EP3475232A1 - Procédé et dispositif de fabrication de microperles en verre creuses - Google Patents

Procédé et dispositif de fabrication de microperles en verre creuses

Info

Publication number
EP3475232A1
EP3475232A1 EP17745970.8A EP17745970A EP3475232A1 EP 3475232 A1 EP3475232 A1 EP 3475232A1 EP 17745970 A EP17745970 A EP 17745970A EP 3475232 A1 EP3475232 A1 EP 3475232A1
Authority
EP
European Patent Office
Prior art keywords
glass
hot gas
hollow glass
nozzle plate
rondier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17745970.8A
Other languages
German (de)
English (en)
Inventor
Jürgen Schlicke
Lutz Stache
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bpi Beads Production Int GmbH
Bpi Beads Production International GmbH
Hofmeister Kristall GmbH
Original Assignee
Bpi Beads Production Int GmbH
Bpi Beads Production International GmbH
Hofmeister Kristall GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bpi Beads Production Int GmbH, Bpi Beads Production International GmbH, Hofmeister Kristall GmbH filed Critical Bpi Beads Production Int GmbH
Publication of EP3475232A1 publication Critical patent/EP3475232A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/107Forming hollow beads
    • C03B19/1075Forming hollow beads by blowing, pressing, centrifuging, rolling or dripping
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • C03C11/002Hollow glass particles

Definitions

  • the invention relates to a method and an apparatus for producing hollow glass microspheres in the diameter range of 0.01 mm to 0.1 mm of molten glass, the u. a. can be used as a filler for lightweight materials or as an ingredient of paints, paints and plasters.
  • micromassiv glass beads in the diameter range up to 0.015 mm from DE 10 2008 025 767 A1 or DE 197 21 571 A1, according to which molten glass strands are dispersed by means of a cutting wheel.
  • WO 2015/1 10621 A1 describes a comparable process for the production of hollow glass spheres.
  • very high cutting wheel speeds are required, whereby technical limits are encountered in the cutting wheel bearing (rough running) and cooling (wind formation). Consequently, hollow glass microspheres in the desired diameter range can not be produced by this method.
  • DD 261 592 A1 describes a process for the production of micromassive glass spheres in the diameter range from 0.040 mm to 0.080 mm from molten high-index glass.
  • the molten glass passes in the form of a glass strand of about 4 mm to 6 mm diameter from a platinum melting tank and is with a cold high-pressure air jet at a speed of 100 ms "1 to 300 ms " 1 and a pressure of 300 kPa to 700 kPa in glass particles atomized.
  • the disadvantage is that arise during the sputtering of soda-lime glasses glass fibers instead of the desired glass particles.
  • DE 10 2007 002 904 A1 discloses a method for producing hollow glass beads from finely ground soda lime glass and / or borosilicate glass by means of a heat transfer process (for example in a shaft furnace).
  • a heat transfer process for example in a shaft furnace.
  • the temperature rising in accordance with the method causes glass spheres to form due to the surface tension.
  • the high temperature causes the outgassing of an added propellant.
  • Disadvantages are the costly crushing of the glass and the lack of control of the hollow ball size, which is why a subsequent classification is required.
  • molten glass which runs out of a nozzle as a strand, is dispersed by an intermittently acting jet of hot air into glass particles which assume spherical shape during the subsequent free fall.
  • the intermittent jet of hot air is caused by a perforated rotating disc.
  • the object of the invention is to provide a method and an apparatus for producing hollow glass microspheres, which make it possible, the hollow glass microspheres in Diameter range from 0.01 mm to 0, 1 mm in a continuous process directly from molten glass to avoid glass fiber formation.
  • the scattering width of the diameter of the hollow spheres produced according to the method should be smaller compared to currently known production methods.
  • the preparation of the hollow glass microspheres by sputtering a molten glass strand by means of a hot gas to glass particles, wherein the glass particles during a subsequent atomization through a heated Rondier- / expansion channel to Mikroromassivglas- balls balls and subsequently expand this to micro hollow glass spheres.
  • the glass is melted with a predetermined composition, wherein the molten glass contains at least one in the range of 1 100 ° C to 1500 ° C gaseous substance in dissolved form.
  • the melting device In the bottom region of the melting device there is a discharge opening, through which the glass melt emerges in the form of one or more glass strands.
  • a nozzle plate with a plurality of nozzles designed as conical passage openings is arranged on or within the discharge opening, so that a plurality of glass strands spaced apart from one another are produced on exit of the glass melt from the melting apparatus.
  • the nozzle plate is preferably heated directly electrically.
  • the molten glass strand (s) are atomized to glass particles after leaving the melting device, the resulting glass particles having a more or less irregular shape.
  • the hot gas flow is oriented at right angles to the glass strand (s).
  • the glass particles are then blown directly into the immediately adjacent, flow-oriented Rondier / Expansi- onskanal.
  • the glass particles (ramming) of the glass particles into micromassiv glass spheres takes place, ie, during heating, the glass particles due to the surface tension of spherical shape or transform into spheres.
  • the Rondier- / expansion channel is operated by the hot gas and possibly by additional heaters in the temperature range of usually 1 100 ° C to 1500 ° C. After exiting the Rondier- / expansion channel, the hollow glass microspheres are cooled by means of cooling air and collected in solid form.
  • One of the advantages of the invention is that the formation of glass threads is avoided by the high gas velocity and the high gas temperature of the hot gas flowing from the high-pressure hot gas nozzle onto the glass strand (s).
  • the process makes it possible to produce high-quality hollow glass microspheres inexpensively and in large quantities per unit of time during continuous process control. Expensive process steps, such as the mechanical comminution of cold glass and the costly heating to Rondieren, are unnecessary.
  • the glass strands have a diameter of 0.5 mm to 1, 5 mm at the outlet from the melting device.
  • the viscosity of the glass melt emerging as glass strand is preferably 0.5 dPa-s to 1.5 dPa s.
  • the setting of this viscosity interval can be carried out by controlling the melt temperature at a given chemical composition of the glass melt.
  • the glass strand (s) on exiting the reflow apparatus are flown through the hot gas at a gas velocity in the range of 300 ms -1 to 1500 ms -1 , preferably 500 ms -1 to 1000 ms -1 suitably adjusted to a value of between 1500 ° C. and 2000 ° C.
  • Lime-soda glasses or borosilicate glasses are preferably used for the process according to the invention
  • the glass composition for particularly suitable soda-lime glasses or borosilicate glasses results from the information given in FIG Table 1 .
  • Table 1 Preferred composition of the glasses for producing the hollow glass microspheres
  • the substance dissolved in the molten glass and gaseous in the range from 1100 ° C. to 1500 ° C. is sulfur trioxide, oxygen, nitrogen, sulfur dioxide, carbon dioxide, arsenic oxide, antimony oxide or a mixture thereof.
  • the preferred mass fraction of sulfur trioxide (SO3) is in the range of 0.6% to 0.8%, wherein the sulfur trioxide content can be realized, for example, by admixing sodium sulfate in the glass melt.
  • arsenic oxide (AS2O3) or antimony oxide (Sb203) with a mass fraction in the range of 0, 1% to 0.5%.
  • the respective mass fraction of the solute is selected as follows:
  • a transport gas is introduced axially into the Rondier / expansion channel by means of a transport gas nozzle (a transport burner).
  • the flow direction of the transport gas corresponds to the channel direction and the injection takes place below the region in which the glass particles enter the ridge / expansion channel.
  • the transport gas serves to suspend the glass particles, the micromassiv glass beads and the hollow glass microspheres during the passage through the Rondier- / expansion channel and to support their transport through the Rondier- / expansion channel.
  • the transport gas can be used to heat the Rondier- / expansion channel.
  • the device for carrying out the method comprises the melting device with the outlet opening arranged in the bottom area, on or within which the nozzle plate is mounted such that the glass melt can emerge exclusively from the nozzles in thin glass strands.
  • the high-pressure hot gas nozzle Immediately below and next to the discharge opening is the high-pressure hot gas nozzle, which is oriented such that, when carrying out the method, the hot gas flowing out of the high-pressure hot gas nozzle impinges on the glass strands (3.1) emerging from the nozzles.
  • the Rondier / expansion channel is located in the flow direction of the effluent from the high-pressure hot gas nozzle during operation hot gas behind the discharge opening.
  • the device has a cooling air funnel for supplying the cooling air, which adjoins the Rondier- / expansion channel, wherein the cooling air funnel as well as the Rondier / expansion channel are aligned in the flow direction of the hot gas.
  • the funnel opening faces the Rondier / expansion channel.
  • the funnel neck of the cooling air funnel forms a discharge channel for collecting the cooled hollow glass microspheres.
  • the end of the end region of the discharge channel arranged in the flow direction can form a cyclone separator or a rotary valve by means of which the hollow glass microspheres are continuously conveyed out of the discharge channel.
  • the nozzle plate has nozzles each with a circular cross-section and with a diameter in the range from 1 mm to 3 mm. This makes it possible to produce the glass strands in the particularly advantageous for the process diameter range of 0.5 mm to 1, 5 mm.
  • the spaced-apart nozzles of the nozzle plate are arranged in a line.
  • the positioning of the line-shaped nozzle arrangement in the device takes place transversely to the flow direction of the hot gas.
  • the nozzle plate can have two symmetrically curved reinforcing beads, which extend in mirror image to one another along the line-shaped arranged nozzles.
  • the reinforcing beads restrict the deformation caused by heating or distortions of the nozzle plate; A geometrically precise exit of the glass strands from the nozzles is guaranteed.
  • the reinforcing beads may, for example, be formed in sheet metal components of the nozzle plate.
  • FIG. 1 shows the device for carrying out the method for producing hollow glass microspheres
  • Fig. 2 the nozzle plate with five nozzles in plan view and in cross section.
  • soda-lime glass having a sulfur trioxide mass fraction of 0.8% is melted in the melting apparatus 1, an electrically heated platinum melting vessel, at 1450.degree.
  • the molten glass 3 passes through the discharge opening 1 .2 in the bottom of the Aufschmelzvorrich- 1 through the electrically heated nozzle plate 2 made of platinum with 20 linearly arranged nozzles 2.1 with a respective diameter of 1, 5 mm from the reflow device. 1
  • the viscosity of the molten glass 3 is 0.5 d Pa s.
  • the exiting molten glass strands 3.1 with a diameter of 0.7 mm are atomized immediately after leaving the nozzles 2.1 through the hot gas 14 from the high pressure hot gas nozzle 4 of an oxygen / natural gas high pressure burner to glass particles 3.2.
  • the hot gas flows at right angles to the glass strands 3.1 with a gas velocity of 600 m / s.
  • the glass particles 3.2 arrive in the immediately adjacent, by the transport gas 15 from the Transportgasdüse 5 of a transport gas burner longitudinally heated Rondier ZExpansionskanal 6 made of refractory material.
  • the temperature in the Rondier / expansion channel 6 is 1500 ° C.
  • this cooling air 7 is blown via the cooling air funnel 8 for cooling the exhaust gases, which at the end of Austragska- 9 exits as exhaust air 1 1 through the wire 10 again.
  • the sieve 10 prevents the exit of the hollow glass microspheres 3.4. These are conveyed by the rotary valve 12 from the discharge channel 9.
  • the hollow glass microspheres 3.4 have a diameter of 0.02 mm to 0.05 mm.
  • borosilicate glass is melted with a antimony oxide mass fraction of 0.5% in a conventional melter at 1600 ° C melting temperature.
  • the molten glass 3 passes in the feeder at a temperature of 1450 ° C through an electrically heated discharge port 1 .2 with strainer for holding refractory bricks to the electrically heated nozzle plate 2 with 22 linear nozzles 2.1 with a diameter of 1, 5 mm.
  • the atomization of the molten glass, the transportation through the Rondier- / expansion channel 6 and the discharge correspond to those in the first embodiment.
  • the diameter of the hollow glass microspheres 3.4 is in the range 0.02 mm to 0.04 mm.
  • the nozzles 2.1 of the nozzle plate 2 according to FIG. 2 show above and below the row of nozzles in each case a symmetrically curved reinforcing bead 2.2.
  • the reinforcing beads 2.2 are formed in the sheet metal components of the nozzle plate 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

L'invention concerne un procédé et un dispositif de fabrication de microperles en verre creuses (3.4) réalisées à partir de verre en fusion (3), les microperles en verre creuses (3.4) étant réalisées dans une plage de diamètre de 0,01 mm à 0,1 mm selon un procédé en continu évitant toute formation de fils de verre. Les filets de verre (3.1) en fusion sortant d'un dispositif de fusion (1) sont atomisés en particules de verre (3.2) par du gaz chaud (14). Ensuite, au cours de leur transit par le canal d'arrondissement/d'expansion (6), ont lieu l'arrondissement des particules en verre (3.2), ce qui les transforme en microperles en verre massives (3.3) puis leur expansion, ce qui les transforme en microperles en verre creuses (3.4). Les microperles en verre creuses (3.4) peuvent avantageusement servir de charge pour matériaux de construction légère ou de constituants de vernis, de peintures et d'enduits.
EP17745970.8A 2016-06-27 2017-06-12 Procédé et dispositif de fabrication de microperles en verre creuses Withdrawn EP3475232A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016111735 2016-06-27
DE102016117608.7A DE102016117608A1 (de) 2016-06-27 2016-09-19 Verfahren und Vorrichtung zur Herstellung von Mikrohohlglaskugeln
PCT/DE2017/100490 WO2018001409A1 (fr) 2016-06-27 2017-06-12 Procédé et dispositif de fabrication de microperles en verre creuses

Publications (1)

Publication Number Publication Date
EP3475232A1 true EP3475232A1 (fr) 2019-05-01

Family

ID=60579851

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17745970.8A Withdrawn EP3475232A1 (fr) 2016-06-27 2017-06-12 Procédé et dispositif de fabrication de microperles en verre creuses

Country Status (13)

Country Link
US (1) US20190202727A1 (fr)
EP (1) EP3475232A1 (fr)
JP (1) JP2019518709A (fr)
KR (1) KR20190042549A (fr)
CN (1) CN109689582A (fr)
AU (1) AU2017287637A1 (fr)
BR (1) BR112018076667A2 (fr)
CA (1) CA3028838A1 (fr)
DE (1) DE102016117608A1 (fr)
IL (1) IL263885A (fr)
MX (1) MX2018016147A (fr)
RU (1) RU2019100695A (fr)
WO (1) WO2018001409A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017118897A1 (de) * 2017-08-18 2019-02-21 Bpi Beads Production International Gmbh Verfahren zur kontinuierlichen Beschichtung von Glaspartikeln
RU2708434C1 (ru) * 2019-04-09 2019-12-06 Тимофей Логинович Басаргин Способ изготовления полых стеклянных микросфер и стеклянных микрошариков
CN110773733A (zh) * 2019-09-29 2020-02-11 西安欧中材料科技有限公司 一种电磁加热除气金属粉末的下粉装置
CN110818271B (zh) * 2019-12-03 2023-05-19 绵阳光耀新材料有限责任公司 一种高折射率玻璃微珠的制备方法
CN117550785B (zh) * 2024-01-12 2024-04-16 中建材玻璃新材料研究院集团有限公司 一种空心玻璃微珠生产用烧结设备

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2334578A (en) 1941-09-19 1943-11-16 Rudolf H Potters Method of and apparatus for producing glass beads
GB564017A (en) * 1943-05-24 1944-09-08 Felix Neumann Improvements in crucible furnaces for the manufacture of glass thread or glass silk
US2600936A (en) 1945-08-13 1952-06-17 Wallace G Stone Method and apparatus for measuring low pressures and related conditions
AT175672B (de) 1952-02-05 1953-08-10 Josef Kuehtreiber Verfahren zur Herstellung von kristallklaren Glaskügelchen, insbesondere für Rückstrahler u. dgl., samt Vorrichtung zur Durchführung desselben
BE521556A (fr) 1953-07-18
US2730841A (en) 1954-08-19 1956-01-17 Charles E Searight Production of silicone-coated glass beads
US2947115A (en) 1955-12-01 1960-08-02 Thomas K Wood Apparatus for manufacturing glass beads
US2965921A (en) 1957-08-23 1960-12-27 Flex O Lite Mfg Corp Method and apparatus for producing glass beads from a free falling molten glass stream
US3294511A (en) 1959-04-06 1966-12-27 Selas Corp Of America Apparatus for forming glass beads
US3074257A (en) 1960-05-16 1963-01-22 Cataphote Corp Method and apparatus for making glass beads
US3190737A (en) 1960-07-07 1965-06-22 Flex O Lite Mfg Corp Glass bead furnace and method of making glass beads
US3133805A (en) 1961-04-26 1964-05-19 Cataphote Corp Glass bead making furnace
US3150947A (en) 1961-07-13 1964-09-29 Flex O Lite Mfg Corp Method for production of glass beads by dispersion of molten glass
AT245181B (de) 1962-03-27 1966-02-10 Potters Brothers Inc Verfahren und Vorrichtung zum Herstellen von kugelförmigen Partikeln aus Glas u. a. glasartigen Stoffen
GB984655A (en) 1962-12-20 1965-03-03 Fukuoka Tokushugarasu Kk Improvements in or relating to the manufacture of glass spherules
US3293014A (en) 1963-11-18 1966-12-20 Corning Glass Works Method and apparatus for manufacturing glass beads
US3429721A (en) * 1964-10-20 1969-02-25 Gen Steel Ind Inc High melting point glass beads with sharp melting range and process for making the same
DE1285107B (de) 1965-08-07 1968-12-12 Glas U Spiegel Manufaktur Ag Einrichtung zur Herstellung kleiner Glasperlen
JPS5857374B2 (ja) * 1975-08-20 1983-12-20 日本板硝子株式会社 繊維の製造方法
DD261592A1 (de) 1987-06-01 1988-11-02 Trisola Steinach Veb Verfahren zur herstellung transparenter hochindex-mikroglaskugeln
DE3807420A1 (de) * 1988-03-07 1989-09-21 Gruenzweig & Hartmann Einrichtung zur erzeugung von fasern, insbesondere mineralfasern, aus einer schmelze
FI85365C (fi) * 1990-04-26 1992-04-10 Ahlstroem Riihimaeen Lasi Oy Foerfarande och anordning foer framstaellning av ihaoliga mikrosfaerer.
DE19721571C2 (de) 1997-05-23 2002-04-18 Siltrade Gmbh Verfahren zur Herstellung von Mikrokugeln
ATE246153T1 (de) * 1998-10-06 2003-08-15 Pq Holding Inc Verfahren und vorrichtung zur herstellung von glaskugeln
DE102007002904A1 (de) 2007-01-19 2008-07-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Vakuumhohlkugeln aus Glas, Vakuumhohlkugeln sowie deren Verwendung
DE102008025767B4 (de) 2008-04-03 2010-03-18 Bpi Beads Production International Gmbh Verfahren zur Herstellung vollständig runder kleiner Kugeln aus Glas
CN102826736A (zh) * 2012-09-21 2012-12-19 蚌埠玻璃工业设计研究院 一种玻璃粉末法制备空心玻璃微珠的方法
RU2618757C2 (ru) 2014-01-27 2017-05-11 Инженерное Бюро Франке Глас Технолоджи-Сервис Способ и устройство для изготовления стеклянных полых сфер

Also Published As

Publication number Publication date
IL263885A (en) 2019-01-31
JP2019518709A (ja) 2019-07-04
CN109689582A (zh) 2019-04-26
BR112018076667A2 (pt) 2019-04-02
WO2018001409A1 (fr) 2018-01-04
CA3028838A1 (fr) 2018-01-04
MX2018016147A (es) 2019-06-10
RU2019100695A (ru) 2020-07-28
US20190202727A1 (en) 2019-07-04
AU2017287637A1 (en) 2019-02-14
DE102016117608A1 (de) 2017-12-28
KR20190042549A (ko) 2019-04-24

Similar Documents

Publication Publication Date Title
EP3475232A1 (fr) Procédé et dispositif de fabrication de microperles en verre creuses
DE2904317C2 (de) Verfahren zum Herstellen von geschmolzenem Glas
EP2303787A1 (fr) Procédé et dispositif pour produire un cylindre de verre de quartz
DE1496434B2 (de) Verfahren und Vorrichtung zur Herstellung von Glasperlen
DE2535937A1 (de) Verfahren zum homogenisieren und/oder laeutern von glas und vorrichtung zur durchfuehrung des verfahrens
EP2445843A1 (fr) Procédé et dispositif d'étirage d'un cylindre de verre quartzeux à partir d'un creuset de fusion
WO2006015763A1 (fr) Procede de tirage en creuset vertical pour produire un corps en verre presentant une teneur elevee en acide silicique et dispositif pour la mise en oeuvre dudit procede
EP3099639B1 (fr) Procédé et dispositif pour la fabrication de billes de verre creuses
DE3438456A1 (de) Verfahren zur herstellung von feinen fasern aus viskosen materialien
EP0544291A1 (fr) Procédé et appareillage pour la fabrication de mousse métallique
DE102005013468B4 (de) Vorrichtung und Verfahren zum Läutern von Glas
DE102017118752B3 (de) Verfahren zur Herstellung von Mikrohohlglaskugeln und Mikrohohlglaskugel
DE3744369A1 (de) Verfahren und vorrichtung zum vertikalziehen von glasroehren mit geschlossenen boeden
EP1222147B1 (fr) Procede et dispositif permettant de produire des poudres composees de particules sensiblement spheriques
WO2001056943A1 (fr) Procede et dispositif pour l'expansion de matiere en fusion
DE10200232C1 (de) Vorrichtung zum Läutern einer Glasschmelze in einer Unterdruck-Läuterkammer
DE1052072B (de) Verfahren und Vorrichtung zur Herstellung von Fasern aus in der Waerme erweichbaren faserbildenden Mineralstoffen
EP0066257B1 (fr) Procédé pour la fabrication en continue d'une bande en verre et appareil pour l'exécution dudit procédé
DD141420A1 (de) Verfahren zur herstellung massiver kuegelchen,insbesondere aus glas
AT245181B (de) Verfahren und Vorrichtung zum Herstellen von kugelförmigen Partikeln aus Glas u. a. glasartigen Stoffen
WO1990000529A1 (fr) Procede de production de particules spheriques solides, notamment de particules utilisables comme billes en verre de grenaillage
DE1496428B2 (de) Verfahren und Vorrichtung zur Herstel lung von kleinen Glasperlen
DE10019875A1 (de) Verfahren und Vorrichtung zum Herstellen von farbigen Gläsern
DE1442900B2 (de) Verfahren und Vorrichtung zum Her stellen von kugelförmigen Teilchen aus hoch temperaturfestem Material
DE1442900C (de) Verfahren und Vorrichtung zum Her stellen von kugelförmigen Teilchen aus hoch temperaturfestem Material

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STACHE, LUTZ

Inventor name: SCHLICKE, JUERGEN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200723

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220104