EP3560022A1 - Accumulateur à l'état solide à ions lithium et procédé de fabrication de celui-ci - Google Patents

Accumulateur à l'état solide à ions lithium et procédé de fabrication de celui-ci

Info

Publication number
EP3560022A1
EP3560022A1 EP17811831.1A EP17811831A EP3560022A1 EP 3560022 A1 EP3560022 A1 EP 3560022A1 EP 17811831 A EP17811831 A EP 17811831A EP 3560022 A1 EP3560022 A1 EP 3560022A1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
lithium
solid
layer
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17811831.1A
Other languages
German (de)
English (en)
Inventor
Hermann TEMPEL
Shicheng Yu
Hans Kungl
Xin Gao
Roland Schierholz
Andreas Mertens
Joseph MERTENS
Lambertus G. J. De Haart
Rüdiger-A. Eichel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP3560022A1 publication Critical patent/EP3560022A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Lithium-ion solid-state accumulator and method for producing the same
  • the invention relates to the field of battery technology, in particular the lithium-ion solid-state batteries or accumulators and in particular to their method of preparation.
  • battery technology in particular the lithium-ion solid-state batteries or accumulators and in particular to their method of preparation.
  • Rechargeable lithium-ion batteries also referred to below as Li-ion batteries
  • Li-ion batteries have been on the rise in recent years.
  • the solid state batteries or solid electrolyte batteries are very interesting. This applies equally to the corresponding accumulators.
  • an ion-conducting solid is used instead of the normally liquid or polymer-stabilized (gel) electrolyte.
  • This solid electrolyte is usually inorganic (ceramics, glasses, etc.) designed.
  • Decisive for the functionality of a solid-state electrolyte are the low electronic conductivity with simultaneous high ionic conductivity and a sufficiently high electrochemical stability compared to the anode and cathode material.
  • the high conductivity for ions advantageously minimizes the internal electrical resistance of the accumulator and results in a high power density, while at the same time the high electrical resistance minimizes the self-discharge rate of the accumulator, thereby prolonging its life or shelf life.
  • rechargeable solid-state batteries so far generally have a low power density compared to accumulators with liquid electrolytes. However, they ensure safe and environmentally friendly operation since no liquids can escape from the cell. The potential problems with liquid electrolytes, such as leakage, overheating, burn-up and toxicity, can thus be advantageously overcome. This property usually also leads to a particularly long life.
  • a lithium-containing positive electrode and porous graphite or amorphous silicon are used as the negative electrode.
  • the solid electrolyte and the electrodes are often layers comprising a polymer-ceramic composite material, on the one hand improve the charge transfer to the anode and on the other hand connect the cathode to the solid electrolyte. In addition, they regularly reduce the resistance.
  • the previously well-functioning lithium-ion batteries typically have a thin film electrolyte.
  • the task of the electrolyte is to conduct lithium ions from the anode to the cathode during discharge and to simultaneously electrically insulate the two poles.
  • Suitable solid-state materials have vacancies in their atomic lattice structure. Lithium ions can occupy them and move from blank to blank through the solid.
  • this mechanism is somewhat slower than the diffusion processes within a liquid electrolyte.
  • This disadvantage can be compensated in principle by the execution of the electrolyte as a thin layer.
  • the disadvantage is that the capacity of such thin-film accumulators is only poorly scalable due to their limited layer thickness.
  • PVD physical vapor deposition
  • a commercial solid-state thin-film cell based on lithium is marketed for example by the company "Infinite Power Solutions” under the name “Thinergy ® MEC200”.
  • Thininergy ® MEC200 Each component of the cell is produced by a complex gas phase process. In this way, however, only thin electrodes can be realized, which in turn severely impairs the total capacity of the cell.
  • layer thicknesses between typically 10 and 50 ⁇ m are regarded as thin layers.
  • the object of the invention is to provide an effective and inexpensive lithium-ion solid-state accumulator, which overcomes the previous disadvantages of the prior art.
  • the objects of the invention are achieved by a method for producing a lithium-ion-solid-state battery having the features of the main claim, and by a method for producing such a lithium-ion solid-state battery having the features of the independent claim.
  • the production of a solid-state accumulator and in particular the production of a lithium-ion solid-state accumulator, can advantageously be based on a solid electrolyte and not on one of the electrode sides, as hitherto.
  • the solid electrolyte thus assumes the mechanical load-bearing role in the production of the electrochemical cell.
  • the term accumulator for rechargeable batteries is used below.
  • first corresponding powder material is pressed into a dense electrolyte layer and then sintered.
  • the electrolyte is then present as a nearly dense sintered electrolyte.
  • close to density it is meant that the electrolyte has a density greater than 85% of the theoretical density.
  • the electrolyte should have a porosity of not more than 20% by volume, preferably not more than 15% by volume. So that he has the necessary mechanical stability, the electrolyte layer according to the invention has a layer thickness of at least 100 ⁇ .
  • the electrolyte according to the invention can be prepared both by a liquid-phase synthesis (solgel or hydrothermal) and by a so-called "solid oxide” synthesis In the "solid oxide” synthesis, the oxidic precursors are intimately ground and subsequently calcined. The electrolyte is then pre-pressed uniaxially in the form of an electrolyte pellet at more than 10 kN and then isostatically compressed and sintered at more than 1200 kN.
  • Electrolyte powders suitable for this purpose include on the one hand compounds such as oxides, phosphates or even silicates, on the other hand, however, phosphorus sulfides. It can be used both individual of these compounds or phosphorus sulfides and mixtures of various such compounds or phosphorus sulfides. Some concrete compounds are listed below by way of example which are suitable as electrolyte powder in the aforementioned sense, without being limited to these:
  • Lithium lanthanum zirconate wherein dopants of tantalum, aluminum and iron can additionally be used,
  • a mixture of different phosphate compounds is preferably used in the process according to the invention.
  • a particularly advantageous powder mixture for the production of the solid electrolyte according to the invention comprises, for example, lithium vanadium phosphate (LVP), lithium aluminum titanium phosphate (LATP) and lithium titanium phosphate (LTP). Because LATP is the actual ion conducting electrolyte material, it is present in excess and is usually added to both the anode and the cathode to achieve better conductivities.
  • LVP lithium vanadium phosphate
  • LATP lithium aluminum titanium phosphate
  • LTP lithium titanium phosphate
  • the ratio of LVP to LTP in this preferred electrolyte powder is, for example, 1.2: 1. It is a cathodically limited cell in which the cathode has more lithium than the active component than the anode can accommodate.
  • the powder for producing the solid electrolyte should have an average particle size between 100 nm and 800 nm, preferably between 200 nm and 650 nm in order to allow a density of at least 85% of the theoretical density after densification and sintering.
  • a bimodal or broad distribution of the particle sizes of the electrolyte powder used over the aforementioned relevant range has proven to be advantageous and promising for achieving high theoretical densities. Too low densities are less conducive to a solid state electrolyte because the limiting factor for ion conduction is the grain boundary conductivity.
  • the average particle size (d 50 ) of the powder used was determined on the one hand by means of a scanning electron microscope (SEM) and on the other hand also by the method of measuring the static light scattering.
  • the combination LTP and LVP can be mentioned, which exploits the electrochemical stability window of the electrolyte in a special way.
  • a relatively low cell voltage to light days since the voltage of the anode (LTP) against Li / Li * at 2.5 V and thus the high voltage of the cathode can not be used regularly to achieve high energy densities regularly.
  • the solid electrolyte produced in this way preferably has, after a sintering step, a layer thickness of between 100 ⁇ m and 800 ⁇ m, preferably between 200 ⁇ m and 500 ⁇ m, and particularly advantageously between 200 ⁇ m and 300 ⁇ m. Layer thicknesses of more than 500 ⁇ can already lead to a limitation of the internal resistance of the cell.
  • the lower limit of 100 ⁇ regularly indicates the lower limit in which the layer can be present in its function as a mechanically stable carrier.
  • individual electrode layers can be applied directly on both sides to the previously sintered electrolyte layer.
  • the screen printing should be mentioned.
  • all printing methods such as offset, roll to roll, dipping bed or ink jet printing are suitable for the system.
  • all standard electrode materials can be used, wherein the electrode material used should align with the stability window of the electrolyte.
  • oxidic electrode materials are suitable for example for the cathode:
  • anode for example, the following materials are suitable:
  • the accumulator produced according to the invention has as a special feature the uniform structure of the polyanions (PO 4 ) 3 " across the anode, electrolyte and cathode This structural feature also occurs with the use of phosphates, phosphorus sulfides and silicates
  • the stability of the solid-state accumulator produced according to the invention becomes The structural integrity of the system is ensured by a matching, in their crystal structure and volume expansion matched electrodes and electrolyte combination.
  • An advantageous embodiment of the invention provides that at least one interface between an electrode and the previously prepared solid electrolyte is additionally adapted in particular by a micro- and / or nanostructuring.
  • composite layers of electrolyte and anode material or electrolyte and cathode material can optionally be used as "adhesion-promoting layers.”
  • nanostructured anode or anode electrodes are also used Contain cathode particles as active components.
  • the intermediate layers are usually applied with layer thicknesses of between 1 and 10 ⁇ m and in particular between 1 and 5 ⁇ m on the solid-state electrolyte.
  • the nanostructuring can be achieved, for example, by the use of the solvothermal synthesis with the addition of suitable surfactants, eg. B. TritonXlOO ® can be achieved. As a result, a compensation of the intrinsic roughness and a good connection of the materials of both layers to each other can be ensured.
  • suitable surfactants eg. B. TritonXlOO ®
  • the processing of all further layers of the solid-state accumulator can advantageously be carried out using common standard printing processes, such as, for example, screen printing, offset printing or ink-jet.
  • FIG. 1 flowchart of an advantageous embodiment of the invention
  • Electrolyte-based process for producing a solid-state battery Electrolyte-based process for producing a solid-state battery.
  • FIG. 2 Flowchart of a particular embodiment of the invention
  • Electrolyte-based process for producing a solid state battery with intermediate layers Electrolyte-based process for producing a solid state battery with intermediate layers.
  • FIG. 3 Schematic structure of solid-state accumulators according to the invention
  • Li aluminum titanium phosphate (LATP) powder is crushed after milling in a ball mill (mean particle size after milling, d 50 ⁇ 1 pm) in a uniaxial piston press to a pellet of 1 1 mm diameter (40 kN). Subsequently, the pellet is polished on the surface and sintered at 1100 ° C (heating rate 2 K / min), holding time for 30 h in the powder bed.
  • the sintered electrolyte pellet has a density of about 90% of the theoretical density and a thickness of about 400 ⁇ . The diameter shrinks regularly only minimally to about 11, 5 mm.
  • the dried anode layer has a layer thickness of 60 ⁇ m (equivalent to three coatings) to account for the capacitances and the cathode layer has a thickness of 90 ⁇ m (corresponds to five coatings).
  • the accumulator is then measured in a battery housing under a contact pressure of about 1 t.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un accumulateur à l'état solide solide à ions lithium comprenant une anode, une cathode et un électrolyte solide, l'électrolyte solide ayant une épaisseur de couche comprise entre 100 µm et 800 µm, de préférence entre 200 µm et 500 µm et plus préférentiellement entre 200 µm et 300 µm. L'accumulateur à l'état solide à ions lithium comprend un mélange de phosphate de lithium et de vanadium (LVP), de phosphate de lithium, d'aluminium et de titane (LATP) et de phosphate de titane et de lithium (LTP). Pour fabriquer un accumulateur à l'état solide à ions lithium selon l'invention, une poudre d'électrolyte pré-calcinée est comprimée et frittée pour former une couche d'électrolyte. Puis, les électrodes sont appliquées des deux côtés et frittées. Facultativement, au moins une couche intermédiaire destinée à améliorer la liaison de la couche d'électrode à l'électrolyte solide peut être appliquée sur celui-ci avant l'application d'une couche d'électrode. Pour l'application des couches, on peut utiliser de préférence tous les procédés d'impression standards courants tels que la sérigraphie, l'impression offset ou le jet d'encre.
EP17811831.1A 2016-12-21 2017-11-18 Accumulateur à l'état solide à ions lithium et procédé de fabrication de celui-ci Pending EP3560022A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016015191.9A DE102016015191B3 (de) 2016-12-21 2016-12-21 Lithium- lonen- Festkörperakkumulator sowie Verfahren zur Herstellung desselben
PCT/DE2017/000391 WO2018113807A1 (fr) 2016-12-21 2017-11-18 Accumulateur à l'état solide à ions lithium et procédé de fabrication de celui-ci

Publications (1)

Publication Number Publication Date
EP3560022A1 true EP3560022A1 (fr) 2019-10-30

Family

ID=60654572

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17811831.1A Pending EP3560022A1 (fr) 2016-12-21 2017-11-18 Accumulateur à l'état solide à ions lithium et procédé de fabrication de celui-ci

Country Status (6)

Country Link
US (1) US11258053B2 (fr)
EP (1) EP3560022A1 (fr)
JP (1) JP7181866B2 (fr)
CN (1) CN110235295B (fr)
DE (1) DE102016015191B3 (fr)
WO (1) WO2018113807A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11955595B2 (en) * 2019-04-22 2024-04-09 Bioenno Tech LLC High-ionic conductivity ceramic-polymer nanocomposite solid state electrolyte
US11223088B2 (en) * 2019-10-07 2022-01-11 Bioenno Tech LLC Low-temperature ceramic-polymer nanocomposite solid state electrolyte
CN112537958B (zh) * 2020-11-19 2022-04-05 哈尔滨工业大学 一种锆酸镧锂固态电解质及其制备方法
US11735768B2 (en) 2021-02-09 2023-08-22 GM Global Technology Operations LLC Gel electrolyte for solid-state battery
CN116666728A (zh) 2022-02-21 2023-08-29 通用汽车环球科技运作有限责任公司 用于固态电池组的固态中间层
TWI832522B (zh) * 2022-10-27 2024-02-11 力哲科技股份有限公司 固態電池及其形成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126758A (ja) * 1999-10-28 2001-05-11 Kyocera Corp リチウム電池
US20100216032A1 (en) * 2007-05-11 2010-08-26 Namics Corporation Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
JP2015028854A (ja) * 2013-07-30 2015-02-12 日本特殊陶業株式会社 全固体電池
JP5715003B2 (ja) * 2011-08-02 2015-05-07 日本特殊陶業株式会社 全固体電池、及び、全固体電池の製造方法
US9419308B2 (en) * 2007-03-29 2016-08-16 Tdk Corporation All-solid-state lithium-ion secondary battery and production method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5299860B2 (ja) 2007-11-12 2013-09-25 国立大学法人九州大学 全固体電池
JP5358825B2 (ja) * 2008-02-22 2013-12-04 国立大学法人九州大学 全固体電池
JP2010272494A (ja) 2008-08-18 2010-12-02 Sumitomo Electric Ind Ltd 非水電解質二次電池及びその製造方法
JP4728385B2 (ja) * 2008-12-10 2011-07-20 ナミックス株式会社 リチウムイオン二次電池、及び、その製造方法
JP5269665B2 (ja) 2009-03-23 2013-08-21 日本碍子株式会社 全固体電池及びその製造方法
FR2956523B1 (fr) * 2010-02-18 2012-04-27 Centre Nat Rech Scient Procede de preparation d'une batterie monolithique par frittage sous courant pulse
DE102011121236A1 (de) 2011-12-12 2013-06-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Festkörperelektrolyt für den Einsatz in Lithium-Luft- oder Lithium-Wasser-Akkumulatoren
EP2683005B1 (fr) 2012-07-06 2016-06-01 Samsung Electronics Co., Ltd Conducteur ionique solide, électrolyte solide le contenant, pile au lithium comprenant ledit électrolyte solide et procédé de fabrication de ladite pile au lithium
US8821771B2 (en) * 2012-09-26 2014-09-02 Corning Incorporated Flame spray pyrolysis method for forming nanoscale lithium metal phosphate powders
JP6524775B2 (ja) * 2014-05-19 2019-06-05 Tdk株式会社 リチウムイオン二次電池
JP2016119257A (ja) 2014-12-22 2016-06-30 株式会社日立製作所 固体電解質、それを用いた全固体電池及び固体電解質の製造方法
US9991556B2 (en) 2015-03-10 2018-06-05 Tdk Corporation Garnet-type li-ion conductive oxide
CN106876668A (zh) 2016-11-21 2017-06-20 蔚来汽车有限公司 固态锂电池的复合电极材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126758A (ja) * 1999-10-28 2001-05-11 Kyocera Corp リチウム電池
US9419308B2 (en) * 2007-03-29 2016-08-16 Tdk Corporation All-solid-state lithium-ion secondary battery and production method thereof
US20100216032A1 (en) * 2007-05-11 2010-08-26 Namics Corporation Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
JP5715003B2 (ja) * 2011-08-02 2015-05-07 日本特殊陶業株式会社 全固体電池、及び、全固体電池の製造方法
JP2015028854A (ja) * 2013-07-30 2015-02-12 日本特殊陶業株式会社 全固体電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2018113807A1 *

Also Published As

Publication number Publication date
CN110235295B (zh) 2023-12-19
JP2020514948A (ja) 2020-05-21
US11258053B2 (en) 2022-02-22
US20190341597A1 (en) 2019-11-07
CN110235295A (zh) 2019-09-13
DE102016015191B3 (de) 2018-06-14
JP7181866B2 (ja) 2022-12-01
WO2018113807A1 (fr) 2018-06-28

Similar Documents

Publication Publication Date Title
DE102016015191B3 (de) Lithium- lonen- Festkörperakkumulator sowie Verfahren zur Herstellung desselben
EP3208869B1 (fr) Pile électrochimique rechargeable
EP2586083B1 (fr) Cathode pour piles rechargeables au lithium
DE112020003729T5 (de) Festelektrolyt, festelektrolytschicht und festelektrolytzelle
DE102018222142A1 (de) Verfahren zum Herstellen einer Festelektrolytmembran oder einer Anode und Festelektrolytmembran oder Anode
EP3925023B1 (fr) Batterie à électrolyte solide et procédé de production correspondant
DE102015112182A1 (de) Feststoff-Lithium-Sekundärbatterie und Herstellungsverfahren dafür
DE102018222129A1 (de) Kathodeneinheit und Verfahren zum Herstellen einer Kathodeneinheit
WO2018002303A1 (fr) Procédé de fabrication d'une cellule électrochimique et cellule électrochimique fabriquée par ce procédé
EP3050143B1 (fr) Procédé de fabrication d'éléments électrochimiques d'une batterie solide
EP3308417B1 (fr) Procédé de fabrication de couches nano-structurées
DE112019006390T5 (de) Festkörperbatterie
WO2013152906A1 (fr) Accumulateur d'énergie électrochimique et procédé pour le fabriquer
CN110931842A (zh) 全固体电池
EP3008768B1 (fr) Pile lithium-ion pour batterie secondaire
EP2166598A2 (fr) Electrode et materiau de séparateur pour batteries lithium-ion et leurs procédés de fabrication
DE102020112419A1 (de) Aktives material einer negativen elektrode für eine festkörperbatterie, negative elektrode, die das aktive material verwendet, und festkörperbatterie
CN112421033A (zh) 全固体电池及其制造方法
DE102018212889A1 (de) Lithiumionen leitende Kompositmaterialien sowie deren Herstellung und deren Verwendung in elektrochemischen Zellen
DE102022210150A1 (de) Verfahren zur Herstellung eines Materials oder einer Komponente für eine Feststoffbatterie
DE102022204655A1 (de) Verfahren zur Herstellung eines Separators für einen Lithiumionen-Akkumulator
DE112022003402T5 (de) Festkörperbatterie
DE102021213786A1 (de) Verfahren zum Herstellen einer Elektrode, Elektrode
WO2023247072A1 (fr) Procédé de production d'électrodes en silicium en tant qu'anodes pour batteries au lithium-ion et électrode en silicium produite à l'aide de celui-ci
DE112021001463T5 (de) Festkörperakkumulator

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MERTENS, ANDREAS

Inventor name: SCHIERHOLZ, ROLAND

Inventor name: GAO, XIN

Inventor name: EICHEL, RUEDIGER-A.

Inventor name: MERTENS, JOSEPH

Inventor name: DE HAART, LAMBERTUS G. J.

Inventor name: YU, SHICHENG

Inventor name: KUNGL, HANS

Inventor name: TEMPEL, HERMANN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM JUELICH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210519

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS