WO2013152906A1 - Accumulateur d'énergie électrochimique et procédé pour le fabriquer - Google Patents

Accumulateur d'énergie électrochimique et procédé pour le fabriquer Download PDF

Info

Publication number
WO2013152906A1
WO2013152906A1 PCT/EP2013/054638 EP2013054638W WO2013152906A1 WO 2013152906 A1 WO2013152906 A1 WO 2013152906A1 EP 2013054638 W EP2013054638 W EP 2013054638W WO 2013152906 A1 WO2013152906 A1 WO 2013152906A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
electrochemical energy
energy store
aerosol
separator layer
Prior art date
Application number
PCT/EP2013/054638
Other languages
German (de)
English (en)
Inventor
Ulrich Eisele
Imke Heeren
Alan Logeat
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2013152906A1 publication Critical patent/WO2013152906A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an electrochemical energy store and to an electrochemical energy store.
  • a lifetime of many electrochemical energy storage, z. B. of lithium-ion batteries, is determined in particular by a so-called degradation of the anode. Causes of the degradation are, for example, reactions with a liquid electrolyte. This results, for example, the use of a ceramic ion conductor, z. As a ceramic lithium ion conductor, in the form of a thin ion-conducting barrier layer.
  • JP 2006-193784 A describes a device for film formation by aerosol deposition.
  • the present invention provides an improved method for producing an electrochemical energy store and an improved electrochemical energy store according to the main claims.
  • Advantageous embodiments emerge from the respective subclaims and the following description.
  • the present invention provides a method of fabricating an electrochemical energy storage device comprising an electrode assembly and a housing, the method comprising the steps of: Introducing an aerosol onto a surface of the electrode assembly to be coated, particles of the aerosol depositing on the surface to be coated to form an ion conducting and electrically insulating separator layer; and
  • the electrochemical energy store may be a galvanic or electrochemical secondary cell, a battery cell, a battery or an accumulator.
  • the electrochemical energy store may be part of a so-called battery pack with a plurality of electrochemical energy stores or battery cells, for example for an electric vehicle or the like.
  • the housing of the electrochemical energy store may be hermetically sealed.
  • the housing of the electrochemical energy store may be configured to insulate the electrode assembly and another electrode assembly with respect to an environment of the electrochemical energy store.
  • the housing of the electrochemical energy storage device may be gas-tight and waterproof.
  • the electrode assembly may include an electrode with an electrode material and an optional current collector or electrode structure.
  • the electrode assembly may be one of two electrode assemblies of the electrochemical energy store.
  • the surface to be coated may be arranged at least on one side of the electrode assembly.
  • the surface to be coated can be arranged on a side of the electrode assembly which can be turned over to the further electrode assembly.
  • the surface to be coated may have a surface or part of a surface of an electrode material.
  • the aerosol may comprise the particles or aerosol particles and a carrier gas in which the particles are atomized.
  • the aerosol can be designed to form the ion-conducting and electrically insulating separator layer by deposition of the particles or aerosol particles.
  • the ion-conducting and electrically insulating separator layer can be designed to prevent an electrical short circuit between the electrode assembly and the further electrode assembly.
  • the separator layer may be an ion conductor layer in the form of a membrane or thin film.
  • the ion-conducting and electrically insulating separator layer can be arranged in the finished state of the electrochemical energy store between the electrode assembly and the further electrode assembly.
  • the present invention further provides an electrochemical energy store comprising: an electrode assembly having a surface on which particles of an aerosol are deposited forming an ion-conducting and electrically-insulating separator layer; another electrode assembly; and a housing in which the first electrode assembly and the second electrode assembly are receivable or received.
  • the advantageous electrochemical energy storage can be manufactured.
  • an advantageous ion-conducting and electrically insulating separator layer or protective layer of an electrochemical energy store can advantageously be formed by means of aerosol deposition.
  • An advantage of the present invention is that, according to embodiments of the present invention, a process is found which makes it possible to obtain a ceramic, e.g. B. Li-ion conductive separator layer or barrier layer of small thickness and high stability for a battery cell to form.
  • a ceramic e.g. B. Li-ion conductive separator layer or barrier layer of small thickness and high stability for a battery cell to form.
  • aerosol separation z As a ceramic powder can be applied as aerosol particles, wherein the powder compacts in the deposition.
  • this aerosol deposition is very fast, with a coating speed of z. B. up to 0.05 mm / s can be achieved.
  • the surface of the electrode assembly to be coated can For example, they are located in a low-pressure region, whereby the powder is accelerated to the object in a simple manner.
  • the method according to embodiments of the present invention is not a vacuum process and therefore inexpensive. Because the composite of electrode assembly with deposited separator layer is not necessarily a heat treatment for
  • an advantageous ceramic ion conductor material for.
  • the lithium-ion lithium-garnet can be used as the lithium-ion lithium-garnet.
  • the separator layer according to embodiments of the present invention is not susceptible to cracking and thus need not be renewed, but can maintain the protective effect.
  • an ion conductor e.g. As a lithium-ion conductor allows as an electrolyte, which at least on the anode side no liquid electrolyte needs to be used more and therefore degradation, unwanted side reactions and short circuits can be prevented.
  • fabrication of a thin, single-standing, ceramic membrane for example, less than 50 microns
  • Thickness be simplified. For example, co-sintering of the lo- NEN conductor layer omitted with other cathode-side components, so that a limitation of the material selection is eliminated or reduced. Since many of the materials used in battery technology are thermodynamically metastable, unwanted secondary phases can arise during sintering and / or the ion conductor material can react with one of the other components. According to
  • Embodiments of the present invention may use advantageous materials which avoid these disadvantages.
  • an aerosol in the step of introduction, can be applied to the surface of the electrode assembly to be coated, the particles of which comprise a ceramic material.
  • a powder of the ceramic ion conductor can be used.
  • the ceramic material may comprise a ceramic powder having, for example, 0.3 to 3 microns grain size.
  • lithium garnet is preferably used.
  • the step of transferring can be carried out so that at a
  • the layer thickness can be for example 2 to 60 micrometers.
  • Such an embodiment offers the advantage that a use of a ceramic ion conductor causes a high ionic conductivity of the separator layer.
  • an aerosol can be applied to the surface of the electrode assembly to be coated, wherein a carrier gas of the aerosol comprises an inert gas.
  • the inert carrier gas may be a noble gas,
  • Such an embodiment offers the advantage that an undesired reaction of the carrier gas or ambient air with the particles can be prevented.
  • formation of LiOH, Li 2 O or Li 2 C0 3 can be prevented.
  • a carrier gas of the aerosol comprises a mixture of ammonia and at least one other gas.
  • a carrier gas may be used in the step of loading, for example, a mixture or a mixture of nitrogen (N 2 ) and ammonia (NH 3 ).
  • the mixture may contain a maximum of 10 percent ammonia and typically 500 ppm ammonia.
  • a pressure difference between a particle container and a coating region, in which at least the surface of the electrode assembly to be coated is arranged can be provided.
  • the particles can then be introduced into a gas flow of a carrier gas driven by the pressure difference.
  • a negative pressure can be generated in the coating area, wherein the particle container has normal pressure within a tolerance range.
  • the particles can then be introduced into a gas stream which is driven by the pressure difference between the particle container or powder reservoir and the surface to be coated.
  • a step of tempering the deposited separator layer may be provided.
  • the tempering step may be carried out before the step of installation.
  • the deposited separator layer can be heated.
  • the tempering step may be an optional process step. Such an embodiment offers the advantage that stability and tightness of the separator layer can be improved by the tempering.
  • the first electrode assembly may comprise a cathode electrode having a cathode material or a cathodic structure.
  • the separa- tor Mrs be formed on the cathode material or the cathodic structure.
  • the cathode material may be, for example, a mixture of lithium-intercalating or lithium-storing material and carbon as the electrochemical energy store.
  • the cathode material may be applied to the cathodic current collector.
  • the cathodic structure may be a solid, in particular ceramic, cathodic structure.
  • the electrochemical energy store may comprise a lithium-ion cell or a lithium-sulfur cell. If the electrochemical energy store is designed as a lithium-ion cell, lithium metal oxides, such as lithium cobalt oxide, as the cathode and graphite or other lithium ion-storing compounds may be provided as an anode. When the electrochemical energy storage is formed as a lithium-sulfur cell, carbon and sulfur may be provided as the cathode and lithium as the anode. Such an embodiment offers the advantage that the separator layer can also be used in particularly advantageous embodiments of electrochemical energy storage. Thus, the advantages of a particularly powerful energy storage can be combined with the protective effect and ion conductivity of the separator.
  • FIG. 1 is a schematic representation of an electrochemical energy store according to an embodiment of the present invention
  • FIG. 2 is a sectional view of an electrode assembly having a separator layer according to an embodiment of the present invention
  • FIG. 3 is a sectional view of an electrode assembly having a separator layer according to another embodiment of the present invention
  • FIG. 4 is a flowchart of a method according to an embodiment of the present invention.
  • FIG. 1 shows a schematic representation of an electrochemical energy store 100 according to an exemplary embodiment of the present invention. Shown are the electrochemical energy store 100, which has a housing 105, an electrode assembly 110 in the form of a cathode, a separator 1 15, another electrode assembly 120 in the form of an anode, a first battery terminal 130 and a second battery terminal 140.
  • the electrochemical energy store 100 according to the exemplary embodiment of the present invention shown in FIG. 1 is a lithium battery.
  • the separator layer 115 is an ion-conducting and electrically insulating barrier layer.
  • the electrode assembly 1 10 with the separator layer 115 and the further electrode assembly 120 are hermetically sealed from an environment of the electrochemical energy store 100.
  • the first battery terminal 130 is electrically connected to the electrode assembly 1 10 and led out of the housing 105 of the electrochemical energy store 100.
  • the second battery terminal 140 is electrically connected to the further electrode assembly 120 and led out of the housing 105 of the electrochemical energy store 100.
  • the separator layer 15 is disposed on the electrode assembly 110. More specifically, the separator layer 115 is arranged on a side of the electrode assembly 110 facing the further electrode assembly 120. The separator layer 115 is disposed between the electrode assembly 110 and the other electrode assembly 120. In this case, according to the exemplary embodiment of the present invention illustrated in FIG. 1, the separator layer 15 is formed on the electrode assembly 11 by means of aerosol deposition, although this is not explicitly recognizable in FIG. Between the electrode assembly 110 and the further electrode assembly 120, an ion current can flow through the separator layer 15 during operation of the electrochemical energy store 100. For the formation of the separator layer 115, an aerosol with particles or a powder of the ceramic ion conductor is used in the production of the electrochemical energy store 100, for example.
  • a particle size of the particles in about 0.3 to 3 microns.
  • lithium garnet is used.
  • the particles for forming the separator layer 115 are introduced into a gas flow which is driven by the pressure difference between a powder reservoir held at about normal pressure and a surface of the electrode assembly to be coated, at which a negative pressure is generated.
  • an inert gas can be used, for example, N 2 , noble gas or the like, so that no LiOH, Li 2 0 or Li 2 C0 3 forms on the surfaces of the powder.
  • a carrier gas of the aerosol an inert gas can be used, for example, N 2 , noble gas or the like, so that no LiOH, Li 2 0 or Li 2 C0 3 forms on the surfaces of the powder.
  • a carrier gas of the aerosol an inert gas can be used, for example, N 2 , noble gas or the like, so that no LiOH, Li 2 0 or Li 2 C0 3 forms on the surfaces of the powder.
  • a noble gas for example, noble gas
  • the NH 3 occupies the powder surfaces and thus prevents possible agglomeration of the particles or powder particles.
  • the particles Upon impact of the particles on the surface of the electrode assembly 110 to be coated, the particles are fractionated and consolidated so that the separator layer 115 is formed as a substantially dense layer.
  • a layer thickness of the separator 1 15 may be z. B. 2 to 60 microns.
  • a subsequent tempering or temperature treatment of the deposited separator layer 115 can optionally be carried out.
  • FIG. 2 shows a sectional view of an electrode assembly 110 with a separator layer 15 according to an embodiment of the present invention.
  • the electrode assembly 110 and the separator layer 115 may be the electrode assembly or the separator layer of FIG. 1 act. Shown are the electrode assembly 110, the separator layer 115 or ion conductor layer, a current collector 211 and a cathode material 212.
  • the cathode material 212 is disposed between the current collector 211 and the separator layer 115. In this case, the cathode material 212 has a granule-like or granular structure.
  • the cathode material 212 may be a mixture of a lithium intercalating material and carbon.
  • the cathode material 212 is covered on the anode side with the separator layer 15.
  • the cathode material 212 is covered with the separator layer 115 or a layer of a ceramic ion conductor.
  • the coating may be accomplished by aerosol deposition of ceramic powder onto the cathode material 212 after the cathode material 212 has been applied to the cathodic current collector
  • the space between the particles of the cathode material 212 may be filled for operation with liquid electrolyte.
  • FIG. 3 shows a sectional view of an electrode assembly 110 with a separator layer 15 according to a further exemplary embodiment of the present invention
  • the electrode assembly 110 and the separator layer 115 may be the electrode assembly or the separator layer from FIG. 1 act. Shown are the electrode assembly 1 10, the separator layer 1 15 and ion conductor layer and a cathodic structure 312nd
  • the cathodic structure 312 may include a solid, ceramic cathodic structure 312.
  • the cathodic structure 312 is lamellar, comb-shaped, or otherwise shaped as a host structure for the active material.
  • the cathodic structure 312 is a support for a cathodic active material, e.g. B. Schwefei.
  • the cathodic structure 312 is lithium-ion and electron conductive.
  • the solid cathodic structure 312 is provided on the anode side with the separator layer 15 or a layer of a ceramic ion conductor.
  • the coating may be on the cathodic structure 312.
  • the illustrated in Fig. 3 embodiment of the present invention relates in particular to a Li / S battery as an electrochemical energy storage.
  • the electrochemical energy store has an electrode assembly and a housing.
  • the method 400 includes a step of placing 410 an aerosol on a surface to be coated Electrode assembly on.
  • the step of transfer 410 is carried out so that particles of the aerosol deposit on the surface to be coated in order to form an ion-conducting and electrically insulating separator layer.
  • the method 400 includes a step of installing 420 the electrode assembly with the coated surface in a housing of the electrochemical energy store to produce the electrochemical energy store.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

L'invention concerne un procédé (400) de fabrication d'un accumulateur d'énergie électrochimique. Ledit accumulateur d'énergie électrochimique comprend un ensemble d'électrodes et un boîtier. Le procédé (400) comprend une étape consistant à amener (410) un aérosol sur une surface à revêtir de l'ensemble d'électrodes. Des particules de cet aérosol se déposent sur la surface à revêtir afin de former une couche séparatrice conduisant les ions et électriquement isolante. Le procédé (400) comprend en outre une étape d'insertion (420) de l'ensemble d'électrodes muni de la couche séparatrice ainsi formée dans le boîtier de l'accumulateur d'énergie électrochimique afin de fabriquer ce dernier.
PCT/EP2013/054638 2012-04-12 2013-03-07 Accumulateur d'énergie électrochimique et procédé pour le fabriquer WO2013152906A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012205931A DE102012205931A1 (de) 2012-04-12 2012-04-12 Elektrochemischer Energiespeicher und Verfahren zum Herstellen desselben
DE102012205931.8 2012-04-12

Publications (1)

Publication Number Publication Date
WO2013152906A1 true WO2013152906A1 (fr) 2013-10-17

Family

ID=47833091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/054638 WO2013152906A1 (fr) 2012-04-12 2013-03-07 Accumulateur d'énergie électrochimique et procédé pour le fabriquer

Country Status (2)

Country Link
DE (1) DE102012205931A1 (fr)
WO (1) WO2013152906A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797062A (zh) * 2014-10-07 2017-05-31 斐源有限公司 用于金属‑空气电池组的关闭系统及其使用方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014205945A1 (de) * 2014-03-31 2015-10-01 Bayerische Motoren Werke Aktiengesellschaft Aktives Kathodenmaterial für sekundäre Lithium-Zellen und Batterien
DE102014206829A1 (de) 2014-04-09 2015-10-15 Robert Bosch Gmbh Galvanisches Element
DE102014208228A1 (de) 2014-04-30 2015-11-05 Robert Bosch Gmbh Galvanisches Element und Verfahren zu dessen Herstellung
DE102014211743A1 (de) 2014-06-18 2015-12-24 Robert Bosch Gmbh Galvanisches Element und Verfahren zu dessen Herstellung
DE102014218803A1 (de) 2014-09-18 2016-03-24 Robert Bosch Gmbh Separator für eine Batteriezelle und Batteriezelle
DE102017217011A1 (de) 2017-09-26 2019-03-28 Robert Bosch Gmbh Galvanisches Element und Verfahren zu dessen Herstellung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193784A (ja) 2005-01-13 2006-07-27 Fujitsu Ltd エアロゾルデポジッション成膜装置
JP2007311084A (ja) * 2006-05-16 2007-11-29 Idemitsu Kosan Co Ltd 電解質、電池用部材、電極及び全固体二次電池
EP2262041A1 (fr) * 2009-02-27 2010-12-15 Panasonic Corporation Electrode négative pour batterie rechargeable électrolytique non aqueuse et batterie rechargeable électrolytique non aqueuse
US20100330410A1 (en) * 2007-12-26 2010-12-30 Panasonic Corporation Nonaqueous electrolyte rechargeable battery
US20110070365A1 (en) * 2008-06-09 2011-03-24 Kawaoka Hirokazu Method for manufacturing film-formed body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193784A (ja) 2005-01-13 2006-07-27 Fujitsu Ltd エアロゾルデポジッション成膜装置
JP2007311084A (ja) * 2006-05-16 2007-11-29 Idemitsu Kosan Co Ltd 電解質、電池用部材、電極及び全固体二次電池
US20100330410A1 (en) * 2007-12-26 2010-12-30 Panasonic Corporation Nonaqueous electrolyte rechargeable battery
US20110070365A1 (en) * 2008-06-09 2011-03-24 Kawaoka Hirokazu Method for manufacturing film-formed body
EP2262041A1 (fr) * 2009-02-27 2010-12-15 Panasonic Corporation Electrode négative pour batterie rechargeable électrolytique non aqueuse et batterie rechargeable électrolytique non aqueuse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHO K ET AL: "Effect of P2O5 in Li2O-P2O5-B2O3 electrolyte fabricated by aerosol flame deposition", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 183, no. 1, 15 August 2008 (2008-08-15), pages 431 - 435, XP022832993, ISSN: 0378-7753, [retrieved on 20080710], DOI: 10.1016/J.JPOWSOUR.2008.05.029 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797062A (zh) * 2014-10-07 2017-05-31 斐源有限公司 用于金属‑空气电池组的关闭系统及其使用方法

Also Published As

Publication number Publication date
DE102012205931A1 (de) 2013-10-17

Similar Documents

Publication Publication Date Title
DE102015112182B4 (de) Feststoff-Lithium-Sekundärbatterie und Herstellungsverfahren dafür
EP2534719B1 (fr) Cellule électrochimique rechargeable
WO2013152906A1 (fr) Accumulateur d'énergie électrochimique et procédé pour le fabriquer
WO2015165701A2 (fr) Élément galvanique et son procédé de production
WO2014102131A2 (fr) Procédé de production d'un élément galvanique, et élément galvanique
DE102014206829A1 (de) Galvanisches Element
DE102014207531A1 (de) Galvanisches Element mit Festkörperzellenstapel
WO2017108625A1 (fr) Procédé de production d'une cellule de batterie
EP3704752B1 (fr) Procédé et dispositif de fabrication d'un élément fonctionnel pour une unité d'électrode de cellule de batterie
WO2018113807A1 (fr) Accumulateur à l'état solide à ions lithium et procédé de fabrication de celui-ci
WO2019057587A1 (fr) Cellule à électrolyte solide et procédé de fabrication d'une cellule à électrolyte solide
DE102019211857B3 (de) Lithium-sekundärbatterie, verwendung einer lithium-sekundärbatterie und verfahren zur herstellung einer lithium-sekundärbatterie
EP3553867A1 (fr) Procédé de fabrication d'une structure en couches pour un accumulateur solide lithium-ion
DE102018219586A1 (de) Beschichtung von Anoden- und Kathodenaktivmaterialien mit hochvoltstabilen Festelektrolyten und einem Elektronenleiter im Mehrschichtsystem und Lithium-Ionen-Batteriezelle
DE102014211743A1 (de) Galvanisches Element und Verfahren zu dessen Herstellung
DE102013201853A1 (de) Elektrode für ein galvanisches Element und Verfahren zur Herstellung der Elektrode
DE102016216089A1 (de) Verfahren zum Herstellen von Akkumulator-Zellen; Akkumulator-Zellen; Batterie aus Akkumulator-Zellen; Kraftfahrzeug mit Akkumulator-Zellen
EP3488479B1 (fr) Électrode, accumulateur d'énergie électrochimique comprenant une électrode et procédé de fabrication d'une électrode
DE102022111512A1 (de) Verfahren zur Herstellung eines Separators für einen Lithiumionen-Akkumulator
DE102018217756A1 (de) Verfahren zur Herstellung einer Elektrodeneinheit für eine Batteriezelle und Batteriezelle
DE102022209885A1 (de) Verfahren zur Herstellung von zumindest einem Halbzeug einer Festkörperbatterie, Halbzeug einer Festkörperbatterie und, bevorzugt gewickelte, Festkörperbatterie
EP4385078A1 (fr) Procédé de production d'une électrode en silicium en tant qu'anode pour une batterie au lithium
DE102020105281A1 (de) Lithium-Ionen-Zelle mit delithierter Interkalationskathode und Lithiumanode
DE102022204655A1 (de) Verfahren zur Herstellung eines Separators für einen Lithiumionen-Akkumulator
DE102022111809A1 (de) Verfahren zur Herstellung eines Feststoff-Separators für eine Batteriezelle sowie Separator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13707890

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13707890

Country of ref document: EP

Kind code of ref document: A1