EP4031488A1 - Manipulationszone für qubits in quantenpunkten - Google Patents

Manipulationszone für qubits in quantenpunkten

Info

Publication number
EP4031488A1
EP4031488A1 EP20792279.0A EP20792279A EP4031488A1 EP 4031488 A1 EP4031488 A1 EP 4031488A1 EP 20792279 A EP20792279 A EP 20792279A EP 4031488 A1 EP4031488 A1 EP 4031488A1
Authority
EP
European Patent Office
Prior art keywords
gate electrode
electronic component
quantum
manipulation zone
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20792279.0A
Other languages
English (en)
French (fr)
Inventor
Matthias KÜNNE
Hendrik BLUHM
Lars SCHREIBER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Rheinisch Westlische Technische Hochschuke RWTH
Original Assignee
Forschungszentrum Juelich GmbH
Rheinisch Westlische Technische Hochschuke RWTH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Rheinisch Westlische Technische Hochschuke RWTH filed Critical Forschungszentrum Juelich GmbH
Publication of EP4031488A1 publication Critical patent/EP4031488A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/20Handling requests for interconnection or transfer for access to input/output bus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66977Quantum effect devices, e.g. using quantum reflection, diffraction or interference effects, i.e. Bragg- or Aharonov-Bohm effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7613Single electron transistors; Coulomb blockade devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/92Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of superconductive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/11Single-electron tunnelling devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/128Junction-based devices having three or more electrodes, e.g. transistor-like structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N69/00Integrated devices, or assemblies of multiple devices, comprising at least one superconducting element covered by group H10N60/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/40Bus coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices

Definitions

  • the invention relates to an electronic component which is formed by a semiconductor component or a semiconductor-like structure with gate electrode arrangements for manipulating the quantum state of qubits in quantum dots, comprising a) a substrate with a two-dimensional electron gas or electron hole gas; b) electrical contacts for connecting the gate electrode arrangements to voltage sources, c) a first gate electrode arrangement with gate electrodes, which is arranged on a surface of the electronic component, for generating movable potential wells in the substrate; d) a second gate electrode arrangement for generating a potential barrier which adjoins the first gate electrode arrangement, e) the gate electrode arrangements have parallel electrode fingers, f) the electrode fingers of the first gate electrode being interconnected periodically in alternation, which cause an almost continuous movement of the potential well through the substrate.
  • the invention also relates to a method for such an electronic component.
  • These semiconductor components often consist of doped silicon elements in order to realize the circuits.
  • transistor circuits can be arranged in such semiconductor components and linked to form a logic circuit.
  • these semiconductor components can now be produced with ever more extreme compactness.
  • This compactness has reached its physical limits.
  • Both the density of the circuits and the temperature often lead to problems in such semiconductor components.
  • optimizations can be achieved through several layer models, higher switching clocks or the choice of semiconductor material.
  • the computing power is often insufficient for many applications, such as in cryptographic technology or when calculating weather or climate models, due to the enormous amount of data.
  • models for so-called quantum computers have long been known.
  • a quantum mechanical system with two states as the smallest unit for storing information is referred to as a “qubit”.
  • a qubit is defined, for example, by the quantum mechanical state spin “up” and spin “down”.
  • a semiconductor heterostructure serves as the substrate.
  • the semiconductor heterostructure contains a two-dimensional electron gas (2DEG).
  • Semiconductor heterostructures are monocrystalline layers of semiconductors with different compositions grown on top of one another. These layer structures provide numerous technically relevant quantization effects with regard to their electronic and optical properties. They are therefore particularly suitable for the production of microelectronic components.
  • the currently most important combination of materials for the production of semiconductor heterostructures is the GaAs / AlGaAs system.
  • Semiconductor heterostructures form so-called quantum films at the interfaces between different materials. These arise in particular because of the different energy ratios in the two materials.
  • the predetermined energy distribution has the consequence that charge carriers from the environment collect in the quantum film. There they are largely restricted in their freedom of movement to the layer and form the two-dimensional electron gas (2DEG).
  • a nanoscopic material structure is called a quantum dot.
  • Semiconductor materials are particularly suitable for this.
  • Charge carriers, both electrons and holes, are restricted in their mobility in a quantum dot to such an extent that their energy can no longer assume continuous, but only discrete states.
  • 2DEG two-dimensional electron gas
  • ESR electron spin resonance
  • EDSR electron dipole spin resonance
  • a quantum dot device which comprises at least three conductive layers and at least two insulating layers.
  • the three conductive layers are electrically isolated from one another. It is described there that a conductive layer consists of a different material than the other two conductive layers.
  • the conductive layers can for example consist entirely and / or partially of aluminum, gold, copper or polysilicon.
  • the insulating layers consist, for example, of silicon oxide, silicon nitride and / or aluminum oxide.
  • the connections between the conductive layers and the insulating layers have the effect, among other things, that individual electrons are channeled through quantum dots of the device using voltage pulses.
  • an electron is quasi trapped in a potential well. Through quantum mechanical tunneling, an electron is moved from quantum dot to quantum dot. This can lead to inaccuracies or falsifications of the information content about the quantum mechanical state when an electron moves over longer distances.
  • WO 2017/020095 A1 discloses a scalable architecture for a processing device for performing quantum processing.
  • the architecture is based on an all-silicon CMOS manufacturing technology.
  • Transistor-based control circuits are used in conjunction with floating gates to drive a two-dimensional array of qubits.
  • the qubits are defined by the spin states of a single electron that is enclosed in a quantum dot.
  • a higher level is described here, i.e. how individual qubits can be controlled electrically, for example via transistors etc., including qubit operation and readout.
  • a "scalable architecture" is spoken of, but the array shown does not allow any real scaling, i.e. integration of cryogenic electronics, among other things, since no space can be created between the qubits.
  • US Pat. No. 8,164,082 B2 describes a spin bus quantum computer architecture which comprises a spin bus which consists of several strongly coupled qubits which are always based on qubits and which define a chain of spin qubits. A large number of information-carrying qubits are arranged next to a qubit of the spin bus. Electrodes are formed around the information-carrying qubits and the spinbus qubits to enable control of the establishment and disruption of the coupling between qubits to enable control of the establishment and disruption of the coupling between each information-bearing qubit and the adjacent spinbus qubit.
  • the spin-bus architecture enables qubits to be coupled quickly and reliably over long distances.
  • EP 3 016 035 B1 describes a processing device and method for operating it, in particular, but not exclusively, the invention relates to a quantum processing device which can be controlled in order to carry out adiabatic quantum calculations.
  • a quantum processor has the following features: a plurality of qubit elements and a control structure which has a plurality of control components, each control component being arranged to control a plurality of qubit elements.
  • the control structure is controllable to perform a quantum calculation using the qubit elements, a quantum state of the qubit elements being encoded in the nuclear or electron spin of one or more donor atoms.
  • the donor atoms are arranged in a plane that is embedded in a semiconductor structure.
  • a first set of donor atoms is arranged to encode quantum information related to quantum computation.
  • a second set of donor atoms is arranged to enable electromagnetic coupling between one or more of the first set of donor atoms.
  • the donor atoms of the first set are arranged in a two-dimensional matrix arrangement.
  • the plurality of control members include a first set of elongate control members disposed in a first plane above the plane containing the donor atoms.
  • a second set of elongate control members are provided which are located in a second level below the level containing the donor atoms.
  • the qubits must be coupled over distances of at least a few micrometers, in particular to create space for local control electronics. Structures and structural elements must be provided that enable a quantum dot to be transported to various destinations in order to be able to set up logic circuits.
  • One or two-dimensional arrays were built from separate quantum dots through which electrons can then be transported. Due to the very large number of gate electrodes and With this approach, the voltages to be set cannot be coupled over several micrometers without significant effort or even not at all.
  • the object of the invention is therefore to eliminate the disadvantages of the prior art and to create an electronic component which allows logic circuits to be implemented with quantum dots, the quantum dots supposed to assume a defined quantum mechanical state.
  • the object is achieved in that in an electronic component of the type mentioned at the outset, in which g) a manipulator is provided which puts the qubit in a definable quantum state in a manipulation zone, the manipulation zone in the adjacent area, which is caused by the first and second gate electrode assemblies is formed.
  • the object is also achieved by a method for such an electronic component in which the quantum dot or the quantum dots can be moved into and out of the manipulation zone by means of the first or third gate electrode arrangements.
  • qubits are realized through electron spins.
  • the invention also makes use of the fact that a quantum mechanical state occurs at a quantum dot the manipulator is set in the manipulation zone.
  • the quantum mechanical state that can be defined in this way can be translated through the substrate over a longer distance.
  • the quantum dot is quasi trapped in the potential well, which is generated in a suitable manner by the gate electrode arrangement.
  • the potential well then moves continuously and directed through the substrate and takes the quantum dot with its quantum mechanical state with it over the distance.
  • the electrode fingers of the gate electrodes are connected accordingly.
  • a quantum dot is transported via the movable potential wells to the static potential well in the manipulation zone.
  • the manipulator comprises means for a switchable magnetic field in the area of the manipulation zone for manipulating the qubit.
  • the magnetic field is used to split the electronic states in relation to the spin. These new eigenstates thus serve as the basis for forming a logical qubit.
  • the manipulator contains means for generating an oscillating magnetic field or a gradient magnetic field in the manipulation zone.
  • An electron is located in an in-plane magnetic field gradient, the magnetic field gradient being used to switch between the eigenstates split up after the spin in a controlled manner.
  • a preferred embodiment of the electronic component according to the invention consists in that the manipulator contains a microwave generator which radiates microwaves into the manipulation zone in order to manipulate the quantum dot. This measure is used to ensure that a quantum dot can be moved in the manipulation zone until a desired quantum state has been established.
  • Microwaves for example, are irradiated via a gate electrode. These microwaves distort the potential in a controlled way so that an electron controls it Magnetic field begins to oscillate. Spin-orbit coupling now makes it possible to switch between the two spin states.
  • a special variant of the electronic component according to the invention also consists in that the manipulator comprises a third gate electrode arrangement with gate electrodes for translating a quantum dot by means of a potential well, which is arranged on a surface of the electronic component and adjacent to the manipulation zone.
  • the manipulator comprises a third gate electrode arrangement with gate electrodes for translating a quantum dot by means of a potential well, which is arranged on a surface of the electronic component and adjacent to the manipulation zone.
  • a further embodiment of the electronic component according to the invention is achieved in that a fourth gate electrode arrangement is additionally provided in the area of the manipulation zone for generating a switchable further potential barrier.
  • a fourth gate electrode arrangement is additionally provided in the area of the manipulation zone for generating a switchable further potential barrier.
  • another static potential well can be generated. This creates a double potential well, for example, which is particularly suitable for manipulating the quantum states of qubits in quantum dots or the quantum states of two qubits in quantum dots via noise interaction.
  • a gate electrode arrangement consists of two parallel gate electrodes which form a channel-like structure. This measure serves to ensure that the potential well can only move on a certain path in the substrate.
  • the substrate contains gallium arsenide (GaAs) and / or silicon germanium (SiGe). These materials are able to generate a two-dimensional electron gas in which quantum dots can be generated and moved.
  • GaAs gallium arsenide
  • SiGe silicon germanium
  • the quantum dots are occupied with electrons.
  • the quantum dots are filled with holes that are missing an electron.
  • the gate electrodes connected in each case are configured to be able to have voltage applied to them periodically and / or out of phase. This measure enables the potential well to be guided continuously through the substrate. A quantum dot located in the potential well can thus be translated with the potential well through the substrate. In doing so, it does not lose its original quantum mechanical state.
  • a preferred embodiment of the electronic component consists in that at least every third electrode finger of a gate electrode is connected together. This is intended to ensure that the potential well is always guaranteed over at least one period over which the potential well is moved. This is the only way to enable continuous movement of the potential well with the quantum dot. In principle, other combinations are also possible when interconnecting gate electrodes, as long as the potential well can be moved with the quantum dot.
  • an advantageous embodiment for the method according to the invention for an electronic component results from the fact that in each case at least every third gate electrode is connected together and a voltage is periodically applied.
  • a further advantageous embodiment of the electronic component according to the invention consists in the fact that means are provided for connecting two qubits of a quantum computer. Translating the states of quantum dots over a greater distance is particularly suitable for quantum computers. Here it is necessary to interconnect qubits with one another. The electronic component must therefore have contact options in order to interconnect at least two qubits in order to transfer the quantum states of the quantum dots from one qubit to the other qubit.
  • FIG. 1 shows a schematic plan view of an exemplary embodiment of an electronic component according to the invention in a section with a gate arrangement for manipulating the quantum state of a quantum dot or charge carrier.
  • FIG. 2 shows, in a schematic principle sketch, the sequence of a manipulation in the manipulation zone of a variant with gate electrode arrangements provided on both sides for two movable potential wells for single qubit operations.
  • FIG. 3 shows, in a schematic principle sketch, the sequence of manipulation in the manipulation zone of a variant with gate electrode arrangements provided on one side for a movable potential well for single qubit operations.
  • FIG. 4 shows in a schematic basic sketch the sequence of a manipulation in the manipulation zone of a variant for two-qubit operations.
  • FIG. 1 shows a first exemplary embodiment for an electronic component 10 according to the invention, which is formed from a semiconductor heterostructure.
  • the structures of the component are preferably in a nanoscale dimension.
  • Undoped silicon germanium (SiGe) is used as substrate 12 for electronic component 10.
  • the electronic component 10 is designed in such a way that it contains a two-dimensional electron gas (2DEG).
  • Gate electrode assemblies 16, 18 are provided on a surface 14 of the substrate 12.
  • the gate electrode arrangements 16, 18 each have two gate electrodes 20, 22, 24, 26.
  • the individual gate electrodes are electrically isolated from one another by means of insulating layers 27 in a suitable manner.
  • the gate electrode arrangements 16, 18, 40 are provided in layers, with an insulating layer 27 being provided between each gate electrode 20, 22, 24, 26 of the gate electrode arrangements 16, 18, 40.
  • the gate electrodes 20, 22, 24, 26 further comprise electrode fingers 28, 30, 32, 34 which are arranged parallel to one another on the surface 14 of the substrate 12.
  • a manipulation zone 38 is formed in an adjacent area 36 where the gate electrode arrangements 16, 18 meet.
  • a manipulator 39 which contains a further gate electrode arrangement 40.
  • the gate electrode arrangement 40 comprises gate electrodes 42, 44, 46, which form at least one static potential well.
  • the gate electrode arrangement 40 also contains pump gate electrodes 48, 50, which can each set a quantum dot or a charge carrier in motion or oscillation.
  • the gate electrode arrangements 16, 18, 40 are supplied with a suitable voltage via electrical connections.
  • a potential well is generated in the substrate 12.
  • a quantum dot or charge carrier trapped in this potential well can be translated through the substrate.
  • the potential well is translated longitudinally through the substrate by suitable control of the electrode fingers 28, 30, 32, 34 with sinusoidal voltages.
  • the quantum dot or the charge carrier that is quasi trapped in such a potential well can be translated with this potential well over a longer distance in the two-dimensional electron gas of the SiGe substrate 12 without experiencing a quantum mechanical change in state.
  • Fig. 2 shows in a schematic principle sketch the sequence of a manipulation of a quantum dot or charge carrier 52, 54 in the manipulation zone 38 for a single Qubit surgery.
  • the figure shows a section through the electronic component 10, so that only the electrode fingers 28, 30, 32, 34, the barrier gate electrodes 42, 44, 46 and the pump gate electrodes 48, 50 are visible in section.
  • sequences A to F of the courses of the potential wells 56, 58, 60 in the substrate 12 are shown to explain the function.
  • Gate electrode arrangements 16, 18 form movable potential wells 56 and 58 through the substrate 12.
  • the movement of the potential troughs 56, 58 takes place by suitable interconnection of the electrode fingers 28, 30, 32, 34.
  • the electrode fingers 28, 30, 32, 34 of the gate electrode arrangement 16, 18 are interconnected periodically alternating, which results in an almost continuous movement of the potential troughs 56, 58 through the substrate 12.
  • a static double trough 60 is formed in the manipulation zone 38.
  • the static double well 60 is created by the barrier gate electrodes 42, 44, 46.
  • a quantum dot 54 with the movable potential well 58 is brought into the static double potential well 60 in the manipulation zone 38.
  • the quantum dot 54 can assume a defined quantum mechanical state.
  • Another quantum dot 52 waits outside the manipulation zone 38.
  • a defined quantum state of the quantum dot 54 is reached by movement in the magnetic field gradient of the manipulator 39.
  • the quantum dot 54 assumes a defined quantum state through delocalization in the double well (E) or through rapid movement back and forth in the magnetic field gradient (F).
  • the quantum dots 52, 54 carried away from the manipulation zone 38 receive quantum mechanical states defined in this way.
  • FIG. 3 shows, in a schematic basic sketch, the sequence of a manipulation of a quantum dot or charge carrier 54 in the manipulation zone 38 for a single qubit operation.
  • the figure shows a section of the electronic component 10, so that only the electrode fingers 32, 34, the barrier gate electrodes 42, 44, 46 and the pump gate electrodes 48, 50 are visible in section.
  • the gate electrode arrangement 18 forms the movable potential well 58 through the substrate 12.
  • the movement of the potential well 58 takes place by suitable interconnection of the electrode fingers 32, 34.
  • the electrode fingers 32, 34 of the gate electrode arrangement 18 are interconnected periodically in alternation, which causes an almost continuous movement of the potential well 58 through the substrate 12.
  • the static double trough 60 is formed in the manipulation zone 38.
  • the static double well 60 is created by the barrier gate electrodes 42, 44, 46.
  • the quantum dot 54 is brought in with the movable potential well 58 to the static double potential well 60 in the manipulation zone 38.
  • the quantum dot 54 can assume a defined quantum mechanical state.
  • a defined quantum state of the quantum dot 54 is achieved by movement in the magnetic field gradient of the manipulator 39.
  • the quantum dot 54 assumes a defined quantum state by delocalization in the double trough (E) or by moving rapidly to and fro in the magnetic field gradient.
  • the quantum dot 54 carried away from the manipulation zone 38 thus receives a defined quantum mechanical state.
  • FIG. 4 shows in a schematic basic sketch the sequence of a manipulation in the manipulation zone 38 of a further variant for two-qubit operation.
  • the figure shows a section of the electronic component 10, so that only the electrode fingers 28, 30, 32, 34, the barrier gate electrodes 42, 44, 46 and the pump gate electrodes 48, 50 are visible in section.
  • sequences A to E of the courses of the potential wells 56, 58, 60 in the substrate 12 are shown for the purpose of explaining the function.
  • the electrode fingers 28, 30, 32, 34 of the gate electrode arrangements 16, 18 form movable potential wells 56 and 58 through the substrate 12.
  • the movement of the potential wells 56, 58 takes place through the appropriate interconnection of the Electrode fingers 28, 30, 32, 34.
  • the electrode fingers 28, 30, 32, 34 of the gate electrode arrangement 16, 18 are interconnected periodically in alternation, which cause an almost continuous movement of the potential wells 56, 58 through the substrate 12.
  • the static double trough 60 is formed in the manipulation zone 38.
  • the static double trough 60 is also produced here by the barrier gate electrodes 42, 44, 46.
  • the quantum dots 52, 54 are translated with the movable potential wells 56, 58 to the static double potential well 60 in the manipulation zone 38 and each introduced into the double potential well 60.
  • the quantum dots 52, 54 can assume a defined quantum mechanical state.
  • Two-qubit operations between the quantum dots 52, 54 can be carried out by exchange interaction 64.
  • the quantum dots 52, 54 carried away from the manipulation zone 38 receive quantum mechanical states defined in this way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Artificial Intelligence (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

Die Erfindung betrifft ein elektronisches Bauelement (10), welches von einem Halbleiterbauelement oder einer halbleiterähnlichen Struktur mit Gatterelektrodenanordnungen (16, 18, 40) zum Manipulieren des Quantenzustands von Qubits in Quantenpunkten (52, 54) gebildet wird, welche ein Substrat (12) mit einem zweidimensionalen Elektronengas oder Elektronenlochgas enthält. Elektrische Kontakte verbinden die Gatterelektrodenanordnungen (16, 18, 40) mit Spannungsquellen. Eine erste Gatterelektrodenanordnung (16) mit Gatterelektroden (20, 22, 24, 26) ist an einer Fläche (14) des elektronischen Bauelements (10) zur Erzeugung von beweglichen Potentialmulden (56, 58) in dem Substrat (12); angeordnet. Eine zweite Gatterelektrodenanordnung (40) dient zur Erzeugung einer Potentialbarriere, welche an die erste Gatterelektrodenanordnung (16) angrenzt. Die Gatterelektrodenanordnungen (16, 18, 40) weisen parallel verlaufende Elektrodenfinger (28, 30, 32, 34) auf, wobei die Elektrodenfinger (28, 30, 32, 34) der ersten Gatterelektrodenanordnung (16) periodisch alternierend zusammengeschaltet sind, um eine nahezu kontinuierliche Bewegung der Potentialmulde (56, 58) durch das Substrat (12) zu bewirken.

Description

Patentanmeldung
Manipulationszone für Qubits in Quantenpunkten
Technisches Gebiet
Die Erfindung betrifft ein elektronisches Bauelement, welches von einem Halbleiterbauelement oder einer halbleiterähnlichen Struktur mit Gatterelektrodenanordnungen zum Manipulieren des Quantenzustands von Qubits in Quantenpunkten gebildet wird, umfassend a) ein Substrat mit einem zweidimensionalen Elektronengas oder Elektronenlochgas; b) elektrische Kontakte zum Verbinden der Gatterelektrodenanordnungen mit Spannungsquellen, c) eine erste Gatterelektrodenanordnung mit Gatterelektroden, welche an einer Fläche des elektronischen Bauelements angeordnet ist, zur Erzeugung von beweglichen Potentialmulden in dem Substrat; d) eine zweite Gatterelektrodenanordnung zur Erzeugung einer Potentialbarriere, welche an die erste Gatterelektrodenanordnung angrenzt, e) die Gatterelektrodenanordnungen parallel verlaufende Elektrodenfinger aufweisen, wobei f) die Elektrodenfinger der ersten Gatterelektrode periodisch alternierend zusammengeschaltet sind, welche eine nahezu kontinuierliche Bewegung der Potentialmulde durch das Substrat bewirken.
Weiterhin betrifft die Erfindung ein Verfahren für ein solches elektronisches Bauelement.
Beschreibung
Herkömmliche Computer arbeiten mit Halbleiterbauteilen mit integrierten Schaltkreisen. Diese Schaltkreise arbeiten immer mit Systemen, welche auf einer logischen „0" oder „1" basieren - also Schalter „an" oder „aus". Bei Halbleiterspeichern wird dies dadurch realisiert, dass das Potential entweder oberhalb oder unterhalb eines Schwellwerts liegt. Diese zwei Zustände bilden die kleinste Einheit bei Computern und werden als „Bit" bezeichnet.
Diese Halbleiterbauteile bestehen oft aus dotierten Siliziumelementen, um die Schaltungen zu realisieren. So lassen sich beispielsweise Transistorschaltungen in solchen Halbleiterbauteilen anordnen und zu einem logischen Schaltkreis verknüpfen. Durch immer besser werdende chemische und physikalische Herstellungsverfahren können diese Halbleiterbauteile mittlerweile in immer extremerer Kompaktheit produziert werden. Diese Kompaktheit stößt aber an ihre physikalischen Grenzen. Sowohl die Dichte der Schaltungen, als auch die Temperatur führen häufig zu Problemen in solchen Halbleiterbauteilen. So können insbesondere noch Optimierungen durch mehrere Schichtmodelle, höhere Schalttaktung oder auch bei der Wahl des Halbleitermaterials erzielt werden. Trotzdem reichen die Rechenleistungen für viele Anwendungen, wie z.B. in der kryptographischen Technologie oder bei Berechnung von Wetter- bzw. Klimamodellen wegen der enormen Datenmengen oft nicht aus. Um Rechenleistung erheblich zu erhöhen, sind seit langem Modelle für sogenannte Quantencomputer bekannt. Technisch ließen sie sich aus unterschiedlichen Gründen bislang jedoch noch nicht realisieren. Die Modelle von Quantencomputern sehen vor, dass quantenmechanische Zustände von Teilchen, wie z.B. Elektronen, ausgenutzt werden. Dabei wird ein quantenmechanisches System mit zwei Zuständen als kleinste Einheit zum Speichern von Informationen als „Qubit" bezeichnet. Ein Qubit wird beispielsweise durch den quantenmechanischen Zustand Spin „Up" und Spin „Down" definiert.
Das Prinzip von Elektronen-Spin-Qubits gleicht sich immer, unabhängig vom jeweils gewählten Materialsystem. Als Substrat dient dabei eine Halbleiter-Heterostruktur. Die Halbleiter-Heterostruktur beinhaltet ein zweidimensionales Elektronengas (2DEG). Halbleiter-Heterostrukturen sind monokristallin aufeinander gewachsene Schichten von Halbleitern mit unterschiedlicher Zusammensetzung. Diese Schichtstrukturen liefern zahlreiche technisch relevante Quantisierungseffekte bezüglich ihrer elektronischen und optischen Eigenschaften. Daher sind sie für die Herstellung mikroelektronischer Bauelemente besonders geeignet. Die derzeit wichtigste Materialkombination für die Herstellung von Halbleiter-Heterostrukturen ist das System GaAs/AIGaAs.
Halbleiter-Heterostrukturen bilden dabei sogenannte Quantenfilme an Grenzflächen verschiedener Materialien aus. Diese entstehen insbesondere wegen unterschiedlicher Energieverhältnisse in den beiden Materialien. Die so vorgegebene Energieverteilung hat zur Folge, dass sich Ladungsträger aus der Umgebung im Quantenfilm sammeln. Dort sind sie dann in ihrer Bewegungsfreiheit weitgehend auf die Schicht eingeschränkt und bilden das zweidimensionale Elektronengas (2DEG).
Als Quantenpunkt wird eine nanoskopische Materialstruktur bezeichnet. Halbleitermaterialien sind hierfür besonders geeignet. Ladungsträger, sowohl Elektronen, als auch Löcher, werden in einem Quantenpunkt in ihrer Beweglichkeit so weit eingeschränkt, dass ihre Energie nicht mehr kontinuierliche, sondern immer nur noch diskrete Zustände annehmen kann. Mittels nanoskaliger Gatterelektroden (sog. gates), die auf die Oberfläche des Bauelements aufgebracht werden, wird die Potentiallandschaft innerhalb des zweidimensionalen Elektronengas (2DEG) derart geformt, dass einzelne Elektronen in den Quantenpunkten eingefangen werden können. Anschließend dient der Spin dieser Elektronen als Basis, um ein logisches Qubit zu formen.
Mithilfe eines externen Magnetfelds können elektronische Zustände hinsichtlich ihres Spin-Zustands aufgespalten (Zeemann-Effekt) und damit separat adressiert werden. Anschließend dient der Spin dieser Elektronen als Basis von Eigenzuständen, um ein logisches Qubit zu formen. Darüber hinaus können aufgrund quantenmechanischer Effekte auch überlagerte Zustände dieser beiden Eigenzustände realisiert werden.
Es sind Methoden zur Manipulation von einzelnen Qubits über Elektron-Spin-Resonanz (ESR) oder Elektron-Dipol-Spin-Resonanz (EDSR) bekannt. Zwei- Qubit-Operationen sind über Austauschwechselwirkung bekannt.
Stand der Technik
Aus der US 2017/0317203 Al ist eine Quantenpunktvorrichtung bekannt, die mindestens drei leitende Schichten und mindestens zwei isolierende Schichten umfasst. Dabei sind die drei leitenden Schichten voneinander elektrisch isoliert. Es wird dort beschrieben, dass eine leitende Schicht aus einem anderen Material besteht, als die jeweils beiden anderen leitenden Schichten. Die leitenden Schichten können z.B. vollständig und/oder teilweise aus Aluminium, Gold, Kupfer oder Polysilicium bestehen. Die Isolierschichten bestehen hingegen z.B. aus Siliziumoxid, Siliziumnitrid und/oder Aluminiumoxid. Dabei bewirken die Verbindungen zwischen den leitenden Schichten und den isolierenden Schichten u.a., dass einzelne Elektronen unter Verwendung von Spannungsimpulsen durch Quantenpunkte der Vorrichtung geschleust werden. In dieser Quantenpunktvorrichtung ist ein Elektron in einer Potentialmulde quasi gefangen. Durch quantenmechanisches Tunneln wird dabei ein Elektron hier von Quantenpunkt zu Quantenpunkt bewegt. Dies kann zu Ungenauigkeiten bzw. Verfälschungen des Informationsgehalts über den quantenmechanischen Zustand bei der Bewegung eines Elektrons über längere Distanzen führen.
Die WO 2017/020095 Al offenbart eine skalierbare Architektur für ein Verarbeitungsgerät zur Durchführung von Quantenverarbeitung. Die Architektur basiert auf einer Voll-Silizium-CMOS-Fertigungstechnologie. Transistor-basierte Steuerschaltungen werden zusammen mit potentialfreien Gates verwendet, um ein zweidimensionales Array von Qubits zu betreiben. Die Qubits werden durch die Spinzustände eines einzelnen Elektrons definiert, das in einem Quantenpunkt eingeschlossen ist. Hier wird eine übergeordnete Ebene beschrieben, d.h. wie einzelne Qubits elektrisch angesteuert werden können, zum Beispiel via Transistoren etc., inkl. Qubit-Operation und Readout. Es wird zwar von einer „skalierbaren Architektur" gesprochen, jedoch lässt das gezeigte Array keine wirkliche Skalierung, d.h. unter anderem Integration von tiefkalter Elektronik zu, da kein Platz zwischen den Qubits geschaffen werden kann.
Die US 8,164,082 B2 beschreibt eine Spinbus-Quantencomputerarchitektur, die einen Spinbus umfasst, der aus mehreren stark gekoppelten und immer auf Qubits basierenden Qubits besteht, die eine Kette von Spin-Qubits definieren. Eine Vielzahl von informationstragenden Qubits sind neben einem Qubit des Spinbusses angeordnet. Zu den informationstragenden Qubits und den Spinbus-Qubits werden Elektroden gebildet, um die Steuerung der Herstellung und Unterbrechung der Kopplung zwischen Qubits zu ermöglichen, um die Steuerung der Herstellung und Unterbrechung der Kopplung zwischen jedem informationstragenden Qubit und dem angrenzenden Spinbus-Qubit zu ermöglichen. Die Spin-Bus-Architektur ermöglicht eine schnelle und zuverlässige Kopplung von Qubits über große Entfernungen. In der EP 3 016 035 Bl wird eine Verarbeitungsvorrichtung und Verfahren beschrieben, um diese zu betreiben, insbesondere, aber nicht ausschließlich, bezieht sich die Erfindung auf eine Quantenverarbeitungsvorrichtung, die steuerbar ist, um adiabatische Quantenberechnungen durchzuführen.
Ein Quantenprozessor weist dazu folgende Merkmale auf: eine Mehrzahl von Qubit- Elementen und eine Steuerstruktur, die eine Mehrzahl von Steuerbauteilen aufweist, wobei jedes Steuerbauteil angeordnet ist, um eine Mehrzahl von Qubit-Elementen zu steuern. Die Steuerstruktur ist steuerbar, um eine Quantenberechnung unter Verwendung der Qubit-Elemente durchzuführen, wobei ein Quantenzustand der Qubit- Elemente in dem Kern- oder Elektronenspin eines oder mehrerer Donatoratome codiert ist. Die Donatoratome sind in einer Ebene angeordnet, die in einer Halbleiterstruktur eingebettet ist. Dabei ist eine erste Menge von Donatoratomen so angeordnet, um Quanteninformationen in Bezug auf die Quantenberechnung zu codieren. Eine zweite Menge von Donatoratomen ist so angeordnet, dass sie eine elektromagnetische Kopplung zwischen einem oder mehreren der ersten Menge von Donatoratomen ermöglichen. Die Donatoratome der ersten Menge sind in einer zweidimensionalen Matrixanordnung angeordnet. Die Mehrzahl von Steuerbauteilen weist eine erste Menge länglicher Steuerbauteile auf, die in einer ersten Ebene oberhalb der Ebene angeordnet sind, die die Donatoratome enthalten. Eine zweite Menge länglicher Steuerbauteile sind vorgesehen, die in einer zweiten Ebene unterhalb der Ebene angeordnet sind, die die Donatoratome aufweisen.
Zur Realisierung eines universellen Quantencomputers muss eine Kopplung der Qubits über Distanzen von mindestens einigen Mikrometern ermöglicht werden, um insbesondere Platz für lokale Kontrollelektronik zu schaffen. Es müssen Strukturen und Strukturelemente vorgesehen sein, die es ermöglichen einen Quantenpunkt an verschiedene Ziele zu transportieren, um logische Schaltungen aufbauen zu können. Es gibt bereits Ansätze im Stand der Technik, bei denen ein- oder zweidimensionale Arrays aus separaten Quantenpunkten gebaut wurden, durch die dann Elektronen transportiert werden können. Aufgrund der sehr großen Anzahl an benötigten Gatterelektroden und damit einzustellenden Spannungen ist mittels dieses Ansatzes eine Kopplung über mehrere Mikrometer nicht ohne bedeutenden Aufwand oder sogar gar nicht zu realisieren.
Während die Operationen an einzelnen Qubits bereits in zufriedenstellendem Maße kontrolliert und ausgewertet werden können, ist die Kopplung von Qubits das möglicherweise zentrale ungelöste Problem, um komplexe logische Schaltungen zu verwirklichen damit ein universeller Quantencomputer realisiert werden kann.
Offenbarung der Erfindung
Aufgabe der Erfindung ist es daher, die Nachteile des Standes der Technik zu beseitigen und ein elektronisches Bauelement zu schaffen, welches logische Schaltungen mit Quantenpunkten zu realisieren erlaubt, wobei die Quantenpunkte einen definierten quantenmechanischen Zustand annehmen sollen.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass bei einem elektronischen Bauteil der eingangs genannten Art gelöst, bei dem g) ein Manipulator vorgesehen ist, der in einer Manipulationszone das Qubit in einen definierbaren Quantenzustand versetzt, wobei die Manipulationszone in dem angrenzenden Bereich, der durch die erste und zweite Gatterelektrodenanordnung gebildet wird, vorgesehen ist.
Die Aufgabe wird ferner durch ein Verfahren für ein solches elektronisches Bauelement gelöst, bei dem der Quantenpunkt bzw. die Quantenpunkte in die Manipulationszone und aus ihr heraus mittels der ersten bzw. dritten Gatterelektrodenanordnungen bewegt werden können.
Grundsätzlich werden Qubits durch Elektronen-Spins realisiert. Die Erfindung macht sich zudem zu nutzen, dass ein quantenmechanischer Zustand bei einem Quantenpunkt durch den Manipulator in der Manipulationszone eingestellt wird. Der so definierbare quantenmechanische Zustand durch das Substrat über eine längere Distanz translatiert werden kann. Dazu wird der Quantenpunkt in der Potentialmulde, die durch die Gatterelektrodenanordnung in geeigneter Weise erzeugt wird, quasi gefangen. Die Potentialmulde bewegt sich dann kontinuierlich und gerichtet durch das Substrat hindurch und nimmt den Quantenpunkt mit seinem quantenmechanischen Zustand über die Distanz mit. Für die kontinuierliche Bewegung der Potentialmulde werden die Elektrodenfinger der Gatterelektroden entsprechend verschaltet. Über die bewegbaren Potentialmulden wird ein Quantenpunkt zu der statischen Potentialmulde in die Manipulationszone transportiert.
In einer vorteilhaften Ausgestaltung des erfindungsgemäßen elektronischen Bauelements umfasst der Manipulator Mittel für ein zuschaltbares Magnetfeld im Bereich der Manipulationszone zur Manipulation des Qubits. Das Magnetfeld dient dazu, die elektronischen Zustände in Bezug auf den Spin aufzuspalten. Diese neuen Eigenzustände dienen somit als Basis, um ein logisches Qubit zu formen.
In einer weiteren vorteilhaften Ausbildung des erfindungsgemäßen elektronischen Bauelements enthält der Manipulator Mittel zur Erzeugung eines oszillierenden Magnetfelds bzw. eines Gradientenmagnetfelds in der Manipulationszone. Ein Elektron befindet sich in einem in-plane Magnetfeldgradienten, wobei der Magnetfeldgradient dazu genutzt wird, um kontrolliert zwischen den nach dem Spin aufgespaltenen Eigenzuständen umschalten zu können.
Eine bevorzugte Ausgestaltung des erfindungsgemäßen elektronischen Bauelements besteht darin, dass der Manipulator einen Mikrowellengenerator enthält, der Mikrowellen in die Manipulationszone zur Manipulation des Quantenpunkts einstrahlt. Diese Maßnahme dient dazu, dass ein Quantenpunkt in der Manipulationszone so lange bewegt werden kann, bis sich ein gewünschter Quantenzustand eingestellt hat. Über eine Gatterelektrode werden beispielsweise Mikrowellen angestrahlt. Diese Mikrowellen verzerren das Potenzial in kontrollierter Weise, sodass ein Elektron kontrolliert in dem Magnetfeld zu oszillieren beginnt. Spin-Bahn-Kopplung bewirkt nun, dass zwischen den beiden Spin-Zuständen umgeschaltet werden kann.
Eine besondere Variante des erfindungsgemäßen elektronischen Bauelements besteht ferner darin, dass der Manipulator eine dritte Gatterelektrodenanordnung mit Gatterelektroden zum Translatieren eines Quantenpunkts mittels Potentialmulde umfasst, welche an einer Fläche des elektronischen Bauelements und an die Manipulationszone angrenzend angeordnet ist. Hierdurch können zwei Quantenpunkte gleichzeitig zur Manipulationszone translatiert werden.
Eine weitere Ausgestaltung des erfindungsgemäßen elektronischen Bauelements wird dadurch erzielt, dass im Bereich der Manipulationszone zusätzlich eine vierte Gatterelektrodenanordnung zur Erzeugung einer zuschaltbaren weiteren Potentialbarriere vorgesehen ist. Mit dieser Maßnahme lässt sich eine weitere statische Potentialmulde generieren. Hierdurch entsteht beispielsweise eine Doppelpotentialmulde, welche besonders für die Manipulation von Quantenzuständen von Qubits in Quantenpunkten oder der Quantenzustände zweier Qubits in Quantenpunkten über Ausrauschwechselwirkung geeignet ist.
In einer bevorzugten Ausgestaltung des elektronischen Bauelements besteht eine Gatterelektrodenanordnung aus zwei parallelen Gatterelektroden, welche eine kanalartige Struktur bilden. Diese Maßnahme dient dazu, dass die Potentialmulde sich nur auf einer bestimmten Bahn in dem Substrat bewegen kann.
In einer vorteilhaften Ausgestaltung eines solchen elektronischen Bauelements enthält das Substrat Galliumarsenid (GaAs) und/oder Silizumgermanium (SiGe). Diese Materialien sind in der Lage ein zweidimensionales Elektronengas zu erzeugen, in welchem sich Quantenpunkte erzeugen und bewegen lassen. Bei Galliumarsenid werden die Quantenpunkte mit Elektronen besetzt. Bei Siliziumgermanium werden die Quantenpunkte mit Löchern, bei denen ein Elektron fehlt, besetzt. Eine weitere bevorzugte Ausbildung des elektronischen Bauelements lässt sich damit erreichen, dass die jeweils zusammengeschalteten Gatterelektroden periodisch und/oder phasenverschoben mit Spannung beaufschlagbar ausgebildet sind. Diese Maßnahme ermöglicht es die Potentialmulde kontinuierlich durch das Substrat zu führen. Damit kann ein Quantenpunkt, der sich in der Potentialmulde befindet, mit der Potentialmulde durch das Substrat translatiert werden. Dabei verliert er nicht seinen ursprünglichen quantenmechanischen Zustand.
Eine bevorzugte Ausgestaltung des elektronischen Bauelements besteht darin, dass jeweils mindestens jeder dritte Elektrodenfinger einer Gatterelektrode zusammengeschaltet ist. Damit soll erreicht werden, dass die Potentialmulde immer über wenigstens eine Periode gewährleistet ist, über welche die Potentialmulde bewegt wird. Nur so wird eine kontinuierliche Bewegung der Potentialmulde mit dem Quantenpunkt ermöglicht. Grundsätzlich sind auch andere Kombinationen bei der Zusammenschaltung von Gatterelektroden möglich, solange eine Bewegung der Potentialmulde mit dem Quantenpunkt durchgeführt werden kann. Entsprechend ergibt sich eine vorteilhafte Ausgestaltung für das erfindungsgemäße Verfahren für ein elektronisches Bauteil dadurch, dass jeweils zumindest jede dritte Gatterelektrode zusammengeschaltet und periodisch mit Spannung beaufschlagt wird.
Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen elektronischen Bauelements besteht darin, dass Mittel zum Verbinden zweier Qubits eines Quantencomputers vorgesehen sind. Die Zustände von Quantenpunkten über eine größere Distanz zu translatieren eignet sich besonders bei Quantencomputern. Hier gilt es Qubits miteinander zu verschalten. Daher muss das elektronische Bauelement Kontaktmöglichkeiten haben um wenigstens zwei Qubits zu verschalten, um die Quantenzustände der Quantenpunkte von einem Qubit zum anderen Qubit zu übergeben.
Weitere Ausgestaltungen und Vorteile ergeben sich aus dem Gegenstand der Unteransprüche sowie den Zeichnungen mit den dazugehörigen Beschreibungen. Ausführungsbeispiele sind nachstehend unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert. Die Erfindung soll nicht alleine auf diese aufgeführten Ausführungsbeispiele beschränkt werden. Die vorliegende Erfindung soll sich auf alle Gegenstände beziehen, die jetzt und zukünftig der Fachmann als naheliegend zur Realisierung der Erfindung heranziehen würde. Die folgende ausführliche Beschreibung bezieht sich auf die derzeit besten möglichen Ausführungsarten der Offenbarung. Sie dienen lediglich zur näheren Erläuterung der Erfindung. Die Beschreibung ist daher nicht in einem einschränkenden Sinn zu verstehen, sondern dient lediglich der Veranschaulichung der allgemeinen Prinzipien der Erfindung, da der Umfang der Erfindung am besten durch die beigefügten Ansprüche definiert wird. Dabei gilt der zitierte Stand der Technik als Teil der zur Erfindung gehörigen Offenbarung.
Kurze Beschreibung der Zeichnungen
Fig. 1 zeigt in schematischer Draufsicht ein Ausführungsbeispiel eines erfindungsgemäßen elektronischen Bauelements in einem Ausschnitt mit einer Gatteranordnung zur Manipulation des Quantenzustands eines Quantenpunkts bzw. Ladungsträgers.
Fig. 2 zeigt in einer schematischen Prinzipskizze den Ablauf einer Manipulation in der Manipulationszone einer Variante mit beidseitig vorgesehenen Gatterelektrodenanordnungen für zwei bewegliche Potentialmulden für Einzel-Qubit-Operationen.
Fig. 3 zeigt in einer schematischen Prinzipskizze den Ablauf einer Manipulation in der Manipulationszone einer Variante mit einseitig vorgesehener Gatterelektrodenanordnungen für eine bewegliche Potentialmulde für Einzel-Qubit-Operationen.
Fig. 4 Zeigt in einer schematischen Prinzipskizze den Ablauf einer Manipulation in der Manipulationszone einer Variante für Zwei-Qubit-Operationen.
Bevorzugtes Ausführungsbeispiel
In Fig. 1 wird ein erstes Ausführungsbeispiel für ein erfindungsgemäßes elektronisches Bauelement 10 dargestellt, welches aus einer Halbleiter-Heterostruktur gebildet ist. Die Strukturen des Bauelements liegen vorzugsweise in einer nanoskaligen Dimension. Als Substrat 12 für das elektronische Bauelement 10 wird undotiertes Siliziumgermanium (SiGe) eingesetzt. Das elektronische Bauelement 10 ist so ausgestaltet, dass es ein zweidimensionales Elektronengas (2DEG) enthält. Auf einer Fläche 14 des Substrats 12 sind Gatterelektrodenanordnungen 16, 18 vorgesehen. Die Gatterelektrodenanordnungen 16, 18, weisen jeweils zwei Gatterelektroden 20, 22, 24, 26 auf. Die einzelnen Gatterelektroden sind in geeigneter Weise mit Isolierschichten 27 elektrisch voneinander getrennt. Die Gatterelektrodenanordnungen 16, 18, 40 sind dazu schichtweise vorgesehen, zwischen jeder Gatterelektrode 20, 22, 24, 26 der Gatterelektrodenanordnungen 16, 18, 40 jeweils eine Isolierschicht 27 vorgesehen ist. Die Gatterelektroden 20, 22, 24, 26 umfassen weiterhin Elektrodenfinger 28, 30, 32, 34, die parallel zueinander auf der Fläche 14 des Substrats 12 angeordnet sind.
In einem angrenzenden Bereich 36, wo die Gatterelektrodenanordnungen 16, 18 Zusammenstößen, wird eine Manipulationszone 38 ausbildet. In der Manipulationszone 38 befindet sich ein Manipulator 39, welcher eine weitere Gatterelektrodenanordnung 40 enthält. Die Gatterelektrodenanordnung 40 umfasst Gatterelektroden 42, 44, 46, welche mindestens eine statische Potentialmulde ausbilden. Die Gatterelektrodenanordnung 40 enthält ferner Pump-Gatterelektroden 48, 50, welche jeweils einen Quantenpunkt bzw. einen Ladungsträger in Bewegung oder Schwingung versetzen können.
Die Gatterelektrodenanordnungen 16, 18, 40 werden über elektrische Anschlüsse mit geeigneter Spannung versorgt. Durch geeignetes Anlegen von sinusförmig verlaufenden Spannungen an die Gatterelektroden 20, 22, 24, 26 der Gatterelektrodenanordnungen 16, 18 wird eine Potentialmulde in dem Substrat 12 erzeugt. Ein in dieser Potentialmulde gefangener Quantenpunkt bzw. Ladungsträger lässt sich durch das Substrat translatieren. Die Potentialmulde wird durch die geeignete Ansteuerung der Elektrodenfinger 28, 30, 32, 34 mit Sinusspannungen längs durch das Substrat translatiert. Der Quantenpunkt bzw. der Ladungsträger, der in einer solchen Potentialmulde quasi gefangen ist, lässt sich mit dieser Potentialmulde über eine längere Distanz in dem zweidimensionalen Elektronengas des Substrats 12 aus SiGe translatieren, ohne eine quantenmechanische Zustandsänderung zu erfahren.
Fig. 2 zeigt in einer schematischen Prinzipskizze den Ablauf einer Manipulation eines Quantenpunkts bzw. Ladungsträgers 52, 54 in der Manipulationszone 38 für eine Einzel- Qubit-Operation. Die Abbildung zeigt einen Schnitt das elektronische Bauelement 10, so dass nur noch die die Elektrodenfinger 28, 30, 32, 34, die Barriere-Gatterelektroden 42, 44, 46 und die Pump-Gatterelektroden 48, 50 im Schnitt sichtbar sind. Darunter sind Abfolgen A bis F der Verläufe der Potentialmulden 56, 58, 60 in dem Substrat 12 zur Funktionserläuterung dargestellt. Die Elektrodenfinger 28, 30, 32 34 der
Gatterelektrodenanordnungen 16, 18 bilden durch das Substrat 12 bewegliche Potentialmulden 56 und 58 aus. Die Bewegung der Potentialmulden 56, 58 erfolgt dabei durch die geeignete Verschaltung der Elektrodenfinger 28, 30, 32, 34. Die Elektrodenfinger 28, 30, 32, 34 der Gatterelektrodenanordnung 16, 18 sind dazu periodisch alternierend zusammengeschaltet, welche eine nahezu kontinuierliche Bewegung der Potentialmulden 56, 58 durch das Substrat 12 bewirken.
In der Manipulationszone 38 ist eine statische Doppelmulde 60 ausgebildet. Die statische Doppelmulde 60 wird durch die Barriere-Gatterelektroden 42, 44, 46 erzeugt. Zunächst wird ein Quantenpunkt 54 mit der beweglichen Potentialmulde 58 an die statische Doppelpotentialmulde 60 in der Manipulationszone 38 hereingebracht. Durch den Manipulator 39, beispielsweise ein Gradientenmagnetfeld, kann der Quantenpunkt 54 einen definierten quantenmechanischen Zustand annehmen. Ein weiterer Quantenpunkt 52 wartet außerhalb der Manipulationszone 38. Durch Bewegung im Magnetfeldgradienten des Manipulators 39 wird ein definierter Quantenzustand des Quantenpunkts 54 erreicht. Es besteht nun die Möglichkeit, dass der Quantenpunkt 54 durch Delokalisation in der Doppelmulde (E) oder durch schnelles Hin- und Herbewegen im Magnetfeldgradienten (F) einen definierten Quantenzustand annimmt. Die aus der Manipulationszone 38 weggeführten Quantenpunkte 52, 54 erhalten so definierte quantenmechanische Zustände.
Die Fig. 3 zeigt in einer schematischen Prinzipskizze den Ablauf einer Manipulation eines Quantenpunkts bzw. Ladungsträgers 54 in der Manipulationszone 38 für eine Einzel- Qubit-Operation. Die Abbildung zeigt einen Schnitt des elektronischen Bauelements 10, so dass nur noch die die Elektrodenfinger 32, 34, die Barriere-Gatterelektroden 42, 44, 46 und die Pump-Gatterelektroden 48, 50 im Schnitt sichtbar sind. Darunter sind Abfolgen A bis F der Verläufe der Potentialmulden 58, 60 in dem Substrat 12 zur Funktionserläuterung dargestellt. Die Elektrodenfinger 32, 34 der
Gatterelektrodenanordnung 18 bilden durch das Substrat 12 die bewegliche Potentialmulde 58 aus. Die Bewegung der Potentialmulde 58 erfolgt dabei durch die geeignete Verschaltung der Elektrodenfinger 32, 34. Die Elektrodenfinger 32, 34 der Gatterelektrodenanordnung 18 sind dazu periodisch alternierend zusammengeschaltet, welche eine nahezu kontinuierliche Bewegung der Potentialmulde 58 durch das Substrat 12 bewirkt.
In der Manipulationszone 38 ist die statische Doppelmulde 60 ausgebildet. Die statische Doppelmulde 60 wird durch die Barriere-Gatterelektroden 42, 44, 46 erzeugt. Der Quantenpunkt 54 wird mit der beweglichen Potentialmulde 58 an die statische Doppelpotentialmulde 60 in der Manipulationszone 38 hereingebracht. Durch den Manipulator 39, beispielsweise ein Gradientenmagnetfeld, kann der Quantenpunkt 54 einen definierten quantenmechanischen Zustand annehmen. Durch Bewegung im Magnetfeldgradienten des Manipulators 39 wird ein definierter Quantenzustand des Quantenpunkts 54 erreicht. Es besteht nun die Möglichkeit, dass der Quantenpunkt 54 durch Delokalisation in der Doppelmulde (E) oder durch schnelles Hin- und Herbewegen im Magnetfeldgradienten einen definierten Quantenzustand annimmt. Der aus der Manipulationszone 38 weggeführte Quantenpunkt 54 erhält so einen definierten quantenmechanischen Zustand.
Fig. 4 zeigt in einer schematischen Prinzipskizze den Ablauf einer Manipulation in der Manipulationszone 38 einer weiteren Variante für Zwei-Qubit-Operation. Die Abbildung zeigt einen Schnitt des elektronischen Bauelements 10, so dass nur noch die die Elektrodenfinger 28, 30, 32, 34, die Barriere-Gatterelektroden 42, 44, 46 und die Pump- Gatterelektroden 48, 50 im Schnitt sichtbar sind. Darunter sind Abfolgen A bis E der Verläufe der Potentialmulden 56, 58, 60 in dem Substrat 12 zur Funktionserläuterung dargestellt. Die Elektrodenfinger 28, 30, 32, 34 der Gatterelektrodenanordnungen 16, 18 bilden durch das Substrat 12 bewegliche Potentialmulden 56 und 58 aus. Die Bewegung der Potentialmulden 56, 58 erfolgt dabei durch die geeignete Verschaltung der Elektrodenfinger 28, 30, 32, 34. Die Elektrodenfinger 28, 30, 32, 34 der Gatterelektrodenanordnung 16, 18 sind dazu periodisch alternierend zusammengeschaltet, welche eine nahezu kontinuierliche Bewegung der Potentialmulden 56, 58 durch das Substrat 12 bewirken.
In der Manipulationszone 38 ist die statische Doppelmulde 60 ausgebildet. Die statische Doppelmulde 60 wird auch hier durch die Barriere-Gatterelektroden 42, 44, 46 erzeugt. Die Quantenpunkte 52, 54 werden mit den beweglichen Potentialmulden 56, 58 an die statische Doppelpotentialmulde 60 in der Manipulationszone 38 translatiert und jeweils in die Doppelpotentialmulde 60 eingebracht. Durch den Manipulator 39, beispielsweise ein Gradientenmagnetfeld, können die Quantenpunkte 52, 54 einen definierten quantenmechanischen Zustand annehmen. Durch Austauschwechselwirkung 64 können Zwei-Qubit-Operationen zwischen den Quantenpunkten 52, 54 durchgeführt werden. Die aus der Manipulationszone 38 weggeführten Quantenpunkten 52, 54 erhalten so definierte quantenmechanische Zustände.
56 Bewegliche Potentialmulde
Bezugszeichenliste 58 Bewegliche Potentialmulde
60 Statische Doppelmulde
10 Elektronisches Bauelement 62 Waagerechte Pfeile
12 Substrat 64 Waagerechter Doppelpfeil
14 Fläche
16 Gatterelektrodenanordnung
18 Gatterelektrodenanordnung
20 Gatterelektrode
22 Gatterelektrode
24 Gatterelektrode
26 Gatterelektrode
27 Isolierschicht
28 Elektrodenfinger
30 Elektrodenfinger
32 Elektrodenfinger
34 Elektrodenfinger
36 Angrenzender Bereich
38 Manipulationszone
39 Manipulator
40 Gatterelektrodenanordnung
42 Barriere-Gatterelektroden
44 Barriere-Gatterelektroden
46 Barriere-Gatterelektroden
48 Pump-Gatterelektroden
50 Pump-Gatterelektroden
52 Quantenpunkt
54 Quantenpunkt

Claims

Patentansprüche
1. Elektronisches Bauelement (10), welches von einem Halbleiterbauelement oder einer halbleiterähnlichen Struktur mit Gatterelektrodenanordnungen (16, 18, 40) zum Manipulieren des Quantenzustands von Qubits in Quantenpunkten (52, 54) gebildet wird, umfassend a) ein Substrat (12) mit einem zweidimensionalen Elektronengas oder Elektronenlochgas; b) elektrische Kontakte zum Verbinden der Gatterelektrodenanordnungen (16, 18, 40) mit Spannungsquellen, c) eine erste Gatterelektrodenanordnung (16) mit Gatterelektroden (20, 22, 24, 26), welche an einer Fläche (14) des elektronischen Bauelements (10) angeordnet ist, zur Erzeugung von beweglichen Potentialmulden (56, 58) in dem Substrat (12); d) eine zweite Gatterelektrodenanordnung (40) zur Erzeugung einer Potentialbarriere, welche an die erste Gatterelektrodenanordnung (16) angrenzt, e) die Gatterelektrodenanordnungen (16, 18, 40) parallel verlaufende Elektrodenfinger (28,30, 32,34) aufweisen, wobei f) die Elektrodenfinger (28, 30, 32, 34) der ersten
Gatterelektrodenanordnung (16) periodisch alternierend zusammengeschaltet sind, welche eine nahezu kontinuierliche Bewegung der Potentialmulde (56,58) durch das Substrat (12) bewirken, dadurch gekennzeichnet, dass g) ein Manipulator (39) vorgesehen ist, der in einer Manipulationszone (38) das Qubit des Quantenpunkts in einen definierbaren Quantenzustand versetzt, wobei die Manipulationszone (38) in dem angrenzenden Bereich (36), der durch die erste und zweite Gatterelektrodenanordnung (16, 40) gebildet wird, vorgesehen ist.
2. Elektronisches Bauelement (10) nach Anspruch 1, dadurch gekennzeichnet, dass Mittel für ein zuschaltbares Magnetfeld zur Aufspaltung der elektronischen Zustände hinsichtlich ihrer quantenmechanischen Zustände in den Quantenpunkten (52, 54) vorgesehen sind.
3. Elektronisches Bauelement (10) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Manipulator (39) Mittel zur Erzeugung eines oszillierenden Magnetfelds bzw. zusätzlich eines Gradientenmagnetfelds in der Manipulationszone (38) enthält.
4. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Manipulator (39) einen Mikrowellengenerator enthält, der Mikrowellen in die Manipulationszone (38) zur Manipulation des Quantenzustands des Quantenpunkts (52, 54) einstrahlt.
5. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Manipulator (39) eine dritte Gatterelektrodenanordnung (18) mit Gatterelektroden (22, 24) zum Translatieren eines Quantenpunkts (52) mittels Potentialmulde (56) umfasst, welche an einer Fläche (14) des elektronischen Bauelements (10) und an die Manipulationszone (38) angrenzend angeordnet ist.
6. Elektronisches Bauelement (10) nach Anspruch 5, dadurch gekennzeichnet, dass die dritte Gatterelektrodenanordnung (18) im angrenzenden Bereich zur Manipulationszone (38) eine vierte Gatterelektrodenanordnung Elektronisches Bauelement (10) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass zur Erzeugung einer zuschaltbaren weiteren Potentialbarriere aufweist.
7. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die erste und die dritte Gatterelektrodenanordnung (16, 18) jeweils aus zwei parallelen Gatterelektroden besteht, welche eine kanalartige Struktur bilden.
8. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Substrat des elektronischen Bauelements Galliumarsenid (GaAs) und/oder Silizumgermanium (SiGe) enthält.
9. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die jeweils zusammengeschalteten Gatterelektroden (20, 22, 24, 26) periodisch und/oder phasenverschoben mit Spannung beaufschlagbar ausgebildet sind.
10. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass jeweils jeder dritte Elektrodenfinger (28, 30, 32, 34) einer Gatterelektrode (20, 22, 24, 26) zusammengeschaltet ist.
11. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass Mittel zum Verbinden eines und/oder zweier Qubits eines Quantencomputers vorgesehen sind.
12. Verfahren für ein elektronisches Bauelement (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Quantenpunk (52) bzw. die Quantenpunkte (52,54) in die Manipulationszone (38) und aus ihr heraus mittels der ersten bzw. dritten Gatterelektrodenanordnung (16, 18) bewegt werden können.
13. Verfahren für ein elektronisches Bauelement (10) nach Anspruch 9, dadurch gekennzeichnet, dass der Quantenpunkt (52) bzw. die Quantenpunkte (52, 54) in die Manipulationszone (38) für eine Austauschwechselwirkung bewegt werden.
14. Verfahren für ein elektronisches Bauelement nach Anspruch 9, dadurch gekennzeichnet, dass der Quantenpunkt (52, 54) innerhalb des Magnetgradientenfelds zur Manipulation eines Qubits in der Manipulationszone (38) hin- und her bewegt wird.
EP20792279.0A 2019-09-20 2020-09-21 Manipulationszone für qubits in quantenpunkten Pending EP4031488A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102019125351 2019-09-20
DE102020115493 2020-06-10
PCT/DE2020/100810 WO2021052537A1 (de) 2019-09-20 2020-09-21 Manipulationszone für qubits in quantenpunkten

Publications (1)

Publication Number Publication Date
EP4031488A1 true EP4031488A1 (de) 2022-07-27

Family

ID=72885323

Family Applications (5)

Application Number Title Priority Date Filing Date
EP20792281.6A Pending EP4031490A1 (de) 2019-09-20 2020-09-21 Verbindungsbauteil zur abzweigung für einzelelektronenbewegung
EP20792278.2A Pending EP4031487A1 (de) 2019-09-20 2020-09-21 Bauelement zum auslesen der zustände von qubits in quantenpunkten
EP20792279.0A Pending EP4031488A1 (de) 2019-09-20 2020-09-21 Manipulationszone für qubits in quantenpunkten
EP20793561.0A Pending EP4031491A1 (de) 2019-09-20 2020-09-21 Elektronisches struktur-bauelement für logische verschaltungen von qubits
EP20792280.8A Pending EP4031489A1 (de) 2019-09-20 2020-09-21 Bauelement zum initialisieren eines quantenpunkts

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP20792281.6A Pending EP4031490A1 (de) 2019-09-20 2020-09-21 Verbindungsbauteil zur abzweigung für einzelelektronenbewegung
EP20792278.2A Pending EP4031487A1 (de) 2019-09-20 2020-09-21 Bauelement zum auslesen der zustände von qubits in quantenpunkten

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP20793561.0A Pending EP4031491A1 (de) 2019-09-20 2020-09-21 Elektronisches struktur-bauelement für logische verschaltungen von qubits
EP20792280.8A Pending EP4031489A1 (de) 2019-09-20 2020-09-21 Bauelement zum initialisieren eines quantenpunkts

Country Status (4)

Country Link
US (5) US11983126B2 (de)
EP (5) EP4031490A1 (de)
CN (5) CN114514618A (de)
WO (5) WO2021052537A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023117065A1 (en) 2021-12-21 2023-06-29 Forschungszentrum Jülich GmbH Operation of a quantum computing element
WO2023117063A1 (en) 2021-12-21 2023-06-29 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Quantum computer design
WO2023117064A1 (en) 2021-12-21 2023-06-29 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Operation of a quantum computing element

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994458A (ja) * 1982-11-19 1984-05-31 Fujitsu Ltd 電荷転送装置
JPS5994458U (ja) 1982-12-17 1984-06-27 アルパイン株式会社 パ−ソナル無線機
US8164082B2 (en) 2005-09-30 2012-04-24 Wisconsin Alumni Research Foundation Spin-bus for information transfer in quantum computing
AU2007200501B2 (en) 2007-02-06 2011-11-17 Newsouth Innovations Pty Limited Error Corrected Quantum Computer
US7966549B2 (en) * 2007-03-01 2011-06-21 Qucor Pty. Ltd. Error corrected quantum computer
EP2075745A1 (de) * 2007-12-28 2009-07-01 Hitachi Ltd. Quanteninformationsverarbeitungsvorrichtung
EP2560133A1 (de) * 2011-08-17 2013-02-20 Hitachi, Ltd. Quanteninformationsverarbeitung
US9842921B2 (en) * 2013-03-14 2017-12-12 Wisconsin Alumni Research Foundation Direct tunnel barrier control gates in a two-dimensional electronic system
WO2014146162A1 (en) * 2013-03-20 2014-09-25 Newsouth Innovations Pry Limited Quantum computing with acceptor-based qubits
AU2015252051B2 (en) 2014-11-03 2020-10-15 Newsouth Innovations Pty Limited A quantum processor
KR102574909B1 (ko) 2015-08-05 2023-09-05 디라크 피티와이 리미티드 복수의 양자 처리 소자들을 포함하는 고도 처리 장치
US10192976B2 (en) 2016-04-28 2019-01-29 The Trustees Of Princeton University Semiconductor quantum dot device and method for forming a scalable linear array of quantum dots
WO2017213651A1 (en) 2016-06-09 2017-12-14 Intel Corporation Quantum dot devices with top gates
EP3300004A1 (de) 2016-09-27 2018-03-28 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Verfahren zur ausführung eines quantenfehlerkorrekturzyklus in einem quantencomputer
US11038021B2 (en) 2017-06-24 2021-06-15 Intel Corporation Quantum dot devices
US11171225B2 (en) * 2018-12-05 2021-11-09 The Governing Council Of The University Of Toronto Monolithic qubit integrated circuits
DE102019202661A1 (de) 2019-02-27 2020-08-27 Forschungszentrum Jülich GmbH Verfahren und Vorrichtung für eine Qubit Fehlererkennung
EP4075153A1 (de) * 2021-04-12 2022-10-19 Qdevil ApS Niedrigtemperaturoszilloskop
US20230197833A1 (en) * 2021-12-21 2023-06-22 Intel Corporation Nanoribbon-based quantum dot devices

Also Published As

Publication number Publication date
EP4031491A1 (de) 2022-07-27
US20220414516A1 (en) 2022-12-29
EP4031490A1 (de) 2022-07-27
US20220327072A1 (en) 2022-10-13
CN114402441A (zh) 2022-04-26
WO2021052536A1 (de) 2021-03-25
WO2021052538A1 (de) 2021-03-25
WO2021052541A1 (de) 2021-03-25
US20220344565A1 (en) 2022-10-27
US20220335322A1 (en) 2022-10-20
EP4031487A1 (de) 2022-07-27
CN114424344A (zh) 2022-04-29
US20230006669A1 (en) 2023-01-05
US11687473B2 (en) 2023-06-27
US11983126B2 (en) 2024-05-14
WO2021052539A1 (de) 2021-03-25
CN114402440A (zh) 2022-04-26
WO2021052537A1 (de) 2021-03-25
EP4031489A1 (de) 2022-07-27
CN114514618A (zh) 2022-05-17
CN114424345A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2021052537A1 (de) Manipulationszone für qubits in quantenpunkten
DE112017007187B4 (de) Schwach abstimmbares Qubit auf Grundlage zweier gekoppelter, disparater Transmone
DE69034105T2 (de) Transistor mit schwebendem Gate und mehreren Steuergates
EP4031486A1 (de) Bauteil mit bandanordnung für einzelelektronenbewegung über eine längere distanz
DE112012002454B4 (de) Verfahren zum Bilden eines piezoelektronischen Transistors (PET) mit 4 Anschlüssen
DE69531367T2 (de) Coulomb-Blockade-Element und Verfahren zur Herstellung
DE102018122529A1 (de) Halbleiterbauelement
DE112020001093T5 (de) Resonanzfrequenzanpassung für qubits mit fester frequenz
DE112019004223T5 (de) Mikroelektronische Einheit unter Verwendung vertikal gestapelter Einheiten
DE102019202661A1 (de) Verfahren und Vorrichtung für eine Qubit Fehlererkennung
DE19858759C1 (de) Schaltungsanordnung mit mindestens einem nanoelektronischen Bauelement und Verfahren zu deren Herstellung
DE102020100777A1 (de) Analoge nichtflüchtige Speichervorrichtung unter Verwendung eines polyferroelektrischen Films mit zufälligen Polarisationsrichtungen
EP0664569B1 (de) Mikroelektronisches Bauelement
DE3687780T2 (de) Ausgerichtete verbindungen zwischen logischen stufen.
DE2124635A1 (de) Verfahren zur Steuerung eines Bereiches hoher elektrischer Feldstarke in Halblei tem
DE19738115C1 (de) Schaltungsanordnung mit Einzelelektron-Bauelementen, Verfahren zu deren Betrieb und Anwendung des Verfahrens zur Addition von Binärzahlen
DE69533365T2 (de) Schaltungsnetzwerk und verfahren für atomische ketten
EP0631322B1 (de) Mikroelektronische Schaltungsstruktur und Verfahren zu deren Herstellung
DE102018117704B4 (de) Lokale Verbindungsstruktur
DE102014222185B4 (de) Quanteninterferenzbasierte Logikvorrichtungen, die einen Elektronen-Monochromator umfassen
WO2022262934A1 (de) Qubit-element
WO2022262933A1 (de) Qubit-element
DE69629275T2 (de) Logische Vorrichtung nach einem binären Entscheidungsdiagramm
DE112012000547B4 (de) Elektronische Vorrichtung und Verfahren zur Implementierung logischer Funktionen und zur Lenkung geladener Teilchen
DE10223159A1 (de) Feldeffekttransistor-Speicherzelle auf Basis eines Nanodrahts

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220308

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)