EP4031490A1 - Verbindungsbauteil zur abzweigung für einzelelektronenbewegung - Google Patents

Verbindungsbauteil zur abzweigung für einzelelektronenbewegung

Info

Publication number
EP4031490A1
EP4031490A1 EP20792281.6A EP20792281A EP4031490A1 EP 4031490 A1 EP4031490 A1 EP 4031490A1 EP 20792281 A EP20792281 A EP 20792281A EP 4031490 A1 EP4031490 A1 EP 4031490A1
Authority
EP
European Patent Office
Prior art keywords
electronic component
gate electrode
potential well
quantum dot
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20792281.6A
Other languages
English (en)
French (fr)
Inventor
Matthias KÜNNE
Hendrik BLUHM
Lars SCHREIBER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Rheinisch Westlische Technische Hochschuke RWTH
Original Assignee
Forschungszentrum Juelich GmbH
Rheinisch Westlische Technische Hochschuke RWTH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Rheinisch Westlische Technische Hochschuke RWTH filed Critical Forschungszentrum Juelich GmbH
Publication of EP4031490A1 publication Critical patent/EP4031490A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/20Handling requests for interconnection or transfer for access to input/output bus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66977Quantum effect devices, e.g. using quantum reflection, diffraction or interference effects, i.e. Bragg- or Aharonov-Bohm effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7613Single electron transistors; Coulomb blockade devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/92Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of superconductive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/11Single-electron tunnelling devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/128Junction-based devices having three or more electrodes, e.g. transistor-like structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N69/00Integrated devices, or assemblies of multiple devices, comprising at least one superconducting element covered by group H10N60/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/40Bus coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices

Definitions

  • the invention relates to an electronic component which is formed by a semiconductor component or a semiconductor-like structure with gate electrode arrangements for moving a quantum dot, comprising a) a substrate with a two-dimensional electron gas or electron hole gas; b) electrical contacts for connecting the gate electrode arrangements to voltage sources, c) a first gate electrode arrangement with gate electrodes, which is arranged on a surface of the electronic component, for generating a potential well in the substrate; d) the first gate electrode arrangement has parallel running electrode fingers, wherein e) the electrode fingers are interconnected periodically alternating, which cause an almost continuous movement of the potential well effect the substrate, a quantum dot being translated in one direction with this first potential well.
  • the invention also relates to a method for such an electronic component.
  • These semiconductor components often consist of doped silicon elements in order to realize the circuits.
  • transistor circuits can be arranged in such semiconductor components and linked to form a logic circuit.
  • these semiconductor components can now be produced with ever more extreme compactness.
  • This compactness has reached its physical limits.
  • Both the density of the circuits and the temperature often lead to problems in such semiconductor components.
  • optimizations can be achieved through several layer models, higher switching clocks or the choice of semiconductor material.
  • the computing power is often insufficient for many applications, e.g. in cryptographic technology or when calculating weather or climate models due to the enormous amount of data.
  • a quantum mechanical system with two states is the smallest Unit for storing information is referred to as a “qubit”.
  • a qubit is defined, for example, by the quantum mechanical state spin “up” and spin “down”.
  • a semiconductor heterostructure serves as the substrate.
  • the semiconductor heterostructure contains a two-dimensional electron gas (2DEG).
  • Semiconductor heterostructures are monocrystalline layers of semiconductors with different compositions grown on top of one another. These layer structures provide numerous technically relevant quantization effects with regard to their electronic and optical properties. They are therefore particularly suitable for the production of microelectronic components.
  • the currently most important combination of materials for the production of semiconductor heterostructures is the GaAs / AlGaAs system.
  • Semiconductor heterostructures form so-called quantum films at the interfaces between different materials. These arise in particular because of the different energy ratios in the two materials.
  • the predetermined energy distribution has the consequence that charge carriers from the environment collect in the quantum film. There they are largely restricted in their freedom of movement to the layer and form the two-dimensional electron gas (2DEG).
  • a nanoscopic material structure is called a quantum dot.
  • Semiconductor materials are particularly suitable for this.
  • Charge carriers, both electrons and holes, are so limited in their mobility in a quantum dot that their energy can no longer assume continuous, but only discrete values.
  • 2DEG two-dimensional electron gas
  • a quantum dot device which comprises at least three conductive layers and at least two insulating layers.
  • the three conductive layers are electrically isolated from one another. It is described there that a conductive layer consists of a different material than the other two conductive layers.
  • the conductive layers can for example consist entirely and / or partially of aluminum, gold, copper or polysilicon.
  • the insulating layers consist, for example, of silicon oxide, silicon nitride and / or aluminum oxide. The connections between the conductive layers and the insulating layers have the effect, among other things, that individual electrons are channeled through quantum dots of the device using voltage pulses.
  • quantum dot device an electron is quasi trapped in a potential well. Through quantum mechanical tunneling, an electron is moved from quantum dot to quantum dot. This can lead to inaccuracies or falsifications of the information content about the quantum mechanical state when an electron moves over longer distances.
  • WO 2017/020095 A1 discloses a scalable architecture for a processing device for performing quantum processing.
  • the architecture is based on an all-silicon CMOS manufacturing technology.
  • Transistor-based control circuits are used in conjunction with floating gates to drive a two-dimensional array of qubits.
  • the qubits are defined by the spin states of a single electron that is enclosed in a quantum dot.
  • a higher level is described here, ie how individual qubits can be controlled electrically, for example via transistors etc., including qubit operation and readout. It is true that a “scalable architecture” is used, but the array shown does not allow any real scaling, that is to say omits other integration of cryogenic electronics, since no space can be created between the qubits.
  • US Pat. No. 8,164,082 B2 describes a spin bus quantum computer architecture which comprises a spin bus which consists of several strongly coupled qubits which are always based on qubits and which define a chain of spin qubits. A large number of information-carrying qubits are arranged next to a qubit of the spin bus. Electrodes are formed around the information-carrying qubits and the spinbus qubits to enable control of the establishment and disruption of the coupling between qubits to enable control of the establishment and disruption of the coupling between each information-bearing qubit and the adjacent spinbus qubit.
  • the spin-bus architecture enables qubits to be coupled quickly and reliably over long distances.
  • EP 3 016 035 B1 describes a processing device and method for operating it, in particular, but not exclusively, the invention relates to a quantum processing device which can be controlled in order to carry out adiabatic quantum calculations.
  • a quantum processor has the following features: a plurality of qubit elements and a control structure which has a plurality of control components, each control component being arranged to control a plurality of qubit elements.
  • the control structure is controllable to perform a quantum calculation using the qubit elements, a quantum state of the qubit elements being encoded in the nuclear or electron spin of one or more donor atoms.
  • the donor atoms are arranged in a plane that is embedded in a semiconductor structure.
  • a first set of donor atoms is arranged to encode quantum information related to quantum computation.
  • a second set of donor atoms is arranged to enable electromagnetic coupling between one or more of the first set of donor atoms.
  • the donor atoms of the first set are in a two-dimensional one Arranged matrix arrangement.
  • the plurality of control members include a first set of elongate control members disposed in a first plane above the plane containing the donor atoms.
  • a second set of elongate control members are provided which are located in a second level below the level containing the donor atoms.
  • the qubits must be coupled over distances of at least a few micrometers, in particular to create space for local control electronics. Structures and structural elements must be provided that enable a quantum dot to be transported to various destinations in order to be able to set up logic circuits.
  • One or two-dimensional arrays were built from separate quantum dots through which electrons can then be transported. Due to the very large number of gate electrodes required and the voltages to be set with them, a coupling over several micrometers cannot be implemented without considerable effort or even not at all by means of this approach.
  • the object of the invention is therefore to eliminate the disadvantages of the prior art and to create an electronic component which allows logic circuits to be implemented with quantum dots, branches being provided in the logic circuits.
  • the object is achieved in that in an electronic component of the type mentioned, in which f) a second gate electrode arrangement is provided with gate electrodes, which is provided with a different direction at a junction to the first gate electrode arrangement, for generating a second potential well in the Substrate, g) the second gate electrode arrangement running in parallel
  • the electrode fingers are interconnected periodically in alternation, which cause an almost continuous movement of the potential well through the substrate, the quantum dot being movable in the potential well with a changed direction of movement.
  • the object is also achieved by a method for such an electronic component in which the interconnected gate electrodes are subjected to a phase-shifted voltage, which causes an almost continuous movement of the potential well through the substrate, a quantum point being translated with this potential well. Circuits with quantum dots that were previously not possible can be implemented by means of a corresponding crossing or branching. Such an electronic component can now be used to build logic circuits in quantum computers. This component can be used to network a logic circuit.
  • the invention is based on the principle that a quantum mechanical state is set at a quantum dot which can be translated through the substrate over a longer distance.
  • the quantum dot is quasi trapped in the potential well, which is generated in a suitable manner by the gate electrode arrangement.
  • the potential well then moves continuously and directed through the substrate and takes the quantum dot with its quantum mechanical state over the distance.
  • the electrode fingers of the gate electrodes are connected accordingly.
  • the quantum dots are deflected to a potential well of a branching gate electrode arrangement.
  • the quantum dot has to be moved to move into the other or new direction. With the present invention, a quantum mechanical state of a quantum dot can thus be moved and interconnected over a greater distance.
  • a third gate electrode arrangement for generating a switchable potential barrier arrangement is provided in the area of the junction, which is switched on for the transfer of the quantum dot.
  • This potential barrier arrangement prevents the quantum dot from taking a different direction than that given by the junction.
  • the quantum dot with the potential well is directed in one or the other branching direction. In this way, complex circuits with a change of direction can also be implemented.
  • a further advantageous embodiment of the electronic component is achieved in that means for synchronizing the gate electrode arrangements for changing the direction of the quantum dot are provided at the junction.
  • the transfer of the quantum dot at a junction requires a very precise coordination of the gate electrodes so that the potential well actually transfers the quantum dot.
  • the measure presented here is therefore used to provide means for controlling the gate electrodes which interconnect the gate electrode arrangements synchronously with one another, so that a coordinated change of direction is made possible.
  • a gate electrode arrangement consists of two parallel gate electrodes, which one Form channel-like structure. This measure serves to ensure that the potential well can only move on a certain path in the substrate.
  • the substrate contains gallium arsenide (GaAs) and / or silicon germanium (SiGe). These materials are able to generate a two-dimensional electron gas in which quantum dots can be generated and moved. In the case of gallium arsenide, the quantum dots are occupied with electrons. In the case of silicon germanium, the quantum dots are filled with holes that are missing an electron.
  • GaAs gallium arsenide
  • SiGe silicon germanium
  • a further preferred embodiment of the electronic component can be achieved in that the gate electrodes connected in each case are configured to be able to have voltage applied to them periodically and / or out of phase. This measure enables the potential well to be guided continuously through the substrate. A quantum dot located in the potential well can thus be translated with the potential well through the substrate. In doing so, it does not lose its original quantum mechanical state.
  • a preferred embodiment of the electronic component consists in that at least every third electrode finger of a gate electrode is connected together. This is intended to ensure that the potential well is always guaranteed over at least one period over which the potential well is moved. This is the only way to enable continuous movement of the potential well with the quantum dot. In principle, other combinations are also possible when interconnecting gate electrodes, as long as the potential well can be moved with the quantum dot.
  • an advantageous embodiment for the method according to the invention for an electronic component results from the fact that in each case at least every third gate electrode is connected together and a voltage is periodically applied.
  • a further advantageous embodiment of the electronic component according to the invention consists in the fact that means are provided for connecting two qubits of a quantum computer.
  • FIG. 1 shows a schematic top view of a first exemplary embodiment of an electronic component according to the invention, which has a junction.
  • FIG. 2 shows a section of the junction according to FIG. 1 and the course of the movement of a quantum dot at the junction.
  • FIG. 1 shows an exemplary embodiment of an electronic component 10 according to the invention, which is formed from a semiconductor heterostructure.
  • the structures of the component are preferably in a nanoscale dimension.
  • Undoped silicon germanium (SiGe) is used as substrate 12 for electronic component 10.
  • the electronic component 10 is designed in such a way that it contains a two-dimensional electron gas (2DEG).
  • Gate electrode arrangements 16, 18, 20 are provided on a surface 14 of the substrate 12.
  • the gate electrode arrangements 16, 18 each have two gate electrodes 22, 24, 26, 28.
  • the individual gate electrodes 22, 24, 26, 28 are electrically isolated from one another by means of insulating layers 30 in a suitable manner.
  • the gate electrode arrangements 16, 18, 20 are constructed in layers, the insulating layer 24 being provided between each gate electrode 22, 24, 26, 28.
  • the gate electrodes 22, 24, 26, 28 furthermore comprise electrode fingers 32, 34, 36, 38, with those of a gate electrode 22, 24, 26, 28 each being arranged parallel to one another on the surface 14 of the substrate 12.
  • the gate electrode arrangements 16, 18, 20 are supplied with a suitable voltage via electrical connections.
  • a potential well is generated in the substrate 12.
  • a quantum dot trapped in this potential well can thus be translated through the substrate.
  • the potential well is translated longitudinally through the substrate by suitable control of the electrode fingers 32, 34, 36, 38 with sinusoidal voltages.
  • the quantum dot which is more or less trapped in such a potential well, can be overridden with this potential well translate a longer distance in the two-dimensional electron gas of the substrate 12 made of SiGe without experiencing a quantum mechanical change of state.
  • the gate electrode arrangement 18 branches off from the gate electrode arrangement 16 in an intersection area 40.
  • the gate electrode arrangement 20 is arranged in the intersection region 40.
  • the gate electrode arrangement 20 contains two barrier gate electrodes 42, 44. These barrier gate electrodes 42, 44 can be switched on when the moving potential well with the quantum dot is located in the intersection area 40. By connecting the barrier gate electrodes 42, 44, the potential well with the quantum dot is held in the intersection area 40.
  • a pump gate electrode 46 of the gate electrode arrangement 20 causes the potential well with the quantum dot to change direction towards the gate electrode arrangement 18.
  • a barrier gate electrode 48 is connected to the gate electrode arrangement 20.
  • the other two barrier gate electrodes 42, 44, however, are switched off.
  • the barrier gate electrode 48 blocks access to the gate electrode arrangement 18.
  • the quantum dot in the moving potential well thus has no cause for a change in direction.
  • FIG. 2 schematically shows a section through such an electronic component 10.
  • a progression sequence A to C of a movable potential well 50 with a quantum dot 52 is shown below the section of component 10.
  • the electrode fingers 36, 38, the barrier gate electrodes 48 and the pump gate electrodes 46 are visible in section.
  • sequences from A to C of the courses of potential wells 50 in the substrate 12 are shown.
  • the electrode fingers 36, 38 of the gate electrode arrangements 18 form the movable potential wells 50 through the substrate 12.
  • the movement of the potential wells 50 takes place by means of suitable interconnection of the electrode fingers 26, 28.
  • the electrode fingers 36, 38 of the gate electrode arrangement 16 are for this purpose interconnected periodically in alternation, which cause an almost continuous movement of the potential well 50 through the substrate 12.
  • the present figure illustrates how the potential well 50 with the quantum dot 52 is branched off from the intersection area 40.
  • the movable potential well 50 is located in the direction of the branching gate electrode 18.
  • the arrow 54 here symbolizes the direction of movement that the potential well 50 runs with the quantum dot 52.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Software Systems (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

Die Erfindung betrifft ein elektronisches Bauelement (10), welches von einem Halbleiterbauelement oder einer halbleiterähnlichen Struktur mit Gatterelektrodenanordnungen (16, 18, 20) zum Bewegen eines Quantenpunkts (52) gebildet wird. Das elektronische Bauelement (10) enthält ein Substrat (12) mit einem zweidimensionalen Elektronengas oder Elektronenlochgas. Elektrische Kontakte verbinden die Gatterelektrodenanordnungen (16, 18, 20) mit Spannungsquellen. Eine erste Gatterelektrodenanordnung (16) mit Gatterelektroden (22, 24) ist an einer Fläche (14) des elektronischen Bauelements zur Erzeugung einer Potentialmulde (50) in dem Substrat (12) angeordnet. Die Gatterelektrodenanordnung (16) weist parallel verlaufende Elektrodenfinger (32, 34) auf, wobei die Elektrodenfinger (32, 34) periodisch alternierend zusammengeschaltet sind, welche eine nahezu kontinuierliche Bewegung der Potentialmulde (50) durch das Substrat (12) bewirken, wobei ein Quantenpunkt (52) mit dieser Potentialmulde (50) in eine Richtung translatiert wird.

Description

Verbindungsbauteil zur Abzweigung für Einzelelektronenbewegung
Technisches Gebiet
Die Erfindung betrifft ein elektronisches Bauelement, welches von einem Halbleiterbauelement oder einer halbleiterähnlichen Struktur mit Gatterelektrodenanordnungen zum Bewegen eines Quantenpunkts gebildet wird, umfassend a) ein Substrat mit einem zweidimensionalen Elektronengas oder Elektronenlochgas; b) elektrische Kontakte zum Verbinden der Gatterelektrodenanordnungen mit Spannungsquellen, c) eine erste Gatterelektrodenanordnung mit Gatterelektroden, welche an einer Fläche des elektronischen Bauelements angeordnet ist, zur Erzeugung einer Potentialmulde in dem Substrat; d) die erste Gatterelektrodenanordnung parallel verlaufende Elektrodenfinger aufweist, wobei e) die Elektrodenfinger periodisch alternierend zusammengeschaltet sind, welche eine nahezu kontinuierliche Bewegung der Potentialmulde durch das Substrat bewirken, wobei ein Quantenpunkt mit dieser ersten Potentialmulde in eine Richtung translatiert wird.
Weiterhin betrifft die Erfindung ein Verfahren für ein solches elektronisches Bauelement.
Beschreibung
Herkömmliche Computer arbeiten mit Halbleiterbauteilen mit integrierten Schaltkreisen. Diese Schaltkreise arbeiten immer mit Systemen, welche auf einer logischen „0" oder „1" basieren - also Schalter „an" oder „aus". Bei Halbleiterspeichern wird dies dadurch realisiert, dass das Potential entweder oberhalb oder unterhalb eines Schwellwerts liegt. Diese zwei Zustände bilden die kleinste Einheit bei Computern und werden als „Bit" bezeichnet.
Diese Halbleiterbauteile bestehen oft aus dotierten Siliziumelementen, um die Schaltungen zu realisieren. So lassen sich beispielsweise Transistorschaltungen in solchen Halbleiterbauteilen anordnen und zu einem logischen Schaltkreis verknüpfen. Durch immer besser werdende chemische und physikalische Herstellungsverfahren können diese Halbleiterbauteile mittlerweile in immer extremerer Kompaktheit produziert werden. Diese Kompaktheit stößt aber an ihre physikalischen Grenzen. Sowohl die Dichte der Schaltungen, als auch die Temperatur führen häufig zu Problemen in solchen Halbleiterbauteilen. So können insbesondere noch Optimierungen durch mehrere Schichtmodelle, höhere Schalttaktung oder auch bei der Wahl des Halbleitermaterials erzielt werden. Trotzdem reichen die Rechenleistungen für viele Anwendungen, wie z.B. in der kryptographischen Technologie oder bei Berechnung von Wetter- bzw. Klimamodellen wegen der enormen Datenmengen oft nicht aus.
Um Rechenleistung erheblich zu erhöhen, sind seit langem Modelle für sogenannte Quantencomputer bekannt. Technisch ließen sie sich aus unterschiedlichen Gründen bislang jedoch noch nicht realisieren. Die Modelle von Quantencomputern sehen vor, dass quantenmechanische Zustände von Teilchen, wie z.B. Elektronen, ausgenutzt werden. Dabei wird ein quantenmechanisches System mit zwei Zuständen als kleinste Einheit zum Speichern von Informationen als „Qubit" bezeichnet. Ein Qubit wird beispielsweise durch den quantenmechanischen Zustand Spin „Up" und Spin „Down" definiert.
Das Prinzip von Elektronen-Spin-Qubits gleicht sich immer, unabhängig vom jeweils gewählten Materialsystem. Als Substrat dient dabei eine Halbleiter-Heterostruktur. Die Halbleiter-Heterostruktur beinhaltet ein zweidimensionales Elektronengas (2DEG). Halbleiter-Heterostrukturen sind monokristallin aufeinander gewachsene Schichten von Halbleitern mit unterschiedlicher Zusammensetzung. Diese Schichtstrukturen liefern zahlreiche technisch relevante Quantisierungseffekte bezüglich ihrer elektronischen und optischen Eigenschaften. Daher sind sie für die Herstellung mikroelektronischer Bauelemente besonders geeignet. Die derzeit wichtigste Materialkombination für die Herstellung von Halbleiter-Heterostrukturen ist das System GaAs/AIGaAs.
Halbleiter-Heterostrukturen bilden dabei sogenannte Quantenfilme an Grenzflächen verschiedener Materialien aus. Diese entstehen insbesondere wegen unterschiedlicher Energieverhältnisse in den beiden Materialien. Die so vorgegebene Energieverteilung hat zur Folge, dass sich Ladungsträger aus der Umgebung im Quantenfilm sammeln. Dort sind sie dann in ihrer Bewegungsfreiheit weitgehend auf die Schicht eingeschränkt und bilden das zweidimensionale Elektronengas (2DEG).
Als Quantenpunkt wird eine nanoskopische Materialstruktur bezeichnet. Halbleitermaterialien sind hierfür besonders geeignet. Ladungsträger, sowohl Elektronen, als auch Löcher, werden in einem Quantenpunkt in ihrer Beweglichkeit so weit eingeschränkt, dass ihre Energie nicht mehr kontinuierliche, sondern immer nur noch diskrete Werte annehmen kann. Mittels nanoskaliger Gatterelektroden (sog. gates), die auf die Oberfläche des Bauelements aufgebracht werden, wird die Potentiallandschaft innerhalb des zweidimensionalen Elektronengases (2DEG) derart geformt, dass einzelne Elektronen in den Quantenpunkten eingefangen werden können. Anschließend dient der Spin dieser Elektronen als Basis, um ein logisches Qubit zu formen. Stand der Technik
Aus der US 2017/0317203 Al ist eine Quantenpunktvorrichtung bekannt, die mindestens drei leitende Schichten und mindestens zwei isolierende Schichten umfasst. Dabei sind die drei leitenden Schichten voneinander elektrisch isoliert. Es wird dort beschrieben, dass eine leitende Schicht aus einem anderen Material besteht, als die jeweils beiden anderen leitenden Schichten. Die leitenden Schichten können z.B. vollständig und/oder teilweise aus Aluminium, Gold, Kupfer oder PolySulizium bestehen. Die Isolierschichten bestehen hingegen z.B. aus Siliziumoxid, Siliziumnitrid und/oder Aluminiumoxid. Dabei bewirken die Verbindungen zwischen den leitenden Schichten und den isolierenden Schichten u.a., dass einzelne Elektronen unter Verwendung von Spannungsimpulsen durch Quantenpunkte der Vorrichtung geschleust werden.
In dieser Quantenpunktvorrichtung ist ein Elektron in einer Potentialmulde quasi gefangen. Durch quantenmechanisches Tunneln wird dabei ein Elektron hier von Quantenpunkt zu Quantenpunkt bewegt. Dies kann zu Ungenauigkeiten bzw. Verfälschungen des Informationsgehalts über den quantenmechanischen Zustand bei der Bewegung eines Elektrons über längere Distanzen führen.
Die WO 2017/020095 Al offenbart eine skalierbare Architektur für ein Verarbeitungsgerät zur Durchführung von Quantenverarbeitung. Die Architektur basiert auf einer Voll-Silizium-CMOS-Fertigungstechnologie. Transistor-basierte Steuerschaltungen werden zusammen mit potentialfreien Gates verwendet, um ein zweidimensionales Array von Qubits zu betreiben. Die Qubits werden durch die Spinzustände eines einzelnen Elektrons definiert, das in einem Quantenpunkt eingeschlossen ist. Hier wird eine übergeordnete Ebene beschrieben, d.h. wie einzelne Qubits elektrisch angesteuert werden können, zum Beispiel via Transistoren etc., inkl. Qubit-Operation und Readout. Es wird zwar von einer „skalierbaren Architektur" gesprochen, jedoch lässt das gezeigte Array keine wirkliche Skalierung, d.h. unter anderem Integration von tiefkalter Elektronik zu, da kein Platz zwischen den Qubits geschaffen werden kann.
Die US 8,164,082 B2 beschreibt eine Spinbus-Quantencomputerarchitektur, die einen Spinbus umfasst, der aus mehreren stark gekoppelten und immer auf Qubits basierenden Qubits besteht, die eine Kette von Spin-Qubits definieren. Eine Vielzahl von informationstragenden Qubits sind neben einem Qubit des Spinbusses angeordnet. Zu den informationstragenden Qubits und den Spinbus-Qubits werden Elektroden gebildet, um die Steuerung der Herstellung und Unterbrechung der Kopplung zwischen Qubits zu ermöglichen, um die Steuerung der Herstellung und Unterbrechung der Kopplung zwischen jedem informationstragenden Qubit und dem angrenzenden Spinbus-Qubit zu ermöglichen. Die Spin-Bus-Architektur ermöglicht eine schnelle und zuverlässige Kopplung von Qubits über große Entfernungen.
In der EP 3 016 035 Bl wird eine Verarbeitungsvorrichtung und Verfahren beschrieben, um diese zu betreiben, insbesondere, aber nicht ausschließlich, bezieht sich die Erfindung auf eine Quantenverarbeitungsvorrichtung, die steuerbar ist, um adiabatische Quantenberechnungen durchzuführen.
Ein Quantenprozessor weist dazu folgende Merkmale auf: eine Mehrzahl von Qubit- Elementen und eine Steuerstruktur, die eine Mehrzahl von Steuerbauteilen aufweist, wobei jedes Steuerbauteil angeordnet ist, um eine Mehrzahl von Qubit-Elementen zu steuern. Die Steuerstruktur ist steuerbar, um eine Quantenberechnung unter Verwendung der Qubit-Elemente durchzuführen, wobei ein Quantenzustand der Qubit- Elemente in dem Kern- oder Elektronenspin eines oder mehrerer Donatoratome codiert ist. Die Donatoratome sind in einer Ebene angeordnet, die in einer Halbleiterstruktur eingebettet ist. Dabei ist eine erste Menge von Donatoratomen so angeordnet, um Quanteninformationen in Bezug auf die Quantenberechnung zu codieren. Eine zweite Menge von Donatoratomen ist so angeordnet, dass sie eine elektromagnetische Kopplung zwischen einem oder mehreren der ersten Menge von Donatoratomen ermöglichen. Die Donatoratome der ersten Menge sind in einer zweidimensionalen Matrixanordnung angeordnet. Die Mehrzahl von Steuerbauteilen weist eine erste Menge länglicher Steuerbauteile auf, die in einer ersten Ebene oberhalb der Ebene angeordnet sind, die die Donatoratome enthalten. Eine zweite Menge länglicher Steuerbauteile sind vorgesehen, die in einer zweiten Ebene unterhalb der Ebene angeordnet sind, die die Donatoratome aufweisen.
Zur Realisierung eines universellen Quantencomputers muss eine Kopplung der Qubits über Distanzen von mindestens einigen Mikrometern ermöglicht werden, um insbesondere Platz für lokale Kontrollelektronik zu schaffen. Es müssen Strukturen und Strukturelemente vorgesehen sein, die es ermöglichen einen Quantenpunkt an verschiedene Ziele zu transportieren, um logische Schaltungen aufbauen zu können. Es gibt bereits Ansätze im Stand der Technik, bei denen ein- oder zweidimensionale Arrays aus separaten Quantenpunkten gebaut wurden, durch die dann Elektronen transportiert werden können. Aufgrund der sehr großen Anzahl an benötigten Gatterelektroden und damit einzustellenden Spannungen ist mittels dieses Ansatzes eine Kopplung über mehrere Mikrometer nicht ohne bedeutenden Aufwand oder sogar gar nicht zu realisieren.
Während die Operationen an einzelnen Qubits bereits in zufriedenstellendem Maße kontrolliert und ausgewertet werden können, ist die Kopplung von Qubits das möglicherweise zentrale ungelöste Problem, um komplexe logische Schaltungen zu verwirklichen damit ein universeller Quantencomputer realisiert werden kann.
Offenbarung der Erfindung
Aufgabe der Erfindung ist es daher, die Nachteile des Standes der Technik zu beseitigen und ein elektronisches Bauelement zu schaffen, welches logische Schaltungen mit Quantenpunkten zu realisieren erlaubt, wobei Abzweigungen in den logischen Schaltungen vorgesehen sind. Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass bei einem elektronischen Bauteil der eingangs genannten Art gelöst, bei dem f) eine zweite Gatterelektrodenanordnung mit Gatterelektroden vorgesehen ist, welche mit anderer Richtung an einer Abzweigung zur ersten Gatterelektrodenanordnung vorgesehen ist, zur Erzeugung einer zweiten Potentialmulde in dem Substrat, g) die zweite Gatterelektrodenanordnung parallel verlaufende
Elektrodenfinger aufweist, wobei h) die Elektrodenfinger periodisch alternierend zusammengeschaltet sind, welche eine nahezu kontinuierliche Bewegung der Potentialmulde durch das Substrat bewirken, wobei der Quantenpunkt in der Potentialmulde mit geänderter Fortbewegungsrichtung bewegbar ist.
Die Aufgabe wird ferner durch ein Verfahren für ein solches elektronisches Bauelement gelöst, bei dem die zusammengeschalteten Gatterelektroden phasenverschoben mit Spannung beaufschlagt werden, welche eine nahezu kontinuierliche Bewegung der Potentialmulde durch das Substrat bewirkt, wobei ein Quantenpunk mit dieser Potentialmulde translatiert wird. Durch eine entsprechende Kreuzung bzw. Abzweigung können Schaltungen mit Quantenpunkten realisiert werden, die zuvor nicht möglich waren. Durch ein solches elektronisches Bauelement lassen sich nun logische Schaltungen bei Quantencomputern aufbauen. Mit diesem Bauelement können Vernetzungen einer logischen Schaltung vorgenommen werden.
Die Erfindung beruht auf dem Prinzip, dass ein quantenmechanischer Zustand bei einem Quantenpunkt eingestellt wird, der durch das Substrat über eine längere Distanz translatiert werden kann. Dazu wird der Quantenpunkt in der Potentialmulde, die durch die Gatterelektrodenanordnung in geeigneter Weise erzeugt wird, quasi gefangen. Die Potentialmulde bewegt sich dann kontinuierlich und gerichtet durch das Substrat hindurch und nimmt den Quantenpunkt mit seinem quantenmechanischen Zustand über die Distanz mit. Für die kontinuierliche Bewegung der Potentialmulde werden die Elektrodenfinger der Gatterelektroden entsprechend verschaltet. An der Abzweigung werden die Quantenpunkte an eine Potentialmulde einer abzweigenden Gatterelektrodenanordnung abgelenkt. Der Quantenpunkt muss dazu bewegt werden, in die andere bzw. neue Richtung überzugehen. Mit der vorliegenden Erfindung lässt sich somit ein quantenmechanischer Zustand eines Quantenpunktes über eine größere Distanz bewegen und verschalten.
In einer vorteilhaften Ausgestaltung eines solchen erfindungsgemäßen elektronischen Bauelements ist eine dritte Gatterelektrodenanordnung zum Erzeugen einer zuschaltbaren Potentialbarrieren-Anordnung im Bereich der Abzweigung vorgesehen, welche für die Übergabe des Quantenpunkts zugeschaltet wird. Diese Potenzialbarrieren- Anordnung verhindert, dass der Quantenpunkt eine andere Richtung einschlägt, als die, die durch die Abzweigung vorgegeben ist. Je nachdem, wie die Potenzialbarrieren- Anordnung geschaltet ist, wird der Quantenpunkt mit der Potenzialmulde in die eine oder die andere abzweigende Richtung gelenkt. Hierdurch lassen sich besonders auch komplexe Schaltungen mit Richtungswechsel realisieren.
Eine weitere vorteilhafte Ausbildung des elektronischen Bauelements wird dadurch erzielt, dass Mittel zur Synchronisation der Gatterelektrodenanordnungen zum Richtungswechsel des Quantenpunkts an der Abzweigung vorgesehen sind. Die Übergabe des Quantenpunkts an einer Abzweigung bedarf einer sehr genauen Abstimmung der Gatterelektroden, damit die Potentialmulde den Quantenpunkt auch tatsächlich übergibt. Die hier vorgestellte Maßnahme dient somit dazu, dass Mittel zum Steuern der Gatterelektroden vorgesehen sind, die die Gatterelektrodenanordnungen synchron miteinander verschaltet, sodass ein abgestimmter Richtungswechsel ermöglicht wird.
In einer bevorzugten Ausgestaltung des elektronischen Bauelements besteht eine Gatterelektrodenanordnung aus zwei parallelen Gatterelektroden, welche eine kanalartige Struktur bilden. Diese Maßnahme dient dazu, dass die Potentialmulde sich nur auf einer bestimmten Bahn in dem Substrat bewegen kann.
In einer vorteilhaften Ausgestaltung eines solchen elektronischen Bauelements enthält das Substrat Galliumarsenid (GaAs) und/oder Silizumgermanium (SiGe). Diese Materialien sind in der Lage ein zweidimensionales Elektronengas zu erzeugen, in welchem sich Quantenpunkte erzeugen und bewegen lassen. Bei Galliumarsenid werden die Quantenpunkte mit Elektronen besetzt. Bei Siliziumgermanium werden die Quantenpunkte mit Löchern, bei denen ein Elektron fehlt, besetzt.
Eine weitere bevorzugte Ausbildung des elektronischen Bauelements lässt sich damit erreichen, dass die jeweils zusammengeschalteten Gatterelektroden periodisch und/oder phasenverschoben mit Spannung beaufschlagbar ausgebildet sind. Diese Maßnahme ermöglicht es die Potentialmulde kontinuierlich durch das Substrat zu führen. Damit kann ein Quantenpunkt, der sich in der Potentialmulde befindet, mit der Potentialmulde durch das Substrat translatiert werden. Dabei verliert er nicht seinen ursprünglichen quantenmechanischen Zustand.
Eine bevorzugte Ausgestaltung des elektronischen Bauelements besteht darin, dass jeweils mindestens jeder dritte Elektrodenfinger einer Gatterelektrode zusammengeschaltet ist. Damit soll erreicht werden, dass die Potentialmulde immer über wenigstens eine Periode gewährleistet ist, über welche die Potentialmulde bewegt wird. Nur so wird eine kontinuierliche Bewegung der Potentialmulde mit dem Quantenpunkt ermöglicht. Grundsätzlich sind auch andere Kombinationen bei der Zusammenschaltung von Gatterelektroden möglich, solange eine Bewegung der Potentialmulde mit dem Quantenpunkt durchgeführt werden kann. Entsprechend ergibt sich eine vorteilhafte Ausgestaltung für das erfindungsgemäße Verfahren für ein elektronisches Bauteil dadurch, dass jeweils zumindest jede dritte Gatterelektrode zusammengeschaltet und periodisch mit Spannung beaufschlagt wird. Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen elektronischen Bauelements besteht darin, dass Mittel zum Verbinden zweier Qubits eines Quantencomputers vorgesehen sind. Die Zustände von Quantenpunkten über eine größere Distanz zu translatieren eignet sich besonders bei Quantencomputern. Hier gilt es Qubits miteinander zu verschalten. Daher muss das elektronische Bauelement Kontaktmöglichkeiten haben um wenigstens zwei Qubits zu verschalten, um die Quantenzustände der Quantenpunkte von einem Qubit zum anderen Qubit zu übergeben.
Weitere Ausgestaltungen und Vorteile ergeben sich aus dem Gegenstand der Unteransprüche sowie den Zeichnungen mit den dazugehörigen Beschreibungen. Ausführungsbeispiele sind nachstehend unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert. Die Erfindung soll nicht alleine auf diese aufgeführten Ausführungsbeispiele beschränkt werden. Die vorliegende Erfindung soll sich auf alle Gegenstände beziehen, die jetzt und zukünftig der Fachmann als naheliegend zur Realisierung der Erfindung heranziehen würde. Die folgende ausführliche Beschreibung bezieht sich auf die derzeit besten möglichen Ausführungsarten der Offenbarung. Sie dienen lediglich zur näheren Erläuterung der Erfindung. Die Beschreibung ist daher nicht in einem einschränkenden Sinn zu verstehen, sondern dient lediglich der Veranschaulichung der allgemeinen Prinzipien der Erfindung, da der Umfang der Erfindung am besten durch die beigefügten Ansprüche definiert wird. Dabei gilt der zitierte Stand der Technik als Teil der zur Erfindung gehörigen Offenbarung.
Kurze Beschreibung der Zeichnungen
Fig. 1 zeigt in schematischer Draufsicht ein erstes Ausführungsbeispiel eines erfindungsgemäßen elektronischen Bauelements, welches eine Abzweigung aufweist. Fig. 2 zeigt einen Schnitt der Abzweigung gemäß Fig. 1 und den Verlauf der Bewegung eines Quantenpunkts bei der Abzweigung.
Bevorzugtes Ausführungsbeispiel
In Fig. 1 wird ein Ausführungsbeispiel für ein erfindungsgemäßes elektronisches Bauelement 10 dargestellt, welches aus einer Halbleiter-Heterostruktur gebildet ist. Die Strukturen des Bauelements liegen vorzugsweise in einer nanoskaligen Dimension. Als Substrat 12 für das elektronische Bauelement 10 wird undotiertes Siliziumgermanium (SiGe) eingesetzt. Das elektronische Bauelement 10 ist so ausgestaltet, dass es ein zweidimensionales Elektronengas (2DEG) enthält. Auf einer Fläche 14 des Substrats 12 sind Gatterelektrodenanordnungen 16, 18, 20 vorgesehen.
Die Gatterelektrodenanordnungen 16, 18 weisen jeweils zwei Gatterelektroden 22, 24, 26, 28 auf. Die einzelnen Gatterelektroden 22, 24, 26, 28 sind in geeigneter Weise mit Isolierschichten 30 elektrisch voneinander getrennt. Die Gatterelektrodenanordnungen 16, 18, 20 sind dazu schichtweise aufgebaut, wobei zwischen jeder Gatterelektrode 22, 24, 26, 28 jeweils die Isolierschicht 24 vorgesehen ist. Die Gatterelektroden 22, 24, 26, 28 umfassen weiterhin Elektrodenfinger 32, 34, 36, 38, wobei die einer Gatterelektrode 22, 24, 26, 28 jeweils parallel zueinander auf der Fläche 14 des Substrats 12 angeordnet sind.
Die Gatterelektrodenanordnungen 16, 18, 20 werden über elektrische Anschlüsse mit geeigneter Spannung versorgt. Durch geeignetes Anlegen von sinusförmig verlaufenden Spannungen an die Gatterelektroden 22, 24, 26, 28 der Gatterelektrodenanordnungen 16, 18 wird eine Potentialmulde in dem Substrat 12 erzeugt. Ein in dieser Potentialmulde gefangener Quantenpunkt lässt sich so durch das Substrat translatieren. Die Potentialmulde wird durch die geeignete Ansteuerung der Elektrodenfinger 32, 34, 36, 38 mit Sinusspannungen längs durch das Substrat translatiert. Der Quantenpunkt, der in einer solchen Potentialmulde quasi gefangen ist, lässt sich mit dieser Potentialmulde über eine längere Distanz in dem zweidimensionalen Elektronengas des Substrats 12 aus SiGe translatieren, ohne eine quantenmechanische Zustandsänderung zu erfahren.
Die Gatterelektrodenanordnung 18 zweigt von der Gatterelektrodenanordnung 16 in einem Kreuzungsbereich 40 ab. In dem Kreuzungsbereich 40 ist die Gatterelektrodenanordnung 20 angeordnet. Die Gatterelektrodenanordnung 20 enthält im vorliegenden Ausführungsbeispiel zwei Barriere-Gatterelektroden 42, 44. Diese Barriere-Gatterelektroden 42, 44 können zugeschaltet werden, wenn sich die bewegte Potentialmulde mit dem Quantenpunkt in dem Kreuzungsbereich 40 befindet. Durch das Zuschalten der Barriere-Gatterelektroden 42, 44 wird die Potentialmulde mit dem Quantenpunkt in dem Kreuzungsbereich 40 festgehalten. Eine Pump-Gatterelektrode 46 der Gatterelektrodenanordnung 20 veranlasst die Potentialmulde mit dem Quantenpunkt zu einem Richtungswechsel hin zu der Gatterelektrodenanordnung 18.
Sofern kein Richtungswechsel durch die Potentialmulde mit dem Quantenpunkt vorgenommen werden soll, wird eine Barriere-Gatterelektrode 48 der Gatterelektrodenanordnung 20 zugeschaltet. Die beiden anderen Barriere- Gatterelektroden 42, 44 werden hingegen ausgeschaltet. Die Barriere-Gatterelektrode 48 sperrt den Zugang zur Gatterelektrodenanordnung 18. Der Quantenpunkt in der bewegten Potentialmulde hat somit keine Veranlassung für einen Richtungswechsel.
Die Fig. 2 stellt schematisch einen Schnitt durch ein solches elektronisches Bauteil 10 dar. Unter dem Schnitt des Bauteils 10 ist eine Verlaufsfolge A bis C einer beweglichen Potentialmulde 50 mit einem Quantenpunkt 52 dargestellt. In der Abbildung des elektronischen Bauelements 10 sind nur die Elektrodenfinger 36, 38 die Barriere- Gatterelektroden 48 und die Pump-Gatterelektroden 46 im Schnitt sichtbar. Darunter sind Abfolgen von A bis C der Verläufe von Potentialmulden 50 in dem Substrat 12 dargestellt. Die Elektrodenfinger 36, 38 der Gatterelektrodenanordnungen 18 bildet durch das Substrat 12 die bewegliche Potentialmulden 50 aus. Die Bewegung der Potentialmulden 50 erfolgt dabei durch die geeignete Verschaltung der Elektrodenfinger 26, 28. Die Elektrodenfinger 36, 38 der Gatterelektrodenanordnung 16 sind dazu periodisch alternierend zusammengeschaltet, welche eine nahezu kontinuierliche Bewegung der Potentialmulde 50 durch das Substrat 12 bewirken. Bei der vorliegenden Abbildung wird veranschaulicht, wie die Potentialmulde 50 mit dem Quantenpunkt 52 aus dem Kreuzungsbereich 40 abgezweigt wird. Die bewegliche Potentialmulde 50 befindet sich in Richtung der abzweigenden Gatterelektrode 18. Der Pfeil 54 symbolisiert hierbei die Bewegungsrichtung, die die Potentialmulde 50 mit dem Quantenpunkt 52 läuft.
Bezugszeichenliste Elektronisches Bauelement Substrat Fläche Gatterelektrodenanordnung Gatterelektrodenanordnung Gatterelektrodenanordnung Gatterelektroden Gatterelektroden Gatterelektroden Gatterelektroden Isolierschichten Elektrodenfinger Elektrodenfinger Elektrodenfinger Elektrodenfinger Kreuzungsbereich Barriere-Gatterelektrode Barriere-Gatterelektrode Pump-Gatterelektrode Barriere-Gatterelektrode Bewegliche Potentialmulde Quantenpunkt Pfeil

Claims

Patentansprüche
1. Elektronisches Bauelement (10), welches von einem Halbleiterbauelement oder einer halbleiterähnlichen Struktur mit Gatterelektrodenanordnungen (16, 18, 20) zum Bewegen eines Quantenpunkts (52) gebildet wird, umfassend a) ein Substrat (12) mit einem zweidimensionalen Elektronengas oder Elektronenlochgas; b) elektrische Kontakte zum Verbinden der Gatterelektrodenanordnungen (16, 18, 20) mit Spannungsquellen, c) eine erste Gatterelektrodenanordnung (16) mit Gatterelektroden (22,24), welche an einer Fläche (14) des elektronischen Bauelements angeordnet ist, zur Erzeugung einer Potentialmulde (50) in dem Substrat (12); d) die erste Gatterelektrodenanordnung (16) parallel verlaufende
Elektrodenfinger (32, 34) aufweist, wobei e) die Elektrodenfinger (32, 34) periodisch alternierend zusammengeschaltet sind, welche eine nahezu kontinuierliche Bewegung der Potentialmulde (50) durch das Substrat (12) bewirken, wobei ein Quantenpunkt (52) mit dieser Potentialmulde (50) in eine Richtung translatiert wird, dadurch gekennzeichnet, dass f) eine zweite Gatterelektrodenanordnung (18) mit Gatterelektroden (26, 28) vorgesehen ist, welche mit anderer Richtung an einer Abzweigung (40) zur ersten Gatterelektrodenanordnung (16) vorgesehen ist; g) die zweite Gatterelektrodenanordnung (18) parallel verlaufende
Elektrodenfinger (36, 38) aufweist, wobei h) die Elektrodenfinger (36, 38) periodisch alternierend zusammengeschaltet sind, welche eine nahezu kontinuierliche Bewegung der Potentialmulde (50) durch das Substrat (12) bewirken, wobei der Quantenpunkt (52) in der Potentialmulde (50) mit geänderter Fortbewegungsrichtung bewegbar ist.
2. Elektronisches Bauelement (10) nach Anspruch 1, dadurch gekennzeichnet, dass eine dritte Gatterelektrodenanordnung (20) zum Erzeugen einer zuschaltbaren Potentialbarrieren-Anordnung (42, 44, 48) im Bereich der Abzweigung (40) vorgesehen ist, welche zum Abzweigen des Quantenpunkts (52) zugeschaltet wird.
3. Elektronisches Bauelement (10) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass Mittel zur Synchronisation der
Gatterelektrodenanordnungen (16, 18, 20) zur Übergabe des Quantenpunkts an der Abzweigung vorgesehen sind.
4. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine Gatterelektrodenanordnung (16, 18) jeweils aus zwei parallelen Gatterelektroden (22, 24, 26, 28) besteht, welche eine kanalartige Struktur bilden.
5. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Substrat (12) des elektronischen Bauelements (10) Galliumarsenid (GaAs) und/oder Silizumgermanium (SiGe) enthält.
6. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die jeweils zusammengeschalteten Gatterelektroden (22, 24, 26, 28) periodisch und/oder phasenverschoben mit Spannung beaufschlagbar ausgebildet sind.
7. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass jeweils jeder dritte Elektrodenfinger (32, 34, 36, 38) einer Gatterelektrode (22, 24, 26, 28) zusammengeschaltet ist.
8. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Mittel zum Verbinden zweier Qubits eines Quantencomputers vorgesehen sind.
9. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die zweite Gatterelektrodenanordnung (18) mit
Gatterelektroden vorgesehen ist, welche eine zweite bewegliche Potentialmulde (50) in dem Substrat (12) erzeugen.
10. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass ein Magnetfeldgenerator für ein zuschaltbares Magnetfeld und/oder ein Gradientenmagnetfeld vorgesehen ist.
11. Verfahren für ein elektronisches Bauelement (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die zusammengeschalteten Gatterelektroden (22, 24, 26, 28) phasenverschoben mit Spannung beaufschlagt werden, welche eine nahezu kontinuierliche Bewegung der Potentialmulde (50) durch das Substrat (12) bewirkt, wobei ein Quantenpunkt (52) mit dieser
Potentialmulde (50) translatiert wird.
12. Verfahren für ein elektronisches Bauelement (10) nach Anspruch 11, dadurch gekennzeichnet, dass jeweils jede vierte Gatterelektrode (22, 24, 26, 28) zusammengeschaltet und periodisch mit Spannung beaufschlagt wird.
13. Verfahren für ein elektronisches Bauelement (10) nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass die Potentialbarriere zum Abzweigen des Quantenpunkts an der Abzweigung zugeschaltet wird.
EP20792281.6A 2019-09-20 2020-09-21 Verbindungsbauteil zur abzweigung für einzelelektronenbewegung Pending EP4031490A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102019125351 2019-09-20
DE102020115493 2020-06-10
PCT/DE2020/100812 WO2021052539A1 (de) 2019-09-20 2020-09-21 Verbindungsbauteil zur abzweigung für einzelelektronenbewegung

Publications (1)

Publication Number Publication Date
EP4031490A1 true EP4031490A1 (de) 2022-07-27

Family

ID=72885323

Family Applications (5)

Application Number Title Priority Date Filing Date
EP20792280.8A Pending EP4031489A1 (de) 2019-09-20 2020-09-21 Bauelement zum initialisieren eines quantenpunkts
EP20792279.0A Pending EP4031488A1 (de) 2019-09-20 2020-09-21 Manipulationszone für qubits in quantenpunkten
EP20792278.2A Pending EP4031487A1 (de) 2019-09-20 2020-09-21 Bauelement zum auslesen der zustände von qubits in quantenpunkten
EP20792281.6A Pending EP4031490A1 (de) 2019-09-20 2020-09-21 Verbindungsbauteil zur abzweigung für einzelelektronenbewegung
EP20793561.0A Pending EP4031491A1 (de) 2019-09-20 2020-09-21 Elektronisches struktur-bauelement für logische verschaltungen von qubits

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EP20792280.8A Pending EP4031489A1 (de) 2019-09-20 2020-09-21 Bauelement zum initialisieren eines quantenpunkts
EP20792279.0A Pending EP4031488A1 (de) 2019-09-20 2020-09-21 Manipulationszone für qubits in quantenpunkten
EP20792278.2A Pending EP4031487A1 (de) 2019-09-20 2020-09-21 Bauelement zum auslesen der zustände von qubits in quantenpunkten

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20793561.0A Pending EP4031491A1 (de) 2019-09-20 2020-09-21 Elektronisches struktur-bauelement für logische verschaltungen von qubits

Country Status (4)

Country Link
US (5) US20220414516A1 (de)
EP (5) EP4031489A1 (de)
CN (5) CN114424345A (de)
WO (5) WO2021052536A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023117065A1 (en) 2021-12-21 2023-06-29 Forschungszentrum Jülich GmbH Operation of a quantum computing element
WO2023117064A1 (en) 2021-12-21 2023-06-29 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Operation of a quantum computing element
WO2023117063A1 (en) 2021-12-21 2023-06-29 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Quantum computer design

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994458A (ja) * 1982-11-19 1984-05-31 Fujitsu Ltd 電荷転送装置
JPS5994458U (ja) 1982-12-17 1984-06-27 アルパイン株式会社 パ−ソナル無線機
US8164082B2 (en) 2005-09-30 2012-04-24 Wisconsin Alumni Research Foundation Spin-bus for information transfer in quantum computing
AU2007200501B2 (en) 2007-02-06 2011-11-17 Newsouth Innovations Pty Limited Error Corrected Quantum Computer
US7966549B2 (en) * 2007-03-01 2011-06-21 Qucor Pty. Ltd. Error corrected quantum computer
EP2075745A1 (de) 2007-12-28 2009-07-01 Hitachi Ltd. Quanteninformationsverarbeitungsvorrichtung
EP2560133A1 (de) 2011-08-17 2013-02-20 Hitachi, Ltd. Quanteninformationsverarbeitung
US9842921B2 (en) 2013-03-14 2017-12-12 Wisconsin Alumni Research Foundation Direct tunnel barrier control gates in a two-dimensional electronic system
US9691033B2 (en) 2013-03-20 2017-06-27 Newsouth Innovations Pty Limited Quantum computing with acceptor-based qubits
ES2787623T3 (es) 2014-11-03 2020-10-16 Newsouth Innovations Pty Ltd Procesador cuántico
EP3332422A4 (de) 2015-08-05 2019-03-13 NewSouth Innovations Pty Limited Erweiterte verarbeitungsvorrichtung mit mehreren quantenverarbeitungselementen
US10192976B2 (en) 2016-04-28 2019-01-29 The Trustees Of Princeton University Semiconductor quantum dot device and method for forming a scalable linear array of quantum dots
US11177375B2 (en) 2016-06-09 2021-11-16 Intel Corporation Quantum dot devices with top gates
EP3300004A1 (de) 2016-09-27 2018-03-28 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Verfahren zur ausführung eines quantenfehlerkorrekturzyklus in einem quantencomputer
US11038021B2 (en) 2017-06-24 2021-06-15 Intel Corporation Quantum dot devices
US11171225B2 (en) * 2018-12-05 2021-11-09 The Governing Council Of The University Of Toronto Monolithic qubit integrated circuits
DE102019202661A1 (de) 2019-02-27 2020-08-27 Forschungszentrum Jülich GmbH Verfahren und Vorrichtung für eine Qubit Fehlererkennung
EP4075153A1 (de) * 2021-04-12 2022-10-19 Qdevil ApS Niedrigtemperaturoszilloskop
US20230197833A1 (en) * 2021-12-21 2023-06-22 Intel Corporation Nanoribbon-based quantum dot devices

Also Published As

Publication number Publication date
EP4031487A1 (de) 2022-07-27
WO2021052541A1 (de) 2021-03-25
CN114402441A (zh) 2022-04-26
US20220335322A1 (en) 2022-10-20
US20220327072A1 (en) 2022-10-13
WO2021052536A1 (de) 2021-03-25
CN114402440A (zh) 2022-04-26
US20220344565A1 (en) 2022-10-27
WO2021052537A1 (de) 2021-03-25
US20230006669A1 (en) 2023-01-05
US11983126B2 (en) 2024-05-14
WO2021052539A1 (de) 2021-03-25
CN114424345A (zh) 2022-04-29
EP4031488A1 (de) 2022-07-27
EP4031491A1 (de) 2022-07-27
WO2021052538A1 (de) 2021-03-25
EP4031489A1 (de) 2022-07-27
CN114514618A (zh) 2022-05-17
CN114424344A (zh) 2022-04-29
US20220414516A1 (en) 2022-12-29
US11687473B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
EP4031490A1 (de) Verbindungsbauteil zur abzweigung für einzelelektronenbewegung
DE102004014472B4 (de) Anwendungsspezifischer integrierter Halbleiter-Schaltkreis
DE60314401T2 (de) Flashspeicher mit molekularen kreuzleitungen
DE69034105T2 (de) Transistor mit schwebendem Gate und mehreren Steuergates
EP4031486A1 (de) Bauteil mit bandanordnung für einzelelektronenbewegung über eine längere distanz
DE102016111237B3 (de) Rekonfigurierbarer Nanodraht-Feldeffekt-Transistor und dessen Herstellung sowie ein Nanodraht-Array und dessen Rekonfigurierung
WO1998053504A1 (de) Ein-elektron-speicherbauelement
DE112019004223T5 (de) Mikroelektronische Einheit unter Verwendung vertikal gestapelter Einheiten
DE112020001093T5 (de) Resonanzfrequenzanpassung für qubits mit fester frequenz
DE2346746B2 (de) Logische Verknüpfungsglieder mit Josephson-Kontakten
DE602004008877T2 (de) Molekular-crossbar-latch mit gesteuertem eingang
DE102009033566B4 (de) Verfahren zur Einstellung eines Zustands eines Quantenbits
DE2514012C2 (de) Monolithisch integrierte halbleiterschaltungsanordnung, insbesondere fuer koppelbausteine von vermittlungssystemen
DE1616438C3 (de) Integrierte Schaltung, Verwendung dieser Schaltung und Verfahren zu ihrer Herstellung
DE102020100777A1 (de) Analoge nichtflüchtige Speichervorrichtung unter Verwendung eines polyferroelektrischen Films mit zufälligen Polarisationsrichtungen
DE19858759C1 (de) Schaltungsanordnung mit mindestens einem nanoelektronischen Bauelement und Verfahren zu deren Herstellung
DE2124635A1 (de) Verfahren zur Steuerung eines Bereiches hoher elektrischer Feldstarke in Halblei tem
EP0664569A1 (de) Mikroelektronisches Bauelement
DE19738115C1 (de) Schaltungsanordnung mit Einzelelektron-Bauelementen, Verfahren zu deren Betrieb und Anwendung des Verfahrens zur Addition von Binärzahlen
DE112021005740T5 (de) Gemischt leitendes flüchtiges speicherelement zum beschleunigten beschreiben eines nichtflüchtigen memristiven bauelements
DE112010002791B4 (de) SCHALTKREISSTRUKTUR UND VERFAHREN ZUM PROGRAMMIEREN UNDUMPROGRAMMIEREN EINER ELEKTRONISCHEN SICHERUNG (eFUSE) FÜRGERINGE LEISTUNG UND MIT MEHREREN ZUSTÄNDEN
WO2021254830A1 (de) Neuronen und synapsen mit ferroelektrisch modulierten metall-halbleiter schottky dioden nebst verfahren
DE4337160C2 (de) Photodetektorarray und Verfahren zu dessen Betrieb
DE102014222185B4 (de) Quanteninterferenzbasierte Logikvorrichtungen, die einen Elektronen-Monochromator umfassen
DE69629275T2 (de) Logische Vorrichtung nach einem binären Entscheidungsdiagramm

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220308

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)