EP3560022A1 - Accumulateur à l'état solide à ions lithium et procédé de fabrication de celui-ci - Google Patents
Accumulateur à l'état solide à ions lithium et procédé de fabrication de celui-ciInfo
- Publication number
- EP3560022A1 EP3560022A1 EP17811831.1A EP17811831A EP3560022A1 EP 3560022 A1 EP3560022 A1 EP 3560022A1 EP 17811831 A EP17811831 A EP 17811831A EP 3560022 A1 EP3560022 A1 EP 3560022A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrolyte
- lithium
- solid
- layer
- sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 20
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title description 13
- 239000003792 electrolyte Substances 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims abstract description 24
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 21
- 229910000664 lithium aluminum titanium phosphates (LATP) Inorganic materials 0.000 claims abstract description 19
- 239000000843 powder Substances 0.000 claims abstract description 17
- CVJYOKLQNGVTIS-UHFFFAOYSA-K aluminum;lithium;titanium(4+);phosphate Chemical compound [Li+].[Al+3].[Ti+4].[O-]P([O-])([O-])=O CVJYOKLQNGVTIS-UHFFFAOYSA-K 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 9
- MKGYHFFYERNDHK-UHFFFAOYSA-K P(=O)([O-])([O-])[O-].[Ti+4].[Li+] Chemical compound P(=O)([O-])([O-])[O-].[Ti+4].[Li+] MKGYHFFYERNDHK-UHFFFAOYSA-K 0.000 claims abstract description 6
- YWJVFBOUPMWANA-UHFFFAOYSA-H [Li+].[V+5].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O Chemical compound [Li+].[V+5].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O YWJVFBOUPMWANA-UHFFFAOYSA-H 0.000 claims abstract description 6
- 238000007650 screen-printing Methods 0.000 claims abstract description 5
- 238000007641 inkjet printing Methods 0.000 claims abstract description 3
- 239000007787 solid Substances 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 6
- VKCLPVFDVVKEKU-UHFFFAOYSA-N S=[P] Chemical compound S=[P] VKCLPVFDVVKEKU-UHFFFAOYSA-N 0.000 claims description 5
- 229910019142 PO4 Inorganic materials 0.000 claims description 4
- 239000010405 anode material Substances 0.000 claims description 3
- 239000010406 cathode material Substances 0.000 claims description 3
- -1 phosphate compound Chemical class 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- 238000007598 dipping method Methods 0.000 claims description 2
- 239000010452 phosphate Substances 0.000 claims 1
- 229910021332 silicide Inorganic materials 0.000 claims 1
- 238000007639 printing Methods 0.000 abstract description 3
- 238000007645 offset printing Methods 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000000576 coating method Methods 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000002001 electrolyte material Substances 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000011244 liquid electrolyte Substances 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000006245 Carbon black Super-P Substances 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229910013275 LiMPO Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910015014 LiNiCoAlO Inorganic materials 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- RJEIKIOYHOOKDL-UHFFFAOYSA-N [Li].[La] Chemical compound [Li].[La] RJEIKIOYHOOKDL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910001251 solid state electrolyte alloy Inorganic materials 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000001370 static light scattering Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000002226 superionic conductor Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0407—Methods of deposition of the material by coating on an electrolyte layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
- H01M50/461—Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- Lithium-ion solid-state accumulator and method for producing the same
- the invention relates to the field of battery technology, in particular the lithium-ion solid-state batteries or accumulators and in particular to their method of preparation.
- battery technology in particular the lithium-ion solid-state batteries or accumulators and in particular to their method of preparation.
- Rechargeable lithium-ion batteries also referred to below as Li-ion batteries
- Li-ion batteries have been on the rise in recent years.
- the solid state batteries or solid electrolyte batteries are very interesting. This applies equally to the corresponding accumulators.
- an ion-conducting solid is used instead of the normally liquid or polymer-stabilized (gel) electrolyte.
- This solid electrolyte is usually inorganic (ceramics, glasses, etc.) designed.
- Decisive for the functionality of a solid-state electrolyte are the low electronic conductivity with simultaneous high ionic conductivity and a sufficiently high electrochemical stability compared to the anode and cathode material.
- the high conductivity for ions advantageously minimizes the internal electrical resistance of the accumulator and results in a high power density, while at the same time the high electrical resistance minimizes the self-discharge rate of the accumulator, thereby prolonging its life or shelf life.
- rechargeable solid-state batteries so far generally have a low power density compared to accumulators with liquid electrolytes. However, they ensure safe and environmentally friendly operation since no liquids can escape from the cell. The potential problems with liquid electrolytes, such as leakage, overheating, burn-up and toxicity, can thus be advantageously overcome. This property usually also leads to a particularly long life.
- a lithium-containing positive electrode and porous graphite or amorphous silicon are used as the negative electrode.
- the solid electrolyte and the electrodes are often layers comprising a polymer-ceramic composite material, on the one hand improve the charge transfer to the anode and on the other hand connect the cathode to the solid electrolyte. In addition, they regularly reduce the resistance.
- the previously well-functioning lithium-ion batteries typically have a thin film electrolyte.
- the task of the electrolyte is to conduct lithium ions from the anode to the cathode during discharge and to simultaneously electrically insulate the two poles.
- Suitable solid-state materials have vacancies in their atomic lattice structure. Lithium ions can occupy them and move from blank to blank through the solid.
- this mechanism is somewhat slower than the diffusion processes within a liquid electrolyte.
- This disadvantage can be compensated in principle by the execution of the electrolyte as a thin layer.
- the disadvantage is that the capacity of such thin-film accumulators is only poorly scalable due to their limited layer thickness.
- PVD physical vapor deposition
- a commercial solid-state thin-film cell based on lithium is marketed for example by the company "Infinite Power Solutions” under the name “Thinergy ® MEC200”.
- Thininergy ® MEC200 Each component of the cell is produced by a complex gas phase process. In this way, however, only thin electrodes can be realized, which in turn severely impairs the total capacity of the cell.
- layer thicknesses between typically 10 and 50 ⁇ m are regarded as thin layers.
- the object of the invention is to provide an effective and inexpensive lithium-ion solid-state accumulator, which overcomes the previous disadvantages of the prior art.
- the objects of the invention are achieved by a method for producing a lithium-ion-solid-state battery having the features of the main claim, and by a method for producing such a lithium-ion solid-state battery having the features of the independent claim.
- the production of a solid-state accumulator and in particular the production of a lithium-ion solid-state accumulator, can advantageously be based on a solid electrolyte and not on one of the electrode sides, as hitherto.
- the solid electrolyte thus assumes the mechanical load-bearing role in the production of the electrochemical cell.
- the term accumulator for rechargeable batteries is used below.
- first corresponding powder material is pressed into a dense electrolyte layer and then sintered.
- the electrolyte is then present as a nearly dense sintered electrolyte.
- close to density it is meant that the electrolyte has a density greater than 85% of the theoretical density.
- the electrolyte should have a porosity of not more than 20% by volume, preferably not more than 15% by volume. So that he has the necessary mechanical stability, the electrolyte layer according to the invention has a layer thickness of at least 100 ⁇ .
- the electrolyte according to the invention can be prepared both by a liquid-phase synthesis (solgel or hydrothermal) and by a so-called "solid oxide” synthesis In the "solid oxide” synthesis, the oxidic precursors are intimately ground and subsequently calcined. The electrolyte is then pre-pressed uniaxially in the form of an electrolyte pellet at more than 10 kN and then isostatically compressed and sintered at more than 1200 kN.
- Electrolyte powders suitable for this purpose include on the one hand compounds such as oxides, phosphates or even silicates, on the other hand, however, phosphorus sulfides. It can be used both individual of these compounds or phosphorus sulfides and mixtures of various such compounds or phosphorus sulfides. Some concrete compounds are listed below by way of example which are suitable as electrolyte powder in the aforementioned sense, without being limited to these:
- Lithium lanthanum zirconate wherein dopants of tantalum, aluminum and iron can additionally be used,
- a mixture of different phosphate compounds is preferably used in the process according to the invention.
- a particularly advantageous powder mixture for the production of the solid electrolyte according to the invention comprises, for example, lithium vanadium phosphate (LVP), lithium aluminum titanium phosphate (LATP) and lithium titanium phosphate (LTP). Because LATP is the actual ion conducting electrolyte material, it is present in excess and is usually added to both the anode and the cathode to achieve better conductivities.
- LVP lithium vanadium phosphate
- LATP lithium aluminum titanium phosphate
- LTP lithium titanium phosphate
- the ratio of LVP to LTP in this preferred electrolyte powder is, for example, 1.2: 1. It is a cathodically limited cell in which the cathode has more lithium than the active component than the anode can accommodate.
- the powder for producing the solid electrolyte should have an average particle size between 100 nm and 800 nm, preferably between 200 nm and 650 nm in order to allow a density of at least 85% of the theoretical density after densification and sintering.
- a bimodal or broad distribution of the particle sizes of the electrolyte powder used over the aforementioned relevant range has proven to be advantageous and promising for achieving high theoretical densities. Too low densities are less conducive to a solid state electrolyte because the limiting factor for ion conduction is the grain boundary conductivity.
- the average particle size (d 50 ) of the powder used was determined on the one hand by means of a scanning electron microscope (SEM) and on the other hand also by the method of measuring the static light scattering.
- the combination LTP and LVP can be mentioned, which exploits the electrochemical stability window of the electrolyte in a special way.
- a relatively low cell voltage to light days since the voltage of the anode (LTP) against Li / Li * at 2.5 V and thus the high voltage of the cathode can not be used regularly to achieve high energy densities regularly.
- the solid electrolyte produced in this way preferably has, after a sintering step, a layer thickness of between 100 ⁇ m and 800 ⁇ m, preferably between 200 ⁇ m and 500 ⁇ m, and particularly advantageously between 200 ⁇ m and 300 ⁇ m. Layer thicknesses of more than 500 ⁇ can already lead to a limitation of the internal resistance of the cell.
- the lower limit of 100 ⁇ regularly indicates the lower limit in which the layer can be present in its function as a mechanically stable carrier.
- individual electrode layers can be applied directly on both sides to the previously sintered electrolyte layer.
- the screen printing should be mentioned.
- all printing methods such as offset, roll to roll, dipping bed or ink jet printing are suitable for the system.
- all standard electrode materials can be used, wherein the electrode material used should align with the stability window of the electrolyte.
- oxidic electrode materials are suitable for example for the cathode:
- anode for example, the following materials are suitable:
- the accumulator produced according to the invention has as a special feature the uniform structure of the polyanions (PO 4 ) 3 " across the anode, electrolyte and cathode This structural feature also occurs with the use of phosphates, phosphorus sulfides and silicates
- the stability of the solid-state accumulator produced according to the invention becomes The structural integrity of the system is ensured by a matching, in their crystal structure and volume expansion matched electrodes and electrolyte combination.
- An advantageous embodiment of the invention provides that at least one interface between an electrode and the previously prepared solid electrolyte is additionally adapted in particular by a micro- and / or nanostructuring.
- composite layers of electrolyte and anode material or electrolyte and cathode material can optionally be used as "adhesion-promoting layers.”
- nanostructured anode or anode electrodes are also used Contain cathode particles as active components.
- the intermediate layers are usually applied with layer thicknesses of between 1 and 10 ⁇ m and in particular between 1 and 5 ⁇ m on the solid-state electrolyte.
- the nanostructuring can be achieved, for example, by the use of the solvothermal synthesis with the addition of suitable surfactants, eg. B. TritonXlOO ® can be achieved. As a result, a compensation of the intrinsic roughness and a good connection of the materials of both layers to each other can be ensured.
- suitable surfactants eg. B. TritonXlOO ®
- the processing of all further layers of the solid-state accumulator can advantageously be carried out using common standard printing processes, such as, for example, screen printing, offset printing or ink-jet.
- FIG. 1 flowchart of an advantageous embodiment of the invention
- Electrolyte-based process for producing a solid-state battery Electrolyte-based process for producing a solid-state battery.
- FIG. 2 Flowchart of a particular embodiment of the invention
- Electrolyte-based process for producing a solid state battery with intermediate layers Electrolyte-based process for producing a solid state battery with intermediate layers.
- FIG. 3 Schematic structure of solid-state accumulators according to the invention
- Li aluminum titanium phosphate (LATP) powder is crushed after milling in a ball mill (mean particle size after milling, d 50 ⁇ 1 pm) in a uniaxial piston press to a pellet of 1 1 mm diameter (40 kN). Subsequently, the pellet is polished on the surface and sintered at 1100 ° C (heating rate 2 K / min), holding time for 30 h in the powder bed.
- the sintered electrolyte pellet has a density of about 90% of the theoretical density and a thickness of about 400 ⁇ . The diameter shrinks regularly only minimally to about 11, 5 mm.
- the dried anode layer has a layer thickness of 60 ⁇ m (equivalent to three coatings) to account for the capacitances and the cathode layer has a thickness of 90 ⁇ m (corresponds to five coatings).
- the accumulator is then measured in a battery housing under a contact pressure of about 1 t.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016015191.9A DE102016015191B3 (de) | 2016-12-21 | 2016-12-21 | Lithium- lonen- Festkörperakkumulator sowie Verfahren zur Herstellung desselben |
PCT/DE2017/000391 WO2018113807A1 (fr) | 2016-12-21 | 2017-11-18 | Accumulateur à l'état solide à ions lithium et procédé de fabrication de celui-ci |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3560022A1 true EP3560022A1 (fr) | 2019-10-30 |
Family
ID=60654572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17811831.1A Pending EP3560022A1 (fr) | 2016-12-21 | 2017-11-18 | Accumulateur à l'état solide à ions lithium et procédé de fabrication de celui-ci |
Country Status (6)
Country | Link |
---|---|
US (1) | US11258053B2 (fr) |
EP (1) | EP3560022A1 (fr) |
JP (1) | JP7181866B2 (fr) |
CN (1) | CN110235295B (fr) |
DE (1) | DE102016015191B3 (fr) |
WO (1) | WO2018113807A1 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11955595B2 (en) * | 2019-04-22 | 2024-04-09 | Bioenno Tech LLC | High-ionic conductivity ceramic-polymer nanocomposite solid state electrolyte |
US11223088B2 (en) * | 2019-10-07 | 2022-01-11 | Bioenno Tech LLC | Low-temperature ceramic-polymer nanocomposite solid state electrolyte |
CN112537958B (zh) * | 2020-11-19 | 2022-04-05 | 哈尔滨工业大学 | 一种锆酸镧锂固态电解质及其制备方法 |
US11735768B2 (en) | 2021-02-09 | 2023-08-22 | GM Global Technology Operations LLC | Gel electrolyte for solid-state battery |
CN116666728A (zh) | 2022-02-21 | 2023-08-29 | 通用汽车环球科技运作有限责任公司 | 用于固态电池组的固态中间层 |
TWI832522B (zh) * | 2022-10-27 | 2024-02-11 | 力哲科技股份有限公司 | 固態電池及其形成方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001126758A (ja) * | 1999-10-28 | 2001-05-11 | Kyocera Corp | リチウム電池 |
US20100216032A1 (en) * | 2007-05-11 | 2010-08-26 | Namics Corporation | Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery |
JP2015028854A (ja) * | 2013-07-30 | 2015-02-12 | 日本特殊陶業株式会社 | 全固体電池 |
JP5715003B2 (ja) * | 2011-08-02 | 2015-05-07 | 日本特殊陶業株式会社 | 全固体電池、及び、全固体電池の製造方法 |
US9419308B2 (en) * | 2007-03-29 | 2016-08-16 | Tdk Corporation | All-solid-state lithium-ion secondary battery and production method thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5299860B2 (ja) | 2007-11-12 | 2013-09-25 | 国立大学法人九州大学 | 全固体電池 |
JP5358825B2 (ja) * | 2008-02-22 | 2013-12-04 | 国立大学法人九州大学 | 全固体電池 |
JP2010272494A (ja) | 2008-08-18 | 2010-12-02 | Sumitomo Electric Ind Ltd | 非水電解質二次電池及びその製造方法 |
JP4728385B2 (ja) * | 2008-12-10 | 2011-07-20 | ナミックス株式会社 | リチウムイオン二次電池、及び、その製造方法 |
JP5269665B2 (ja) | 2009-03-23 | 2013-08-21 | 日本碍子株式会社 | 全固体電池及びその製造方法 |
FR2956523B1 (fr) * | 2010-02-18 | 2012-04-27 | Centre Nat Rech Scient | Procede de preparation d'une batterie monolithique par frittage sous courant pulse |
DE102011121236A1 (de) | 2011-12-12 | 2013-06-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Festkörperelektrolyt für den Einsatz in Lithium-Luft- oder Lithium-Wasser-Akkumulatoren |
EP2683005B1 (fr) | 2012-07-06 | 2016-06-01 | Samsung Electronics Co., Ltd | Conducteur ionique solide, électrolyte solide le contenant, pile au lithium comprenant ledit électrolyte solide et procédé de fabrication de ladite pile au lithium |
US8821771B2 (en) * | 2012-09-26 | 2014-09-02 | Corning Incorporated | Flame spray pyrolysis method for forming nanoscale lithium metal phosphate powders |
JP6524775B2 (ja) * | 2014-05-19 | 2019-06-05 | Tdk株式会社 | リチウムイオン二次電池 |
JP2016119257A (ja) | 2014-12-22 | 2016-06-30 | 株式会社日立製作所 | 固体電解質、それを用いた全固体電池及び固体電解質の製造方法 |
US9991556B2 (en) | 2015-03-10 | 2018-06-05 | Tdk Corporation | Garnet-type li-ion conductive oxide |
CN106876668A (zh) | 2016-11-21 | 2017-06-20 | 蔚来汽车有限公司 | 固态锂电池的复合电极材料及其制备方法 |
-
2016
- 2016-12-21 DE DE102016015191.9A patent/DE102016015191B3/de active Active
-
2017
- 2017-11-18 JP JP2019527197A patent/JP7181866B2/ja active Active
- 2017-11-18 WO PCT/DE2017/000391 patent/WO2018113807A1/fr active Search and Examination
- 2017-11-18 EP EP17811831.1A patent/EP3560022A1/fr active Pending
- 2017-11-18 US US16/462,248 patent/US11258053B2/en active Active
- 2017-11-18 CN CN201780071920.4A patent/CN110235295B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001126758A (ja) * | 1999-10-28 | 2001-05-11 | Kyocera Corp | リチウム電池 |
US9419308B2 (en) * | 2007-03-29 | 2016-08-16 | Tdk Corporation | All-solid-state lithium-ion secondary battery and production method thereof |
US20100216032A1 (en) * | 2007-05-11 | 2010-08-26 | Namics Corporation | Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery |
JP5715003B2 (ja) * | 2011-08-02 | 2015-05-07 | 日本特殊陶業株式会社 | 全固体電池、及び、全固体電池の製造方法 |
JP2015028854A (ja) * | 2013-07-30 | 2015-02-12 | 日本特殊陶業株式会社 | 全固体電池 |
Non-Patent Citations (1)
Title |
---|
See also references of WO2018113807A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN110235295B (zh) | 2023-12-19 |
JP2020514948A (ja) | 2020-05-21 |
US11258053B2 (en) | 2022-02-22 |
US20190341597A1 (en) | 2019-11-07 |
CN110235295A (zh) | 2019-09-13 |
DE102016015191B3 (de) | 2018-06-14 |
JP7181866B2 (ja) | 2022-12-01 |
WO2018113807A1 (fr) | 2018-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102016015191B3 (de) | Lithium- lonen- Festkörperakkumulator sowie Verfahren zur Herstellung desselben | |
EP3208869B1 (fr) | Pile électrochimique rechargeable | |
EP2586083B1 (fr) | Cathode pour piles rechargeables au lithium | |
DE112020003729T5 (de) | Festelektrolyt, festelektrolytschicht und festelektrolytzelle | |
DE102018222142A1 (de) | Verfahren zum Herstellen einer Festelektrolytmembran oder einer Anode und Festelektrolytmembran oder Anode | |
EP3925023B1 (fr) | Batterie à électrolyte solide et procédé de production correspondant | |
DE102015112182A1 (de) | Feststoff-Lithium-Sekundärbatterie und Herstellungsverfahren dafür | |
DE102018222129A1 (de) | Kathodeneinheit und Verfahren zum Herstellen einer Kathodeneinheit | |
WO2018002303A1 (fr) | Procédé de fabrication d'une cellule électrochimique et cellule électrochimique fabriquée par ce procédé | |
EP3050143B1 (fr) | Procédé de fabrication d'éléments électrochimiques d'une batterie solide | |
EP3308417B1 (fr) | Procédé de fabrication de couches nano-structurées | |
DE112019006390T5 (de) | Festkörperbatterie | |
WO2013152906A1 (fr) | Accumulateur d'énergie électrochimique et procédé pour le fabriquer | |
CN110931842A (zh) | 全固体电池 | |
EP3008768B1 (fr) | Pile lithium-ion pour batterie secondaire | |
EP2166598A2 (fr) | Electrode et materiau de séparateur pour batteries lithium-ion et leurs procédés de fabrication | |
DE102020112419A1 (de) | Aktives material einer negativen elektrode für eine festkörperbatterie, negative elektrode, die das aktive material verwendet, und festkörperbatterie | |
CN112421033A (zh) | 全固体电池及其制造方法 | |
DE102018212889A1 (de) | Lithiumionen leitende Kompositmaterialien sowie deren Herstellung und deren Verwendung in elektrochemischen Zellen | |
DE102022210150A1 (de) | Verfahren zur Herstellung eines Materials oder einer Komponente für eine Feststoffbatterie | |
DE102022204655A1 (de) | Verfahren zur Herstellung eines Separators für einen Lithiumionen-Akkumulator | |
DE112022003402T5 (de) | Festkörperbatterie | |
DE102021213786A1 (de) | Verfahren zum Herstellen einer Elektrode, Elektrode | |
WO2023247072A1 (fr) | Procédé de production d'électrodes en silicium en tant qu'anodes pour batteries au lithium-ion et électrode en silicium produite à l'aide de celui-ci | |
DE112021001463T5 (de) | Festkörperakkumulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190704 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MERTENS, ANDREAS Inventor name: SCHIERHOLZ, ROLAND Inventor name: GAO, XIN Inventor name: EICHEL, RUEDIGER-A. Inventor name: MERTENS, JOSEPH Inventor name: DE HAART, LAMBERTUS G. J. Inventor name: YU, SHICHENG Inventor name: KUNGL, HANS Inventor name: TEMPEL, HERMANN |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FORSCHUNGSZENTRUM JUELICH GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210519 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |