WO2021052538A1 - Bauelement zum initialisieren eines quantenpunkts - Google Patents

Bauelement zum initialisieren eines quantenpunkts Download PDF

Info

Publication number
WO2021052538A1
WO2021052538A1 PCT/DE2020/100811 DE2020100811W WO2021052538A1 WO 2021052538 A1 WO2021052538 A1 WO 2021052538A1 DE 2020100811 W DE2020100811 W DE 2020100811W WO 2021052538 A1 WO2021052538 A1 WO 2021052538A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential well
electronic component
gate electrode
quantum
static
Prior art date
Application number
PCT/DE2020/100811
Other languages
English (en)
French (fr)
Inventor
Matthias KÜNNE
Hendrik BLUHM
Lars SCHREIBER
Original Assignee
Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen filed Critical Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen
Priority to EP20792280.8A priority Critical patent/EP4031489A1/de
Priority to US17/642,527 priority patent/US11687473B2/en
Priority to CN202080065560.9A priority patent/CN114402441A/zh
Publication of WO2021052538A1 publication Critical patent/WO2021052538A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/20Handling requests for interconnection or transfer for access to input/output bus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66977Quantum effect devices, e.g. using quantum reflection, diffraction or interference effects, i.e. Bragg- or Aharonov-Bohm effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7613Single electron transistors; Coulomb blockade devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/92Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of superconductive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/11Single-electron tunnelling devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/128Junction-based devices having three or more electrodes, e.g. transistor-like structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N69/00Integrated devices, or assemblies of multiple devices, comprising at least one superconducting element covered by group H10N60/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/40Bus coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices

Definitions

  • the invention relates to an electronic component for initializing the quantum mechanical state of a qubit, which is formed by a semiconductor component or a semiconductor-like structure with gate electrode arrangements.
  • the invention also relates to a method for such an electronic component.
  • These semiconductor components often consist of doped silicon elements in order to realize the circuits.
  • transistor circuits can be arranged in such semiconductor components and linked to form a logic circuit.
  • these semiconductor components can now be produced in ever more extreme compactness.
  • This compactness has reached its physical limits.
  • Both the density of the circuits and the temperature often lead to problems in such semiconductor components.
  • optimizations can be achieved through several layer models, higher switching clocks or the choice of semiconductor material.
  • the computing power is often insufficient for many applications, such as in cryptographic technology or when calculating weather or climate models, due to the enormous amount of data.
  • a quantum mechanical system with two states as the smallest unit for storing information is referred to as a “qubit”.
  • a qubit is defined, for example, by the quantum mechanical state spin “up” and spin “down”.
  • a semiconductor heterostructure serves as the substrate.
  • the semiconductor heterostructure contains a two-dimensional electron gas (2DEG).
  • Semiconductor heterostructures are monocrystalline layers of semiconductors with different compositions grown on top of one another. These layer structures provide numerous technically relevant quantization effects with regard to their electronic and optical properties. They are therefore particularly suitable for the production of microelectronic components.
  • the currently most important combination of materials for the production of semiconductor heterostructures is the GaAs / AlGaAs system.
  • Semiconductor heterostructures form so-called quantum films at the interfaces between different materials. These arise in particular because of different Energy ratios in the two materials.
  • the predetermined energy distribution has the consequence that charge carriers from the environment collect in the quantum film. There they are largely restricted in their freedom of movement to the layer and form the two-dimensional electron gas (2DEG).
  • a nanoscopic material structure is called a quantum dot.
  • Semiconductor materials are particularly suitable for this.
  • Charge carriers, both electrons and holes, are so limited in their mobility in a quantum dot that their energy can no longer assume continuous, but only discrete values.
  • 2DEG two-dimensional electron gas
  • a quantum dot device which comprises at least three conductive layers and at least two insulating layers.
  • the three conductive layers are electrically isolated from one another. It is described there that a conductive layer consists of a different material than the other two conductive layers.
  • the conductive layers can for example consist entirely and / or partially of aluminum, gold, copper or polysilicon.
  • the insulating layers consist, for example, of silicon oxide, silicon nitride and / or aluminum oxide.
  • quantum dot device an electron is quasi trapped in a potential well. Through quantum mechanical tunneling, an electron is moved from quantum dot to quantum dot. This can lead to inaccuracies or falsifications of the information content about the quantum mechanical state when an electron moves over longer distances.
  • WO 2017/020095 A1 discloses a scalable architecture for a processing device for performing quantum processing.
  • the architecture is based on an all-silicon CMOS manufacturing technology.
  • Transistor-based control circuits are used in conjunction with floating gates to drive a two-dimensional array of qubits.
  • the qubits are defined by the spin states of a single electron that is enclosed in a quantum dot.
  • a higher level is described here, i.e. how individual qubits can be controlled electrically, for example via transistors etc., including qubit operation and readout.
  • a "scalable architecture" is spoken of, but the array shown does not allow any real scaling, i.e. integration of cryogenic electronics, among other things, since no space can be created between the qubits.
  • US Pat. No. 8,164,082 B2 describes a spin bus quantum computer architecture which comprises a spin bus which consists of several strongly coupled qubits which are always based on qubits and which define a chain of spin qubits. A large number of information-carrying qubits are arranged next to a qubit of the spin bus. Electrodes are formed to the information-carrying qubits and the spin bus qubits to enable control of the establishment and break of the coupling between qubits to control the establishment and break of the coupling between each information-carrying qubit and the adjacent spin bus qubit enable.
  • the spin-bus architecture enables qubits to be coupled quickly and reliably over long distances.
  • EP 3 016 035 B1 describes a processing device and method for operating it, in particular, but not exclusively, the invention relates to a quantum processing device which can be controlled in order to carry out adiabatic quantum calculations.
  • a quantum processor has the following features: a plurality of qubit elements and a control structure which has a plurality of control components, each control component being arranged to control a plurality of qubit elements.
  • the control structure is controllable to perform a quantum calculation using the qubit elements, a quantum state of the qubit elements being encoded in the nuclear or electron spin of one or more donor atoms.
  • the donor atoms are arranged in a plane that is embedded in a semiconductor structure.
  • a first set of donor atoms is arranged to encode quantum information related to quantum computation.
  • a second set of donor atoms is arranged to enable electromagnetic coupling between one or more of the first set of donor atoms.
  • the donor atoms of the first set are arranged in a two-dimensional matrix arrangement.
  • the plurality of control members include a first set of elongate control members disposed in a first plane above the plane containing the donor atoms.
  • a second set of elongate control members are provided which are located in a second level below the level containing the donor atoms.
  • the qubits must be coupled over distances of at least a few micrometers, in particular to create space for local control electronics. Structures and structural elements have to be provided that allow a quantum dot to appear to transport different targets in order to be able to build logical circuits.
  • One or two-dimensional arrays were built from separate quantum dots through which electrons can then be transported. Due to the very large number of gate electrodes required and the voltages to be set with them, a coupling over several micrometers cannot be implemented without considerable effort or even not at all by means of this approach.
  • the object of the invention is therefore to eliminate the disadvantages of the prior art and to create an electronic component which allows logic circuits to be implemented with quantum dots, with a quantum mechanical state to be established for initializing a qubit, for example.
  • the object is achieved by the electronic component for initializing the quantum mechanical state of a qubit of the type mentioned at the beginning, comprising a) a substrate with a two-dimensional electron gas or electron hole gas; b) electrical contacts for connecting the gate electrode assemblies to voltage sources; c) gate electrode arrangements with gate electrodes, which are arranged on a surface of the electronic component for generating potential wells in the substrate; d) a reservoir, which is provided as a dispenser for charge carriers; e) the gate electrodes of the gate electrode arrangements have parallel electrode fingers, i. the gate electrodes of a first gate electrode arrangement in the substrate form a static potential well in which quantum dots are introduced from the reservoir; ii.
  • the gate electrodes of a second gate electrode arrangement form a movable potential well in the substrate, a charge carrier with its quantum mechanical state being translatable with this potential well; f) means for transferring two quantum dots from the reservoir into the static potential well; g) a stimulator for aligning or splitting the quantum dots; h) Means for transferring a charge carrier from the static potential well into the movable potential well.
  • the object is also achieved by a method for such an electronic component with the following method steps: a) introducing two charge carriers into the static potential well from the reservoir; b) bringing the movable potential well up to the static potential well; c) Exchange between the static potential well with the movable potential well so that a charge carrier is located in the movable potential well, d) Defined alignment of the quantum dots in the static potential well and the movable potential well by means of the
  • the invention is fundamentally based on the physical Pauli principle that an electronic level can never be filled with electrons with the same spin.
  • a static potential trough is generated and, on the other hand, a movable potential trough.
  • a pair of charge carriers of one energy level is introduced into the static potential well from the reservoir.
  • the pair of charge carriers is then split up.
  • One of the quantum dots is transferred to the moving potential well.
  • the stimulator With the stimulator, the quantum mechanical state of the quantum dots is aligned in a defined manner on the level - with an electron the spin.
  • the quantum dot in the movable potential well can now be transported away with the known quantum mechanical state, for example as an initialized qubit, with the movable potential well.
  • the quantum dot In order to bring the quantum dot with the movable potential well to the static potential well, the quantum dot must be able to be translated through the substrate over a longer distance without the quantum mechanical state changing.
  • the quantum dot is quasi trapped in the potential well, which is generated in a suitable manner by the gate electrode arrangement.
  • the potential well then moves continuously and directed through the substrate and takes the quantum dot with its quantum mechanical state with it over the distance.
  • the electrode fingers of the gate electrodes are connected accordingly.
  • the stimulator is designed as a magnet which generates a gradient magnetic field for initializing the quantum dots in the static potential well.
  • the quantum dots of an energy level are aligned in a defined manner.
  • micro-magnets can preferably be used, which can be easily integrated into the semiconductor component.
  • the gradient magnetic field thus serves to initialize the quantum dots in the static potential well.
  • An oscillating magnetic field can also be used as the gradient magnetic field. This gradient magnetic field moves the quantum dot into a desired quantum mechanical state. This allows the electronic component to be initialized so that it can then interact with the introduced quantum dot at the same level.
  • the gate electrodes of the first gate electrode form a static double potential well, means for translating a quantum dot from one static potential well into the next static potential well of the static double potential well.
  • each of the static potential wells has a quantum dot with different quantum mechanical states of the same level.
  • the defined alignment of the states is in turn determined by the stimulator.
  • the potential wells are each occupied with known quantum mechanical states - in the case of electrons, they are spins.
  • a corresponding advantageous embodiment of the method according to the invention for such an electronic component consists in that in a further step the static potential well is formed as a double potential well. Subsequently the two static potential wells of the double potential well are each occupied with charge carriers that have different quantum mechanical known states. The movable potential well is now brought up to the static double potential well. One charge carrier is exchanged between a static potential well and the movable potential well. The movable potential well with the quantum dot can then be led away. The movable potential well thus contains a quantum point whose quantum mechanical state is known, which can then be used to initialize a qubit, for example.
  • a gate electrode arrangement consists of two parallel gate electrodes which form a channel-like structure. This measure serves to ensure that the potential well can only move on a certain path in the substrate.
  • the substrate contains gallium arsenide (GaAs) and / or silicon germanium (SiGe). These materials are able to generate a two-dimensional electron gas in which quantum dots can be generated, held and moved. In the case of gallium arsenide, the quantum dots are occupied with electrons. In the case of silicon germanium, the quantum dots are filled with holes that are missing an electron.
  • GaAs gallium arsenide
  • SiGe silicon germanium
  • a further preferred embodiment of the electronic component can be achieved in that the respectively interconnected gate electrodes for the moving potential well can be periodically and / or out of phase with voltage. This measure enables the potential well to be guided continuously through the substrate. A quantum dot located in the potential well can thus be translated with the potential well through the substrate. In doing so, it does not lose its original quantum mechanical state.
  • a preferred embodiment of the electronic component consists in that in each case at least every third electrode finger of a gate electrode is connected together for the movable potential well. This is intended to ensure that the potential well is always guaranteed over at least one period over which the potential well is moved. This is the only way to enable continuous movement of the potential well with the quantum dot.
  • an advantageous embodiment for the method according to the invention for an electronic component results from the fact that in each case at least every third gate electrode is connected together and a voltage is periodically applied.
  • connection means are provided for connecting to a qubit of a quantum computer.
  • Translating the states of quantum dots over a greater distance is particularly suitable for quantum computers.
  • the electronic component must therefore have contact options in order to interconnect at least two qubits in order to transfer the quantum states of the quantum dots from one qubit to the other qubit.
  • Fig. 1 shows a schematic plan view of the electronic component for
  • Fig. 2 shows in section a schematic diagram of an inventive
  • Double potential well for initializing and reading out a qubit Double potential well for initializing and reading out a qubit.
  • Fig. 3 shows in section a schematic diagram of an inventive
  • Double potential well for initializing a qubit Double potential well for initializing a qubit.
  • Fig. 4 shows a schematic plan view of the electronic component for
  • Fig. 5 shows in section a schematic diagram of an inventive
  • FIG. 1 shows a first exemplary embodiment for an electronic component 10 according to the invention, which is again formed from a semiconductor heterostructure.
  • the structures of the component are preferably in a nanoscale dimension.
  • Undoped silicon germanium (SiGe) is used as substrate 12 for electronic component 10.
  • the electronic component 10 is designed in such a way that it contains a two-dimensional electron gas (2DEG).
  • Gate electrode assemblies 16, 18 are provided on surface 14 of substrate 12.
  • the gate electrode arrangement 16 has two gate electrodes 20, 22.
  • the individual gate electrodes 20, 22 are electrically isolated from one another by means of insulating layers 24 in a suitable manner.
  • gate electrode arrangements 16 are provided in layers, the insulating layer 24 being provided between each gate electrode 20, 22 of the gate electrode arrangement 16.
  • the gate electrodes 20, 22 furthermore include the electrode fingers 26, 28, which are arranged parallel to one another on the surface 14 of the substrate 12.
  • the gate electrode arrangements 16, 18 are supplied with a suitable voltage via electrical connections. By suitably applying sinusoidal voltages to the gate electrodes 20, 22 of the gate electrode arrangement 16, a movable potential well is generated in the substrate 12. A quantum dot 42 or charge carrier trapped in this potential well can thus be translated through the substrate.
  • the potential well is translated longitudinally through the substrate 12 by suitable control of electrode fingers 26, 28 of the gate electrodes 20, 22 with sinusoidal voltages.
  • the quantum dot 42 which is quasi trapped in such a potential well, can be translated with this potential well over a longer distance in the two-dimensional electron gas of the substrate 12 made of SiGe without experiencing a quantum mechanical change in state.
  • the gate electrode arrangement 18 forms a static double potential well.
  • the gate electrode arrangement 18 comprises the barrier gate electrodes 36, 38, 40 and, in addition to the pump gate electrode 42, a further pump gate electrode 44 which can set a quantum dot or a charge carrier in motion or oscillation.
  • the pump gate electrodes 42, 44 are arranged alternately between the barrier gate electrodes 36, 38 and 40.
  • the gate electrodes 36, 38, 40, 42, 44 each have electrode fingers 37, 39, 41, 43, 45.
  • the reservoir 49 for introducing changes in charge adjoins the barrier gate electrode arrangement 18.
  • FIG. 2 shows in section the first exemplary embodiment for the electronic component 10 according to the invention, which is formed from a semiconductor heterostructure.
  • the structures of the component are preferably in a nanoscale dimension.
  • Undoped silicon germanium (SiGe) is used as substrate 12 for electronic component 10.
  • the electronic component 10 is designed in such a way that it contains a two-dimensional electron gas (2DEG).
  • Gate electrode assemblies 16, 18 are provided on a surface 14 of the substrate 12.
  • the gate electrode arrangement 16 has two gate electrodes 20, 22.
  • the individual gate electrodes 20, 22 are electrically isolated from one another by means of insulating layers 24 in a suitable manner.
  • the gate electrode arrangements 16, 18 are provided in layers, the insulating layer 24 being provided between each gate electrode 20, 22.
  • the gate electrodes 20, 22 further comprise electrode fingers 26, 28 which are arranged parallel to one another on the surface 14 of the substrate 12.
  • the gate electrode arrangements 16, 18 are supplied with a suitable voltage via electrical connections.
  • a potential well 30 is generated in the substrate 12.
  • a quantum dot 32 or charge carrier trapped in this potential well 30 can thus pass through the substrate translate.
  • the potential well 30 is translated longitudinally through the substrate by suitable control of the electrode fingers 26, 28 with sinusoidal voltages.
  • the quantum dot 32 or the charge carrier, which is quasi trapped in such a potential well 30, can be translated with this potential well 30 over a longer distance in the two-dimensional electron gas of the SiGe substrate 12 without experiencing a quantum mechanical change in state.
  • the gate electrode arrangement 18 forms a static double trough 34.
  • the gate electrode arrangement 18 comprises barrier gate electrodes 36, 38, 40 and two pump gate electrodes 42, 44, which can set a quantum dot 32, 50, 54 or a charge carrier in motion or oscillation.
  • the pump gate electrodes 42, 44 are arranged between the barrier gate electrodes 36, 38, 40, respectively.
  • the gate electrodes 36, 38, 40, 42, 44 of the gate electrode arrangement 18 are each separated by an insulating layer 24.
  • the gate electrodes 36, 38, 40, 42, 44 each have electrode fingers 37, 39, 41, 43, 45.
  • the electrode fingers 37, 39, 41, 43, 45 can be seen in this sectional drawing.
  • the courses in the substrate 12 of the electronic component 10 for initializing a quantum state of a qubit in a quantum dot are shown schematically below the gate electrode arrangements 16, 18.
  • the sequences from A to F of the courses from the potential wells 30, 34 in the substrate 12 are shown to explain the function.
  • the electrode fingers 26, 28 of the gate electrode arrangements 16 form the movable potential wells 30 through the substrate 12.
  • the movement of the potential wells 30 takes place by suitable interconnection of the electrode fingers 26, 28.
  • the electrode fingers 26, 28 of the gate electrode arrangement 16 are periodically interconnected, which cause an almost continuous movement of the potential well 30 through the substrate 12.
  • the electronic component 10 is based on the physical Pauli principle that an electronic level can never be filled with electrons with the same spin.
  • a static double potential well 34 is generated and on the other hand with the gate electrodes 20, 22 the movable potential well 30.
  • a first potential well 46 of the static double potential well 34 two charge carriers 48 are created from a reservoir 49 introduced.
  • the charge carriers 48 are split up and aligned with a stimulator 51, for example with the aid of a gradient magnetic field and the pump gate electrodes 42, 44.
  • a split-off charge carrier 50 tunnels into a second static potential well 52 of the double potential well 34, which is indicated by arrow 53. Only one charge carrier 54 remains in the first static potential well.
  • the quantum states of the quantum dots 50, 54 in the potential wells 46, 48 are known from the alignment of an applied gradient magnetic field.
  • a further quantum dot 32 is brought up to the second static potential well 52 of the double potential well 34 at the same level.
  • the quantum mechanical state of the quantum dot 32 is not known.
  • Arrow 58 indicates the translation direction of the quantum dot 32 with the movable potential well 30.
  • the quantum dot 50 of the second static potential well 52 exchanges with the quantum dot 32 of the movable potential well 30.
  • the quantum mechanical state of the quantum dot 50 is known, is now located in the movable potential well 30 and initializes a qubit, for example.
  • the quantum dot 32 tunnels, provided it has the same spin as the quantum dot 50 now removed for initialization, into the first static potential well 46 of the double potential well 34.
  • a sensor element not shown here would therefore not detect any change in charge. If the quantum mechanical states of the quantum dot 50 and 32 are different, a change in charge can be detected.
  • the exchange is symbolized with arrow 60.
  • FIG 3 shows, in section, a further exemplary embodiment for the electronic component 10 according to the invention, which is formed from a semiconductor heterostructure.
  • the structures of the component 10 are preferably in a nanoscale dimension.
  • Undoped silicon germanium (SiGe) is used as substrate 12 for electronic component 10.
  • the electronic component 10 is designed in such a way that it contains a two-dimensional electron gas (2DEG).
  • the gate electrode assemblies 16, 18 are provided on the surface 14 of the substrate 12.
  • the gate electrode arrangement 16 also has the two gate electrodes 20, 22 here.
  • the individual gate electrodes 20, 22 are electrically isolated from one another by means of insulating layers 24 in a suitable manner.
  • the gate electrode arrangements 16, 18 are provided in layers for this purpose, the insulating layer 24 being provided between each gate electrode 20, 22.
  • the gate electrodes 20, 22 further comprise electrode fingers 26, 28 which are arranged parallel to one another on the surface 14 of the substrate 12.
  • the gate electrode arrangements 16, 18 are supplied with a suitable voltage via electrical connections.
  • a potential well 30 is generated in the substrate 12.
  • a quantum dot or charge carrier trapped in this potential well 30 can thus be translated through the substrate.
  • the potential well 30 is translated longitudinally through the substrate by suitable control of the electrode fingers 26, 28 with sinusoidal voltages.
  • the quantum dot or the charge carrier, which is quasi trapped in such a potential well 30, can be translated with this potential well 30 over a longer distance in the two-dimensional electron gas of the SiGe substrate 12 without experiencing a quantum mechanical change in state.
  • the gate electrode arrangement 18 forms a static double trough 34.
  • the gate electrode arrangement 18 comprises the barrier gate electrodes 36, 38, 40 and two pump gate electrodes 42, 44, which can set the quantum dot 32, 50, 54 or a charge carrier 48 in motion or oscillation.
  • the pump gate electrodes 42, 44 are arranged between the barrier gate electrodes 36, 38, 40, respectively.
  • the gate electrodes 36, 38, 40, 42, 44 of the Gate electrode assemblies 18 are each separated by an insulating layer 24.
  • the gate electrodes 36, 38, 40, 42, 44 each have electrode fingers 37, 39, 41, 43, 45.
  • the electrode fingers 37, 39, 41, 43, 45 can be seen in this sectional drawing.
  • the courses in the substrate 12 of the electronic component 10 for initializing a quantum state of a qubit in a quantum dot are shown schematically below the gate electrode arrangements 16, 18.
  • the sequences from A to D of the courses from the potential wells 30, 34 in the substrate 12 are shown to explain the function.
  • the electrode fingers 26, 28 of the gate electrode arrangement 16 form the movable potential wells 30 through the substrate 12.
  • the movement of the potential wells 30 takes place by suitable interconnection of the electrode fingers 26, 28.
  • the electrode fingers 26, 28 of the gate electrode arrangement 16 are periodically interconnected, which cause an almost continuous movement of the potential well 30 through the substrate 12.
  • the static double potential trough 34 is generated and, on the other hand, the movable potential trough 30 is generated with the gate electrodes 20, 22 49 introduced.
  • the charge carriers 48 are split up and aligned with the stimulator 51, for example with the aid of a gradient magnetic field.
  • the split-off charge carrier 50 tunnels quantum mechanically into the second static potential well 52 of the double potential well 34, which is indicated by arrow 53. Only the charge carrier 54 remains in the first static potential well 46.
  • the quantum states of the quantum dots 50, 54 in the potential wells 46, 48 are known from the alignment of an applied gradient magnetic field.
  • the movable potential well 30 is brought up to the second static potential well 52 of the double potential well 34.
  • the charge carrier 50 passes from the static potential well 52 into the movable potential well 30.
  • the quantum dot 50 can now be moved away with the movable potential well 30, arrow 58.
  • the quantum mechanical state of the quantum dot 50 is known, which creates a qubit for example can be initialized.
  • FIG. 4 shows a further exemplary embodiment for the electronic component 10 according to the invention, which is again formed from a semiconductor heterostructure.
  • the structures of the component 10 are preferably in a nanoscale dimension.
  • Undoped silicon germanium (SiGe) is used as substrate 12 for electronic component 10.
  • the electronic component 10 is designed in such a way that it contains a two-dimensional electron gas (2DEG).
  • the gate electrode assemblies 16, 18 are provided on the surface 14 of the substrate 12.
  • the gate electrode arrangement 16 has two gate electrodes 20, 22.
  • the individual gate electrodes 20, 22 are electrically isolated from one another by means of insulating layers 24 in a suitable manner.
  • gate electrode arrangements 16 are provided in layers, the insulating layer 24 being provided between each gate electrode 20, 22 of the gate electrode arrangement 16.
  • the gate electrodes 20, 22 furthermore include the electrode fingers 26, 28, which are arranged parallel to one another on the surface 14 of the substrate 12.
  • the gate electrode arrangements 16, 18 are supplied with a suitable voltage via electrical connections.
  • a movable potential well 30 is produced in the substrate 12.
  • a quantum dot 42 or charge carrier trapped in this potential well 30 can thus be translated through the substrate 12.
  • the potential well 30 is translated longitudinally through the substrate 12 by suitable control of the electrode fingers 26, 28 with sinusoidal voltages.
  • the quantum dot 42 which is quasi trapped in such a potential well, can be moved into the two-dimensional space over a longer distance with this potential well 30 Translate electron gas of the substrate 12 from SiGe without experiencing a quantum mechanical change of state.
  • the gate electrode arrangement 18 forms a static potential well.
  • the gate electrode arrangement 18 comprises the barrier gate electrodes 36, 40 and, in addition to the pump gate electrode 42, which can set a quantum dot or a charge carrier in motion or oscillation.
  • the pump gate electrode 42 is disposed between the barrier gate electrodes 36 and 40.
  • the gate electrodes 36, 40, 42 each have electrode fingers 37, 41, 43.
  • the reservoir 49 for introducing changes in charge adjoins the barrier gate electrode arrangement 18.
  • FIG. 5 shows in section a further exemplary embodiment for the electronic component 10 according to the invention, which is formed from a semiconductor heterostructure.
  • the structures of the component 10 are preferably in a nanoscale dimension.
  • Undoped silicon germanium (SiGe) is used as substrate 12 for electronic component 10.
  • the electronic component 10 is designed in such a way that it contains a two-dimensional electron gas (2DEG).
  • the gate electrode assemblies 16, 18 are provided on the surface 14 of the substrate 12.
  • the gate electrode arrangement 16 also has the two gate electrodes 20, 22 here.
  • the individual gate electrodes 20, 22 are electrically isolated from one another by means of insulating layers 24 in a suitable manner.
  • the gate electrode arrangements 16, 18 are provided in layers, the insulating layer 24 being provided between each gate electrode 20, 22.
  • the gate electrodes 20, 22 further comprise electrode fingers 26, 28 which are arranged parallel to one another on the surface 14 of the substrate 12.
  • the gate electrode arrangements 16, 18 are supplied with a suitable voltage via electrical connections.
  • a potential well 30 is generated in the substrate 12.
  • a quantum dot or charge carrier trapped in this potential well 30 can thus be translated through the substrate.
  • the potential well 30 is translated longitudinally through the substrate by suitable control of the electrode fingers 26, 28 with sinusoidal voltages.
  • the quantum dot or the charge carrier, which is quasi trapped in such a potential well 30, can be translated with this potential well 30 over a longer distance in the two-dimensional electron gas of the SiGe substrate 12 without experiencing a quantum mechanical change in state.
  • the gate electrode arrangement 18 forms a static potential well 70.
  • the gate electrode arrangement 18 comprises the barrier gate electrodes 36, 40 and a pump gate electrode 42, which can set the quantum dot 48 or a charge carrier in motion or oscillation.
  • the pump gate electrode 42 is arranged between the barrier gate electrodes 36, 40.
  • the gate electrodes 36, 40, 42 of the gate electrode arrangement 18 are each separated by an insulating layer 24.
  • the gate electrodes 36, 40, 42 each have electrode fingers 37, 41, 43.
  • the electrode fingers 37, 41, 43 can be seen in this sectional drawing.
  • the courses in the substrate 12 of the electronic component 10 for initializing a quantum state of a qubit in a quantum dot are shown schematically below the gate electrode arrangements 16, 18.
  • the sequences from A to D of the courses from the potential wells 30, 70 in the substrate 12 are shown to explain the function.
  • the electrode fingers 26, 28 of the gate electrode arrangement 16 form the movable potential wells 30 through the substrate 12.
  • the movement of the potential wells 30 takes place by suitable interconnection of the electrode fingers 26, 28.
  • the gate electrodes 36, 40 and 42 on the one hand the static potential well 70 and on the other hand the movable potential well 30 with the gate electrodes 20, 22.
  • Two charge carriers 48 from the reservoir 49 are introduced into the potential well 70.
  • the charge carriers 48 are split up and aligned with the stimulator 51, for example with the aid of a gradient magnetic field.
  • the split-off charge carrier 50 tunnels quantum mechanically into the movable potential well 30, which is indicated by arrow 53. Only the charge carrier 54 remains in the static potential well 70.
  • the quantum states of the quantum dots 50, 54 in the potential wells 70, 30 are created by the alignment of a
  • the quantum dot 50 can now be led away with the movable potential well 30, arrow 58.
  • the quantum mechanical state of the quantum dot 50 is known, as a result of which a qubit can be initialized, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Artificial Intelligence (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

Die Erfindung betrifft ein elektronisches Bauelement (10) zum Initialisieren des quantenmechanischen Zustands eines Qubits, welches von einem Halbleiterbauelement oder einer halbleiterähnlichen Struktur mit Gatterelektrodenanordnungen (16, 18) gebildet wird. Ferner betrifft die Erfindung ein Verfahren für ein solches elektronisches Bauelement (10).

Description

Patentanmeldung
Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen
Templergraben 55 52062 Aachen
Bauelement zum Initialisieren eines Quantenpunkts
Technisches Gebiet
Die Erfindung betrifft ein elektronisches Bauelement zum Initialisieren des quantenmechanischen Zustands eines Qubits, welches von einem Halbleiterbauelement oder einer halbleiterähnlichen Struktur mit Gatterelektrodenanordnungen gebildet wird.
Weiterhin betrifft die Erfindung ein Verfahren für ein solches elektronisches Bauelement.
Beschreibung
Herkömmliche Computer arbeiten mit Halbleiterbauteilen mit integrierten Schaltkreisen. Diese Schaltkreise arbeiten immer mit Systemen, welche auf einer logischen „0" oder „1" basieren - also Schalter „an" oder „aus". Bei Halbleiterspeichern wird dies dadurch realisiert, dass das Potential entweder oberhalb oder unterhalb eines Schwellwerts liegt. Diese zwei Zustände bilden die kleinste Einheit bei Computern und werden als „Bit" bezeichnet.
Diese Halbleiterbauteile bestehen oft aus dotierten Siliziumelementen, um die Schaltungen zu realisieren. So lassen sich beispielsweise Transistorschaltungen in solchen Halbleiterbauteilen anordnen und zu einem logischen Schaltkreis verknüpfen. Durch immer besser werdende chemische und physikalische Herstellungsverfahren können diese Halbleiterbauteile mittlerweile in immer extremerer Kompaktheit produziert werden. Diese Kompaktheit stößt aber an ihre physikalischen Grenzen. Sowohl die Dichte der Schaltungen als auch die Temperatur führen häufig zu Problemen in solchen Halbleiterbauteilen. So können insbesondere noch Optimierungen durch mehrere Schichtmodelle, höhere Schalttaktung oder auch bei der Wahl des Halbleitermaterials erzielt werden. Trotzdem reichen die Rechenleistungen für viele Anwendungen, wie z.B. in der kryptographischen Technologie oder bei Berechnung von Wetter- bzw. Klimamodellen wegen der enormen Datenmengen oft nicht aus.
Um Rechenleistung erheblich zu erhöhen, sind seit langem Modelle für sogenannte Quantencomputer bekannt. Technisch ließen sie sich aus unterschiedlichen Gründen bislang jedoch noch nicht realisieren. Die Modelle von Quantencomputern sehen vor, dass quantenmechanische Zustände von Teilchen, wie z.B. Elektronen, ausgenutzt werden. Dabei wird ein quantenmechanisches System mit zwei Zuständen als kleinste Einheit zum Speichern von Informationen als „Qubit" bezeichnet. Ein Qubit wird beispielsweise durch den quantenmechanischen Zustand Spin „Up" und Spin „Down" definiert.
Das Prinzip von Elektronen-Spin-Qubits gleicht sich immer, unabhängig vom jeweils gewählten Materialsystem. Als Substrat dient dabei eine Halbleiter-Heterostruktur. Die Halbleiter-Heterostruktur beinhaltet ein zweidimensionales Elektronengas (2DEG). Halbleiter-Heterostrukturen sind monokristallin aufeinander gewachsene Schichten von Halbleitern mit unterschiedlicher Zusammensetzung. Diese Schichtstrukturen liefern zahlreiche technisch relevante Quantisierungseffekte bezüglich ihrer elektronischen und optischen Eigenschaften. Daher sind sie für die Herstellung mikroelektronischer Bauelemente besonders geeignet. Die derzeit wichtigste Materialkombination für die Herstellung von Halbleiter-Heterostrukturen ist das System GaAs/AIGaAs.
Halbleiter-Heterostrukturen bilden dabei sogenannte Quantenfilme an Grenzflächen verschiedener Materialien aus. Diese entstehen insbesondere wegen unterschiedlicher Energieverhältnisse in den beiden Materialien. Die so vorgegebene Energieverteilung hat zur Folge, dass sich Ladungsträger aus der Umgebung im Quantenfilm sammeln. Dort sind sie dann in ihrer Bewegungsfreiheit weitgehend auf die Schicht eingeschränkt und bilden das zweidimensionale Elektronengas (2DEG).
Als Quantenpunkt wird eine nanoskopische Materialstruktur bezeichnet. Halbleitermaterialien sind hierfür besonders geeignet. Ladungsträger, sowohl Elektronen, als auch Löcher, werden in einem Quantenpunkt in ihrer Beweglichkeit so weit eingeschränkt, dass ihre Energie nicht mehr kontinuierliche, sondern immer nur noch diskrete Werte annehmen kann. Mittels nanoskaliger Gatterelektroden (sog. gates), die auf die Oberfläche des Bauelements aufgebracht werden, wird die Potentiallandschaft innerhalb des zweidimensionalen Elektronengas (2DEG) derart geformt, dass einzelne Elektronen in den Quantenpunkten eingefangen werden können. Anschließend dient der Spin dieser Elektronen als Basis, um ein logisches Qubit zu formen.
Mithilfe eines externen Magnetfelds können elektronische Zustände hinsichtlich ihres Spin-Zustands aufgespalten (Zeeman-Effekt) und damit separat adressiert werden. Anschließend dient der Spin dieser Elektronen als Basis von Eigenzuständen, um ein logisches Qubit zu formen. Darüber hinaus können aufgrund quantenmechanischer Effekte auch überlagerte Zustände dieser beiden Eigenzustände realisiert werden.
Stand der Technik
Aus der US 2017/0317203 Al ist eine Quantenpunktvorrichtung bekannt, die mindestens drei leitende Schichten und mindestens zwei isolierende Schichten umfasst. Dabei sind die drei leitenden Schichten voneinander elektrisch isoliert. Es wird dort beschrieben, dass eine leitende Schicht aus einem anderen Material besteht, als die jeweils beiden anderen leitenden Schichten. Die leitenden Schichten können z.B. vollständig und/oder teilweise aus Aluminium, Gold, Kupfer oder Polysilicium bestehen. Die Isolierschichten bestehen hingegen z.B. aus Siliziumoxid, Siliziumnitrid und/oder Aluminiumoxid. Dabei bewirken die Verbindungen zwischen den leitenden Schichten und den isolierenden Schichten u.a., dass einzelne Elektronen unter Verwendung von Spannungsimpulsen durch Quantenpunkte der Vorrichtung geschleust werden.
In dieser Quantenpunktvorrichtung ist ein Elektron in einer Potentialmulde quasi gefangen. Durch quantenmechanisches Tunneln wird dabei ein Elektron von Quantenpunkt zu Quantenpunkt bewegt. Dies kann zu Ungenauigkeiten bzw. Verfälschungen des Informationsgehalts über den quantenmechanischen Zustand bei der Bewegung eines Elektrons über längere Distanzen führen.
Die WO 2017/020095 Al offenbart eine skalierbare Architektur für ein Verarbeitungsgerät zur Durchführung von Quantenverarbeitung. Die Architektur basiert auf einer Voll-Silizium-CMOS-Fertigungstechnologie. Transistor-basierte Steuerschaltungen werden zusammen mit potentialfreien Gates verwendet, um ein zweidimensionales Array von Qubits zu betreiben. Die Qubits werden durch die Spinzustände eines einzelnen Elektrons definiert, das in einem Quantenpunkt eingeschlossen ist. Hier wird eine übergeordnete Ebene beschrieben, d.h. wie einzelne Qubits elektrisch angesteuert werden können, zum Beispiel via Transistoren etc., inkl. Qubit-Operation und Readout. Es wird zwar von einer „skalierbaren Architektur" gesprochen, jedoch lässt das gezeigte Array keine wirkliche Skalierung, d.h. unter anderem Integration von tiefkalter Elektronik zu, da kein Platz zwischen den Qubits geschaffen werden kann.
Die US 8,164,082 B2 beschreibt eine Spinbus-Quantencomputerarchitektur, die einen Spinbus umfasst, der aus mehreren stark gekoppelten und immer auf Qubits basierenden Qubits besteht, die eine Kette von Spin-Qubits definieren. Eine Vielzahl von informationstragenden Qubits sind neben einem Qubit des Spinbusses angeordnet. Zu den informationstragenden Qubits und den Spinbus-Qubits werden Elektroden gebildet, um die Steuerung der Herstellung und Unterbrechung der Kopplung zwischen Qubits zu ermöglichen, um die Steuerung der Herstellung und Unterbrechung der Kopplung zwischen jedem informationstragenden Qubit und dem angrenzenden Spinbus-Qubit zu ermöglichen. Die Spin-Bus-Architektur ermöglicht eine schnelle und zuverlässige Kopplung von Qubits über große Entfernungen.
In der EP 3 016 035 Bl wird eine Verarbeitungsvorrichtung und Verfahren beschrieben, um diese zu betreiben, insbesondere, aber nicht ausschließlich, bezieht sich die Erfindung auf eine Quantenverarbeitungsvorrichtung, die steuerbar ist, um adiabatische Quantenberechnungen durchzuführen.
Ein Quantenprozessor weist dazu folgende Merkmale auf: eine Mehrzahl von Qubit- Elementen und eine Steuerstruktur, die eine Mehrzahl von Steuerbauteilen aufweist, wobei jedes Steuerbauteil so angeordnet ist, um eine Mehrzahl von Qubit-Elementen zu steuern. Die Steuerstruktur ist steuerbar, um eine Quantenberechnung unter Verwendung der Qubit-Elemente durchzuführen, wobei ein Quantenzustand der Qubit- Elemente in dem Kern- oder Elektronenspin eines oder mehrerer Donatoratome codiert ist. Die Donatoratome sind in einer Ebene angeordnet, die in einer Halbleiterstruktur eingebettet ist. Dabei ist eine erste Menge von Donatoratomen so angeordnet, um Quanteninformationen in Bezug auf die Quantenberechnung zu codieren.
Eine zweite Menge von Donatoratomen ist so angeordnet, dass sie eine elektromagnetische Kopplung zwischen einem oder mehreren der ersten Menge von Donatoratomen ermöglichen. Die Donatoratome der ersten Menge sind in einer zweidimensionalen Matrixanordnung angeordnet. Die Mehrzahl von Steuerbauteilen weist eine erste Menge länglicher Steuerbauteile auf, die in einer ersten Ebene oberhalb der Ebene angeordnet sind, die die Donatoratome enthalten. Eine zweite Menge länglicher Steuerbauteile sind vorgesehen, die in einer zweiten Ebene unterhalb der Ebene angeordnet sind, die die Donatoratome aufweisen.
Zur Realisierung eines universellen Quantencomputers muss eine Kopplung der Qubits über Distanzen von mindestens einigen Mikrometern ermöglicht werden, um insbesondere Platz für lokale Kontrollelektronik zu schaffen. Es müssen Strukturen und Strukturelemente vorgesehen sein, die es ermöglichen einen Quantenpunkt an verschiedene Ziele zu transportieren, um logische Schaltungen aufbauen zu können. Es gibt bereits Ansätze im Stand der Technik, bei denen ein- oder zweidimensionale Arrays aus separaten Quantenpunken gebaut wurden, durch die dann Elektronen transportiert werden können. Aufgrund der sehr großen Anzahl an benötigten Gatterelektroden und damit einzustellenden Spannungen ist mittels dieses Ansatzes eine Kopplung über mehrere Mikrometer nicht ohne bedeutenden Aufwand oder sogar gar nicht zu realisieren.
Während die Operationen an einzelnen Qubits bereits in zufriedenstellendem Maße kontrolliert und ausgewertet werden können, ist das Verschalten zu logischen Schaltungen von Qubits möglicherweise ein zentrales und ungelöstes Problem, um einen universellen Quantencomputer verwirklichen zu können. Es müssen definierbare quantenmechanische Zustände vorliegen, um eine Realisierung solcher logischen Schaltungen vornehmen zu können.
Offenbarung der Erfindung
Aufgabe der Erfindung ist es daher, die Nachteile des Standes der Technik zu beseitigen und ein elektronisches Bauelement zu schaffen, welches logische Schaltungen mit Quantenpunkten zu realisieren erlaubt, wobei ein quantenmechanischer Zustand zur Initialisierung beispielsweise eines Qubits hergestellt werden soll.
Erfindungsgemäß wird die Aufgabe durch das elektronische Bauelement zum Initialisieren des quantenmechanischen Zustands eines Qubits der eingangs genannten Art gelöst, umfassend a) ein Substrat mit einem zweidimensionalen Elektronengas oder Elektronenlochgas; b) elektrische Kontakte zum Verbinden der Gatterelektrodenanordnungen mit Spannungsquellen; c) Gatterelektrodenanordnungen mit Gatterelektroden, welche an einer Fläche des elektronischen Bauelements zur Erzeugung von Potentialmulden in dem Substrat angeordnet sind; d) ein Reservoir, welches als Spender für Ladungsträger vorgesehen ist; e) die Gatterelektroden der Gatterelektrodenanordnungen parallel verlaufende Elektrodenfinger aufweisen, wobei i. die Gatterelektroden einer ersten Gatterelektrodenanordnung in dem Substrat eine statische Potentialmulde bilden, in der Quantenpunkte aus dem Reservoir eingebracht sind; ii. die Gatterelektroden einer zweiten Gatterelektrodenanordnung eine in dem Substrat bewegbare Potentialmulde bilden, wobei ein Ladungsträger mit seinem quantenmechanischen Zustand mit dieser Potentialmulde translatierbar ist; f) Mittel zum Übertragen von zwei Quantenpunkten aus dem Reservoir in die statische Potentialmulde; g) einen Stimulator zur Ausrichtung bzw. Aufspaltung der Quantenpunkte; h) Mittel zum Übertragen eines Ladungsträgers aus der statischen Potentialmulde in die bewegbare Potentialmulde. Die Aufgabe wird ferner durch ein Verfahren für ein solches elektronisches Bauelement mit folgenden Verfahrensschritten gelöst: a) Einbringen zweier Ladungsträger in die statische Potentialmulde aus dem Reservoir; b) Heranführen der beweglichen Potentialmulde an die statische Potentialmulde; c) Austausch zwischen der statischen Potentialmulde mit der beweglichen Potentialmulde, sodass sich ein Ladungsträger in der beweglichen Potentialmulde befindet, d) Definierte Ausrichtung der Quantenpunkte in der statischen Potentialmulde und der beweglichen Potentialmulde mittels des
Stimulators; e) Wegführen der beweglichen Potentialmulde.
Die Erfindung beruht grundsätzlich auf dem physikalischen Pauli-Prinzip, dass ein elektronisches Niveau niemals mit Elektronen gleichen Spins besetzt werden können. Mittels der Gatterelektroden wird nun zum einen eine statischen Potentialmulde erzeugt und zum anderen eine bewegliche Potentialmulde. In die statische Potentialmulde wird aus dem Reservoir ein Paar Ladungsträger eines Energieniveaus eingebracht. Das Paar Ladungsträger wird anschließend aufgespalten. Dabei wird der eine Quantenpunkt in die bewegliche Potentialmulde übertragen. Mit dem Stimulator wird der quantenmechanische Zustand der Quantenpunkte auf dem Niveau - bei einem Elektron der Spin - definiert ausgerichtet. Der Quantenpunkt in der beweglichen Potentialmulde kann nun mit dem bekannten quantenmechanischen Zustand, beispielsweise als initialisiertes Qubit, mit der beweglichen Potentialmulde abtransportiert werden. Um den Quantenpunkt mit der beweglichen Potentialmulde an die statische Potentialmulde heranzuführen, muss der Quantenpunkt durch das Substrat über eine längere Distanz translatiert werden können, ohne dass sich der quantenmechanische Zustand ändert. Dazu wird der Quantenpunkt in der Potentialmulde, die durch die Gatterelektrodenanordnung in geeigneter Weise erzeugt wird, quasi gefangen. Die Potentialmulde bewegt sich dann kontinuierlich und gerichtet durch das Substrat hindurch und nimmt den Quantenpunkt mit seinem quantenmechanischen Zustand über die Distanz mit. Für die kontinuierliche Bewegung der Potentialmulde werden die Elektrodenfinger der Gatterelektroden entsprechend verschaltet. Eine vorteilhafte Ausgestaltung des erfindungsgemäßen elektronischen Bauelements besteht darin, dass der Stimulator als Magnet ausgebildet ist, der ein Gradientenmagnetfeld zur Initialisierung der Quantenpunkte in der statischen Potentialmulde erzeugt. Je nach Ausrichtung des Magnetfelds werden die Quantenpunkte eines Energieniveaus definiert ausgerichtet. Bei den oft kleinen Strukturen dieses Bauelements lassen sich bevorzugt Mikromagneten verwenden, die in dem Halbleiterbauelement gut integrierbar sind. Das Gradientenmagnetfeld dient somit zur Initialisierung der Quantenpunkte in der statischen Potentialmulde. Ein oszillierendes Magnetfeld kann ebenfalls als Gradientenmagnetfeld verwendet werden. Dieses Gradientenmagnetfeld bewegt den Quantenpunkt in einen gewünschten quantenmechanischen Zustand. Damit lässt sich das elektronische Bauelement initialisieren, um es dann mit dem herangeführten Quantenpunkt auf demselben Niveau wechselwirken zu lassen.
In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen elektronischen Bauelements bilden die Gatterelektroden der ersten Gatterelektrode eine statische Doppelpotentialmulde aus, wobei Mittel zur Translation eines Quantenpunkts von der einen statischen Potentialmulde in die nächste statische Potentialmulde der statischen Doppelpotentialmulde vorgesehen sind. Dadurch weist jede der statischen Potentialmulden jeweils einen Quantenpunkt mit unterschiedlichen quantenmechanischen Zuständen desselben Niveaus auf. Die definierte Ausrichtung der Zustände wird dabei wiederum durch den Stimulator festgelegt. Dabei werden die Potentialmulden jeweils mit bekannten quantenmechanischen Zuständen - im Fall von Elektronen sind es Spins - besetzt. Durch Austausch eines der Quantenpunkte mit dem Quantenpunkt der bewegten Potentialmulde, welche in der Doppelpotentialmulde gehalten werden, mit dem bewegten Quantenpunkt. Dadurch erhält der bewegte Quantenpunkt einen definierten quantenmechanischen Zustand.
Eine entsprechende vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens für ein solches elektronisches Bauelement besteht darin, dass in einem weiteren Schritt die statische Potentialmulde als eine Doppelpotentialmulde ausgebildet wird. Anschließend werden die beiden statischen Potentialmulden der Doppelpotentialmulde jeweils mit Ladungsträgern besetzt, die unterschiedliche quantenmechanische bekannte Zustände aufweisen. Die bewegliche Potentialmulde wird nun an die statische Doppelpotentialmulde herangeführt. Es kommt zum Austausch jeweils eines Ladungsträgers zwischen einer statischen Potentialmulde und der beweglichen Potentialmulde. Die bewegliche Potentialmulde mit dem Quantenpunkt kann dann weggeführt werden. Die bewegliche Potentialmulde enthält somit einen Quantenpunkt dessen quantenmechanischer Zustand bekannt ist, welcher dann zum initialisieren beispielsweise eines Qubits verwendet werden kann.
In einer bevorzugten Ausgestaltung des elektronischen Bauelements besteht eine Gatterelektrodenanordnung aus zwei parallelen Gatterelektroden, welche eine kanalartige Struktur bilden. Diese Maßnahme dient dazu, dass die Potentialmulde sich nur auf einer bestimmten Bahn in dem Substrat bewegen kann.
In einer vorteilhaften Ausgestaltung eines solchen elektronischen Bauelements enthält das Substrat Galliumarsenid (GaAs) und/oder Silizumgermanium (SiGe). Diese Materialien sind in der Lage ein zweidimensionales Elektronengas zu erzeugen, in welchem sich Quantenpunkte erzeugen, halten und bewegen lassen. Bei Galliumarsenid werden die Quantenpunkte mit Elektronen besetzt. Bei Siliziumgermanium werden die Quantenpunkte mit Löchern, bei denen ein Elektron fehlt, besetzt.
Eine weitere bevorzugte Ausbildung des elektronischen Bauelements lässt sich damit erreichen, dass die jeweils zusammengeschalteten Gatterelektroden für die bewegte Potentialmulde periodisch und/oder phasenverschoben mit Spannung beaufschlagbar ausgebildet sind. Diese Maßnahme ermöglicht es die Potentialmulde kontinuierlich durch das Substrat zu führen. Damit kann ein Quantenpunkt, der sich in der Potentialmulde befindet, mit der Potentialmulde durch das Substrat translatiert werden. Dabei verliert er nicht seinen ursprünglichen quantenmechanischen Zustand. Eine bevorzugte Ausgestaltung des elektronischen Bauelements besteht darin, dass jeweils mindestens jeder dritte Elektrodenfinger einer Gatterelektrode für die bewegbare Potentialmulde zusammengeschaltet ist. Damit soll erreicht werden, dass die Potentialmulde immer über wenigstens eine Periode gewährleistet ist, über welche die Potentialmulde bewegt wird. Nur so wird eine kontinuierliche Bewegung der Potentialmulde mit dem Quantenpunkt ermöglicht. Grundsätzlich sind auch andere Kombinationen bei der Zusammenschaltung von Gatterelektroden möglich, solange eine Bewegung der Potentialmulde mit dem Quantenpunkt durchgeführt werden kann. Entsprechend ergibt sich eine vorteilhafte Ausgestaltung für das erfindungsgemäße Verfahren für ein elektronisches Bauteil dadurch, dass jeweils zumindest jede dritte Gatterelektrode zusammengeschaltet und periodisch mit Spannung beaufschlagt wird.
Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen elektronischen Bauelements besteht darin, dass Verbindungsmittel zum Verbinden mit einem Qubit eines Quantencomputers vorgesehen sind. Die Zustände von Quantenpunkten über eine größere Distanz zu translatieren eignet sich besonders bei Quantencomputern. Hier gilt es Qubits miteinander zu verschalten. Daher muss das elektronische Bauelement Kontaktmöglichkeiten haben, um wenigstens zwei Qubits zu verschalten, um die Quantenzustände der Quantenpunkte von einem Qubit zum anderen Qubit zu übergeben.
Weitere Ausgestaltungen und Vorteile ergeben sich aus dem Gegenstand der Unteransprüche sowie den Zeichnungen mit den dazugehörigen Beschreibungen. Ausführungsbeispiele sind nachstehend unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert. Die Erfindung soll nicht alleine auf diese aufgeführten Ausführungsbeispiele beschränkt werden. Die vorliegende Erfindung soll sich auf alle Gegenstände beziehen, die jetzt und zukünftig der Fachmann als naheliegend zur Realisierung der Erfindung heranziehen würde. Die folgende ausführliche Beschreibung bezieht sich auf die derzeit besten möglichen Ausführungsarten der Offenbarung. Sie dienen lediglich zur näheren Erläuterung der Erfindung. Die Beschreibung ist daher nicht in einem einschränkenden Sinn zu verstehen, sondern dient lediglich der Veranschaulichung der allgemeinen Prinzipien der Erfindung, da der Umfang der Erfindung am besten durch die beigefügten Ansprüche definiert wird. Dabei gilt der zitierte Stand der Technik als Teil der zur Erfindung gehörigen Offenbarung.
Kurze Beschreibung der Zeichnungen
Fig. 1 zeigt in schematischer Draufsicht das elektronische Bauelement zum
Initialisieren des Quantenzustands eines Quantenpunkts mit einer statischen Doppelpotentialmulde.
Fig. 2 zeigt im Schnitt eine Prinzipskizze eines erfindungsgemäßen
Ausführungsbeispiels eines elektronischen Bauelements mit einer
Doppelpotentialmulde zum Initialisieren und Auslesen eines Qubits.
Fig. 3 zeigt im Schnitt eine Prinzipskizze eines erfindungsgemäßen
Ausführungsbeispiels eines elektronischen Bauelements mit einer
Doppelpotentialmulde zum Initialisieren eines Qubits.
Fig. 4 zeigt in schematischer Draufsicht das elektronische Bauelement zum
Initialisieren des Quantenzustands eines Quantenpunkts mit einer statischen Potentialmulde.
Fig. 5 zeigt im Schnitt eine Prinzipskizze eines erfindungsgemäßen
Ausführungsbeispiels eines elektronischen Bauelements mit einer
Potentialmulde zum Initialisieren eines Qubits. Bevorzugtes Ausführungsbeispiel
In Fig. 1 wird ein erstes Ausführungsbeispiel für ein erfindungsgemäßes elektronische Bauelement 10 dargestellt, welches wieder aus einer Halbleiter-Heterostruktur gebildet ist. Die Strukturen des Bauelements liegen vorzugsweise in einer nanoskaligen Dimension. Als Substrat 12 für das elektronische Bauelement 10 wird undotiertes Siliziumgermanium (SiGe) eingesetzt. Das elektronische Bauelement 10 ist so ausgestaltet, dass es ein zweidimensionales Elektronengas (2DEG) enthält. Auf der Fläche 14 des Substrats 12 sind Gatterelektrodenanordnungen 16, 18 vorgesehen.
Die Gatterelektrodenanordnung 16, weist zwei Gatterelektroden 20, 22 auf. Die einzelnen Gatterelektroden 20, 22 sind in geeigneter Weise mit Isolierschichten 24 elektrisch voneinander getrennt. Die Gatterelektroden 20, 22 der
Gatterelektrodenanordnung 16 sind dazu schichtweise vorgesehen, wobei zwischen jeder Gatterelektrode 20, 22 der Gatterelektrodenanordnung 16 die Isolierschicht 24 vorgesehen ist. Die Gatterelektroden 20, 22 umfassen weiterhin die Elektrodenfinger 26, 28, die parallel zueinander auf der Fläche 14 des Substrats 12 angeordnet sind.
Die Gatterelektrodenanordnungen 16, 18 werden über elektrische Anschlüsse mit geeigneter Spannung versorgt. Durch geeignetes Anlegen von sinusförmig verlaufenden Spannungen an die Gatterelektroden 20, 22 der Gatterelektrodenanordnung 16 wird eine bewegliche Potentialmulde in dem Substrat 12 erzeugt. Ein in dieser Potentialmulde gefangener Quantenpunkt 42 bzw. Ladungsträger lässt sich so durch das Substrat translatieren. Die Potentialmulde wird durch die geeignete Ansteuerung von Elektrodenfingern 26, 28 der Gatterelektroden 20, 22 mit Sinusspannungen längs durch das Substrat 12 translatiert. Der Quantenpunkt 42, der in einer solchen Potentialmulde quasi gefangen ist, lässt sich mit dieser Potentialmulde über eine längere Distanz in dem zweidimensionalen Elektronengas des Substrats 12 aus SiGe translatieren, ohne eine quantenmechanische Zustandsänderung zu erfahren. Die Gatterelektrodenanordnung 18 bildet eine statische Doppelpotentialmulde aus. Die Gatterelektrodenanordnung 18 umfasst dafür die Barriere-Gatterelektroden 36, 38, 40 und neben der Pump-Gatterelektrode 42 eine weitere Pump-Gatterelektrode 44, welche einen Quantenpunkt bzw. einen Ladungsträger in Bewegung oder Schwingung versetzen kann. Die Pump-Gatterelektroden 42, 44 sind abwechselnd zwischen den Barriere- Gatterelektroden 36, 38 und 40 angeordnet. Die Gatterelektroden 36, 38, 40, 42, 44 verfügen jeweils über Elektrodenfinger 37, 39, 41, 43, 45.
An die Barriere-Gatterelektrodenanordnung 18 schließt das Reservoir 49 zum Einbringen von Ladungsänderungen an.
Die Fig. 2 zeigt im Schnitt das erste Ausführungsbeispiel für das erfindungsgemäße elektronische Bauelement 10, welches aus einer Halbleiter-Heterostruktur gebildet ist. Die Strukturen des Bauelements liegen vorzugsweise in einer nanoskaligen Dimension. Als Substrat 12 für das elektronische Bauelement 10 wird undotiertes Siliziumgermanium (SiGe) eingesetzt. Das elektronische Bauelement 10 ist so ausgestaltet, dass es ein zweidimensionales Elektronengas (2DEG) enthält. Auf einer Fläche 14 des Substrats 12 sind Gatterelektrodenanordnungen 16, 18 vorgesehen.
Die Gatterelektrodenanordnung 16 weist zwei Gatterelektroden 20, 22 auf. Die einzelnen Gatterelektroden 20, 22 sind in geeigneter Weise mit Isolierschichten 24 elektrisch voneinander getrennt. Die Gatterelektrodenanordnungen 16, 18, sind dazu schichtweise vorgesehen, wobei zwischen jeder Gatterelektrode 20, 22 jeweils die Isolierschicht 24 vorgesehen ist. Die Gatterelektroden 20, 22 umfassen weiterhin Elektrodenfinger 26, 28, die parallel zueinander auf der Fläche 14 des Substrats 12 angeordnet sind.
Die Gatterelektrodenanordnungen 16, 18 werden über elektrische Anschlüsse mit geeigneter Spannung versorgt. Durch geeignetes Anlegen von sinusförmig verlaufenden Spannungen an die Gatterelektroden 20, 22 der Gatterelektrodenanordnungen 16 wird eine Potentialmulde 30 in dem Substrat 12 erzeugt. Ein in dieser Potentialmulde 30 gefangener Quantenpunkt 32 bzw. Ladungsträger lässt sich so durch das Substrat translatieren. Die Potentialmulde 30 wird durch die geeignete Ansteuerung der Elektrodenfinger 26, 28 mit Sinusspannungen längs durch das Substrat translatiert. Der Quantenpunkt 32 bzw. der Ladungsträger, der in einer solchen Potentialmulde 30 quasi gefangen ist, lässt sich mit dieser Potentialmulde 30 über eine längere Distanz in dem zweidimensionalen Elektronengas des Substrats 12 aus SiGe translatieren, ohne eine quantenmechanische Zustandsänderung zu erfahren.
Die Gatterelektrodenanordnung 18 bildet hingegen eine statische Doppelmulde 34 aus. Die Gatterelektrodenanordnung 18 umfasst dafür Barriere-Gatterelektroden 36, 38, 40 und zwei Pump-Gatterelektroden 42, 44, welche einen Quantenpunkt 32, 50, 54 bzw. einen Ladungsträger in Bewegung oder Schwingung versetzen kann. Die Pump- Gatterelektroden 42, 44 sind jeweils zwischen den Barriere-Gatterelektroden 36, 38, 40 angeordnet. Auch die Gatterelektroden 36, 38, 40, 42, 44 der Gatterelektrodenanordnung 18 sind jeweils durch eine Isolierschicht 24 getrennt. Die Gatterelektroden 36, 38, 40, 42, 44 verfügen jeweils über Elektrodenfinger 37, 39, 41, 43, 45. Die Elektrodenfinger 37, 39, 41, 43, 45 sind in dieser Schnittzeichnung zu sehen.
In dieser Abbildung werden unterhalb der Gatterelektrodenanordnungen 16, 18 die Verläufe in dem Substrat 12 des elektronischen Bauelements 10 zum Initialisieren eines Quantenzustands eines Qubits in einem Quantenpunkt schematisch dargestellt. Die Abfolgen von A bis F der Verläufe von den Potentialmulden 30, 34 in dem Substrat 12 werden zur Funktionserläuterung dargestellt. Die Elektrodenfinger 26, 28 der Gatterelektrodenanordnungen 16 bildet durch das Substrat 12 die bewegliche Potentialmulden 30 aus. Die Bewegung der Potentialmulden 30 erfolgt dabei durch die geeignete Verschaltung der Elektrodenfinger 26, 28. Die Elektrodenfinger 26, 28 der Gatterelektrodenanordnung 16 sind dazu periodisch alternierend zusammengeschaltet, welche eine nahezu kontinuierliche Bewegung der Potentialmulde 30 durch das Substrat 12 bewirken.
Das elektronische Bauteil 10 beruht auf dem auf dem physikalischen Pauli-Prinzip, dass ein elektronisches Niveau niemals mit Elektronen gleichen Spins besetzt werden können. Mittels der Gatterelektroden 36, 38, 40 und 42, 44 wird zum einen eine statische Doppelpotentialmulde 34 erzeugt und zum anderen mit den Gatterelektroden 20, 22 die bewegliche Potentialmulde 30. In eine erste Potentialmulde 46 der statischen Doppelpotentialmulde 34 werden zwei Ladungsträger 48 aus einem Reservoir 49 eingebracht. Die Ladungsträger 48 werden mit einem Stimulator 51 aufgespalten und ausgerichtet, z.B. mit Hilfe eines Gradientenmagnetfelds und den Pump- Gatterelektroden 42, 44. Ein abgespaltener Ladungsträger 50 tunnelt in eine zweite statische Potentialmulde 52 der Doppelpotentialmulde 34, was mit Pfeil 53 angedeutet wird. In der ersten statischen Potentialmulde verbleibt nur noch ein Ladungsträger 54. Die Quantenzustände der Quantenpunkte 50, 54 in den Potentialmulden 46, 48 sind durch die Ausrichtung eines angelegten Gradientenmagnetfelds bekannt.
Mittels der beweglichen Potentialmulde 30 wird ein weiterer Quantenpunkt 32 an die zweite statische Potentialmulde 52 der Doppelpotentialmulde 34 in demselben Niveau herangeführt. Der quantenmechanische Zustand des Quantenpunkts 32 ist nicht bekannt. Pfeil 58 deutet die Translationsrichtung des Quantenpunkts 32 mit der beweglichen Potentialmulde 30 an. Der Quantenpunkt 50 der zweiten statischen Potentialmulde 52 tauscht mit dem Quantenpunkt 32 der beweglichen Potentialmulde 30. Der quantenmechanische Zustand des Quantenpunkts 50 ist bekannt, befindet sich nun in der beweglichen Potentialmulde 30 und initialisiert beispielsweise ein Qubit.
Der Quantenpunkt 32 tunnelt, sofern er den gleichen Spin hat, wie der nun zum initialisieren weggeführte Quantenpunkt 50 wieder in die erste statische Potentialmulde 46 der Doppelpotentialmulde 34. Ein hier nicht dargestelltes Sensorelement würde somit keine Ladungsänderung erfassen. Sind die quantenmechanischen Zustände von dem Quantenpunkt 50 und 32 unterschiedlich, so lässt sich eine Ladungsänderung detektieren. Der Austausch wird mit Pfeil 60 symbolisiert.
Die Fig. 3 zeigt im Schnitt ein weiteres Ausführungsbeispiel für das erfindungsgemäße elektronische Bauelement 10, welches aus einer Halbleiter-Heterostruktur gebildet ist. Die Strukturen des Bauelements 10 liegen vorzugsweise in einer nanoskaligen Dimension. Als Substrat 12 für das elektronische Bauelement 10 wird undotiertes Siliziumgermanium (SiGe) eingesetzt. Das elektronische Bauelement 10 ist so ausgestaltet, dass es ein zweidimensionales Elektronengas (2DEG) enthält. Auf der Fläche 14 des Substrats 12 sind die Gatterelektrodenanordnungen 16, 18 vorgesehen.
Die Gatterelektrodenanordnung 16 weist auch hier die zwei Gatterelektroden 20, 22 auf. Die einzelnen Gatterelektroden 20, 22 sind in geeigneter Weise mit Isolierschichten 24 elektrisch voneinander getrennt. Die Gatterelektrodenanordnungen 16, 18 sind dazu schichtweise vorgesehen, wobei zwischen jeder Gatterelektrode 20, 22 jeweils die Isolierschicht 24 vorgesehen ist. Die Gatterelektroden 20, 22 umfassen weiterhin Elektrodenfinger 26, 28, die parallel zueinander auf der Fläche 14 des Substrats 12 angeordnet sind.
Die Gatterelektrodenanordnungen 16, 18 werden über elektrische Anschlüsse mit geeigneter Spannung versorgt. Durch geeignetes Anlegen von sinusförmig verlaufenden Spannungen an die Gatterelektroden 20, 22 der Gatterelektrodenanordnungen 16 wird eine Potentialmulde 30 in dem Substrat 12 erzeugt. Ein in dieser Potentialmulde 30 gefangener Quantenpunkt bzw. Ladungsträger lässt sich so durch das Substrat translatieren. Die Potentialmulde 30 wird durch die geeignete Ansteuerung der Elektrodenfinger 26, 28 mit Sinusspannungen längs durch das Substrat translatiert. Der Quantenpunkt bzw. der Ladungsträger, der in einer solchen Potentialmulde 30 quasi gefangen ist, lässt sich mit dieser Potentialmulde 30 über eine längere Distanz in dem zweidimensionalen Elektronengas des Substrats 12 aus SiGe translatieren, ohne eine quantenmechanische Zustandsänderung zu erfahren.
Die Gatterelektrodenanordnung 18 bildet hingegen eine statische Doppelmulde 34 aus. Die Gatterelektrodenanordnung 18 umfasst dafür die Barriere-Gatterelektroden 36, 38, 40 und zwei Pump-Gatterelektrode 42, 44, welche den Quantenpunkt 32, 50, 54 bzw. einen Ladungsträger 48 in Bewegung oder Schwingung versetzen kann. Die Pump- Gatterelektroden 42, 44 sind jeweils zwischen den Barriere-Gatterelektroden 36, 38, 40 angeordnet. Auch die Gatterelektroden 36, 38, 40, 42, 44 der Gatterelektrodenanordnung 18 sind jeweils durch eine Isolierschicht 24 getrennt. Die Gatterelektroden 36, 38, 40, 42, 44 verfügen jeweils über Elektrodenfinger 37, 39, 41, 43, 45. Die Elektrodenfinger 37, 39, 41, 43, 45 sind in dieser Schnittzeichnung zu sehen.
In dieser Abbildung werden unterhalb der Gatterelektrodenanordnungen 16, 18 die Verläufe in dem Substrat 12 des elektronischen Bauelements 10 zum Initialisieren eines Quantenzustands eines Qubits in einem Quantenpunkt schematisch dargestellt. Die Abfolgen von A bis D der Verläufe von den Potentialmulden 30, 34 in dem Substrat 12 werden zur Funktionserläuterung dargestellt. Die Elektrodenfinger 26, 28 der Gatterelektrodenanordnung 16 bilden durch das Substrat 12 die beweglichen Potentialmulden 30 aus. Die Bewegung der Potentialmulden 30 erfolgt dabei durch die geeignete Verschaltung der Elektrodenfinger 26, 28. Die Elektrodenfinger 26, 28 der Gatterelektrodenanordnung 16 sind dazu periodisch alternierend zusammengeschaltet, welche eine nahezu kontinuierliche Bewegung der Potentialmulde 30 durch das Substrat 12 bewirken.
Mittels der Gatterelektroden 36, 38, 40 und 42, 44 wird zum einen die statische Doppelpotentialmulde 34 erzeugt und zum anderen mit den Gatterelektroden 20, 22 die bewegliche Potentialmulde 30. In die erste Potentialmulde 46 der statischen Doppelpotentialmulde 34 werden zwei Ladungsträger 48 aus dem Reservoir 49 eingebracht. Der Ladungsträger 48 werden mit dem Stimulator 51 aufgespalten und ausgerichtete, z.B. mit Hilfe eines Gradientenmagnetfelds. Der abgespaltene Ladungsträger 50 tunnelt quantenmechanisch in die zweite statische Potentialmulde 52 der Doppelpotentialmulde 34, was mit Pfeil 53 angedeutet wird. In der ersten statischen Potentialmulde 46 verbleibt nur noch der Ladungsträger 54. Die Quantenzustände der Quantenpunkte 50, 54 in den Potentialmulden 46, 48 sind durch die Ausrichtung eines angelegten Gradientenmagnetfelds bekannt.
Die bewegliche Potentialmulde 30 wird an die zweite statischen Potentialmulde 52 der Doppelpotentialmulde 34 herangeführt. Durch Tunneln, Pfeil 53, gelangt der Ladungsträger 50 von der statischen Potentialmulde 52 in die bewegliche Potentialmulde 30. Der Quantenpunkt 50 kann nun mit der beweglichen Potentialmulde 30 weggeführt werden, Pfeil 58. Der quantenmechanische Zustand des Quantenpunkts 50 ist bekannt, wodurch sich ein Qubit beispielsweise initialisieren lässt.
In Fig. 4 wird ein weiteres Ausführungsbeispiel für das erfindungsgemäßes elektronische Bauelement 10 dargestellt, welches wieder aus einer Halbleiter-Heterostruktur gebildet ist. Die Strukturen des Bauelements 10 liegen vorzugsweise in einer nanoskaligen Dimension. Als Substrat 12 für das elektronische Bauelement 10 wird undotiertes Siliziumgermanium (SiGe) eingesetzt. Das elektronische Bauelement 10 ist so ausgestaltet, dass es ein zweidimensionales Elektronengas (2DEG) enthält. Auf der Fläche 14 des Substrats 12 sind die Gatterelektrodenanordnungen 16, 18 vorgesehen.
Die Gatterelektrodenanordnung 16, weist zwei Gatterelektroden 20, 22 auf. Die einzelnen Gatterelektroden 20, 22 sind in geeigneter Weise mit Isolierschichten 24 elektrisch voneinander getrennt. Die Gatterelektroden 20, 22 der
Gatterelektrodenanordnung 16 sind dazu schichtweise vorgesehen, wobei zwischen jeder Gatterelektrode 20, 22 der Gatterelektrodenanordnung 16 die Isolierschicht 24 vorgesehen ist. Die Gatterelektroden 20, 22 umfassen weiterhin die Elektrodenfinger 26, 28, die parallel zueinander auf der Fläche 14 des Substrats 12 angeordnet sind.
Die Gatterelektrodenanordnungen 16, 18 werden über elektrische Anschlüsse mit geeigneter Spannung versorgt. Durch geeignetes Anlegen von sinusförmig verlaufenden Spannungen an die Gatterelektroden 20, 22 der Gatterelektrodenanordnung 16 wird eine bewegliche Potentialmulde 30 in dem Substrat 12 erzeugt. Ein in dieser Potentialmulde 30 gefangener Quantenpunkt 42 bzw. Ladungsträger lässt sich so durch das Substrat 12 translatieren. Die Potentialmulde 30 wird durch die geeignete Ansteuerung der Elektrodenfinger 26, 28 mit Sinusspannungen längs durch das Substrat 12 translatiert. Der Quantenpunkt 42, der in einer solchen Potentialmulde quasi gefangen ist, lässt sich mit dieser Potentialmulde 30 über eine längere Distanz in dem zweidimensionalen Elektronengas des Substrats 12 aus SiGe translatieren, ohne eine quantenmechanische Zustandsänderung zu erfahren.
Die Gatterelektrodenanordnung 18 bildet eine statische Potentialmulde aus. Die Gatterelektrodenanordnung 18 umfasst dafür die Barriere-Gatterelektroden 36, 40 und neben der Pump-Gatterelektrode 42, welche einen Quantenpunkt bzw. einen Ladungsträger in Bewegung oder Schwingung versetzen kann. Die Pump-Gatterelektrode 42 ist zwischen den Barriere-Gatterelektroden 36 und 40 angeordnet. Die Gatterelektroden 36, 40, 42 verfügen jeweils über Elektrodenfinger 37, 41, 43.
An die Barriere-Gatterelektrodenanordnung 18 schließt das Reservoir 49 zum Einbringen von Ladungsänderungen an.
Die Fig. 5 zeigt im Schnitt ein weiteres Ausführungsbeispiel für das erfindungsgemäße elektronische Bauelement 10, welches aus einer Halbleiter-Heterostruktur gebildet ist. Die Strukturen des Bauelements 10 liegen vorzugsweise in einer nanoskaligen Dimension. Als Substrat 12 für das elektronische Bauelement 10 wird undotiertes Siliziumgermanium (SiGe) eingesetzt. Das elektronische Bauelement 10 ist so ausgestaltet, dass es ein zweidimensionales Elektronengas (2DEG) enthält. Auf der Fläche 14 des Substrats 12 sind die Gatterelektrodenanordnungen 16, 18 vorgesehen.
Die Gatterelektrodenanordnung 16 weist auch hier die zwei Gatterelektroden 20, 22 auf. Die einzelnen Gatterelektroden 20, 22 sind in geeigneter Weise mit Isolierschichten 24 elektrisch voneinander getrennt. Die Gatterelektrodenanordnungen 16, 18, sind dazu schichtweise vorgesehen, wobei zwischen jeder Gatterelektrode 20, 22 jeweils die Isolierschicht 24 vorgesehen ist. Die Gatterelektroden 20, 22 umfassen weiterhin Elektrodenfinger 26, 28, die parallel zueinander auf der Fläche 14 des Substrats 12 angeordnet sind.
Die Gatterelektrodenanordnungen 16, 18 werden über elektrische Anschlüsse mit geeigneter Spannung versorgt. Durch geeignetes Anlegen von sinusförmig verlaufenden Spannungen an die Gatterelektroden 20, 22 der Gatterelektrodenanordnungen 16 wird eine Potentialmulde 30 in dem Substrat 12 erzeugt. Ein in dieser Potentialmulde 30 gefangener Quantenpunkt bzw. Ladungsträger lässt sich so durch das Substrat translatieren. Die Potentialmulde 30 wird durch die geeignete Ansteuerung der Elektrodenfinger 26, 28 mit Sinusspannungen längs durch das Substrat translatiert. Der Quantenpunkt bzw. der Ladungsträger, der in einer solchen Potentialmulde 30 quasi gefangen ist, lässt sich mit dieser Potentialmulde 30 über eine längere Distanz in dem zweidimensionalen Elektronengas des Substrats 12 aus SiGe translatieren, ohne eine quantenmechanische Zustandsänderung zu erfahren.
Die Gatterelektrodenanordnung 18 bildet hingegen eine statische Potentialmulde 70 aus. Die Gatterelektrodenanordnung 18 umfasst dafür die Barriere-Gatterelektroden 36, 40 und eine Pump-Gatterelektrode 42, welche den Quantenpunkt 48 bzw. einen Ladungsträger in Bewegung oder Schwingung versetzen kann. Die Pump-Gatterelektrode 42 ist zwischen den Barriere-Gatterelektroden 36, 40 angeordnet. Auch die Gatterelektroden 36, 40, 42 der Gatterelektrodenanordnung 18 sind jeweils durch eine Isolierschicht 24 getrennt. Die Gatterelektroden 36, 40, 42 verfügen jeweils über Elektrodenfinger 37, 41, 43. Die Elektrodenfinger 37, 41, 43 sind in dieser Schnittzeichnung zu sehen.
In dieser Abbildung werden unterhalb der Gatterelektrodenanordnungen 16, 18 die Verläufe in dem Substrat 12 des elektronischen Bauelements 10 zum Initialisieren eines Quantenzustands eines Qubits in einem Quantenpunkt schematisch dargestellt. Die Abfolgen von A bis D der Verläufe von den Potentialmulden 30, 70 in dem Substrat 12 werden zur Funktionserläuterung dargestellt. Die Elektrodenfinger 26, 28 der Gatterelektrodenanordnung 16 bilden durch das Substrat 12 die beweglichen Potentialmulden 30 aus. Die Bewegung der Potentialmulden 30 erfolgt dabei durch die geeignete Verschaltung der Elektrodenfinger 26, 28. Die Elektrodenfinger 26, 28 der Gatterelektrodenanordnung 16 sind dazu periodisch alternierend zusammengeschaltet, welche eine nahezu kontinuierliche Bewegung der Potentialmulde 42 durch das Substrat 12 bewirken. Mittels der Gatterelektroden 36, 40 und 42 wird zum einen die statische Potentialmulde 70 erzeugt und zum anderen mit den Gatterelektroden 20, 22 die bewegliche Potentialmulde 30. In die Potentialmulde 70 werden zwei Ladungsträger 48 aus dem Reservoir 49 eingebracht. Die Ladungsträger 48 werden mit dem Stimulator 51 aufgespalten und ausgerichtete, z.B. mit Hilfe eines Gradientenmagnetfelds. Der abgespaltene Ladungsträger 50 tunnelt quantenmechanisch in die bewegliche Potentialmulde 30, was mit Pfeil 53 angedeutet wird. In der statischen Potentialmulde 70 verbleibt nur noch der Ladungsträger 54. Die Quantenzustände der Quantenpunkte 50, 54 in den Potentialmulden 70, 30 sind durch die Ausrichtung eines angelegten
Gradientenmagnetfelds bekannt.
Der Quantenpunkt 50 kann nun mit der beweglichen Potentialmulde 30 weggeführt werden, Pfeil 58. Der quantenmechanische Zustand des Quantenpunkts 50 ist bekannt, wodurch sich ein Qubit beispielsweise initialisieren lässt.
Bezugszeichenliste
10 Elektronisches Bauelement 51 Stimulator
12 Substrat 52 2. statische Potentialmulde
14 Fläche 53 Pfeil (Tunneln)
16 Gatterelektrodenanordnung 54 Verbleibender Quantenpunkt
18 Gatterelektrodenanordnung 58 Pfeil (Translation)
20 Gatterelektrode 60 Pfeil (Austauschwechselwirkung)
22 Gatterelektrode 70 Statische Potentialmulde
24 Isolierschichten
26 Elektrodenfinger
28 Elektrodenfinger
30 Potentialmulde
32 Quantenpunkt
34 statische Doppelpotentialmulde
36 Barriere-Gatterelektrode
37 Elektrodenfinger
38 Barriere-Gatterelektrode
39 Elektrodenfinger
40 Barriere-Gatterelektrode
41 Elektrodenfinger
42 Pump-Gatterelektrode
43 Elektrodenfinger
44 Pump-Gatterelektrode
45 Elektrodenfinger
46 1. statische Potentialmulde
48 Ladungsträger
49 Reservoir
50 abgespaltener Quantenpunkt

Claims

Patentansprüche
1. Elektronisches Bauelement (10) zum Initialisieren des quantenmechanischen Zustands eines Qubits, welches von einem Halbleiterbauelement oder einer halbleiterähnlichen Struktur mit Gatterelektrodenanordnungen (16, 18) gebildet wird, umfassend a) ein Substrat (12) mit einem zweidimensionalen Elektronengas oder Elektronenlochgas; b) elektrische Kontakte zum Verbinden der Gatterelektrodenanordnungen (16, 18) mit Spannungsquellen; c) Gatterelektrodenanordnungen (16, 18) mit Gatterelektroden (20, 22, 36, 38, 40, 42, 44) welche an einer Fläche (14) des elektronischen Bauelements (10) zur Erzeugung von Potentialmulden (30, 34) in dem Substrat (12) angeordnet sind; d) ein Reservoir (49), welches als Spender für Ladungsträger (48) vorgesehen ist; e) die Gatterelektroden (20, 22, 36, 38, 40, 42, 44) der
Gatterelektrodenanordnungen (16, 18) parallel verlaufende
Elektrodenfinger (26, 28, 37, 39, 41, 43, 45) aufweisen, wobei i. die Gatterelektroden (36, 38, 40, 42, 44) einer ersten Gatterelektrodenanordnungen (18) in dem Substrat (12) eine statische Doppelpotentialmulde (34) oder die Gatterelektroden (36, 40, 42) einer ersten Gatterelektrodenanordnungen (18) in dem Substrat (12) eine statische Potentialmulde (70) bilden, in der Ladungsträger (48) aus dem Reservoir (49) in die Quantenpunkte (50, 54) eingebracht sind; ii. die Gatterelektroden (20, 22) einer zweiten
Gatterelektrodenanordnungen (16) eine in dem Substrat (12) bewegbare Potentialmulde (30) bilden, wobei ein Ladungsträger (50) mit seinem quantenmechanischen Zustand mit dieser Potentialmulde (30) translatierbar ist; f) Mittel zum Übertragen von zwei Ladungsträgern (48) aus dem Reservoir (49) in die statische Potentialmulde (34, 46, 70); g) einen Stimulator (51) zur Ausrichtung bzw. Aufspaltung der Quantenpunkte (48, 50, 54); h) Mittel zum Übertragen eines Ladungsträgers aus der statischen Potentialmulde (34, 52, 70) in die bewegbare Potentialmulde (30).
2. Elektronisches Bauelement (10) nach Anspruch 1, dadurch gekennzeichnet, dass der Stimulator (51) als Magnet ausgebildet ist, der ein Gradientenmagnetfeld zur Initialisierung der quantenmechanischen Zustände in den beiden
Quantenpunkten (32, 50, 54) in der Potentialmulde (34,70) erzeugt.
3. Elektronisches Bauelement (10) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Gatterelektroden (36, 38, 40, 42, 44) der ersten Gatterelektrodenanordnung (18) eine statische Doppelpotentialmulde (34) ausbilden, wobei Mittel zur Translation eines Quantenpunkts von der einen statischen Potentialmulde (46) in die nächste statische Potentialmulde (52) der Doppelpotentialmulde (34) vorgesehen sind.
4. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine Gatterelektrodenanordnung (16) für die bewegte Potentialmulde (30) aus zwei parallelen Gatterelektroden (20, 22) besteht, welche eine kanalartige Struktur bilden.
5. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Substrat (12) des elektronischen Bauelements Galliumarsenid (GaAs) und/oder Silizumgermanium (SiGe) enthält.
6. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die jeweils zusammengeschalteten Gatterelektroden (20, 22) für die bewegte Potentialmulde (30) periodisch und/oder phasenverschoben mit Spannung beaufschlagbar ausgebildet sind.
7. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass jeweils jeder dritte Elektrodenfinger (26, 28) einer Gatterelektrode (20, 20) für die bewegbare Potentialmulde zusammengeschaltet ist.
8. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass ein Magnetfeldgenerator für ein zuschaltbares Magnetfeld vorgesehen ist.
9. Elektronisches Bauelement (10) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Verbindungsmittel zum Verbinden mit einem Qubit eines Quantencomputers vorgesehen sind.
10. Verfahren für ein elektronisches Bauelement (10) nach einem der vorherigen Ansprüche, mit den nachfolgenden Verfahrensschritten: a) Einbringen zweier Ladungsträger (48) in die statische Potentialmulde (34, 70) aus dem Reservoir (49); b) Heranführen der beweglichen Potentialmulde (30) an die statische Potentialmulde (34,70); c) Austausch zwischen der statischen Potentialmulde (34) mit der beweglichen Potentialmulde (30), sodass sich ein Ladungsträger (50) in der beweglichen Potentialmulde (30) befindet, d) Definierte Ausrichtung der Quantenpunkte in der statischen Potentialmulde (34,70) und der beweglichen Potentialmulde (30) mittels des Stimulators (51); e) Wegführen der beweglichen Potentialmulde (30).
11. Verfahren für ein elektronisches Bauelement (10) nach Anspruch 10, dadurch gekennzeichnet, dass die definierte Ausrichtung der Ladungsträger (48) in den Quantenpunkten (50, 54) durch ein Gradientenmagnetfeld des Stimulators (51) erfolgt.
12. Verfahren für ein elektronisches Bauelement (10) nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass a) die statische Potentialmulde (34) als eine Doppelpotentialmulde ausgebildet wird; b) die beiden statischen Potentialmulden (46, 52) der Doppelpotentialmulde
(34) jeweils mit Ladungsträgern (32, 50) besetzt werden, die unterschiedliche quantenmechanische bekannte Zustände aufweisen; c) Heranführen der beweglichen Potentialmulde (30) an die statische Doppelpotentialmulde (34); d) Austauschen jeweils eines Quantenpunkts (50) zwischen einer statischen Potentialmulde (34) und der beweglichen Potentialmulde (30); e) Wegführen der beweglichen Potentialmulde (30) mit dem Quantenpunkt (50).
13. Verfahren für ein elektronisches Bauelement (10) nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass die zusammengeschalteten Gatterelektroden (20, 22) für die bewegliche Potentialmulde (30) phasenverschoben mit Spannung beaufschlagt werden, welche eine nahezu kontinuierliche Bewegung der Potentialmulde (30) durch das Substrat (12) bewirkt, wobei ein Quantenpunk (50) mit dieser Potentialmulde (30) translatiert wird.
14. Verfahren für ein elektronisches Bauelement (10) nach Anspruch 1, dadurch gekennzeichnet, dass jeweils jede vierte Gatterelektrode (20, 22) für die bewegliche Potentialmulde (30) zusammengeschaltet und periodisch mit
Spannung beaufschlagt wird.
PCT/DE2020/100811 2019-09-20 2020-09-21 Bauelement zum initialisieren eines quantenpunkts WO2021052538A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20792280.8A EP4031489A1 (de) 2019-09-20 2020-09-21 Bauelement zum initialisieren eines quantenpunkts
US17/642,527 US11687473B2 (en) 2019-09-20 2020-09-21 Component for initializing a quantum dot
CN202080065560.9A CN114402441A (zh) 2019-09-20 2020-09-21 用于初始化量子点的部件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102019125351 2019-09-20
DE102019125351.9 2019-09-20
DE102020115493.3 2020-06-10
DE102020115493 2020-06-10

Publications (1)

Publication Number Publication Date
WO2021052538A1 true WO2021052538A1 (de) 2021-03-25

Family

ID=72885323

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/DE2020/100810 WO2021052537A1 (de) 2019-09-20 2020-09-21 Manipulationszone für qubits in quantenpunkten
PCT/DE2020/100809 WO2021052536A1 (de) 2019-09-20 2020-09-21 Bauelement zum auslesen der zustände von qubits in quantenpunkten
PCT/DE2020/100812 WO2021052539A1 (de) 2019-09-20 2020-09-21 Verbindungsbauteil zur abzweigung für einzelelektronenbewegung
PCT/DE2020/100811 WO2021052538A1 (de) 2019-09-20 2020-09-21 Bauelement zum initialisieren eines quantenpunkts
PCT/DE2020/100814 WO2021052541A1 (de) 2019-09-20 2020-09-21 Elektronisches struktur-bauelement für logische verschaltungen von qubits

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/DE2020/100810 WO2021052537A1 (de) 2019-09-20 2020-09-21 Manipulationszone für qubits in quantenpunkten
PCT/DE2020/100809 WO2021052536A1 (de) 2019-09-20 2020-09-21 Bauelement zum auslesen der zustände von qubits in quantenpunkten
PCT/DE2020/100812 WO2021052539A1 (de) 2019-09-20 2020-09-21 Verbindungsbauteil zur abzweigung für einzelelektronenbewegung

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/DE2020/100814 WO2021052541A1 (de) 2019-09-20 2020-09-21 Elektronisches struktur-bauelement für logische verschaltungen von qubits

Country Status (4)

Country Link
US (5) US11983126B2 (de)
EP (5) EP4031490A1 (de)
CN (5) CN114514618A (de)
WO (5) WO2021052537A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023117063A1 (en) 2021-12-21 2023-06-29 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Quantum computer design
WO2023117065A1 (en) 2021-12-21 2023-06-29 Forschungszentrum Jülich GmbH Operation of a quantum computing element
WO2023117064A1 (en) 2021-12-21 2023-06-29 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Operation of a quantum computing element

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080185576A1 (en) * 2007-02-06 2008-08-07 Lloyd Hollenberg Error corrected quantum computer
EP2075745A1 (de) * 2007-12-28 2009-07-01 Hitachi Ltd. Quanteninformationsverarbeitungsvorrichtung
US8164082B2 (en) 2005-09-30 2012-04-24 Wisconsin Alumni Research Foundation Spin-bus for information transfer in quantum computing
EP2560133A1 (de) * 2011-08-17 2013-02-20 Hitachi, Ltd. Quanteninformationsverarbeitung
US20150279981A1 (en) * 2013-03-14 2015-10-01 Wisconsin Alumni Research Foundation Direct tunnel barrier control gates in a two-dimensional electronic system
WO2017020095A1 (en) 2015-08-05 2017-02-09 Newsouth Innovations Pty Limited Advanced processing apparatus comprising a plurality of quantum processing elements
US20170317203A1 (en) 2016-04-28 2017-11-02 Univ Princeton Semiconductor quantum dot device and method for forming a scalable linear array of quantum dots
WO2017213651A1 (en) * 2016-06-09 2017-12-14 Intel Corporation Quantum dot devices with top gates
EP3016035B1 (de) 2014-11-03 2019-01-02 NewSouth Innovations Pty Limited Quantenprozessor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994458A (ja) * 1982-11-19 1984-05-31 Fujitsu Ltd 電荷転送装置
JPS5994458U (ja) 1982-12-17 1984-06-27 アルパイン株式会社 パ−ソナル無線機
AU2007200501B2 (en) 2007-02-06 2011-11-17 Newsouth Innovations Pty Limited Error Corrected Quantum Computer
WO2014146162A1 (en) * 2013-03-20 2014-09-25 Newsouth Innovations Pry Limited Quantum computing with acceptor-based qubits
EP3300004A1 (de) 2016-09-27 2018-03-28 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Verfahren zur ausführung eines quantenfehlerkorrekturzyklus in einem quantencomputer
US11038021B2 (en) 2017-06-24 2021-06-15 Intel Corporation Quantum dot devices
US11171225B2 (en) * 2018-12-05 2021-11-09 The Governing Council Of The University Of Toronto Monolithic qubit integrated circuits
DE102019202661A1 (de) 2019-02-27 2020-08-27 Forschungszentrum Jülich GmbH Verfahren und Vorrichtung für eine Qubit Fehlererkennung
EP4075153A1 (de) * 2021-04-12 2022-10-19 Qdevil ApS Niedrigtemperaturoszilloskop
US20230197833A1 (en) * 2021-12-21 2023-06-22 Intel Corporation Nanoribbon-based quantum dot devices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8164082B2 (en) 2005-09-30 2012-04-24 Wisconsin Alumni Research Foundation Spin-bus for information transfer in quantum computing
US20080185576A1 (en) * 2007-02-06 2008-08-07 Lloyd Hollenberg Error corrected quantum computer
EP2075745A1 (de) * 2007-12-28 2009-07-01 Hitachi Ltd. Quanteninformationsverarbeitungsvorrichtung
EP2560133A1 (de) * 2011-08-17 2013-02-20 Hitachi, Ltd. Quanteninformationsverarbeitung
US20150279981A1 (en) * 2013-03-14 2015-10-01 Wisconsin Alumni Research Foundation Direct tunnel barrier control gates in a two-dimensional electronic system
EP3016035B1 (de) 2014-11-03 2019-01-02 NewSouth Innovations Pty Limited Quantenprozessor
WO2017020095A1 (en) 2015-08-05 2017-02-09 Newsouth Innovations Pty Limited Advanced processing apparatus comprising a plurality of quantum processing elements
US20170317203A1 (en) 2016-04-28 2017-11-02 Univ Princeton Semiconductor quantum dot device and method for forming a scalable linear array of quantum dots
WO2017213651A1 (en) * 2016-06-09 2017-12-14 Intel Corporation Quantum dot devices with top gates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VEIT LANGROCK: "Numerical and theoretical investigation of long-range coherent electron shuttling devices in Silicon/Silicon-Germanium quantum wells for scalable quantum computing", 30 November 2017 (2017-11-30), XP055757788, Retrieved from the Internet <URL:https://www.quantuminfo.physik.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaabbnooi> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023117063A1 (en) 2021-12-21 2023-06-29 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Quantum computer design
WO2023117065A1 (en) 2021-12-21 2023-06-29 Forschungszentrum Jülich GmbH Operation of a quantum computing element
WO2023117064A1 (en) 2021-12-21 2023-06-29 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Operation of a quantum computing element

Also Published As

Publication number Publication date
EP4031491A1 (de) 2022-07-27
US20220414516A1 (en) 2022-12-29
EP4031490A1 (de) 2022-07-27
US20220327072A1 (en) 2022-10-13
CN114402441A (zh) 2022-04-26
WO2021052536A1 (de) 2021-03-25
WO2021052541A1 (de) 2021-03-25
US20220344565A1 (en) 2022-10-27
US20220335322A1 (en) 2022-10-20
EP4031487A1 (de) 2022-07-27
CN114424344A (zh) 2022-04-29
US20230006669A1 (en) 2023-01-05
US11687473B2 (en) 2023-06-27
US11983126B2 (en) 2024-05-14
EP4031488A1 (de) 2022-07-27
WO2021052539A1 (de) 2021-03-25
CN114402440A (zh) 2022-04-26
WO2021052537A1 (de) 2021-03-25
EP4031489A1 (de) 2022-07-27
CN114514618A (zh) 2022-05-17
CN114424345A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
EP4031489A1 (de) Bauelement zum initialisieren eines quantenpunkts
DE69034105T2 (de) Transistor mit schwebendem Gate und mehreren Steuergates
DE60203531T2 (de) Molekulare kreuzleitungsverriegelungsvorrichtung
DE112012002454B4 (de) Verfahren zum Bilden eines piezoelektronischen Transistors (PET) mit 4 Anschlüssen
EP1556908A2 (de) Feldeffekttransistor-anordnung und schaltkreis-array
WO2021052531A1 (de) Bauteil mit bandanordnung für einzelelektronenbewegung über eine längere distanz
DE4016197A1 (de) Neuralnetzwerk mit einer matrix zum berechnen der uebereinstimmung zwischen zwei binaermustern
DE112010003400T5 (de) Speicherarchitektur und Verwendung eines magnetiachen Racetrack-Speichers
DE102014014267A1 (de) Spintronik-Logikelement
DE102018122529A1 (de) Halbleiterbauelement
DE102009033566B4 (de) Verfahren zur Einstellung eines Zustands eines Quantenbits
DE2363089C3 (de) Speicherzelle mit Feldeffekttransistoren
EP0810609A2 (de) Einzelelektron-Speicherzellenanordnung
DE102019202661A1 (de) Verfahren und Vorrichtung für eine Qubit Fehlererkennung
DE19858759C1 (de) Schaltungsanordnung mit mindestens einem nanoelektronischen Bauelement und Verfahren zu deren Herstellung
DE102020100777A1 (de) Analoge nichtflüchtige Speichervorrichtung unter Verwendung eines polyferroelektrischen Films mit zufälligen Polarisationsrichtungen
EP0664569A1 (de) Mikroelektronisches Bauelement
DE112021005740T5 (de) Gemischt leitendes flüchtiges speicherelement zum beschleunigten beschreiben eines nichtflüchtigen memristiven bauelements
EP4158630A1 (de) Memristor-basierte volladdierer und verfahren zu deren betrieb
EP0631322B1 (de) Mikroelektronische Schaltungsstruktur und Verfahren zu deren Herstellung
WO1999021022A2 (de) Verfahren zum detektieren eines stroms spinpolarisierter elektronen in einem festkörper
DE102014222185B4 (de) Quanteninterferenzbasierte Logikvorrichtungen, die einen Elektronen-Monochromator umfassen
WO2022262934A1 (de) Qubit-element
DE102013107074B4 (de) Magnetoresistive Tunnelübergangs-Vorrichtung, magnetischer Tunnelübergangs-Speicherarray und Verfahren zum Ausbilden einer magnetoresistiven Tunnelübergangs-Vorrichtung
DE69629275T2 (de) Logische Vorrichtung nach einem binären Entscheidungsdiagramm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20792280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020792280

Country of ref document: EP

Effective date: 20220420