ersten rotatorisch gelagerten Element (6) angebracht sind und wobei die zweiten Längsenden (3) der beiden Blendenelemente (1), bevorzugt werkzeugfrei lösbar, an einem zweiten rotatorisch gelagerten Element (6) angebracht sind. Beschichtungsmodul nach Anspruch 20, ferner mit einer Antriebseinheit (5), die dazu eingerichtet ist, das erste Element (6) um eine Achse (13a) zu drehen, die sich senkrecht zur Längsausrichtung des länglichen Blendenspalts (4) erstreckt. Beschichtungsmodul nach Anspruch 20 oder 21, wobei die ersten und zweiten Elemente (6) erste und zweite Arme sind und wobei der erste Arm und der zweite Arm jeweils mittig rotatorisch gelagert ist und/oder wobei die ersten bzw. zweiten Längsenden (2, 3) der beiden Blendenelemente (1) jeweils an gegenüberliegenden Enden des ersten bzw. zweiten Arms angebracht sind.
16 Beschichtungsmodul nach einem der Ansprüche 16 bis 22, wobei der längliche Blendenspalt (4) variabler Breite mit Hilfe der Antriebseinheit (5) von einem vollständig geschlossenen Zustand in einen vollständig geöffneten Zustand überfuhrt werden kann. Beschichtungsmodul nach Anspruch 23, wobei die beiden Blendenelemente (1) im vollständig geschlossenen Zustand einander überlappen, bevorzugt um mindestens 1 mm, stärker bevorzugt um mindestens 3 mm, besonders bevorzugt um mindestens 5 mm. Beschichtungsmodul nach Anspruch 23 oder 24, wobei die beiden Blendenelemente (1) im vollständig geöffneten Zustand einen Abstand (D) von mindestens 5 cm, bevorzugt mindestens 10 cm und besonders bevorzugt mindestens 15 cm haben. Beschichtungsmodul nach Anspruch 23, 24 oder 25, wobei die beiden Blendenelemente (1) mehrere, bevorzugt stufenlose, Zwischenzustände zwischen dem vollständig geschlossenen Zustand und dem vollständig geöffneten Zustand einnehmen können. Beschichtungsmodul nach einem der Ansprüche 16 bis 26, wobei die beiden Blendenelemente (1) eine Länge von mindestens 50 cm, bevorzugt mindestens 75 cm und besonders bevorzugt mindestens 100 cm aufweisen. Beschichtungsanlage mit einem Spaltblendensystem nach einem der Ansprüche 1 bis 15 oder mit einem Beschichtungsmodul nach einem der Ansprüche 16 bis 27. Beschichtungsanlage nach Anspruch 28, wobei die Beschichtungsanlage eine Sputterkathode und ein Target aufweist, wobei die Blendenspaltbreite im vollständig geöffneten Zustand mindestens 100%, bevorzugt mindestens 110% und besonders bevorzugt mindestens 120% der Breite des Targets beträgt. Beschichtungsanlage nach Anspruch 28, wobei die Beschichtungsanlage eine Sputterkathode und ein Target (10) aufweist, wobei die Blendenspaltbreite (D) variabel zwischen 0% und mindestens 100%, bevorzugt mindestens 110% und
17 besonders bevorzugt mindestens 120% der Breite (W) des Targets (10) eingestellt werden kann. Beschichtungsanlage nach Anspruch 28, 29 oder 30, wobei die Lagerung der Längsenden (2, 3) der Blendenelemente (1) und bevorzugt die Antriebseinheit (5) in Längsrichtung gesehen jenseits des Beschichtungsbereichs der
Beschichtungsanlage angeordnet sind.
18
EP21739296.8A 2020-08-13 2021-06-25 Spaltblende Pending EP4197022A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020004935.4A DE102020004935B4 (de) 2020-08-13 2020-08-13 Spaltblende
PCT/EP2021/067511 WO2022033757A1 (de) 2020-08-13 2021-06-25 Spaltblende

Publications (1)

Publication Number Publication Date
EP4197022A1 true EP4197022A1 (de) 2023-06-21

Family

ID=76829525

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21739296.8A Pending EP4197022A1 (de) 2020-08-13 2021-06-25 Spaltblende

Country Status (5)

Country Link
US (1) US20230274922A1 (de)
EP (1) EP4197022A1 (de)
CN (1) CN116195028A (de)
DE (1) DE102020004935B4 (de)
WO (1) WO2022033757A1 (de)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2964998A (en) * 1958-10-03 1960-12-20 Fred J Middlestadt Precision light aperture arrangement
JPS59107078A (ja) * 1982-12-11 1984-06-21 Nec Corp スパツタ装置用シヤツタ
JPH03202466A (ja) 1989-12-28 1991-09-04 Fujitsu Ltd スパッタリング装置
JPH0576523A (ja) 1991-09-24 1993-03-30 Toshiba Corp X線絞り機構
JPH07335553A (ja) * 1994-06-08 1995-12-22 Tel Varian Ltd 処理装置および処理方法
JP2001187046A (ja) 1999-12-27 2001-07-10 Ge Medical Systems Global Technology Co Llc マルチスライスx線ct装置及びその制御方法
DE102004005390A1 (de) * 2004-02-04 2005-08-25 Carl Zeiss Jena Gmbh Verstellbare optische Spaltblende
US8199884B2 (en) 2009-08-12 2012-06-12 Kabushiki Kaisha Toshiba Slit mechanism apparatus and X-ray computed tomography apparatus
US8198610B2 (en) * 2009-10-20 2012-06-12 Advanced Ion Beam Technology, Inc. Ion implanter with variable aperture and ion implant method thereof
CN103533893B (zh) 2011-05-31 2015-11-25 株式会社日立医疗器械 X射线光阑机构以及x射线ct装置
JP5882934B2 (ja) 2012-05-09 2016-03-09 シーゲイト テクノロジー エルエルシー スパッタリング装置
EP3256618B1 (de) 2015-02-13 2020-01-08 Bühler Alzenau GmbH Verfahren zum betrieb einer inline-beschichtungsanlage und inline-beschichtungsanlage
DE102016116568A1 (de) 2016-09-05 2018-03-08 Von Ardenne Gmbh Sputtervorrichtung und -verfahren
JP6698509B2 (ja) 2016-12-14 2020-05-27 株式会社神戸製鋼所 ターゲット用シャッタ機構およびそれを備えた成膜装置
EP3587619B1 (de) 2018-06-25 2022-06-22 Deutsches Elektronen-Synchrotron DESY Vorrichtung zur abscheidung eines materials auf der oberfläche eines substrats
EP3663431A1 (de) 2018-12-06 2020-06-10 Singulus Technologies AG Verfahren zur substratbeschichtung

Also Published As

Publication number Publication date
DE102020004935B4 (de) 2022-08-25
DE102020004935A1 (de) 2022-02-17
WO2022033757A1 (de) 2022-02-17
US20230274922A1 (en) 2023-08-31
CN116195028A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
DE102005042762B4 (de) Vorrichtung zur kontinuierlichen Beschichtung
DE3331211C2 (de)
DE202008004228U1 (de) Vorrichtung zur Fixierung und den Weitertransport stoßempfindlicher Platten in Sputter-Beschichtungsanlagen
EP1589130B1 (de) Führungsanordnung mit mindestens einer Führungswalze für die Führung von Bändern in Bandbehandlungsanlagen
DE102012110284B3 (de) Sputterbeschichtungseinrichtung und Vakuumbeschichtungsanlage
EP1561837B1 (de) Bandbeschichtungsanlage mit einer Vakuumkammer und einer Beschichtungswalze
EP2499619B1 (de) Vorrichtung zur handhabung von wertscheinen
DE2708391A1 (de) Scharnier
DE102020004935B4 (de) Spaltblende
DE2319196C2 (de) Lageranordnung für das Quetschwalzenpaar einer Selbstentwicklerkamera
DE112022000175B4 (de) Öffnungs- und schliessmechanismus
DE102010042839A1 (de) Verfahren und Vorrichtung zum Betrieb eines Targets in einer Durchlauf-Vakuumbeschichtungsanlage
DE102015201180B4 (de) Abrollvorrichtung zum Abrollen von Spulen eines bahnförmigen Materials
EP4229256A1 (de) Verschluss, insbesondere vorreiberverschluss
DE102020104073A1 (de) Verriegelungsstruktur für geradlinige mittelschiene für gegenläufige schiebetüren
EP1010144A1 (de) Transporteinrichtung für einzelblätter
DE102008018396A1 (de) Vakuum-Beschichtungsanlage
DE102015114187B4 (de) Durchlauf-Folienbehandlungsanlage vertikal ausgerichteter Substrate
EP1763885B1 (de) Strahlungsoptisches bauelement
DE69208817T2 (de) Mechanismus zum Entladen von bogenförmigem Material
AT526690B1 (de) Scharnieranordnung für eine Tür eines Überkopfgepäckfachs
WO2024188383A1 (de) Bausatz zur erweiterung einer vorrichtung zur flüssigbeschichtung, vorrichtung zur flüssigbeschichtung und verfahren zum trocknen einer oberfläche
WO2009033481A2 (de) Steuerung von warenbahnen durch gekoppelte umlenkvorrichtungen
DE69615381T2 (de) Biegeform zum biegen von glastafeln
EP2984204A1 (de) Vorrichtung zum bearbeiten von flexiblen substraten

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)