CN114514618A - 用于针对单个电子运动的分岔的连接部件 - Google Patents

用于针对单个电子运动的分岔的连接部件 Download PDF

Info

Publication number
CN114514618A
CN114514618A CN202080065558.1A CN202080065558A CN114514618A CN 114514618 A CN114514618 A CN 114514618A CN 202080065558 A CN202080065558 A CN 202080065558A CN 114514618 A CN114514618 A CN 114514618A
Authority
CN
China
Prior art keywords
gate electrode
electronic component
potential well
electrode assembly
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080065558.1A
Other languages
English (en)
Inventor
M·库内
H·布鲁姆
L·施莱伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Rheinisch Westlische Technische Hochschuke RWTH
Original Assignee
Forschungszentrum Juelich GmbH
Rheinisch Westlische Technische Hochschuke RWTH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Rheinisch Westlische Technische Hochschuke RWTH filed Critical Forschungszentrum Juelich GmbH
Publication of CN114514618A publication Critical patent/CN114514618A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/20Handling requests for interconnection or transfer for access to input/output bus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66977Quantum effect devices, e.g. using quantum reflection, diffraction or interference effects, i.e. Bragg- or Aharonov-Bohm effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7613Single electron transistors; Coulomb blockade devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/92Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of superconductive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/11Single-electron tunnelling devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/128Junction-based devices having three or more electrodes, e.g. transistor-like structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N69/00Integrated devices, or assemblies of multiple devices, comprising at least one superconducting element covered by group H10N60/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/40Bus coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Software Systems (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及一种电子部件(10),所述电子部件由带有用于运动量子点(52)的栅电极组件(16,18,20)的半导体部件或类半导体结构形成。所述电子部件(10)包括具有二维电子气或电子空穴气的基底(12)。电接触部将栅电极组件(16,18,20)与电压源连接。具有栅电极(22,24)的第一栅电极组件(16)布置在电子部件的面(14)上,以用于在基底(12)中产生势阱(50)。栅电极组件(16)具有平行伸延的电极指(32,34),其中电极指(32,34)周期性地交替相互连接,这引起势阱(50)几乎连续运动穿过基底(12),其中量子点(52)与所述势阱(50)一起在一方向上平移。

Description

用于针对单个电子运动的分岔的连接部件
技术领域
本发明涉及一种电子部件,所述电子部件由带有用于运动量子点的栅电极组件的半导体部件或类半导体结构形成,所述电子部件包括:
a)具有二维电子气或电子空穴气的基底;
b)用于将栅电极组件与电压源连接的电接触部;
c)具有栅电极的第一栅电极组件,所述第一栅电极组件布置在电子部件的面上,以用于在基底中产生势阱;
d)第一栅电极组件具有平行伸延的电极指,其中
e)电极指周期性地交替相互连接,这引起势阱几乎连续运动穿过基底,其中量子点与该第一势阱一起在一方向上平移。
此外,本发明涉及一种用于这样的电子部件的方法。
背景技术
传统计算机使用带有集成电路的半导体构件工作。这些电路始终在基于逻辑“0”或“1”(即开关“开”或“关”)的系统的情况下工作。在半导体存储器的情况下,这通过以下方式实现,即,电位要么高于要么低于阈值。这两种状态构成了计算机中的最小单位,并且称为“比特”。
这些半导体构件通常由掺杂的硅元素组成以实现电路。那么例如,晶体管电路可以布置在这样的半导体构件中并且相联以形成逻辑电路。由于不断改进的化学和物理制造工艺,这些半导体构件在此期间能以越来越极限的紧凑性生产。然而,这种紧凑性正在达到其物理极限。电路的密度和温度通常都会导致在这种半导体构件中出现问题。因此尤其是,还可以通过更多的层模型、更高的开关节拍或还有在半导体材料的选择时来实现优化。然而,对于许多应用来说,例如在密码技术或计算天气或气候模型时,由于数据量巨大,计算能力通常是不够的。
为了显著提高计算能力,针对所谓的量子计算机的模型早已为人所知。然而,从技术上讲,由于各种原因,量子计算机迄今尚未实现。量子计算机的模型设置成:利用粒子(例如电子)的量子力学状态。在此,具有两个状态作为用于存储信息的最小单位的量子力学体系称为“量子位(Qubit)”。量子位例如通过量子力学状态“向上”自旋和“向下”自旋来定义。
无论相应选择何种材料体系,电子自旋量子位的原理始终相同。在此,半导体异质结构用作基底。半导体异质结构包含二维电子气(2DEG)。半导体异质结构是在彼此之上生长的具有不同成分的半导体单晶层。这些层结构在其电子和光学特性方面提供了许多技术相关的量子化效应。因此它们特别适用于微电子部件的制造。目前用于制造半导体异质结构的最重要的材料组合是GaAs/AlGaAs体系。
半导体异质结构在此在不同材料的界面上形成所谓的量子薄膜。所述量子薄膜尤其是由于两种材料中不同的能量比而出现。由此预设的能量分布导致来自周围环境的电荷载体聚集在量子薄膜中。在那里,电荷载体在其运动自由度方面很大程度地局限于所述层,并形成二维电子气(2DEG)。
纳米材料结构称为量子点。半导体材料特别适合于此。电荷载体(不仅电子而且还有空穴)在一量子点中在其可运动性方面如此程度地受到限制,使得其能量不再能够具有连续值,而始终只能还具有离散值。二维电子气(2DEG)内的势景观借助施加到部件表面上的纳米级栅电极(所谓的栅极)形成,从而可以将单个电子捕获在量子点中。然后这些电子的自旋用作形成逻辑量子位的基础。
从US2017/0317203A1已知一种量子点装置,其包括至少三个传导层和至少两个绝缘层。在此,这三个传导层彼此电绝缘。在那描述了:一传导层由与相应其它两个传导层不同的材料组成。例如,传导层可以完全和/或部分地由铝、金、铜或多晶硅组成。而绝缘层例如由氧化硅、氮化硅和/或氧化铝组成。在此,传导层和绝缘层之间的连接尤其是引起:在使用电压脉冲的情况下使单个电子穿过装置的量子点。
在该量子点装置中,电子被准捕获在势阱(Potentialmulde)中。在此,电子通过量子力学隧穿在这里从量子点运动到量子点。当电子在较长距离上运动时,这可能导致有关量子力学状态的信息内容不准确或失真。
WO2017/020095A1公开了一种可扩展的架构,其针对用于执行量子处理的处理设备。该架构基于全硅CMOS制造技术。基于晶体管的控制电路与无电势的门一起使用,以运行二维量子位阵列。量子位由包括在量子点中的单个电子的自旋态定义。在此描述了更高的层次,即如何可以例如通过晶体管等而电操控单个量子位,包括量子位操作和读出。尽管有讨论到“可扩展架构”,但所示的阵列不允许任何真正的扩展,即尤其是低温电子设备的集成,因为不能在量子位之间创造空间。
US8,164,082B2描述了一种自旋总线量子计算机架构,其包括自旋总线,该自旋总线由多个强耦合且始终基于量子位的量子位组成,其定义了自旋量子位链。大量携带信息的量子位布置在自旋总线的量子位旁边。电极形成于携带信息的量子位和自旋总线量子位,以实现控制量子位之间的耦合的建立和断开,从而实现控制每个携带信息的量子位和相邻的自旋总线量子位之间的耦合的建立和断开。自旋总线架构实现在长距离上快速且可靠地耦合量子位。
在EP3016035B1中描述了一种处理装置和用于运行该处理装置的方法,尤其是,但不排他地,该发明涉及一种可控制以执行绝热量子计算的量子处理装置。
为此,量子处理器具有以下特征:多个量子位元和具有多个控制构件的控制结构,其中,每个控制构件布置为用于控制多个量子位元。控制结构是可控制的,以在使用量子位元的情况下执行量子计算,其中,量子位元的量子状态在一个或多个施主原子(Donatoratome)的核自旋或电子自旋中被编码。施主原子布置在嵌入半导体结构中的平面中。在此,第一集合的施主原子如此布置以便用于对与量子计算相关的量子信息进行编码。第二集合的施主原子如此布置,使得所述第二集合的施主原子实现在第一集合的施主原子中的一个或多个施主原子之间的电磁耦合。第一集合的施主原子以二维矩阵布置结构布置。多个控制构件具有第一集合的细长控制构件,其布置在包含施主原子的平面上方的第一平面中。设置有第二集合的细长的控制构件,其布置在具有施主原子的平面下方的第二平面中。
为了实现通用量子计算机,必须实现量子位在至少几微米的距离上耦合,以便尤其是为本地控制电子设备提供空间。必须设置有如下结构和结构元件,所述结构和结构元件可实现将量子点运送到不同目的地,以便能够建立逻辑电路。在现有技术中已经有一些方法,在所述方法中,一维或二维阵列由单独的量子点构成,然后电子可以运送通过这些量子点。由于需要非常大数量的栅电极以及由此要设定的电压,借助这种方法,在没有很大的耗费的情况下或甚至根本无法实现在几微米上的耦合。
在单个量子位上的操作已经可以在令人满意的程度下控制和评估,而将量子位耦联可能是一个核心的未解决的问题,以便能够完成复杂的逻辑电路由此能够实现通用量子计算机。
发明内容
因此,本发明的任务是,消除现有技术的缺点并且创造一种电子部件,所述电子部件允许实现带有量子点的逻辑电路,其中在逻辑电路中设置有分岔。
根据本发明,所述任务由此来解决,即在开头提及的类型的电子部件中,其中,
f)设置有带有栅电极的第二栅电极组件,其以另一方向设置在用于第一栅电极组件的分岔处,以为了在基底中产生第二势阱,
g)第二栅电极组件具有平行延伸的电极指,其中
h)电极指周期性地交替相互连接,这引起势阱几乎连续运动穿过基底,其中在势阱中的量子点能够在前进运动方向改变的情况下运动。
该任务此外通过一种用于这种电子部件的方法解决,在其中,相互连接的栅电极相移地被加载以电压,这引起势阱几乎连续运动穿过基底,其中量子点与该势阱一起平移。
通过相应的交叉或分岔,可以实现带有量子点的电路,所述带有量子点的电路在先前是不可实现的。通过这种电子部件,现在可以在量子计算机中构建逻辑电路。借助所述部件可进行逻辑电路的交联。
本发明基于以下原理:量子力学的状态在量子点中设定,其可以通过基底在较长的距离上平移。对此,量子点被准捕获在这样的势阱中,该势阱通过栅电极组件以合适的方式产生。势阱则连续且定向地运动穿过基底,并且带动量子点以其量子力学状态在一定距离上运动。为了势阱的连续运动,栅电极的电极指相应地互连。在分岔处,量子点转向到分岔的栅电极组件的势阱处。量子点必须被运动,以便转移到另一或新的方向上。利用本发明由此量子点的量子力学的状态能够在较大的距离上运动和互联。
在这种根据本发明的电子结构部件的有利设计方案中,在分岔的区域中设置有用于产生能接通的势垒组件的第三栅电极组件,所述第三栅电极组件被接通以转移所述量子点。这种势垒组件防止量子点进入与通过分岔预设的方向不同的方向。视势垒组件如何连接而定,量子点借助势阱朝着一个分岔方向或另一个分岔方向偏转。由此,也可以实现具有方向变化的特别复杂的电路。
电子部件的另一有利构造方案通过以下方式实现,即,设置有用于同步栅电极组件以在分岔处对量子点改变方向的器件。量子点在分岔处的转移需要栅电极的非常精确的协调,由此势阱也实际转移量子点。因此,这里提出的措施用于设置用于控制栅电极的器件,其使栅电极组件同步地彼此互连,从而实现协调的方向改变。
在电子部件的优选设计方案中,栅电极组件由两个平行的栅电极组成,所述栅电极形成通道状结构。该措施用于:势阱只能在基底中的特定轨道上运动。
在这种电子部件的有利设计方案中,基底包含砷化镓(GaAs)和/或硅锗(SiGe)。这些材料能够产生二维电子气,在该二维电子气中可以产生量子点并且使量子点运动。在砷化镓的情况下,量子点被电子占据。在硅锗的情况下,量子点被缺少电子的空穴占据。
电子部件的另外的优选构造方案可以通过以下方式实现,即,分别相互连接的栅电极构造为能被周期性地和/或相移地加载电压。该措施使势阱能够连续地引导穿过基底。因此,位于势阱中的量子点可以与势阱一起平移穿过基底。在此,该量子点不失去其原始的量子力学状态。
电子部件的优选设计方案在于,栅电极的相应至少每第三个电极指相互连接。由此应实现:势阱总是在至少一个周期上得到确保,势阱在该周期上运动。只有这样,才实现势阱连同量子点的连续运动。原则上,在栅电极相互连接时,其它组合也是可能的,只要可以执行势阱与量子点一起的运动。相应地,针对根据本发明的用于电子部件的方法的有利的设计方案通过以下得到:相应至少每第三个电极指相互连接,并且周期性地被加载电压。
根据本发明的电子部件的另一有利设计方案在于,设置有用于连接量子计算机的两个量子位的器件。量子点在较大的距离上平移的状态在量子计算机的情况下特别适合。在此,适用的是将量子位相互连接。因此,电子部件必须具有将至少两个量子位互连的接触可能性,以便将量子点的量子状态从一个量子位转移到另一个量子位。
其它设计和优点由从属权利要求的主题以及附图连同相关的描述得到。下面参照附图更详细地阐释实施例。本发明不应仅局限于所列举的实施例。本发明应涉及现在和将来本领域技术人员认为对于实现本发明显而易见的所有对象。随后的详细描述涉及本公开的当前最佳的可能实施方式。所述实施方式仅用于更详细地阐释本发明。因此,说明书不应在限制性的意义下理解,而仅仅用于说明本发明的一般原理,因此本发明的范围最好由所附权利要求限定。在此,引用的现有技术被认为是与本发明有关的公开内容的一部分。
附图说明
图1以示意性俯视图示出根据本发明的具有分岔的电子部件的第一实施例。
图2示出根据图1的分岔的剖面图以及量子点在分岔中的运动走势。
具体实施方式
在图1中示出针对根据本发明的电子部件10的一种实施例,该电子部件由半导体异质结构形成。该部件的结构优选处于纳米级尺寸。未掺杂的硅锗(SiGe)用作用于电子部件10的基底12。电子部件10如此设计,使得该电子部件包含二维电子气(2DEG)。在基底12的面14上设置有栅电极组件16,18,20。
栅电极组件16,18分别具有两个栅电极22,24,26,28。各栅电极22,24,26,28借助绝缘层30以合适的方式彼此电分离。栅电极组件16,18,20为此分层构建,其中,在每个栅电极22,24,26,28之间分别设置绝缘层24。栅电极22,24,26,28还包括电极指32,34,36,38,其中,栅电极22,24,26,28中的电极指分别彼此平行地布置在基底12的面14上。
通过电联接部给栅电极组件16,18,20供应适当的电压。通过适当地向栅电极组件16,18的栅电极22,24,26,28施加正弦走向的电压,在基底12中产生势阱。在该势阱中捕获的量子点因此可以平移穿过基底。通过利用正弦电压适当地操控电极指32,34,36,38,势阱纵向地平移穿过基底。被准捕获在这种势阱中的量子点可以与该势阱一起在由SiGe构成的基底12的二维电子气中平移较长的距离,而不经历量子力学的状态变化。
栅电极组件18在交叉区域40中从栅电极组件16分岔。栅电极组件20布置在交叉区域40中。在当前的实施例中,栅电极组件20包含两个势垒栅电极42,44。当带有量子点的运动的势阱处于交叉区域40中时,这些势垒栅电极42,44可以被接通。通过接通势垒栅电极42,44,将带有量子点的势阱固定保持在交叉区域40中。栅电极组件20的泵栅电极46促使带有量子点的势阱发生方向改变而朝向栅电极组件18。
如果通过带有量子点的势阱不应进行方向改变,则接通栅电极组件20的势垒栅电极48。而其它两个势垒栅电极42,44被关断。势垒栅电极48阻挡至栅电极组件18的接近。运动的势阱中的量子点因此没有针对改变方向的动因。
图2示意性地示出穿过这种电子部件10的剖面图。在部件10的剖面图下示出带有量子点52的能运动的势阱50的A到C的走向顺序。在电子部件10的图示中,只有电极指36,38、势垒栅电极48和泵栅电极46在剖面图中是可见的。在此之下,示出基底12中的势阱50的走向的序列A至C。栅电极组件18的电极指36,38构造穿过基底12能运动的势阱50。势阱50的运动在此通过电极指26,28的适当互连发生。为此,栅电极组件16的电极指36,38周期性地交替相互连接,这引起势阱50几乎连续运动穿过基底12。在本图中,示出带有量子点52的势阱50如何从交叉区域40分岔出来。能运动的势阱50处于分岔的栅电极18的方向上。在此,箭头54表示带有量子点52的势阱50运行的运动方向。
附图标记列表
10结构部件
12基底
14面
16栅电极组件
18栅电极组件
20栅电极组件
22栅电极
24栅电极
26栅电极
28栅电极
30绝缘层
32电极指
34电极指
36电极指
38电极指
40交叉区域
42势垒栅电极
44势垒栅电极
46泵栅电极
48势垒栅电极
50能运动的势阱
52量子点
54箭头。

Claims (13)

1.一种电子部件(10),所述电子部件由带有用于运动量子点(52)的栅电极组件(16,18,20)的半导体部件或类半导体结构形成,所述电子部件包括:
a)具有二维电子气或电子空穴气的基底(12);
b)用于将所述栅电极组件(16,18,20)与电压源连接的电接触部;
c)具有栅电极(22,24)的第一栅电极组件(16),所述第一栅电极组件布置在所述电子部件的面(14)上,以用于在所述基底(12)中产生势阱(50);
d)所述第一栅电极组件(16)具有平行伸延的电极指(32,34),其中
e)所述电极指(32,34)周期性地交替相互连接,这引起所述势阱(50)几乎连续运动穿过所述基底(12),其中量子点(52)与所述势阱(50)一起在一方向上平移,
其特征在于,
f)设置有带有栅电极(26,28)的第二栅电极组件(18),其以另一方向设置在用于所述第一栅电极组件(16)的分岔(40)处,
g)所述第二栅电极组件(18)具有平行延伸的电极指(36,38),其中
h)所述电极指(36,38)周期性地交替相互连接,这引起所述势阱(50)几乎连续运动穿过所述基底(12),其中在所述势阱(50)中的所述量子点(52)能够在前进运动方向改变的情况下运动。
2.根据权利要求1所述的电子部件(10),其特征在于,在所述分岔(40)的区域中设置有用于产生能接通的势垒组件(42,44,48)的第三栅电极组件(20),所述第三栅电极组件被接通以将所述量子点(52)分岔。
3.根据权利要求1或2中任一项所述的电子部件(10),其特征在于,设置有用于同步所述栅电极组件(16,18,20)以在所述分岔处转移所述量子点的器件。
4.根据权利要求1至3中任一项所述的电子部件(10),其特征在于,栅电极组件(16,18)分别由两个平行的栅电极(22,24,26,28)组成,所述栅电极形成通道状结构。
5.根据权利要求1至4中任一项所述的电子部件(10),其特征在于,所述电子部件(10)的基底(12)包含砷化镓(GaAs)和/或硅锗(SiGe)。
6.根据权利要求1至5中任一项所述的电子部件(10),其特征在于,分别相互连接的所述栅电极(22,24,26,28)构造为能被周期性地和/或相移地加载电压。
7.根据权利要求1至6中任一项所述的电子部件(10),其特征在于,栅电极(22,24,26,28)的相应每第三个电极指(32,34,36,38)相互连接。
8.根据权利要求1至7中任一项所述的电子部件(10),其特征在于,设置有用于连接量子计算机的两个量子位的器件。
9.根据权利要求1至8中任一项所述的电子部件(10),其特征在于,设置有带有栅电极的所述第二栅电极组件(18),其在所述基底(12)中产生第二能运动的势阱(50)。
10.根据权利要求1至9中任一项所述的电子部件(10),其特征在于,设置有磁场发生器,用于能接通的磁场和/或梯度磁场。
11.一种用于根据前述权利要求中任一项所述的电子部件(10)的方法,其特征在于,相互连接的所述栅电极(22,24,26,28)相移地被加载以电压,这引起所述势阱(50)几乎连续运动穿过所述基底(12),其中量子点(52)与所述势阱(50)一起平移。
12.根据权利要求11所述的用于电子部件(10)的方法,其特征在于,分别每第四个栅电极(22,24,26,28)相互连接并周期地被加载以电压。
13.根据权利要求11或12所述的用于电子部件(10)的方法,其特征在于,势垒被接通以为了在所述分岔处分岔所述量子点。
CN202080065558.1A 2019-09-20 2020-09-21 用于针对单个电子运动的分岔的连接部件 Pending CN114514618A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102019125351 2019-09-20
DE102019125351.9 2019-09-20
DE102020115493.3 2020-06-10
DE102020115493 2020-06-10
PCT/DE2020/100812 WO2021052539A1 (de) 2019-09-20 2020-09-21 Verbindungsbauteil zur abzweigung für einzelelektronenbewegung

Publications (1)

Publication Number Publication Date
CN114514618A true CN114514618A (zh) 2022-05-17

Family

ID=72885323

Family Applications (5)

Application Number Title Priority Date Filing Date
CN202080065546.9A Pending CN114424345A (zh) 2019-09-20 2020-09-21 用于量子位的逻辑互连的电子结构部件
CN202080065544.XA Pending CN114402440A (zh) 2019-09-20 2020-09-21 用于量子点中的量子位的操纵区
CN202080065541.6A Pending CN114424344A (zh) 2019-09-20 2020-09-21 用于读取在量子点中的量子位的状态的部件
CN202080065560.9A Pending CN114402441A (zh) 2019-09-20 2020-09-21 用于初始化量子点的部件
CN202080065558.1A Pending CN114514618A (zh) 2019-09-20 2020-09-21 用于针对单个电子运动的分岔的连接部件

Family Applications Before (4)

Application Number Title Priority Date Filing Date
CN202080065546.9A Pending CN114424345A (zh) 2019-09-20 2020-09-21 用于量子位的逻辑互连的电子结构部件
CN202080065544.XA Pending CN114402440A (zh) 2019-09-20 2020-09-21 用于量子点中的量子位的操纵区
CN202080065541.6A Pending CN114424344A (zh) 2019-09-20 2020-09-21 用于读取在量子点中的量子位的状态的部件
CN202080065560.9A Pending CN114402441A (zh) 2019-09-20 2020-09-21 用于初始化量子点的部件

Country Status (4)

Country Link
US (5) US20220414516A1 (zh)
EP (5) EP4031489A1 (zh)
CN (5) CN114424345A (zh)
WO (5) WO2021052536A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023117065A1 (en) 2021-12-21 2023-06-29 Forschungszentrum Jülich GmbH Operation of a quantum computing element
WO2023117064A1 (en) 2021-12-21 2023-06-29 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Operation of a quantum computing element
WO2023117063A1 (en) 2021-12-21 2023-06-29 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Quantum computer design

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994458A (ja) * 1982-11-19 1984-05-31 Fujitsu Ltd 電荷転送装置
JPS5994458U (ja) 1982-12-17 1984-06-27 アルパイン株式会社 パ−ソナル無線機
US8164082B2 (en) 2005-09-30 2012-04-24 Wisconsin Alumni Research Foundation Spin-bus for information transfer in quantum computing
AU2007200501B2 (en) 2007-02-06 2011-11-17 Newsouth Innovations Pty Limited Error Corrected Quantum Computer
US7966549B2 (en) * 2007-03-01 2011-06-21 Qucor Pty. Ltd. Error corrected quantum computer
EP2075745A1 (en) 2007-12-28 2009-07-01 Hitachi Ltd. Quantum information processing device
EP2560133A1 (en) 2011-08-17 2013-02-20 Hitachi, Ltd. Quantum information processing
US9842921B2 (en) 2013-03-14 2017-12-12 Wisconsin Alumni Research Foundation Direct tunnel barrier control gates in a two-dimensional electronic system
US9691033B2 (en) 2013-03-20 2017-06-27 Newsouth Innovations Pty Limited Quantum computing with acceptor-based qubits
ES2787623T3 (es) 2014-11-03 2020-10-16 Newsouth Innovations Pty Ltd Procesador cuántico
EP3332422A4 (en) 2015-08-05 2019-03-13 NewSouth Innovations Pty Limited ADVANCED PROCESSING DEVICE WITH MULTIPLE QUANTUM PROCESSING ELEMENTS
US10192976B2 (en) 2016-04-28 2019-01-29 The Trustees Of Princeton University Semiconductor quantum dot device and method for forming a scalable linear array of quantum dots
US11177375B2 (en) 2016-06-09 2021-11-16 Intel Corporation Quantum dot devices with top gates
EP3300004A1 (en) 2016-09-27 2018-03-28 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method for executing a quantum error correction cycle in a quantum computer
US11038021B2 (en) 2017-06-24 2021-06-15 Intel Corporation Quantum dot devices
US11171225B2 (en) * 2018-12-05 2021-11-09 The Governing Council Of The University Of Toronto Monolithic qubit integrated circuits
DE102019202661A1 (de) 2019-02-27 2020-08-27 Forschungszentrum Jülich GmbH Verfahren und Vorrichtung für eine Qubit Fehlererkennung
EP4075153A1 (en) * 2021-04-12 2022-10-19 Qdevil ApS Low temperature oscilloscope
US20230197833A1 (en) * 2021-12-21 2023-06-22 Intel Corporation Nanoribbon-based quantum dot devices

Also Published As

Publication number Publication date
EP4031487A1 (de) 2022-07-27
WO2021052541A1 (de) 2021-03-25
CN114402441A (zh) 2022-04-26
US20220335322A1 (en) 2022-10-20
US20220327072A1 (en) 2022-10-13
WO2021052536A1 (de) 2021-03-25
CN114402440A (zh) 2022-04-26
US20220344565A1 (en) 2022-10-27
WO2021052537A1 (de) 2021-03-25
US20230006669A1 (en) 2023-01-05
US11983126B2 (en) 2024-05-14
WO2021052539A1 (de) 2021-03-25
CN114424345A (zh) 2022-04-29
EP4031488A1 (de) 2022-07-27
EP4031491A1 (de) 2022-07-27
WO2021052538A1 (de) 2021-03-25
EP4031489A1 (de) 2022-07-27
EP4031490A1 (de) 2022-07-27
CN114424344A (zh) 2022-04-29
US20220414516A1 (en) 2022-12-29
US11687473B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
CN114514618A (zh) 用于针对单个电子运动的分岔的连接部件
Sardinha et al. Nanorouter: a quantum-dot cellular automata design
Lent et al. Quantum cellular automata: the physics of computing with arrays of quantum dot molecules
Azghadi et al. A novel design for quantum-dot cellular automata cells and full adders
Porod et al. Quantum-dot cellular automata: computing with coupled quantum dots
Bourianoff The future of nanocomputing
Tougaw et al. A scalable signal distribution network for quantum-dot cellular automata
Bilal et al. Quantum Dot Cellular Automata: A New Paradigm for Digital Design.
US20220293846A1 (en) Component having a band assembly for individual electron movement over a long distance
Bajec et al. The ternary quantum-dot cell and ternary logic
JP4965248B2 (ja) 量子デバイス
Bahar et al. Atomic silicon quantum dot: A new designing paradigm of an atomic logic circuit
Bluhm et al. Semiconductor spin qubits—A scalable platform for quantum computing?
Bilal et al. Optimal realization of universality of peres gate using explicit interaction of cells in quantum dot cellular automata nanotechnology
CA2609772A1 (en) Quantum-dot cellular automata methods and devices
Iqbal et al. Applications of Toffoli Gate for designing the classical gates using quantum-dot cellular automata
Ahmed et al. Design of reversible gate-based fingerprint authentication system in quantum-dot cellular automata for secure nanocomputing
KR20220009419A (ko) 양자 정보 프로세서용 프로세서 요소
Beigh et al. Design and simulation of efficient code converter circuits for quantum-dot cellular automata
Kumar et al. Adder design using a 5-input majority gate in a novel “multilayer gate design paradigm” for quantum dot cellular automata circuits
Skoldberg et al. Nanocell devices and architecture for configurable computing with molecular electronics
Deleonibus Emerging Devices for Low-power and High-performance Nanosystems: Physics, Novel Functions, and Data Processing
Porod Towards nanoelectronics: possible CNN implementations using nanoelectronic devices
Chandrasekaran et al. Design of efficient full-adder based on 5-input majority gate in coplanar Quantum-Dot Cellular Automata
Khitun et al. Multi-functional edge driven nano-scale cellular automata based on semiconductor tunneling nano-structure with a self-assembled quantum dot layer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination