EP3386753B1 - Rakel - Google Patents

Rakel Download PDF

Info

Publication number
EP3386753B1
EP3386753B1 EP16819023.9A EP16819023A EP3386753B1 EP 3386753 B1 EP3386753 B1 EP 3386753B1 EP 16819023 A EP16819023 A EP 16819023A EP 3386753 B1 EP3386753 B1 EP 3386753B1
Authority
EP
European Patent Office
Prior art keywords
coating
squeegee
hard material
doctor blade
material particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16819023.9A
Other languages
English (en)
French (fr)
Other versions
EP3386753A1 (de
Inventor
Hans Jörg BRUDERMANN
Michael Reinert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daetwyler Swisstec AG
Original Assignee
Daetwyler Swisstec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daetwyler Swisstec AG filed Critical Daetwyler Swisstec AG
Priority to PL16819023T priority Critical patent/PL3386753T3/pl
Publication of EP3386753A1 publication Critical patent/EP3386753A1/de
Application granted granted Critical
Publication of EP3386753B1 publication Critical patent/EP3386753B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F9/00Rotary intaglio printing presses
    • B41F9/06Details
    • B41F9/08Wiping mechanisms
    • B41F9/10Doctors, scrapers, or like devices
    • B41F9/1072Blade construction

Definitions

  • the invention relates to a doctor blade comprising a doctor blade body with a working edge, and a first doctor blade side, which faces a printing cylinder in particular during operation, and a second doctor blade side, which faces away from the printing cylinder in particular during operation, the doctor blade body being provided with a coating comprising a polymer is, wherein the coating comprises at least in a partial area particles.
  • the invention further relates to a method for producing such a doctor blade.
  • Squeegees are used in the printing industry as well as in paper manufacture.
  • squeegees are used in particular to wipe off excess printing ink from the surfaces of printing cylinders or printing rollers.
  • the quality of the squeegee has a decisive influence on the printing result, especially in rotogravure and flexographic printing. Bumps or irregularities in the working edges of the squeegee in contact with the printing cylinder lead e.g. B. to incomplete stripping of the printing ink from the webs of the printing cylinder. This can lead to an uncontrolled release of printing ink on the print carrier.
  • the working edges of the squeegee are pressed against the surfaces of the printing cylinders or printing rollers during the wiping and are moved relative to these. This means that the working edges, particularly in rotary printing presses, are exposed to high mechanical loads on the one hand, which result in corresponding wear - on the other hand, high demands are placed on the working edges of the doctor blade, so that precise stripping is ensured over the longest possible application period. Squeegees are therefore fundamentally consumables that have to be replaced periodically. This means that the manufacturing costs must be kept low and the service life should be as long as possible, especially if the squeegee is of consistently high quality.
  • Squeegees are mostly based on a squeegee body made of steel or plastic with a specially shaped working edge.
  • the working edges of the squeegee can also be provided with coatings or coatings made of plastics, lacquers and / or metals.
  • the material properties of the coatings significantly influence the mechanical and tribological properties of the doctor blade. Such doctor blades are known from the prior art.
  • Such a doctor blade is used, for example, in the EP 0 911 157 B1 described.
  • This relates to a squeegee for scraping excess printing ink off the surface of a printing form.
  • the lamella and also the region of the rear squeegee part adjoining the lamella are provided with a coating over the entire length of the squeegee, which coating consists of lubricant or at least contains lubricant particles.
  • the coating can comprise a carrier material in which both lubricant particles and particles of a wear-resistant material are embedded.
  • document WO 2013/133762 discloses a doctor blade according to the preamble of claim 1 and a method according to the preamble of claim 9.
  • doctor blades are also referred to as doctor blades, doctor blades or scrapers, depending on the application.
  • a doctor knife or doctor blade e.g. superfluous coating color (for example pigments, binders, additives, etc.) can be removed from a paper substrate or a paper web.
  • superfluous coating color for example pigments, binders, additives, etc.
  • the service life of the doctor blades, doctor blades or scrapers can be improved by providing the working edges of the doctor blade with coatings or coatings made of plastics, lacquers and / or metals.
  • the known systems are also not entirely convincing in the field of doctor blades for the paper industry or for paper production. There is therefore still a need for improved doctor blades which do not have the disadvantages mentioned above.
  • the object of the invention is to provide a doctor blade belonging to the technical field mentioned at the outset, which can be used as advantageously as possible with low manufacturing costs for applications in the printing industry or in paper manufacture.
  • the squeegee should be usable for applications in the printing industry and allow the most exact possible wiping of printing ink.
  • the particles are designed as hard material particles and a mass fraction of the hard material particles in the coating on the first doctor blade side is higher than a mass fraction of the hard material particles in the coating on the second doctor blade side.
  • the first squeegee side in particular the side facing the printing cylinder, comprises at least the contact area between the squeegee and the printing roller or paper substrate during an application, for example when doctoring printing ink.
  • the second squeegee side in particular the side of the squeegee facing the printing cylinder, comprises the surface of the squeegee which forms an angle of less than 90 ° with a tangent to the printing roller or to the paper substrate in the contact area with the squeegee.
  • the side of the doctor blade facing the printing roller or the paper substrate is the surface of the doctor blade which can be reached directly, that is to say without a passage through the doctor blade, through an extended radius of the printing roller or the paper substrate. In the case of a flat paper substrate, the radius corresponds to a surface normal of the paper substrate.
  • a doctor blade body with a working edge is coated with a coating comprising a polymer, a first doctor blade side which faces the printing cylinder in particular during operation and a second doctor blade side which in particular faces away from the printing cylinder in operation. which comprises particles in at least one partial area.
  • the particles are designed as hard material particles and a mass fraction of the hard material particles in the coating on the first doctor blade side is higher than a mass fraction of the hard material particles in the coating on the second doctor blade side.
  • doctor blade is to be understood broadly here and includes both doctor blades for applications in the printing industry and in the paper industry.
  • the doctor blade is a pressure doctor blade, doctor blade, doctor blade and / or scraper.
  • the squeegee is a printing squeegee, which is provided in particular for doctoring off printing ink from a printing cylinder.
  • the squeegee body preferably has an elongated shape and can, for example, be in the form of a band, the working edge being oriented in a longitudinal direction of the band. Depending on the strength, material and dimensions of the squeegee body, this can be present, for example, as a tape roll.
  • the coating comprising a polymer preferably comprises more than 50% by weight (weight percent) of polymers, in particular more than 75% by weight of polymers, particularly preferably more than 90% by weight of polymers. Furthermore, the polymer content is preferably less than 99% by weight, particularly preferably less than 95% by weight. Polymers are therefore preferably the main component of the coating. The aforementioned proportions of the polymers in the coating are based on the coating of the ready-to-use doctor blade. In these cases, the coating comprising a polymer can also be referred to as a polymer-based coating.
  • the coating comprising the polymer may have a lower mass fraction of hard material particles than on the doctor body in the ready-to-use state of the doctor blade because of solvents or other volatile substances before it is applied to the doctor body. Such volatile substances can be removed by a drying step during the manufacture of the doctor blade.
  • the polymer in the coating forms a continuous phase and / or a dispersion medium for the hard material particles in the coating.
  • the hard material particles are dispersed and / or embedded in particular in the continuous phase of the polymer.
  • the polymer comprises or consists in particular of an organic polymer.
  • the polymer can be a homopolymer or a copolymer. Homopolymers essentially consist of a single type of monomer, while copolymers consist of two, three or even more chemically different types of monomers. It is also possible for the polymer to be in the form of a so-called polymer blend or as a mixture of several different homopolymers and / or copolymers.
  • the polymer is a thermoset, thermoplastic and / or an elastomer.
  • Preferred are e.g. Thermosets.
  • thermosets After curing, thermosets have a three-dimensional crosslinking and usually cannot be deformed after they have hardened. In the present case, thermosets have proven to be particularly robust and, at the same time, surprisingly advantageous in terms of their sliding and wiping properties.
  • polymers which can be provided are epoxy resins, phenolic resins, such as phenol-formaldehyde resins (novolacs and resols), melamine-formaldehyde resins and saturated and unsaturated polyester resins or mixtures thereof.
  • the polymers can further comprise rubber, polyurethanes, polyureas, thermoplastics or mixtures thereof.
  • the thermoplastics can include, for example, acrylonitrile butadiene styrene, polyamide, polycarbonate, polyethylene, polypropylene, polystyrene, polyvinyl chloride, or mixtures thereof.
  • the skilled person is also aware of other possible polymers which can be provided in pure form or as mixtures for the production of the coating.
  • the polymer mixtures can in particular comprise two or more different polymers.
  • the coating can also comprise less than 50% by weight of polymer.
  • the continuous phase formed by the polymer and / or the dispersion medium formed by the polymer advantageously has less than 50% by weight, in particular less than 25% % By weight, preferably less than 10% by weight, in particular less than 5% by weight, very particularly preferably less than 2% by weight or less than 1% by weight, of a metal.
  • the continuous phase and / or the dispersion medium for the hard material particles in the coating is very particularly preferably essentially free of metals. “Metal” means in particular metal atoms bonded to metal. In particular, individual metal ions, metal salts or covalently bound metals do not fall under the term "metal”.
  • the metal is in particular nickel, chromium, tin, alloys of nickel and chromium, alloys of nickel and tin and / or alloys of nickel and phosphorus, in particular nickel and / or alloys of nickel and phosphorus.
  • the coating comprising a polymer in particular has a total of less than 50% by weight, advantageously less than 25% by weight, preferably less than 10% by weight, in particular less than 5% by weight, entirely particularly preferably less than 2% by weight or less than 1% by weight of a metal.
  • the coating comprising a polymer is very particularly preferably essentially free of metals.
  • all coatings of the doctor blade each have a metal content of less than 50% by weight, advantageously less than 25% by weight, preferably less than 10% by weight, in particular less than 5% by weight , very particularly preferably less than 2% by weight or less than 1% by weight. All coatings of the doctor blade are very particularly preferably essentially free of metals.
  • the manufacturing processes for the squeegee can be simplified by reducing the metal content or dispensing with metals. It has surprisingly been found that polymer-comprising coatings or polymer-based coatings can be used instead of metal-based coatings without significant losses in terms of the quality of the doctor blade.
  • the coating comprising a polymer advantageously forms the outermost coating of the doctor blade, at least in the area of the working edge, preferably in all coated areas of the doctor blade.
  • the coating of the doctor blade comprising a polymer is in direct contact with the printing form or a paper substrate when used, which gives the best possible effect.
  • the hard material particles typically serve to improve the wear behavior of the doctor blade, but can also produce other effects.
  • the hard material particles are preferably dispersed in a coating which also contains the polymer or the polymers.
  • the hard material particles are advantageously distributed uniformly in the coating on the first doctor side and on the second doctor side.
  • the coating thus has a heterogeneous structure due to the dispersed hard material particles.
  • the Coating can be sprayed, sprayed, rolled, painted or otherwise applied to the doctor body, for example as a lacquer.
  • the two doctor blade sides of the doctor blade have coatings with different mass fractions of hard material particles.
  • the hard material particles can thus be used in an economical manner, in particular since the hard material particles are preferably more strongly represented in the area of the greatest stress on the doctor blade, so that hard material particles can be saved in the less stressed areas of the doctor blade.
  • the manufacturing costs can thus be kept low while the doctor blade quality remains essentially the same.
  • the other side of the squeegee has greater homogeneity and improved adhesion to the squeegee body due to the reduced mass fraction of hard material particles. Overall, a more even wear of the coating of the doctor blade can be achieved.
  • the first squeegee side which faces the printing cylinder or the paper in particular during operation, preferably comprises an end face of the working edge, which lies on the printing cylinder or a paper substrate in operation.
  • the coating with the higher mass fraction of hard material particles can thus be provided exactly where the doctor blade is subjected to the highest stress.
  • the coating with the higher mass fraction of hard material particles can, however, also extend further on the first side and in particular also cover the entire first doctor side.
  • the coating with the higher mass fraction of hard material particles covers at least the front side of the working edge and thus at least a partial area of the first doctor side, preferably more than 20%, particularly preferably more than 50%, further preferably more than 70% of the surface the first squeegee side.
  • the coating particularly preferably covers at least the entire working edge.
  • the coating also preferably covers, in addition to the working edge, a further partial region of the doctor blade that is peripheral to the working edge.
  • the second squeegee side comprises in particular the side facing away from the printing cylinder or the paper during operation.
  • a transition between the coatings of the first doctor blade side and the second doctor blade side can be fused, for example both coatings being applied before the doctor blade is subjected to a drying process at a temperature above the pour point of the coatings.
  • the two coatings on the first and second doctor blade sides can also overlap, in which case an overlap area is preferably located on the side facing away from the printing cylinder during operation, so that the quality of the doctor blade is not impaired during operation. Under certain circumstances, however, the overlap can also be smoothed in a thermal process step.
  • both sides can be coated with a coating with the lower mass fraction of hard material particles (respectively without hard material particles), whereupon the first doctor blade side is coated with a coating with the larger mass fraction of hard material particles in a second step.
  • Other methods are known to the person skilled in the art to reach the doctor blade sides of different hard material particle mass fractions.
  • the doctor blades coated according to the invention have a high wear resistance and, accordingly, a long service life. Furthermore, the working edges of the doctor blade according to the invention are well stabilized. This results in a sharply delimited contact zone between the doctor blade and the printing cylinder or the printing roller, which in turn enables the ink to be precisely wiped off. The contact zone remains largely stable over the entire printing process. The streaking during the running-in phase in the printing process is also low. Overall, there are hardly any effects affecting the printing process.
  • the doctor blade according to the invention therefore makes it possible to achieve an essentially constant print quality during the entire printing process.
  • the doctor blades are also advantageous in applications in the paper industry, e.g. as a doctor knife.
  • the doctor blade according to the invention has good sliding properties on the printing cylinders or printing rollers normally used, so that when the doctor blade according to the invention is used, the printing cylinders or Printing rollers can be reduced. This also applies to the sliding properties on paper.
  • hard material particles are present both in the coating on the first doctor side and in the coating on the second doctor side.
  • a mass fraction of the hard material particles in the coating on the first doctor blade side and a mass fraction of the hard material particles in the coating on the second doctor blade side are in each case ⁇ 0.1% by weight, in particular ⁇ 1% by weight.
  • a mass fraction of the hard material particles in the coating with the higher proportion or in the coating on the first doctor blade side is, for example, in the range from 0.1-60% by weight, in particular 1-45% by weight, preferably 5-40% by weight. or 10-30% by weight. This has proven to be particularly suitable.
  • a ratio of the mass fraction of hard material particles in the coating on the first doctor blade side to the mass fraction of hard material particles in the coating on the second doctor blade side is in particular greater than 2, preferably greater than 10, particularly preferably greater than 100, in particular greater than 1,000.
  • the ratio of the mass fraction of hard material particles in the coating on the first doctor blade side to the mass fraction of hard material particles in the coating on the second doctor blade side is, for example, in the range from 2: 1 to 1,000: 1, in particular 10: 1 to 100: 1.
  • the coating of the first doctor blade side particularly preferably comprises hard material particles, while the coating of the second doctor blade side is essentially free of hard material particles.
  • the term “essentially free of hard material particles” is to be understood that, if hard material particles were present, these have no or no significant influence on the wear resistance of the doctor blade. However, it is clear to the person skilled in the art that, due to the production process, a small proportion of hard material particles can still be introduced into the second doctor blade side, in particular in the form of impurities. In particular, based on the total weight of the coating on the second doctor blade side, a mass fraction of less than 1%, preferably less than 0.1%, particularly preferably less than 0.05% is meant.
  • the coating of the second doctor blade side particularly preferably has no hard material particles.
  • the second squeegee side can have a substantial proportion of hard material particles, which thus has a positive influence on the wear resistance of the squeegee.
  • the coating of the second squeegee side has a lower mass fraction of hard material particles than the first squeegee side.
  • the coating on the second doctor blade side preferably does not comprise any particles.
  • the second squeegee side thus preferably does not comprise any hard material particles, but also no further particles which can influence, for example, the sliding friction or other properties of the squeegee. Since the second squeegee side is exposed to significantly lower mechanical stresses, it may be sufficient if only the first squeegee side comprises particles. It has been shown that the wear resistance of the doctor blade is generally independent of the type of coating on the second doctor blade side. A coating of the second squeegee side, for example with a polymer varnish without particles, can still be useful, for example, to protect the squeegee surface from corrosion or for aesthetic reasons.
  • the coating of the second doctor blade side can be provided with particles. These can influence the strength, the sliding properties or other properties of the squeegee, for example.
  • An average volume-equivalent spherical diameter of the hard material particles is preferably less than 1,000 nanometers, preferably less than 500 nanometers, particularly preferably less than 250 nanometers.
  • the particle size of the hard material particles is advantageously adapted to the respective material of the hard material particles.
  • the volume-equivalent ball diameter indicates the diameter of a ball with the same volume as the particle under consideration or hard material particle. If the particles are porous, the volume of a particle preferably corresponds to the volume of an outer shell of the particle. Below the average of this value is preferred understood the median of the grain size distribution. In this context, the term "particle size" is used below, but what is meant is the average volume-equivalent ball diameter.
  • an arithmetic mean of the ball diameters can also be used instead of the median or a surface-equivalent ball diameter can be determined instead of the volume-equivalent ball diameter.
  • the tribological properties of the doctor blade according to the invention can be optimized. It has been shown that the doctor blade with hard material particles in these sizes has very good wear behavior with an optimal contact zone between the doctor blade and the printing cylinder or paper substrate.
  • the particle sizes can also be selected to be larger than 1,000 nanometers. However, if the layer thickness is too small, this can have a negative effect on the quality of the contact zone between the doctor blade and the printing cylinder or paper substrate.
  • the mean volume-equivalent spherical diameter of the hard material particles is preferably greater than 1 nm, particularly preferably greater than 25 nm, more preferably greater than 50 nm. It has been shown that optimum wear resistance of the doctor blade is achieved in this way. Smaller ball diameters can also be considered depending on the thickness of the coating.
  • a volume fraction of the hard material particles is preferably 5-30%, particularly preferably 15-20%. With such proportions, a significant improvement in wear properties and stability of the working edge is achieved.
  • the hard material particles which are preferably dispersed in the coating can in particular be metals, metal oxides, metal carbides, metal nitrides, metal carbonitrides, metal borides, ceramics and / or intermetallic phases.
  • the hard material particles particularly preferably comprise at least one of the following substances: metal oxides, in particular aluminum oxide and / or chromium oxide; Diamond, silicon carbide, metal carbide, metal nitride, metal carbonitride, boron carbide, cubic boron nitride, tungsten carbide. These materials have proven to be particularly effective for improving the wear behavior of the coating, in particular in connection with the coating comprising a polymer.
  • the coating can comprise exactly one type of hard material particle.
  • the hard material particles contain different particles made from at least two different materials. As has been shown, this can produce synergetic effects which improve the wear resistance and quality of the doctor blade far more than expected. Furthermore, it can be advantageous if the hard material particles comprise different particles with at least two different average particle sizes.
  • metal particles of W, Ti, Zr, Mo, and / or steel are known to the person skilled in the art which can be processed into hard material particles.
  • the metal particles can be used alone, in combination with other metal particles and / or in combination with other hard material particles.
  • Hard material particles made of metal alloys can also be used.
  • Metal particles made of metallic molybdenum have proven to be particularly suitable. Squeegees with a coating based on polymers with metal particles of molybdenum dispersed therein have a very high wear resistance and, accordingly, a long service life. The working edges of such squeegees have a sharply delimited contact zone between the squeegee and the printing cylinder or the printing roller, which enables more precise wiping of printing ink.
  • the metal particles have an average volume-equivalent spherical diameter of 0.01-0.9 ⁇ m and a volume fraction of 5-30%, particularly preferably 15-20%.
  • Doctor blades with a polymer-based coating with metal oxides, metal carbides, metal nitrides, metal carbonitrides, metal borides, ceramics and / or intermetallic phases dispersed therein have a high wear resistance and, accordingly, a long service life, in particular in connection with a polymer-containing or polymer-based coating.
  • Such hard material particles can be embedded extremely stably in the coating and form a hard-wearing bond with the doctor body.
  • the strength of the coating can be improved overall, and at the same time the working edges of such doctor blades show a sharply delimited contact zone between the doctor blade and the printing cylinder or the printing roller, which in turn enables a more precise wiping of printing ink. The same applies to applications in paper production.
  • metal carbides and / or metal nitrides in particular have been found to be particularly suitable: B 4 C, cubic BN, TiC, WC and / or SiC.
  • metal oxides Al 2 O 3 is particularly advantageous.
  • the hard material particles do not necessarily have to be in the form of metal particles, metal oxides, metal carbides, metal nitrides, metal carbonitrides, metal borides, ceramics and / or intermetallic phases.
  • particles made of other materials are also suitable as hard material particles.
  • the hard material particles comprise diamond.
  • Diamond with a mono- and / or polycrystalline structure is preferably used.
  • Hard diamond particles have proven particularly advantageous in the doctor blade according to the invention and in particular bring about a further improvement in the wear resistance and stabilization of the working edges of the doctor blade. Among other things, this may be due to the high hardness and chemical and mechanical stability of diamond.
  • amorphous diamond-like carbon particles of amorphous diamond-like carbon (diamond-like carbon"; "DLC") instead of or in addition to hard material particles made of diamond with a mono- and / or polycrystalline structure.
  • DLC amorphous diamond-like carbon
  • the amorphous diamond-like carbon advantageously has a high proportion of sp3 hybridization so that there is sufficient hardness.
  • amorphous diamond-like carbon can even have advantages. In general, amorphous diamond-like carbon is also cheaper than diamond.
  • the hard material particles particularly preferably comprise both SiC and diamond, further preferably a particle size of the SiC being larger than a particle size of the diamond.
  • the hard material particles comprise SiC with a particle size of 0.7-0.9 ⁇ m and diamond with a particle size of 5 nm-0.9 ⁇ m, preferably 200-300 nm.
  • the particle sizes of SiC and diamond are different, so that, for. B. the particle size of the diamond is the same size or larger than the particle size of the SiC.
  • other combinations of hard material particles are possible, with more than two, for. B. three, four or even more different hard material particles can be combined.
  • the hard material particles comprise, for example, both SiC and cubic BN, preferably a particle size of BN corresponds approximately to the particle size of the SiC.
  • the particle sizes of the SiC and the cubic BN particularly preferably measure approximately 0.1-0.9 ⁇ m.
  • the coating comprises lubricants, in particular lubricating particles, in order to improve the wear resistance.
  • lubricating particles are substances which bring about a reduction in the sliding friction between the doctor blade and the printing cylinder and, in particular, are sufficiently stable so that the printing cylinder is not impaired or contaminated.
  • polymeric thermoplastics for. B. perfluoroalkoxylalkane and / or polytetrafluoroethylene, and graphite, molybdenum disulfide and / or soft metals, such as aluminum, copper and / or lead.
  • a well-suited lubricant is, for example, polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • Polytetrafluoroethylene is preferably used in the form of lubricating particles.
  • the use of polymeric thermoplastics, but also in the case of other polymers, has the advantage that these lubricants can be incorporated particularly well into the matrix of the coating, in particular since the coating according to the invention is polymer-based.
  • hexagonal BN has also proven to be particularly advantageous as a lubricant. This is particularly in particle form. As has been shown, lubricants, in particular lubricating particles made of hexagonal BN, have improved the wear resistance of the doctor blade in a large number of applications with different printing cylinders. In particular, this is largely independent of the process parameters during doctoring. In other words, hexagonal BN has proven to be an extremely versatile and effective lubricant.
  • Lubricating particles in particular lubricating particles made of hexagonal BN, advantageously have a particle size of 50 nm - 0.9 ⁇ m, preferably 80-300 nm, more preferably 90- 110 nm. This achieves an optimal effect for a variety of applications. In principle, however, other particle sizes can also be suitable for specific applications.
  • both lubricants in particular lubricating particles, and hard material particles are present in the coating as additives to improve the wear resistance.
  • lubricating particles made of hexagonal BN are used together with hard particles made of SiC.
  • the coating comprising a polymer advantageously has less than 50% by weight, in particular less than 25% by weight, preferably less than 10% by weight, in particular less than 5% by weight, very particularly preferably less than 2% by weight, in particular less than 1% by weight or less than 0.1% by weight, of particulate lubricants.
  • particulate lubricants are, in particular, particulate organic lubricants, in particular particulate polymer-based lubricants, for example particulate polytetrafluoroethylene (PTFE).
  • all coatings advantageously have less than 50% by weight, in particular less than 25% by weight, preferably less than 10% by weight, in particular less than 5% by weight, very particularly preferably less than 2 % By weight, in particular less than 1% by weight or less than 0.1% by weight, of particulate lubricants.
  • all coatings on the doctor blade are essentially free of particulate lubricants.
  • lubricating particles can be dispensed with if necessary, without the sliding and wiping properties of the doctor blade being significantly impaired. This significantly simplifies production.
  • the coatings comprising polymer already show very good sliding and wiping properties in most applications, some of which are even better than with conventional doctor blades and, if need be, through non-particulate ones Lubricants can be increased in a simpler way.
  • the coating comprises fibers for reinforcing the coating in addition to the hard material particles.
  • the fibers can include, for example, carbon fibers, plastic fibers or the like.
  • a layer thickness of the coating is preferably 1-30 ⁇ m (microns).
  • the layer thickness is more preferably 5-20 ⁇ m, particularly preferably 5-10 ⁇ m.
  • Such a layer thickness offers optimal protection of the working edge of the squeegee.
  • the layer thickness measured in this way has a high intrinsic stability, which effectively reduces the partial or complete delamination of the first coating, for example during the doctoring off of printing ink from a printing cylinder.
  • Thicknesses of less than 1 ⁇ m are possible, but the wear resistance of the working edge or squeegee quickly decreases. Thicknesses greater than 30 ⁇ m are also feasible. However, these are generally less economical and may also have a negative impact on the quality of the working edge. However, thicknesses of less than 1 ⁇ m or more than 30 ⁇ m can be advantageous for special areas of application of the doctor blade.
  • the doctor blade in addition to the coating comprising a polymer, has at most three, in particular at most two, preferably at most one, in particular no further coating.
  • the coating of the doctor blade very particularly preferably consists solely of the coating comprising a polymer and optionally an adhesive coating. On the one hand, this simplifies production, on the other hand, coatings with few or no additional coatings have proven to be particularly reliable and robust. Incompatibilities between different coatings can thus be reduced or avoided entirely.
  • the doctor blade body is preferably formed from a metal or a metal alloy. Doctor blades made of metals which are robust and corrosion-resistant are particularly advantageous. For these reasons in particular, doctor bodies made of aluminum are particularly advantageous. In addition, doctor blades can also be made of other metals, for example iron, etc. The doctor blade can also be made of a metal alloy, with which the desired properties of the doctor blade can be optimally controlled.
  • the choice of material of the squeegee body is preferably matched to the coating in such a way that an optimal wear resistance of the squeegee and thus the greatest possible service life is achieved, and a precise doctoring is made possible.
  • Variants can also be used to produce other materials for the doctor body.
  • the doctor body is made of steel.
  • steel has proven to be a particularly robust and suitable material for the doctor blade according to the invention. This enables precise squeegees with a long service life to be manufactured cost-effectively.
  • At least one shell region of the base body that is present with respect to the longitudinal direction is preferably completely and completely covered by a coating.
  • a coating covers the base body completely and on all sides, that is to say the side surfaces of the base body that are perpendicular to the longitudinal direction are also covered with one of the coatings. In this case, at least one of the coatings completely surrounds the base body.
  • the essential regions of the base body that do not belong to the working edge are also provided with the coating.
  • This is particularly advantageous in order to protect the base body from the water-based or slightly acidic printing inks and / or other liquids which come into contact with the doctor blade.
  • Optimal rust protection for the squeegee is thus created, in particular with steel base bodies. This further improves the consistency of the print quality during the printing process, since the printing cylinder or the printing roller that is in contact with the doctor blade during the printing process is not contaminated by rust particles, for example.
  • the base body is optimally protected against rust formation during storage and / or transport by a coating applied in the jacket area.
  • the doctor blade is only coated where the greatest mechanical stress occurs, namely on the working edge and its peripheral areas.
  • the coating can thus be kept inexpensively.
  • This variant is particularly advantageous in the case of squeegee bodies which are essentially chemically inert, in particular in the area of application of the squeegee.
  • doctor blades made of stainless steel or aluminum may or may not be coated only in the area of the working edge or on the side facing away from the printing cylinder during operation. The material costs during production can thus be reduced.
  • doctor blade body is formed from a plastic or from a plastic material.
  • plastic base bodies have proven to be more advantageous than steel base bodies due to their different mechanical and chemical properties.
  • Some of the plastics in question have sufficient chemical stability or inertness compared to typical water-based and slightly acidic printing inks, which means that the base body does not need to be specially protected, as in the case of a base body made of steel.
  • plastics are inexpensive to buy and easy to process.
  • plastics are lighter and therefore also in use, in particular in handling during the maintenance of printing presses and to prefer such.
  • the doctor blade bodies made of plastic also have good properties when coated with a polymer-based coating.
  • the doctor blade body can thus not only be purely adhesive, as in the case of doctor blade bodies made of metal, but may also be chemically bonded to the coating or thermally fused to the coating in a limit phase.
  • plastic material such.
  • basic bodies can also be used, which, for. B. consist both of metal, especially steel, and plastic.
  • basic body with other materials e.g. B. ceramics and / or composite materials may be suitable for special applications.
  • the doctor body is preferably heated before coating. On the one hand, this ensures that the doctor body is dry for the coating. This can prevent a coating from becoming detached from the doctor body later, for example due to corrosion of the doctor body under the coating. This also ensures that the coating adheres optimally to the doctor body or connects to it.
  • the polymer-based coating therefore has a lower viscosity on the squeegee, which means that the coating can be distributed evenly without streaks or drops forming. In the event that the coating material to be applied comprises solvents, the drying process can be further promoted.
  • heating of the doctor blade body before coating can also be dispensed with.
  • doctor blade body is roughened, in particular mechanically roughened, before the coating. This can further improve the adhesion between the doctor blade body and the coating. However, this is not absolutely necessary.
  • an adhesive coating can be applied before coating the doctor blade body with the coating comprising a polymer. This can be done in addition to or instead of roughening and also enables an improvement in the adhesion between the doctor blade body or possibly already applied layers and the coating according to the invention.
  • an intermediate drying step can optionally also take place. Depending on the adhesive coating, this can be advantageous.
  • the doctor blade body is preferably degreased mechanically and / or electrolytically before coating. Electrolytic degreasing is preferred. This in turn achieves an optimal connection between the coating and the doctor body. Contamination on the squeegee, in particular greasy contamination, can severely disrupt the adhesion between the coating and the squeegee body.
  • electrolytic degreasing can also be dispensed with.
  • another cleaning step can be used, for example a cleaning step with a washing solution, such as an organic solvent or a soap solution.
  • the doctor for electrolytic degreasing is preferably switched as an anode in order to remove grease from the doctor body by means of cations.
  • anodic degreasing oxygen is formed on the doctor body under the fat layer, which removes the fat layer.
  • Anodic degreasing has the advantage in particular over cathodic degreasing that hydrogen embrittlement can be avoided.
  • the increased power requirement compared to cathodic degreasing is therefore deliberately accepted, particularly in the case of steel doctor blades, in order to protect the doctor blade body.
  • the degreasing can alternatively also be carried out with interchanged electrodes, as cathodic degreasing.
  • This has the advantage that by forming hydrogen under the fat layer with the same amount of electricity, twice the gas volume can be generated.
  • hydrogen embrittlement may have to be accepted.
  • cathodic degreasing can easily be selected in order to obtain more efficient degreasing with lower power consumption. Both techniques can also be used sequentially.
  • a drying step is preferably carried out after the coating of the doctor blade body, in particular a drying step following the drying step. Any solvents present in the coating can be gently removed in the drying step, while in the hardening step even the smallest remaining amounts of solvents can be removed and the structure of the coating is cured.
  • the hardening step can be purely thermal, that is to say, for example, the coating baked with or on the doctor body.
  • the hardening step can also initiate a chemical process. This can include, for example, a polymerization which is initiated by UV rays. Those skilled in the art are also aware of further such steps which can follow a polymer-based coating.
  • drying step and / or the hardening step can also be dispensed with.
  • the hardening step is preferably carried out at a temperature of 150 ° C. to 350 ° C., preferably at 200 ° C. to 300 ° C., in particular at 230 ° C. to 270 ° C. In particular, these temperatures are maintained for a holding time of 0.5-15 hours, preferably 0.5-8 hours. Such temperatures and holding times have proven to be optimal in order to achieve sufficient hardening of the coatings.
  • Temperatures of less than 100 ° C are also possible. In this case, however, very long and mostly uneconomical holding times are required. Higher temperatures than Depending on the material of the base body and the coating, 350 ° C is in principle also feasible, but care must be taken that the polymer-containing coating in particular is not damaged by the hardening step.
  • the coating is preferably subjected to an aftertreatment.
  • This is particularly preferably mechanical post-treatment and / or cleaning.
  • mechanical processing can be carried out, such as grinding, lapping or polishing the coating, or treatment using suitable tools, such as knives, milling cutters or the like.
  • Aftertreatment can also be dispensed with in variants
  • FIG. 1 A lamella doctor blade 100 according to the invention is shown in cross-section in contact with a printing roller 170.
  • the lamellar doctor blade 100 includes a base body 110 made of steel, which on the in Fig. 1 has a rear region 120 on the left side with an essentially rectangular cross section.
  • the rear region 120 is provided as a fastening region in order to hold the lamella doctor blade, for example, in a corresponding receiving device of a printing press.
  • a doctor blade thickness, measured from the top 121 to the bottom 122 of the rear area, is approximately 0.2 mm.
  • a length of the base body 110 or of the lamella doctor blade 100 measured perpendicular to the sheet plane is, for example, 1000 mm.
  • the pressure roller 170 can have a direction of rotation 171 with or counterclockwise. Both directions of rotation are possible for applications in flexographic printing. In the present arrangement, the printing roller is rotated clockwise in gravure printing.
  • the base body 110 tapers in a step-like manner from the top side 121 of the rear region 120 to form a working edge 130.
  • An upper side 131 of the working edge 130 lies on a level below the level of the upper side 121 of the rear area 120, but is essentially parallel or plane-parallel to the upper side 121 of the rear area 120.
  • a concave transition region 125 is present between the rear region 120 and the working edge 130.
  • the underside 122 of the rear region 120 and the underside 132 of the working edge 130 lie in a common plane which is plane-parallel to the top side 121 of the rear region 120 and plane-parallel to the top side 131 of the working edge 130.
  • a width of the base body 110 measures 40 mm, for example.
  • a thickness of the work area 130 measured from the top 131 to the underside 132 of the working area is, for example, 0.060-0.150 mm, which corresponds approximately to half the doctor blade thickness in the rear area 120.
  • a width of the working area 130, measured on the top 131 of the working area 130 from the end face 140 to the transition area 125, is, for example, 0.8-5 mm.
  • a free end face 140 of the free end of the working edge 130 runs obliquely downward from the upper side 131 of the working edge 130 to the underside 132 of the working edge 130.
  • the end face 140 has an angle of approximately 45 ° or 135 ° with respect to the top 131 of the working edge 130 or with respect to the bottom 132 of the working edge 130.
  • An upper transition area between the top 131 and the front 140 of the working edge 130 is rounded.
  • a lower transition area between the end face 140 and the underside 132 of the working edge 130 is rounded.
  • the working edge 130 of the lamella doctor blade 100 is also surrounded by a coating 150.
  • the coating 150 completely covers the upper side 131 of the working edge 130, the transition region 125 and a partial region of the upper side 121 of the rear region 120 of the base body 110 adjoining this.
  • the coating 150 likewise covers the end face 140, the underside 132 of the working edge 130 and a partial region of the underside 122 of the rear region 120 of the base body 110 which adjoins the underside of the working edge 130.
  • the coating 150 is a polymer-based coating, for example the coating comprises epoxy resin, the epoxy resin content in the ready-to-use coating being, for example, approximately 70 or 80% by weight, depending on the side of the doctor blade (see below).
  • Hard particles 160 e.g. B. from silicon carbide (SiC), dispersed. An average particle size of the hard material particles 160 is approximately 0.8 ⁇ m.
  • the layer thickness of the first coating 150 measures z. B. 15 microns. In the area of the top side 121 and the bottom side 122 of the rear area 120, the layer thickness of the first coating 150 decreases continuously, so that the first coating 150 runs in a wedge shape in a direction away from the working edge 130.
  • the mass fraction of hard material particles 160 is higher in the coating on the first side of the doctor blade 100 facing the printing roller than in the coating on the second side of the doctor blade facing away from the printing roller.
  • the first side comprises the front side 140 and the underside 132 of the working edge 130.
  • the second side comprises the upper side 131 of the working edge 130.
  • the mass fraction of hard material particles 160 in the coating of the first side is, for example, 20% by weight and the mass fraction of epoxy resin in the coating of the same side, for example 70% by weight.
  • the mass fraction of hard material particles 160 in the coating on the second side is, for example, 10% by weight and the mass fraction in epoxy resin in the coating on the same side is, for example, 80% by weight.
  • the second side of the doctor blade 100 thus has a lower content of hard material particles 160 than the first side of the doctor blade 100.
  • the first side that is to say the side facing the printing roller 170, thus includes the contact area between the doctor blade 100 and the printing roller 170, specifically the end face 140. Furthermore, the first side also includes that surface 122 of the doctor blade which unites with a tangent in the contact area of the doctor blade Includes angle less than 90 °.
  • the same interpretation applies to the following Figures 2 and 3 ,
  • Fig. 2 shows a second lamella doctor blade 200 according to the invention in cross section.
  • the second lamella doctor blade 200 has a base body 210 with a rear region 220 and a working edge region 230 and is essentially identical in construction to the first lamella doctor blade 100 Fig.
  • the upper side 231 of the working edge 230, the transition region 225 and a partial region of the upper side 221 of the rear region 220 of the base body 210 adjoining this, as well as the front side 240, the lower side 232 of the working edge 230 and one on the lower side 232 the partial region of the underside 222 of the rear region 220 of the base body 210 adjoining the working edge 230 is coated with a coating 250.
  • the coating 250 in turn consists of a polymer-based coating, for example phenol-formaldehyde resin.
  • the coating of the first side of the doctor blade 200 facing the printing roller comprises hard material particles 260, while the coating of the comprises no or essentially no hard material particles from the second side of the doctor blade facing away from the printing roller.
  • the first side in turn comprises the front side 240 and the underside 232 of the working edge 230.
  • the second side comprises the upper side 231 of the working edge 230.
  • the hard material particles are, for example, cubic B 4 C.
  • the ready-to-use coating On the first side of the doctor blade 200, the ready-to-use coating has a phenol-formaldehyde resin content of, for example, 80% by weight. Furthermore, the coating on the first side comprises a cubic B 4 C content of 15% by weight.
  • the second side of the doctor blade 200 has a phenol-formaldehyde resin content of, for example, 95% by weight.
  • the second side of the doctor blade 200 is essentially free of particles.
  • An average particle size of the hard material particles 260 is approximately 0.6 ⁇ m.
  • the layer thickness of the first coating 250 measures z. B. 17 microns.
  • Fig. 3 shows a third lamella doctor blade 300 according to the invention in cross section.
  • the third doctor blade 300 has a base body 310 which, in the region of the working edge 330, is made in the same way as the first doctor blade Fig. 1 is coated with a coating 350.
  • the upper side 331 of the working edge 330, the transition region 325 and a partial area adjoining this, the upper side 321 of the rear area 320 of the base body 310, and the end face 340, the lower side 332 of the working edge 330 and a partial area adjoining the lower side 332 of the working edge 330 are correspondingly the underside 322 of the rear region 320 of the base body 310 coated with the coating 350.
  • the coating 350 which completely surrounds the lamellar doctor blade 300.
  • the coating 350 completely covers both the upper side 321 and the lower side 322 of the rear region 320 of the base body 310.
  • the coating 350 in turn consists of a polymer-based coating, for example polyamide.
  • the coating of the first side of the pressure roller facing Doctor blade 300 comprises hard material particles 360, while the coating of the second side of the doctor blade facing away from the printing roller does not comprise, or essentially no, hard material particles.
  • the first side in turn comprises the front side 340 and the underside 332 of the working edge 330.
  • the second side comprises the top side 331 of the working edge 330.
  • the hard material particles are, for example, tungsten particles.
  • the ready-to-use coating On the first side of the doctor blade 300, the ready-to-use coating has a polyamide content of, for example, 85% by weight. Furthermore, the coating on the first side has a tungsten particle content of 8% by weight.
  • the second side of the doctor blade 300 has a phenol-formaldehyde resin content of, for example, 93% by weight. The second side of the doctor blade 200 is again essentially free of particles.
  • An average particle size of the hard material particles 360 is approximately 0.3 ⁇ m.
  • the layer thickness of the first coating 350 measures z. B. 12 microns.
  • Fig. 4 illustrates a method 400 for producing a lamellar squeegee, such as e.g. B. in Fig. 1 is shown.
  • a first step 401 the doctor blade is degreased electrolytically.
  • the doctor blade 100 is switched as an anode for electrolytic degreasing in order to remove grease from the doctor body 110.
  • Anodic electrolytic degreasing prevents hydrogen embrittlement.
  • the doctor body 110 is then heated.
  • coating is carried out with the polymer-based coating material, in which the hard material particles and optionally further particles are dispersed and / or other auxiliaries are introduced.
  • the last step 403 there is a drying and curing step.
  • the base body 110, 210, 310 of the doctor blade can thus be made from the 1 - 3 also from another material, such as. B. stainless steel or a carbon steel. 3
  • the basic body of the doctor blade can be made from the 1 - 3 but also from a non-metallic material, such as. B. plastics exist. This can be particularly advantageous for applications in flexographic printing.
  • each basic body can have a wedge-shaped working edge or a non-tapered cross section with a rounded working edge.
  • the free end faces 140, 240, 3403 of the working edges 130, 230, 330 can, for example, also be completely rounded.
  • the doctor blade according to the invention can be made from 1 - 3 be dimensioned differently.
  • the thicknesses of the working areas 130, 230, 330, measured from the respective upper sides 131, 231, 331 to the respective lower sides 132, 232, 332, can vary in a range of, for example, 0.040-0.200 mm.
  • the coatings of the doctor blade can also be made from the 1 - 3 further coating components and / or additional substances, such as. B. metal atoms, non-metal atoms, inorganic compounds and / or organic compounds.
  • additional substances can also be particulate.
  • All of the in the Figures 1-3 Squeegees shown can, for example, be coated with one or more further coatings.
  • the other coatings can be in the area of the working edges and / or the rear areas and z.
  • B. improve the wear resistance of the working edges and / or the rear area in front Protect influences from aggressive chemicals.
  • Any further coating is preferably also polymer-based. In variants, however, other types of coating can also be used.
  • doctor blade according to the invention can be implemented in a wide variety of embodiments, so that it can be specifically adapted to specific purposes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Coating Apparatus (AREA)
  • Screen Printers (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Rotary Presses (AREA)
  • Paper (AREA)
  • Printing Plates And Materials Therefor (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft eine Rakel umfassend einen Rakelkörper mit einer Arbeitskante, sowie einer ersten Rakelseite, welche insbesondere im Betrieb einem Druckzylinder zugewandt ist, und einer zweiten Rakelseite, welche insbesondere im Betrieb vom Druckzylinder abgewandt ist, wobei der Rakelkörper mit einer ein Polymer umfassenden Beschichtung versehen ist, wobei die Beschichtung wenigstens in einem Teilbereich Partikel umfasst. Weiter betrifft die Erfindung ein Verfahren zur Herstellung einer solchen Rakel.
  • Stand der Technik
  • Rakel werden in der Druckindustrie als auch bei der Papierherstellung eingesetzt.
  • In der Druckindustrie kommen Rakel insbesondere zum Abstreichen überschüssiger Druckfarbe von den Oberflächen von Druckzylindern bzw. Druckwalzen zum Einsatz. Besonders beim Tiefdruck und Flexodruck hat die Qualität der Rakel einen entscheidenden Einfluss auf das Druckergebnis. Unebenheiten oder Unregelmässigkeiten der mit dem Druckzylinder in Kontakt stehenden Arbeitskanten der Rakel führen z. B. zu einer unvollständigen Abstreifung der Druckfarbe von den Stegen der Druckzylinder. Dadurch kann es auf dem Druckträger zu einer unkontrollierten Abgabe von Druckfarbe kommen.
  • Die Arbeitskanten der Rakel sind während dem Abstreifen an die Oberflächen der Druckzylinder oder Druckwalzen angepresst und werden relativ zu diesen bewegt. Somit sind die Arbeitskanten, insbesondere bei Rotationsdruckmaschinen, einerseits hohen mechanischen Belastungen ausgesetzt, welche einen entsprechenden Verschleiss mit sich bringen - anderseits werden hohe Ansprüche an die Arbeitskanten der Rakel gestellt, so dass über einen möglichst langen Anwendungszeitraum ein präzises Abstreifen sichergestellt ist. Rakel sind daher grundsätzlich Verbrauchsgegenstände, welche periodisch ausgetauscht werden müssen. Damit gilt es insbesondere bei gleichbleibend hoher Qualität der Rakel die Herstellungskosten tief und die Lebensdauer gleichzeitig möglichst hoch zu halten.
  • Rakel basieren meist auf einem Rakelkörper aus Stahl oder Kunststoff mit einer speziell ausgeformten Arbeitskante. Um die Lebensdauer der Rakel zu verbessern, können die Arbeitskanten der Rakel zudem mit Beschichtungen oder Überzügen aus Kunststoffen, Lacken und/oder Metallen versehen werden. Die stoffliche Beschaffenheit der Beschichtungen beeinflussen dabei im Besonderen die mechanischen und tribologischen Eigenschaften der Rakel massgeblich. Solche Rakel sind aus dem Stand der Technik bekannt.
  • Eine solche Rakel wird zum Beispiel in der EP 0 911 157 B1 beschrieben. Diese betrifft eine Rakel zum Abrakeln überflüssiger Druckfarbe von der Oberfläche einer Druckform. Um die Abnützung der mit der Rakel im Kontakt stehenden Oberfläche der Druckform möglichst zu vermindern, wird die Lamelle und auch der an die Lamelle anschliessende Bereich des hinteren Rakelteiles über die gesamte Rakellänge mit einer Beschichtung versehen, die aus Schmierstoff besteht oder zumindest Schmierstoffpartikel aufweist. Die Beschichtung kann ein Trägermaterial umfassen, in welchem sowohl Schmierstoffpartikel als auch Partikel eines verschleissfesten Materials eingebettet sind.
  • Derartig beschichtete Rakel vermögen jedoch in Bezug auf die Herstellungskosten und die Präzision beim Abstreichen nach wie vor nicht vollständig zu befriedigen. Dokument WO 2013/133762 offenbart eine Rakel gemäß Oberbegriff von Anspruch 1 und ein Verfahren gemäß Oberbegriff von Anspruch 9.
  • In der Papierindustrie werden Rakel je nach Anwendung insbesondere auch als Streichmesser, Streichklingen oder Schaber bezeichnet. Mit einem Streichmesser oder Streichrakel kann z.B. überflüssige Streichfarbe (beispielsweise Pigmente, Bindemittel, Additive, etc.) von einem Papiersubstrat oder einer Papierbahn entfernt werden. Wie in der Druckindustrie kann die Lebensdauer der Streichmesser, Streichklingen oder Schaber verbessert werden, indem die Arbeitskanten der Rakel mit Beschichtungen oder Überzügen aus Kunststoffen, Lacken und/oder Metallen versehen werden. Auch im Bereich der Rakel für die Papierindustrie oder für die Papierherstellung vermögen die bekannten Systeme aber nicht vollständig zu überzeugen. Es besteht daher nach wie vor Bedarf nach verbesserten Rakel, welche die vorstehend genannten Nachteile nicht aufweisen.
  • Darstellung der Erfindung
  • Aufgabe der Erfindung ist es, eine dem eingangs genannten technischen Gebiet zugehörende Rakel zu schaffen, welche bei geringen Herstellungskosten für Anwendungen in der Druckindustrie oder bei der Papierherstellung möglichst vorteilhaft einsetzbar sind. Im Besonderen sollen die Rakel für Anwendungen in der Druckindustrie verwendbar sein und ein möglichst exaktes Abstreichen von Druckfarbe ermöglichen.
  • Die Lösung der Aufgabe ist durch die Merkmale des Anspruchs 1 definiert. Gemäss der Erfindung sind die Partikel als Hartstoffpartikel ausgebildet und ein Massenanteil der Hartstoffpartikel in der Beschichtung auf der ersten Rakelseite ist höher als ein Massenanteil der Hartstoffpartikel in der Beschichtung auf der zweiten Rakelseite.
  • Die erste Rakelseite, insbesondere die dem Druckzylinder zugewandte Seite, umfasst mindestens den Kontaktbereich zwischen Rakel und Druckwalze oder Papiersubstrat während einer Anwendung, zum Beispiel beim Abrakeln von Druckfarbe. Weiter umfasst die zweite Rakelseite, insbesondere die dem Druckzylinder zugewandte Seite der Rakel, die Oberfläche der Rakel, welche mit einer Tangente an der Druckwalze oder am Papiersubstrat, im Kontaktbereich mit der Rakel, einen Winkel von weniger als 90° einschliesst. Anders ausgedrückt ist die der Druckwalze oder die dem Papiersubstrat zugewandte Seite der Rakel diejenige Oberfläche der Rakel, welche direkt, das heisst ohne einen Durchgang durch die Rakel hindurch, durch einen verlängerten Radius der Druckwalze oder des Papiersubstrats erreichbar ist. Im Falle eines ebenen Papiersubstrats entspricht der Radius einer Oberflächennormalen des Papiersubstrats.
  • In einem Verfahren zur Herstellung einer solchen Rakel wird bei einem Rakelkörper mit einer Arbeitskante eine erste Rakelseite, welche insbesondere im Betrieb dem Druckzylinder zugewandt ist, und eine zweite Rakelseite, welche insbesondere im Betrieb vom Druckzylinder abgewandt ist, mit einer ein Polymer umfassenden Beschichtung beschichtet, welche wenigstens in einem Teilbereich Partikel umfasst. Die Partikel sind dabei als Hartstoffpartikel ausgebildet und ein Massenanteil der Hartstoffpartikel in der Beschichtung auf der ersten Rakelseite ist höher als ein Massenanteil der Hartstoffpartikel in der Beschichtung auf der zweiten Rakelseite.
  • Der Begriff "Rakel" ist vorliegend breit zu verstehen und umfasst sowohl Rakel für Anwendungen in der Druckindustrie als auch in der Papierindustrie. Insbesondere handelt es sich bei den Rakel um Druckrakel, Streichmesser, Streichklingen und/oder Schaber. In einer besonders bevorzugten Ausführungsform ist die Rakel eine Druckrakel, welche im Speziellen zum Abrakeln von Druckfarbe von einem Druckzylinder vorgesehen ist.
  • Der Rakelkörper weist vorzugsweise eine längliche Form auf und kann zum Beispiel als Band vorliegen, wobei die Arbeitskante in eine Längsrichtung des Bandes orientiert ist. Je nach Festigkeit, Material und Dimensionen des Rakelkörpers kann dieser zum Beispiel als Bandrolle vorliegen.
  • Die ein Polymer umfassende Beschichtung umfasst vorzugsweise mehr als 50 Gew. % (Gewichtsprozent) Polymere, insbesondere mehr als 75 Gew. % Polymere, besonders bevorzugt mehr als 90 Gew. % Polymere. Weiter beträgt der Polymergehalt vorzugsweise weniger als 99 Gew. %, besonders bevorzugt weniger als 95 Gew. %. Polymere sind damit vorzugsweise Hauptbestandteil der Beschichtung. Die vorgenannten Anteile der Polymere in der Beschichtung sind auf die Beschichtung der gebrauchsfertigen Rakel bezogen. Die ein Polymer umfassende Beschichtung kann in diesen Fällen auch als Polymer-basierte Beschichtung bezeichnet werden.
  • Die Beschichtung, welche das Polymer umfasst, kann vor dem Aufbringen auf den Rakelkörper aufgrund von Lösemitteln oder anderen flüchtigen Stoffen einen geringeren Massenanteil an Hartstoffpartikeln aufweisen als auf dem Rakelkörper in gebrauchsfertigem Zustand der Rakel. Durch einen Trocknungsschritt während der Herstellung der Rakel können solche flüchtige Stoffe entfernt werden.
  • Im Besonderen bildet das Polymer in der Beschichtung eine kontinuierliche Phase und/oder ein Dispersionsmedium für die Hartstoffpartikel in der Beschichtung. Die Hartstoffpartikel sind dabei insbesondere in der kontinuierlichen Phase des Polymers dispergiert und/oder eingebettet.
  • Das Polymer umfasst oder besteht vorliegend insbesondere aus einem organischen Polymer. Das Polymer kann ein Homopolymer oder ein Copolymer sein. Homopolymere bestehen im Wesentlichen aus einer einzigen Monomerenart, während Copolymere aus zwei, drei oder noch mehr chemisch unterschiedlichen Monomerarten bestehen. Auch möglich ist es, dass das Polymer in Form eines sogenannten Polymerblends oder als Mischung aus mehreren unterschiedlichen Homopolymeren und/oder Copolymeren besteht.
  • Im Besonderen ist das Polymer ein Duroplast, Thermoplast und/oder ein Elastomer. Bevorzugt sind z.B. Duroplaste. Duroplaste verfügen nach dem Aushärten über eine dreidimensionale Vernetzung und lassen sich nach ihrer Aushärtung üblicherweise nicht mehr verformen. Duroplaste haben sich vorliegend als besonders robust und zugleich überraschend vorteilhaft in Bezug auf die Gleit- und Abstreifeigenschaften erwiesen.
  • Als Polymere können zum Beispiel Epoxidharze, Phenolharze, wie Phenol-Formaldehydharze (Novolacke und Resole), Melaminformaldehydharze sowie gesättigte und ungesättigte Polyesterharze oder Mischungen davon vorgesehen sein. Die Polymere können weiterhin Gummi, Polyurethane, Polyharnstoffe, Thermoplaste oder Mischungen derselben umfassen. Die Thermoplaste können zum Beispiel Acrylnitrilbutadienstyrol, Polyamid, Polycarbonat, Polyethylen, Polypropylen, Polystyrol, Polyvinylchlorid oder Mischungen davon umfassen. Dem Fachmann sind auch weitere mögliche Polymere bekannt, welche in Reinform oder als Mischungen für die Herstellung der Beschichtung vorgesehen sein können. Die Polymermischungen können insbesondere zwei oder mehr unterschiedliche Polymere umfassen.
  • In Varianten kann die Beschichtung auch weniger als 50 Gew. % Polymer umfassen.
  • Wenn das Polymer in der Beschichtung eine kontinuierliche Phase und/oder das Dispersionsmedium für die Hartstoffpartikel bildet, weist die durch das Polymer gebildete kontinuierliche Phase und/oder das durch das Polymer gebildete Dispersionsmedium mit Vorteil weniger als 50 Gew.-%, insbesondere weniger als 25 Gew.-%, bevorzugt weniger als 10 Gew.-%, im Speziellen weniger als 5 Gew.-%, ganz besonders bevorzugt weniger als 2 Gew.-% oder weniger als 1 Gew.-%, eines Metalls auf. Ganz besonders bevorzugt ist die kontinuierliche Phase und/oder das Dispersionsmedium für die Hartstoffpartikel in der Beschichtung im Wesentlichen frei von Metallen. Mit "Metall" sind insbesondere metallisch gebundene Metallatome gemeint. Im Besonderen fallen einzelne Metallionen, Metallsalze oder kovalent gebundene Metalle nicht unter den Begriff "Metall". Beim Metall handelt es sich in diesem Fall insbesondere um Nickel, Chrom, Zinn, Legierungen von Nickel und Chrom, Legierungen von Nickel und Zinn und/oder Legierungen von Nickel und Phosphor, im Besonderen Nickel und/oder Legierungen von Nickel und Phosphor.
  • Gemäss einer bevorzugten Ausführungsform weist die ein Polymer umfassende Beschichtung insbesondere insgesamt weniger als 50 Gew.-%, mit Vorteil weniger als 25 Gew.-%, bevorzugt weniger als 10 Gew.-%, im Speziellen weniger als 5 Gew.-%, ganz besonders bevorzugt weniger als 2 Gew.-% oder weniger als 1 Gew.-%, eines Metalls auf. Ganz besonders bevorzugt ist die ein Polymer umfassende Beschichtung im Wesentlichen frei von Metallen.
  • Im Besonderen verfügen sämtliche Beschichtungen der Rakel jeweils über einen Anteil an Metall von weniger als 50 Gew.-%, mit Vorteil weniger als 25 Gew.-%, bevorzugt weniger als 10 Gew.-%, im Speziellen weniger als 5 Gew.-%, ganz besonders bevorzugt weniger als 2 Gew.-% oder weniger als 1 Gew.-%. Ganz besonders bevorzugt sind sämtliche Beschichtungen der Rakel im Wesentlichen frei von Metallen.
  • Durch die Reduktion der Metallanteile bzw. den Verzicht auf Metalle lassen sich die Herstellungsverfahren für die Rakel vereinfachen. Dabei hat sich überraschenderweise gezeigt, dass Polymer umfassende Beschichtungen oder Polymer-basierte Beschichtungen anstelle von Metall-basierten Beschichtungen ohne signifikante Einbussen in Bezug auf die Qualität der Rakel verwendet werden können.
  • Die ein Polymer umfassende Beschichtung bildet mit Vorteil zumindest im Bereich der Arbeitskante, bevorzugt in allen beschichteten Bereichen der Rakel, die äusserste Beschichtung der Rakel. Damit steht in jedem Fall die ein Polymer umfassende Beschichtung der Rakel bei der Verwendung direkt im Kontakt mit der Druckform oder einem Papiersubstrat, was eine bestmögliche Wirkung ergibt.
  • Die Hartstoffpartikel dienen typischerweise zur Verbesserung des Verschleissverhaltens der Rakel, können aber auch andere Effekte hervorbringen. Die Hartstoffpartikel sind dazu vorzugsweise in einer Beschichtung dispergiert, in welchem auch das Polymer respektive die Polymere enthalten sind.
  • Die Hartstoffpartikel sind auf der ersten Rakelseite und auf der zweiten Rakelseite jeweils von Vorteil gleichmässig in der Beschichtung verteilt. Die Beschichtung weist damit aufgrund der dispergierten Hartstoffpartikel eine heterogene Struktur auf. Die Beschichtung kann auf dem Rakelkörper zum Beispiel als Lack aufgespritzt, gesprüht, gewalzt, gestrichen oder anderweitig aufgetragen werden.
  • Erfindungsgemäss weisen die beiden Rakelseiten der Rakel Beschichtungen mit unterschiedlichen Massenanteilen an Hartstoffpartikeln auf. Damit können die Hartstoffpartikel dort in grösseren Konzentrationen auftreten, wo mit erhöhter Beanspruchung der Rakel zu rechnen ist. Damit können die Hartstoffpartikel in ökonomischer Weise eingesetzt werden, insbesondere da die Hartstoffpartikel bevorzugt im Bereich der grössten Beanspruchung der Rakel stärker vertreten sind, so dass in den weniger stark beanspruchten Bereichen der Rakel Hartstoffpartikel eingespart werden können. Damit können die Herstellungskosten bei im Wesentlichen gleichbleibender Qualität der Rakel tief gehalten werden. Zugleich verfügt die andere Rackelseite aufgrund der reduzierten Massenanteilen an Hartstoffpartikeln über eine höhere Homogenität und eine verbesserte Haftung auf dem Rakelkörper. Insgesamt kann dadurch insbesondere auch eine gleichmässigere Abnutzung der Beschichtung der Rakel erreicht werden.
  • Die erste Rakelseite, welche insbesondere im Betrieb dem Druckzylinder oder dem Papier zugewandt ist, umfasst vorzugsweise eine Stirnseite der Arbeitskante, welche im Betrieb auf dem Druckzylinder oder einem Papiersubstrat aufliegt. Damit kann die Beschichtung mit dem höheren Massenanteil an Hartstoffpartikeln exakt dort vorgesehen sein, wo die höchste Beanspruchung der Rakel stattfindet. Die Beschichtung mit dem höheren Massenanteil an Hartstoffpartikeln kann sich aber auch auf der ersten Seite weiter erstrecken und insbesondere auch die gesamte erste Rakelseite abdecken. In einer bevorzugten Ausführungsform deckt die Beschichtung mit dem höheren Massenanteil an Hartstoffpartikeln aber mindestens die Stirnseite der Arbeitskante und damit mindestens einen Teilbereich der ersten Rakelseite ab, vorzugsweise mehr als 20 %, besonders bevorzugt mehr als 50 %, weiter bevorzugt mehr als 70 % der Oberfläche der ersten Rakelseite. Besonders bevorzugt deckt die Beschichtung mindestens die gesamte Arbeitskante ab. Weiter bevorzugt deckt die Beschichtung zusätzlich zur Arbeitskante einen weiteren, zur Arbeitskante peripheren Teilbereich der Rakel ab.
  • Die zweite Rakelseite umfasst insbesondere die im Betrieb dem Druckzylinder oder dem Papier abgewandte Seite. Ein Übergang zwischen den Beschichtungen der ersten Rakelseite und der zweiten Rakelseite kann verschmolzen sein, wobei zum Beispiel beide Beschichtungen aufgetragen werden, bevor die Rakel einem Trocknungsprozess bei einer Temperatur über dem Fliesspunkt der Beschichtungen unterzogen wird. Die beiden Beschichtungen der ersten und der zweiten Rakelseite können aber auch überlappend sein, in diesem Fall befindet sich ein Überlappungsbereich vorzugsweise an der im Betrieb dem Druckzylinder abgewandten Seite, so dass die Qualität der Rakel im Betrieb nicht beeinträchtigt ist. Die Überlappung kann unter Umständen aber auch in einem thermischen Verfahrensschritt geglättet werden. Weiter können in einem ersten Schritt beide Seiten mit einer Beschichtung mit dem geringeren Massenanteil an Hartstoffpartikeln (respektive ohne Hartstoffpartikel) beschichtet werden, worauf die erste Rakelseite in einem zweiten Schritt mit einer Beschichtung mit dem grösseren Massenanteil an Hartstoffpartikeln beschichtet wird. Dem Fachmann sind auch weitere Methoden bekannt, um die Rakelseiten unterschiedlicher Hartstoffpartikelmassenanteile zu erreichen.
  • Die erfindungsgemäss beschichteten Rakel weisen eine hohe Verschleissfestigkeit und entsprechend eine lange Lebensdauer auf. Des Weiteren werden die Arbeitskanten der erfindungsgemässen Rakel gut stabilisiert. Damit ergibt sich eine scharf begrenzte Kontaktzone zwischen der Rakel und dem Druckzylinder respektive der Druckwalze, was wiederum ein exaktes Abstreichen von Druckfarbe ermöglicht. Die Kontaktzone bleibt dabei über den gesamten Druckprozess weitgehend stabil. Auch ist die Streifenbildung während der Einlaufphase im Druckprozess gering. Gesamthaft werden kaum den Druckprozess beeinträchtigende Effekte hervorgerufen. Durch die erfindungsgemässe Rakel ist es daher möglich, eine im Wesentlichen konstante Druckqualität während dem gesamten Druckprozess zu erzielen. Ebenfalls vorteilhaft sind die Rakel bei Anwendungen in der Papierindustrie, z.B. als Streichmesser.
  • Weiter weisen die erfindungsgemässen Rakel gute Gleiteigenschaften auf den üblicherweise verwendeten Druckzylindern oder Druckwalzen auf, so dass bei der Verwendung der erfindungsgemässen Rakel auch ein Verschleiss der Druckzylinder oder Druckwalzen reduziert werden kann. Dies trifft auch in Bezug auf Gleiteigenschaften auf Papier zu.
  • Gemäss einer besonderen Ausführungsform liegen sowohl in der Beschichtung auf der ersten Rakelseite als auch in der Beschichtung auf der zweiten Rakelseite Hartstoffpartikel vor. Ein Massenanteil der Hartstoffpartikel in der Beschichtung auf der ersten Rakelseite und ein Massenanteil der Hartstoffpartikel in der Beschichtung auf der zweiten Rakelseite sind dabei insbesondere jeweils ≥ 0.1 Gew.-%, im Besonderen ≥ 1 Gew.-%.
  • Ein Massenanteil der Hartstoffpartikel in der Beschichtung mit dem höheren Anteil oder in in der Beschichtung auf der ersten Rakelseite liegt beispielsweise im Bereich von 0.1 - 60 Gew.-%, insbesondere 1 - 45 Gew.-%, bevorzugt 5 - 40 Gew.-% oder 10 - 30 Gew.-%. Dies hat sich als besonders geeignet herausgestellt.
  • Ein Verhältnis des Massenanteils der Hartstoffpartikel in der Beschichtung auf der ersten Rakelseite zum Massenanteil der Hartstoffpartikel in der Beschichtung auf der zweiten Rakelseite ist insbesondere grösser 2, bevorzugt grösser 10, besonders bevorzugt grösser 100, im Speziellen grösser 1'000.
  • In einer besonderen Ausführungsform liegt das Verhältnis des Massenanteils der Hartstoffpartikel in der Beschichtung auf der ersten Rakelseite zum Massenanteil der Hartstoffpartikel in der Beschichtung auf der zweiten Rakelseite beispielsweise im Bereich von 2:1 - 1'000:1, insbesondere 10:1 - 100:1.
  • Besonders bevorzugt umfasst die Beschichtung der ersten Rakelseite Hartstoffpartikel, während die Beschichtung der zweiten Rakelseite im Wesentlichen frei von Hartstoffpartikeln ist. Unter dem Begriff "im Wesentlichen frei von Hartstoffpartikeln" ist zu verstehen, dass, sofern Hartstoffpartikel vorhanden wären, diese keinen oder keinen wesentlichen Einfluss auf die Verschleissfestigkeit der Rakel haben. Dem Fachmann ist aber klar, dass herstellungsbedingt dennoch ein kleiner Anteil an Hartstoffpartikeln in die zweite Rakelseite, insbesondere in Form von Verunreinigungen, eingebracht sein kann. Insbesondere ist damit, bezogen auf das Gesamtgewicht der Beschichtung der zweiten Rakelseite, ein Massenanteil von weniger als 1 %, vorzugsweise weniger als 0.1 %, besonders bevorzugt weniger als 0.05% gemeint. Besonders bevorzugt weist die Beschichtung der zweiten Rakelseite keine Hartstoffpartikel auf.
  • In Varianten kann die zweite Rakelseite einen wesentlichen Anteil an Hartstoffpartikeln aufweisen, welcher somit die Verschleissfestigkeit der Rakel positiv beeinflusst. Da aber die zweite Rakelseite im Verfahren weniger beansprucht ist, weist erfindungsgemäss die Beschichtung der zweiten Rakelseite einen geringeren Massenanteil an Hartstoffpartikeln auf als die erste Rakelseite.
  • Vorzugsweise umfasst die Beschichtung der zweiten Rakelseite keine Partikel. Damit umfasst die zweite Rakelseite vorzugsweise keine Hartstoffpartikel, aber auch keine weiteren Partikel, welche zum Beispiel die Gleitreibung oder andere Eigenschaften der Rakel beeinflussen können. Da die zweite Rakelseite wesentlich geringeren mechanischen Beanspruchungen ausgesetzt ist, kann es ausreichend sein, wenn nur die erste Rakelseite Partikel umfasst. Es hat sich gezeigt, dass die Verschleissfestigkeit der Rakel in der Regel unabhängig von der Art der Beschichtung der zweiten Rakelseite ist. Eine Beschichtung der zweiten Rakelseite, zum Beispiel mit einem Polymerlack ohne Partikel, kann dennoch sinnvoll sein, um zum Beispiel die Rakeloberfläche vor Korrosion zu schützen oder auch aus ästhetischen Aspekten.
  • In Varianten kann die Beschichtung der zweiten Rakelseite mit Partikeln versehen sein. Diese können zum Beispiel die Festigkeit, die Gleiteigenschaften oder weitere Eigenschaften der Rakel beeinflussen.
  • Vorzugsweise ist ein durchschnittlicher volumenäquivalenter Kugeldurchmesser der Hartstoffpartikel kleiner als 1 '000 Nanometer, vorzugsweise kleiner als 500 Nanometer, besonders bevorzugt kleiner als 250 Nanometer. Die Partikelgrösse der Hartstoffpartikel wird mit Vorteil auf das jeweilige Material der Hartstoffpartikel angepasst.
  • Der volumenäquivalente Kugeldurchmesser gibt den Durchmesser einer Kugel mit gleichem Volumen an wie der betrachtete Partikel respektive Hartstoffpartikel. Sofern die Partikel porös sind, entspricht das Volumen eines Partikels vorzugsweise dem Volumen einer Aussenhülle des Partikels. Unter dem Durchschnitt dieses Wertes wird vorzugsweise der Median der Korngrössenverteilung verstanden. Nachfolgend wird in diesem Zusammenhang von "Partikelgrösse" gesprochen, gemeint ist jedoch der durchschnittliche volumenäquivalente Kugeldurchmesser.
  • In Varianten kann statt des Medians auch ein arithmetischer Mittelwert der Kugeldurchmesser herangezogen werden oder statt des volumenäquivalenten Kugeldurchmessers ein oberflächenäquivalenter Kugeldurchmesser ermittelt werden.
  • Mit derartigen Partikelgrössen können die tribologischen Eigenschaften der erfindungsgemässen Rakel optimiert werden. Es hat sich gezeigt, dass die Rakel mit Hartstoffpartikeln in diesen Grössenordnungen bei optimaler Kontaktzone zwischen Rakel und Druckzylinder oder Papiersubstrat ein sehr gutes Verschleissverhalten aufweisen.
  • Prinzipiell können die Partikelgrössen auch grösser als 1 '000 Nanometer gewählt werden. Sofern aber die Schichtdicke zu gering ist, kann sich dies negativ auf die Qualität der Kontaktzone zwischen Rakel und Druckzylinder bzw. Papiersubstrat auswirken.
  • Vorzugsweise ist der mittlere volumenäquivalente Kugeldurchmesser der Hartstoffpartikel grösser als 1 nm, besonders bevorzugt grösser als 25 nm, weiter bevorzugt grösser als 50 nm. Es hat sich gezeigt, dass damit optimale Verschleissfestigkeiten der Rakel erreicht werden. Geringere Kugeldurchmesser können je nach Dicke der Beschichtung auch in Betracht gezogen werden.
  • Ein Volumenanteil der Hartstoffpartikel beträgt bevorzugt 5 - 30 %, besonders bevorzugt 15 - 20 %. Bei derartigen Anteilen wird eine signifikante Verbesserung bezüglich der Verschleisseigenschaften und der Stabilität der Arbeitskante erreicht.
  • Geringere Volumenanteile sind zwar ebenfalls möglich, zeigen aber im Allgemeinen eine weniger befriedigende Verbesserung der Verschleissfestigkeit. Zu hohe Volumenanteile der Zusatzkomponente können sich ebenfalls negativ auf Eigenschaften der Rakel auswirken. Für spezielle Anwendungen sind aber unter Umständen auch höhere Volumenteile als 30 % geeignet.
  • Die in der Beschichtung vorzugsweise dispergierten Hartstoffpartikel können insbesondere Metalle, Metalloxide, Metallcarbide, Metallnitride, Metallcarbonitride, Metallboride, Keramiken und/oder intermetallische Phasen sein.
  • Besonders bevorzugt umfassen die Hartstoffpartikel mindestens einen der folgenden Stoffe: Metalloxide, insbesondere Aluminiumoxid und/oder Chromoxid; Diamant, Siliziumcarbid, Metallcarbid, Metallnitrid, Metallcarbonitrid, Borcarbid, kubisches Bornitrid, Wolframcarbid. Diese Materialien haben sich als besonders wirksam für eine Verbesserung des Verschleissverhaltens der Beschichtung herausgestellt, insbesondere im Zusammenhang mit der ein Polymer umfassenden Beschichtung. Die Beschichtung kann dabei genau eine Sorte Hartstoffpartikel umfassen.
  • In einer vorteilhaften Variante beinhalten die Hartstoffpartikel unterschiedliche Partikel aus wenigstens zwei unterschiedlichen Materialien. Wie sich gezeigt hat, können dadurch synergetische Effekte hervorgerufen werden, welche die Verschleissfestigkeit und Qualität der Rakel weit stärker als erwartet verbessern. Weiter kann es vorteilhaft sein, wenn die Hartstoffpartikel unterschiedliche Partikel mit wenigstens zwei unterschiedlichen mittleren Partikelgrössen umfassen.
  • Weiter geeignet sind unter anderem Vertreter aus der Reihe WSi2, Fe2O3, TiO2, ZrO2, ThO2, SiO2, CeO2, BeO2, MgO, CdO, UO2, TiC, VC, ZrC, TaC, Cr3C2, ZrB2, TiN, Si3N4, ZrB2, TiB2. Es sind aber auch andere, z. B. metallorganische Partikel als Zusatzkomponente zur Verbesserung des Verschleissverhaltens der Rakel möglich. Weiter können als Hartstoffpartikel auch weitere Metallnitride, Metallcarbonitride, Metallboride, Keramiken und/oder intermetallischen Phasen vorgesehen sein. Weiter können die Hartstoffpartikel auch Metallpartikel umfassen. Geeignet sind z. B. Metallpartikel aus W, Ti, Zr, Mo, und/oder Stahl. Dem Fachmann sind weitere Metalle bekannt, welche zu Hartstoffpartikel verarbeitet werden können. Die Metallpartikel können dabei alleine, in Kombination mit anderen Metallpartikeln und/oder in Kombination mit weiteren Hartstoffpartikeln eingesetzt werden. Weiter können Hartstoffpartikel aus Metalllegierungen eingesetzt werden.
  • Als besonders geeignet haben sich Metallpartikel aus metallischem Molybdän herausgestellt. Rakel mit einer Beschichtung auf der Basis von Polymeren mit darin dispergierten Metallpartikeln aus Molybdän verfügen über eine sehr hohe Verschleissfestigkeit und entsprechend auch eine lange Lebensdauer. Die Arbeitskanten derartiger Rakel weisen dabei eine scharf begrenzte Kontaktzone zwischen der Rakel und dem Druckzylinder bzw. der Druckwalze auf, was ein exakteres Abstreichen von Druckfarbe ermöglicht. In einer weiter bevorzugten Variante weisen die Metallpartikel einen durchschnittlichen volumenäquivalenten Kugeldurchmesser von 0.01 - 0.9 µm und einen Volumenanteil von 5 - 30 %, besonders bevorzugt 15 - 20 %, auf.
  • Rakel mit einer Beschichtung auf Polymerbasis mit darin dispergierten Metalloxiden, Metallcarbiden, Metallnitriden, Metallcarbonitriden, Metallboriden, Keramiken und/oder intermetallischen Phasen weisen insbesondere in Verbindung mit einer polymerhaltigen respektive polymerbasierten Beschichtung eine hohe Verschleissfestigkeit und entsprechend auch eine lange Lebensdauer auf. Derartige Hartstoffpartikel können dabei äusserst stabil in der Beschichtung eingebettet werden und bilden einen strapazierfähigen Verbund mit dem Rakelkörper. Dadurch kann die Festigkeit der Beschichtung insgesamt verbessert werden, und zugleich zeigen die Arbeitskanten derartiger Rakel eine scharf begrenzte Kontaktzone zwischen der Rakel und dem Druckzylinder bzw. der Druckwalze auf, was wiederum ein exakteres Abstreichen von Druckfarbe ermöglicht. Entsprechendes gilt auch für Anwendungen bei der Papierherstellung.
  • Insbesondere die folgenden Metallcarbide und/oder Metallnitride haben sich als besonders geeignet herausgestellt: B4C, kubisches BN, TiC, WC und/oder SiC. Bei den Metalloxiden ist im Besonderen Al2O3 vorteilhaft.
  • Die Hartstoffpartikel müssen jedoch nicht zwingend in Form von Metallpartikeln, Metalloxiden, Metallcarbiden, Metallnitriden, Metallcarbonitriden, Metallboriden, Keramiken und/oder intermetallischen Phasen vorliegen. Grundsätzlich kommen als Hartstoffpartikel auch Partikel aus anderen Materialien in Frage.
  • In einer vorteilhaften Variante umfassen die Hartstoffpartikel Diamant. Bevorzugt wird dabei Diamant mit mono- und/oder polykristalliner Struktur eingesetzt. Hartstoffpartikel aus Diamant haben sich bei den erfindungsgemässen Rakel als besonders vorteilhaft erwiesen und bringen insbesondere eine weitere Verbesserung der Verschleissfestigkeit und Stabilisierung der Arbeitskanten der Rakel mit sich. Dies dürfte unter anderem auf die hohe Härte sowie die chemische und mechanische Stabilität von Diamant zurückzuführen sein.
  • Wie sich gezeigt hat, ist es prinzipiell aber möglich, anstelle oder zusätzlich zu Hartstoffpartikeln aus Diamant mit mono- und/oder polykristalliner Struktur Partikel aus amorphem diamantartigem Kohlenstoff ("diamond-like carbon"; "DLC") einzusetzen. Mit Vorteil weist der amorphe diamantartige Kohlenstoff jedoch einen hohen sp3-Hybridisierungsanteil auf, damit eine ausreichende Härte gegeben ist. Je nach Verwendungszweck der Rakel kann amorpher diamantartiger Kohlenstoff sogar Vorteile haben. Im Allgemeinen ist amorpher diamantartiger Kohlenstoff zudem kostengünstiger als Diamant.
  • Besonders bevorzugt umfassen die Hartstoffpartikel sowohl SiC als auch Diamant, wobei weiter bevorzugt eine Partikelgrösse des SiC grösser ist als eine Partikelgrösse des Diamants. Insbesondere umfassen die Hartstoffpartikel dabei SiC mit einer Partikelgrösse von 0.7 - 0.9 µm und Diamant mit einer Partikelgrösse von 5 nm - 0.9 µm, bevorzugt 200 - 300 nm.
  • Es ist aber auch möglich, die Partikelgrössen von SiC und Diamant anders zu wählen, so dass z. B. die Partikelgrösse des Diamants gleich gross oder grösser ist als die Partikelgrösse des SiC. Zudem sind auch andere Kombinationen von Hartstoffpartikeln möglich, wobei auch mehr als zwei, z. B. drei, vier oder noch mehr unterschiedliche Hartstoffpartikel miteinander kombiniert werden können.
  • In einer anderen bevorzugten Variante der Erfindung umfassen die Hartstoffpartikel beispielsweise sowohl SiC als auch kubisches BN, wobei bevorzugt eine Partikelgrösse des BN in etwa der Partikelgrösse des SiC entspricht. Besonders bevorzugt messen die Partikelgrössen des SiC und des kubischen BN dabei ca. 0.1 - 0.9 µm.
  • Des Weiteren hat es sich für gewisse Anwendungen als vorteilhaft erwiesen, wenn die Beschichtung zur Verbesserung der Verschleissfestigkeit Schmiermittel, insbesondere Schmierpartikel, umfasst. Dadurch kann beim Abrakeln zusätzlich eine Schmierwirkung erzielt werden, welche den Verschleiss reduziert. Als Schmiermittel oder Schmierpartikel kommen grundsätzlich Substanzen in Frage, welche eine Reduktion der Gleitreibung zwischen Rakel und Druckzylinder hervorrufen und dabei insbesondere ausreichend stabil sind, so dass keine Beeinträchtigung oder Verschmutzung des Druckzylinders eintritt.
  • In Frage kommen beispielsweise polymere Thermoplaste, z. B. Perfluoralkoxylalkan und/oder Polytetrafluorethylen, sowie Graphit, Molybdändisulfid und/oder Weichmetalle, wie beispielsweise Aluminium, Kupfer und/oder Blei.
  • Ein gut geeignetes Schmiermittel ist beispielsweise Polytetrafluorethylen (PTFE). Polytetrafluorethylen wird bevorzugt in Form von Schmierpartikeln eingesetzt.
  • Insbesondere die Verwendung von polymeren Thermoplasten, aber auch bei anderen Polymeren, besteht der Vorteil, dass diese Schmierstoffe besonders gut in die Matrix der Beschichtung eingebunden werden kann, insbesondere da die erfindungsgemässe Beschichtung polymerbasiert ist.
  • Als Schmiermittel besonders vorteilhaft hat sich aber auch hexagonales BN herausgestellt. Dies insbesondere in Partikelform. Wie sich gezeigt hat, konnte mit Schmiermitteln, insbesondere Schmierpartikeln aus hexagonalem BN, die Verschleissfestigkeit der Rakel bei einer Vielzahl von Anwendungen mit unterschiedlichen Druckzylindern verbessert werden. Dies insbesondere weitgehend unabhängig von den Verfahrensparametern beim Abrakeln. Mit anderen Worten hat sich hexagonales BN als äusserst vielseitig einsetzbares und wirkungsvolles Schmiermittel erwiesen.
  • Schmierpartikel, insbesondere Schmierpartikel aus hexagonalem BN, weisen mit Vorteil eine Partikelgrösse von 50 nm - 0.9 µm, bevorzugt 80 - 300 nm, weiter bevorzugt 90 - 110 nm auf. Dadurch wird für eine Vielzahl von Anwendungen eine optimale Wirkung erreicht. Prinzipiell können aber für spezifische Anwendungen auch andere Partikelgrössen geeignet sein.
  • In einer besonders bevorzugten Ausführungsform liegen in der Beschichtung als Zusatzstoffe zur Verbesserung der Verschleissfestigkeit sowohl Schmiermittel, insbesondere Schmierpartikel, als auch Hartstoffpartikel vor. Idealerweise werden dabei Schmierpartikel aus hexagonalem BN zusammen mit Hartstoffpartikeln aus SiC verwendet.
  • Gemäss einer weiteren vorteilhaften Ausführungsform weist die ein Polymer umfassende Beschichtung vorteilhafterweise weniger als 50 Gew.-%, insbesondere weniger als 25 Gew.-%, bevorzugt weniger als 10 Gew.-%, im Speziellen weniger als 5 Gew.-%, ganz besonders bevorzugt weniger als 2 Gew.-%, im ganz Speziellen weniger als 1 Gew.-% oder weniger als 0.1 Gew.-%, partikelförmige Schmiermittel auf. Dabei handelt es sich insbesondere um partikelförmige organische Schmiermittel, im ganz Besonderen um partikelförmige polymerbasierte Schmiermittel, beispielsweise partikelförmiges Polytetrafluorethylen (PTFE).
  • In einer besonderen Ausführungsform weisen sämtliche Beschichtungen vorteilhafterweise weniger als 50 Gew.-%, insbesondere weniger als 25 Gew.-%, bevorzugt weniger als 10 Gew.-%, im Speziellen weniger als 5 Gew.-%, ganz besonders bevorzugt weniger als 2 Gew.-%, im ganz Speziellen weniger als 1 Gew.-% oder weniger als 0.1 Gew.-%, partikelförmige Schmiermittel auf. Im Besonderen sind sämtliche Beschichtungen der Rakel im Wesentlichen frei von partikelförmigen Schmiermitteln.
  • Durch die ein Polymer umfassende Beschichtung oder die Polymer-basierte Beschichtungen kann bei Bedarf auf Schmierpartikel verzichtet werden, ohne dass die Gleit- und Abstreifeigenschaften der Rakel nennenswert verschlechtert würden. Dies vereinfacht die Herstellung wesentlich. Die Polymer umfassende Beschichtungen zeigen bei den meisten Anwendungen bereits sehr gute Gleit- und Abstreifeigenschaften, welche teilweise sogar besser sind als bei herkömmlichen Rakel und allenfalls durch nichtpartikelförmige Schmiermittel in einfacherer Art und Weise noch gesteigert werden können.
  • In einer weiteren Ausführungsform umfasst die Beschichtung zusätzlich zu den Hartstoffpartikeln Fasern zur Verstärkung der Beschichtung. Die Fasern können beispielsweise Kohlefasern, Kunststofffasern oder ähnliches umfassen.
  • Eine Schichtdicke der Beschichtung beträgt vorzugsweise 1 - 30 µm (Mikrometer). Weiter bevorzugt beträgt die Schichtdicke 5 - 20 µm, besonders bevorzugt 5 - 10 µm. Derartige Schichtdicke bieten einen optimalen Schutz der Arbeitskante der Rakel. Zudem weisen derart bemessene Schichtdicke eine hohe Eigenstabilität auf, was die teilweise oder vollständige Delamination der ersten Beschichtung, beispielsweise während des Abrakelns von Druckfarbe von einem Druckzylinder, wirkungsvoll reduziert.
  • Dicken von weniger als 1 µm sind zwar möglich, die Verschleissfestigkeit der Arbeitskante bzw. der Rakel nimmt dabei aber rasch ab. Grössere Dicken als 30 µm sind auch machbar. Diese sind aber im Allgemeinen weniger ökonomisch und können sich unter Umständen auch negativ auf die Qualität der Arbeitskante auswirken. Für spezielle Einsatzbereiche der Rakel können Dicken von weniger als 1 µm oder mehr als 30 µm jedoch durchaus vorteilhaft sein.
  • In einer besonders bevorzugten Ausführungsform verfügt die Rakel nebst der ein Polymer umfassenden Beschichtung über höchstens drei, insbesondere höchstens zwei, bevorzugt höchstens eine, im Besonderen keine weitere Beschichtung. Ganz besonders bevorzugt besteht die Beschichtung der Rakel einzig aus der ein Polymer umfassenden Beschichtung und optional einer Haftbeschichtung. Dies vereinfacht einerseits die Herstellung, andererseits haben sich Beschichtungen mit wenigen oder gar keinen zusätzlichen Beschichtungen als besonders zuverlässig und robust herausgestellt. Inkompatibilitäten zwischen unterschiedlichen Beschichtungen können so reduziert oder gänzlich vermieden werden.
  • Für spezielle Anwendungen können aber auch andere Beschichtungsaufbauten vorteilhaft sein.
  • Vorzugsweise ist der Rakelkörper aus einem Metall oder einer Metalllegierung gebildet. Besonders vorteilhaft sind Rakelkörper aus Metallen, welche robust und korrosionsresistent sind. Insbesondere aus diesen Gründen sind Rakelkörper aus Aluminium besonders vorteilhaft. Weiter können Rakelkörper aber auch aus anderen Metallen gefertigt sein, zum Beispiel Eisen etc. Die Rakel kann aber auch aus einer Metalllegierung gefertigt sein, womit die gewünschten Eigenschaften der Rakel optimal gesteuert werden können. Die Materialwahl des Rakelkörpers ist bevorzugt auf die Beschichtung derart abgestimmt, dass eine optimale Verschleissfestigkeit der Rakel und damit eine grösstmögliche Lebensdauer erreicht, sowie ein präzises Abrakeln ermöglicht werden.
  • In Varianten können auch andere Materialien für die Herstellung des Rakelkörpers verwendet werden.
  • In einer besonders bevorzugten Ausführungsform besteht der Rakelkörper aus Stahl. Stahl hat sich in mechanischer Hinsicht als besonders robustes und geeignetes Material für die erfindungsgemässen Rakel erwiesen. Damit können präzise Rakel mit langer Lebensdauer kostengünstig hergestellt werden.
  • Anstelle von Stahl können jedoch beispielsweise auch andere Metalle oder Metalllegierungen als Grundkörper eingesetzt werden.
  • Bevorzugt ist dabei wenigstens ein bezüglich der longitudinalen Richtung vorliegender Mantelbereich des Grundkörpers vollständig und rundum einer Beschichtung bedeckt. Dadurch sind wenigstens die Arbeitskante, die Oberseite, die Unterseite und die der Arbeitskante gegenüberliegende hintere Stirnseite des Grundkörpers mit einer Beschichtung bedeckt. Die senkrecht zur longitudinalen Richtung vorliegenden Seitenflächen des Grundkörpers können unbeschichtet vorliegen. Es liegt aber auch im Rahmen der Erfindung, dass die zweite Beschichtung den Grundkörper vollständig und allseitig bedeckt, also auch die senkrecht zur longitudinalen Richtung vorliegenden Seitenflächen des Grundkörpers mit einer der Beschichtungen bedeckt sind. In diesem Fall umgibt wenigstens eine der Beschichtung den Grundkörper vollständig.
  • Dadurch dass wenigstens der bezüglich der longitudinalen Richtung vorliegende Mantelbereich des Grundkörpers vollständig und rundum mit einer Beschichtung bedeckt ist, sind auch die wesentlichen Bereiche des Grundkörpers, welche nicht zur Arbeitskante gehören, mit der Beschichtung versehen. Dies ist insbesondere vorteilhaft, um den Grundkörper vor den Wasser-basierten oder leicht sauren Druckfarben und/oder anderen mit der Rakel in Kontakt kommenden Flüssigkeiten zu schützen. Im Besonderen bei Grundkörpern aus Stahl wird so ein optimaler Rostschutz für die Rakel geschaffen. Damit wird die Konstanz der Druckqualität während dem Druckprozess weiter verbessert, da der während dem Druckprozess mit der Rakel in Kontakt stehende Druckzylinder bzw. die Druckwalze beispielsweise nicht durch Rostpartikel verunreinigt wird. Des Weiteren ist der Grundkörper durch eine im Mantelbereich aufgebrachte Beschichtung auch während der Lagerung und/oder dem Transport bestmöglich gegen Rostbildung geschützt.
  • In einem weiteren Aspekt der Erfindung ist die Rakel aber nur dort beschichtet, wo die grösste mechanische Beanspruchung auftritt, namentlich an der Arbeitskante und deren peripheren Bereichen. Damit kann die Beschichtung kostengünstig gehalten werden. Diese Variante ist insbesondere bei Rakelkörpern von Vorteil, welche im Wesentlichen chemisch inert sind, insbesondere auf das Anwendungsgebiet der Rakel. So können zum Beispiel Rakelkörper aus rostfreiem Stahl oder aus Aluminium gegebenenfalls nur im Bereich der Arbeitskante respektive auf der, im Betrieb dem Druckzylinder abgewandten Seite nicht beschichtet sein. Damit können die Materialkosten bei der Herstellung reduziert werden.
  • In einer weiteren bevorzugten Ausführungsform ist Rakelkörper aus einem Kunststoff respektive aus einem Kunststoffmaterial ausgebildet. Für spezielle Anwendungen haben sich Grundkörper aus Kunststoffen gegenüber Grundkörpern aus Stahl aufgrund ihrer unterschiedlichen mechanischen und chemischen Eigenschaften teilweise als vorteilhafter erwiesen. So verfügen einige der in Frage kommenden Kunststoffe gegenüber typischen Wasser-basierten und leicht sauren Druckfarben über eine ausreichende chemische Stabilität oder Inertheit, womit der Grundkörper nicht speziell geschützt werden muss, wie im Falle eines Grundkörpers aus Stahl. Weiter sind Kunststoffe kostengünstig im Ankauf sowie einfach in der Bearbeitung. Weiter sind Kunststoffe leichter und damit auch in der Anwendung, insbesondere in der Handhabung bei der Wartung von Druckmaschinen und dergleichen zu bevorzugen. Die Rakelkörper aus Kunststoff weisen weiter gute Eigenschaften bei der Beschichtung mit einer polymerbasierten Beschichtung auf. So kann der Rakelkörper nicht nur rein adhäsiv wie beim Rakelkörpern aus Metall, sondern gegebenenfalls auch chemisch mit der Beschichtung verbunden oder thermisch mit der Beschichtung in einer Grenzphase verschmolzen werden.
  • Als Kunststoffmaterial kommen z. B. Polymermaterialien in Frage. Dies können unter anderem thermoplastische, duroplastische und/oder elastomere Polymermaterialien sein. Geeignete Kunststoffe sind z. B. Polyethylen, Polypropylen, Polyvinylchlorid, Polystyren, Polyvinylalkohol, Polyethylen-Terephthalat, Polyamid, Polyacetal, Polycarbonat, Polyarylat, Polyetheretherketon, Polyimid, Polyester, Polytetrafluorethylen und/oder Polyurethan. Auch Kompositstrukturen mit Fasern zur Verstärkung der Polymermatrix sind möglich.
  • Grundsätzlich können jedoch auch Grundkörper verwendet werden, welche z. B. sowohl aus Metall, insbesondere Stahl, als auch aus Kunststoff bestehen. Auch Grundkörper mit anderen Materialien, z. B. Keramiken und/oder Kompositmaterialen, können für spezielle Anwendungen gegebenenfalls geeignet sein.
  • Vorzugsweise wird der Rakelkörper vor der Beschichtung erwärmt. Damit wird einerseits sichergestellt, dass der Rakelkörper für die Beschichtung trocken ist. So kann verhindert werden, dass sich eine Beschichtung später vom Rakelkörper löst, zum Beispiel durch Korrosion des Rakelkörpers unter der Beschichtung. Weiter wird damit erreicht, dass die Beschichtung optimal am Rakelkörper haftet respektive sich mit diesem verbindet. Die polymerbasierte Beschichtung weist damit auf der Rakel eine geringere Viskosität auf, womit die Beschichtung gleichmässig verteilt werden kann, ohne dass sich Streifen oder Tropfen bilden. Im Falle, dass das aufzutragende Beschichtungsmaterial Lösemittel umfasst, kann damit weiter der Trocknungsvorgang begünstigt werden.
  • In Varianten kann auf die Erwärmung des Rakelkörpers vor der Beschichtung auch verzichtet werden.
  • Weiter kann es vorteilhaft sein, wenn der Rakelkörper vor der Beschichtung aufgeraut, insbesondere mechanisch aufgeraut, wird. Damit kann die Haftung zwischen Rakelkörper und Beschichtung noch weiter verbessert werden. Dies ist aber nicht zwingend notwendig.
  • Im Besondern kann vor der Beschichtung des Rakelkörpers mit der ein Polymer umfassenden Beschichtung eine Haftbeschichtung aufgetragen werden. Dies kann zusätzlich oder anstelle der Aufrauhung erfolgen und ermöglicht ebenfalls eine Verbesserung der Haftung zwischen Rakelkörper oder allenfalls bereits aufgetragener Schichten und der erfindungsgemässen Beschichtung.
  • Nach der Auftragung der Haftbeschichtung und vor der Beschichtung des Rakelkörpers mit der ein Polymer umfassenden Beschichtung kann optional zudem ein Zwischentrocknungsschritt erfolgen. Dies kann je nach Haftbeschichtung vorteilhaft sein.
  • Vorzugsweise wird der Rakelkörper vor der Beschichtung mechanisch und/oder elektrolytisch entfettet. Bevorzugt ist eine elektrolytische Entfettung. Damit wird wiederum eine optimale Verbindung zwischen der Beschichtung und dem Rakelkörper erreicht. Auf der Rakel vorhandene Verunreinigung, insbesondere fetthaltige Verunreinigung kann die Adhäsion zwischen Beschichtung und Rakelkörper empfindlich stören.
  • In Varianten kann auf das elektrolytische Entfetten auch verzichtet werden. In diesem Fall kann auf einen anderen Reinigungsschritt zurückgegriffen werden, zum Beispiel auf einen Reinigungsschritt mit einer Waschlösung, wie zum Beispiel einem organischen Lösemittel oder einer Seifenlösung.
  • Bevorzugt wird die Rakel zur elektrolytischen Entfettung als Anode geschaltet, um Fett mittels Kationen vom Rakelkörper zu entfernen. Bei der sogenannten anodischen Entfettung wird am Rakelkörper unter der Fettschicht Sauerstoff gebildet, welcher die Fettschicht ablöst. Die anodische Entfettung hat insbesondere gegenüber der kathodischen Entfettung den Vorteil, dass eine Wasserstoffversprödung vermieden werden kann. Der erhöhte Strombedarf gegenüber der kathodischen Entfettung wird deshalb insbesondere bei Rakel aus Stahl bewusst in Kauf genommen, um den Rakelkörper zu schonen.
  • Die Entfettung kann alternativ auch mit vertauschten Elektroden, als kathodische Entfettung, durchgeführt werden. Diese hat den Vorteil, dass durch die Bildung von Wasserstoff unter der Fettschicht mit derselben Strommenge das doppelte Gasvolumen erzeugt werden kann. Allerdings muss dabei unter Umständen die Wasserstoffversprödung in Kauf genommen werden. Bei Rakelkörpern, welche keiner Wasserstoffversrprödung unterliegen, kann jedoch mühelos die kathodische Entfettung gewählt werden, um bei geringerem Stromverbrauch eine effizientere Entfettung zu erhalten. Weiter können auch beide Techniken sequentiell angewandt werden.
  • Vorzugsweise erfolgt nach der Beschichtung des Rakelkörpers ein Trocknungsschritt, wobei insbesondere auf den Trocknungsschritt ein Erhärtungsschritt folgt. Im Trocknungsschritt können allfällig in der Beschichtung vorhandene Lösemittel schonend entfernt werden, während im Erhärtungsschritt auch noch die kleinsten Restmengen an Lösemitteln entfernt und die Struktur der Beschichtung ausgehärtet wird. Der Erhärtungsschritt kann dabei rein thermisch sein, das heisst zum Beispiel die Beschichtung mit dem oder auf dem Rakelkörper verbacken. Anderseits kann mit dem Erhärtungsschritt auch ein chemischer Prozess in Gang gesetzt werden. Dieser kann zum Beispiel eine Polymerisierung umfassen, welcher durch UV-Strahlen in Gang gesetzt wird. Dem Fachmann sind auch weitere solche Schritte bekannt, welche auf eine polymerbasierte Beschichtung folgen können.
  • In Varianten kann auf den Trocknungsschritt und/oder den Erhärtungsschritt auch verzichtet werden.
  • Bevorzugt erfolgt der Erhärtungsschritt bei einer Temperatur von 150 °C bis 350 °C, vorzugsweise bei 200 °C bis 300 °C, insbesondere bei 230 °C bis 270 °C. Insbesondere werden diese Temperaturen während einer Haltezeit von 0.5 - 15 Stunden, bevorzugt 0.5 - 8 Stunden, gehalten. Derartige Temperaturen und Haltezeiten haben sich als optimal erwiesen, um ausreichende Härten der Beschichtungen zu erzielen.
  • Temperaturen von weniger als 100 °C sind ebenfalls möglich. In diesem Fall sind jedoch sehr lange und meist unökonomische Haltezeiten erforderlich. Höhere Temperaturen als 350 °C sind, je nach Material des Grundkörpers und der Beschichtung, prinzipiell auch machbar, es ist aber darauf zu achten, dass insbesondere die polymerhaltige Beschichtung durch den Erhärtungsschritt nicht beschädigt wird.
  • Vorzugsweise wird nach dem vollständigen Aushärten im Erhärtungsschritt die Beschichtung einer Nachbehandlung unterzogen. Besonders bevorzugt handelt es sich dabei um eine mechanische Nachbehandlung und/oder eine Reinigung. Beispielsweise kann eine mechanische Bearbeitung durchgeführt werden, wie ein Schleifen, Läppen oder Polieren der Beschichtung oder eine Behandlung unter Einsatz geeigneter Werkzeuge, wie Messer, Fräser oder dergleichen.
  • In Varianten kann auf die Nachbehandlung auch verzichtet werden
  • Aus der nachfolgenden Detailbeschreibung und der Gesamtheit der Patentansprüche ergeben sich weitere vorteilhafte Ausführungsformen und Merkmalskombinationen der Erfindung.
  • Kurze Beschreibung der Zeichnungen
  • Die zur Erläuterung des Ausführungsbeispiels verwendeten Zeichnungen zeigen:
  • Fig. 1
    Einen Querschnitt durch eine erste erfindungsgemässe Lamellenrakel, wobei eine Arbeitskante der Lamellenrakel mit einer polymerbasierten Beschichtung und darin dispergierten Hartstoffpartikeln beschichtet ist;
    Fig. 2
    Einen Querschnitt durch eine zweite erfindungsgemässe Lamellenrakel, wobei eine Arbeitskante der Lamellenrakel mit einer polymerbasierten Beschichtung und darin dispergierten Hartstoffpartikeln beschichtet ist;
    Fig. 3
    Einen Querschnitt durch eine dritte erfindungsgemässe Lamellenrakel, welche vollständig mit einer polymerbasierten Beschichtung und darin dispergierten Hartstoffpartikeln beschichtet ist;
    Fig. 4
    Eine schematische Darstellung eines erfindungsgemässen Verfahrens zur Herstellung einer Rakel.
  • Grundsätzlich sind in den Figuren gleiche Teile mit gleichen Bezugszeichen versehen.
  • Wege zur Ausführung der Erfindung
  • In Fig. 1 ist eine erfindungsgemässe Lamellenrakel 100 in Kontakt mit einer Druckwalze 170 im Querschnitt dargestellt. Die Lamellenrakel 100 beinhaltet einen Grundkörper 110 aus Stahl, welcher auf der in Fig. 1 linken Seite einen hinteren Bereich 120 mit einem im Wesentlichen rechteckigen Querschnitt aufweist. Der hintere Bereich 120 ist dabei als Befestigungsbereich vorgesehen, um die Lamellenrakel beispielsweise in einer entsprechenden Aufnahmevorrichtung einer Druckmaschine zu halten. Eine Rakeldicke, gemessen von der Oberseite 121 zur Unterseite 122 des hinteren Bereichs, beträgt ca. 0.2 mm. Eine senkrecht zur Blattebene gemessene Länge des Grundkörpers 110 bzw. der Lamellenrakel 100 beträgt beispielsweise 1000 mm. Die Druckwalze 170 kann eine Drehrichtung 171 mit oder entgegen dem Uhrzeigersinn aufweisen. Bei Anwendungen im Flexodruck sind beide Drehrichtungen möglich. Im Gravurdruck wird die Druckwalze in der vorliegenden Anordnung im Uhrzeigersinn gedreht.
  • Auf der in Fig. 1 rechten Seite ist der Grundkörper 110 zur Ausbildung einer Arbeitskante 130 von der Oberseite 121 des hinteren Bereichs 120 her stufenartig verjüngt. Eine Oberseite 131 der Arbeitskante 130 liegt auf einer Ebene unterhalb der Ebene der Oberseite 121 des hinteren Bereichs 120, ist aber im Wesentlichen parallel bzw. planparallel zur Oberseite 121 des hinteren Bereichs 120 ausgebildet. Zwischen dem hinteren Bereich 120 und der Arbeitskante 130 liegt ein konkav ausgeformter Übergangsbereich 125 vor. Die Unterseite 122 des hinteren Bereichs 120 und die Unterseite 132 der Arbeitskante 130 liegen in einer gemeinsamen Ebene, welche planparallel zur Oberseite 121 des hinteren Bereichs 120 und planparallel zur Oberseite 131 der Arbeitskante 130 ausgebildet ist. Eine Breite des Grundkörpers 110, gemessen vom Ende des hinteren Bereichs bis zur Stirnseite 140 der Arbeitskante 130, misst beispielsweise 40 mm. Eine Dicke des Arbeitsbereichs 130, gemessen von der Oberseite 131 zur Unterseite 132 des Arbeitsbereichs, beträgt beispielsweise 0.060 - 0.150 mm, was ungefähr der halben Rakeldicke im hinteren Bereich 120 entspricht. Eine Breite des Arbeitsbereichs 130, gemessen an der Oberseite 131 des Arbeitsbereichs 130 von der Stirnseite 140 bis zum Übergangsbereich 125, beträgt beispielsweise 0.8 - 5 mm.
  • Eine freie Stirnseite 140 des freien Endes der Arbeitskante 130 verläuft von der Oberseite 131 der Arbeitskante 130 schräg nach unten zur Unterseite 132 der Arbeitskante 130 hin. Die Stirnseite 140 weist bezüglich der Oberseite 131 der Arbeitskante 130 bzw. bezüglich der Unterseite 132 der Arbeitskante 130 einen Winkel von ca. 45° bzw. 135° auf. Ein oberer Übergangsbereich zwischen der Oberseite 131 und der Stirnseite 140 der Arbeitskante 130 ist abgerundet. Ebenso ist ein unterer Übergangsbereich zwischen der Stirnseite 140 und der Unterseite 132 der Arbeitskante 130 abgerundet.
  • Die Arbeitskante 130 der Lamellenrakel 100 ist des Weiteren von einer Beschichtung 150 umgeben. Die Beschichtung 150 bedeckt die Oberseite 131 der Arbeitskante 130, den Übergangsbereich 125 und einen an diesen anschliessenden Teilbereich der Oberseite 121 des hinteren Bereichs 120 des Grundkörpers 110 vollständig. Ebenso bedeckt die Beschichtung 150 die Stirnseite 140, die Unterseite 132 der Arbeitskante 130 und einen an die Unterseite der Arbeitskante 130 anschliessenden Teilbereich der Unterseite 122 des hinteren Bereichs 120 des Grundkörpers 110.
  • Die Beschichtung 150 ist eine polymerbasierte Beschichtung, zum Beispiel umfasst die Beschichtung Epoxidharz, wobei der Epoxidharzanteil in der gebrauchsfertigen Beschichtung beispielsweise bei ungefähr 70 oder 80 Gew.% liegt, je nach Seite der Rakel (siehe unten). Darin sind Hartstoffpartikel 160, z. B. aus Siliziumcarbid (SiC), dispergiert. Eine durchschnittliche Partikelgrösse der Hartstoffpartikel 160 liegt bei ungefähr 0.8 µm. Die Schichtdicke der ersten Beschichtung 150 misst im Bereich der Arbeitskante 130 z. B. 15 µm. Im Bereich der Oberseite 121 und der Unterseite 122 des hinteren Bereichs 120 nimmt die Schichtdicke der ersten Beschichtung 150 kontinuierlich ab, so dass die erste Beschichtung 150 in einer Richtung von der Arbeitskante 130 weg keilförmig ausläuft.
  • Der Massenanteil an Hartstoffpartikel 160 ist in der Beschichtung der der Druckwalze zugewandten ersten Seite der Rakel 100 höher, als in der Beschichtung der der Druckwalze abgewandten zweiten Seite der Rakel. Die erste Seite umfasst die Stirnseite 140 sowie die Unterseite 132 der Arbeitskante 130. Die zweite Seite umfasst die Oberseite 131 der Arbeitskante 130. Der Massenanteil an Hartstoffpartikel 160 beträgt in der Beschichtung der ersten Seite zum Beispiel 20 Gew.% und der Massenanteil an Epoxidharz beträgt in der Beschichtung derselben Seite zum Beispiel 70 Gew.%. Der Massenanteil an Hartstoffpartikel 160 beträgt in der Beschichtung der zweiten Seite zum Beispiel 10 Gew.% und der Massenanteil an Epoxidharz beträgt in der Beschichtung derselben Seite zum Beispiel 80 Gew.%. Damit weist die zweite Seite der Rakel 100 einen geringeren Gehalt an Hartstoffpartikel 160 auf als die erste Seite der Rakel 100.
  • Die erste Seite, das heisst die der Druckwalze 170 zugewandte Seite, umfasst damit den Kontaktbereich zwischen Rakel 100 und Druckwalze 170, namentlich die Stirnfläche 140. Weiter umfasst die erste Seite auch diejenige Oberfläche 122 der Rakel, welche mit einer Tangente im Kontaktbereich der Rakel einen Winkel kleiner als 90° einschliesst. Dieselbe Interpretation gilt auch für die nachfolgenden Figuren 2 und 3.
  • Fig. 2 zeigt eine zweite erfindungsgemässe Lamellenrakel 200 im Querschnitt. Die zweite Lamellenrakel 200 verfügt über einen Grundkörper 210 mit einem hinteren Bereich 220 und einem Arbeitskantenbereich 230 und ist im Wesentlichen baugleich mit der ersten Lamellenrakel 100 aus Fig. 1. Ebenso sind bei der zweiten Lamellenrakel 200 die Oberseite 231 der Arbeitskante 230, der Übergangsbereich 225 und ein an diesen anschliessenden Teilbereich der Oberseite 221 des hinteren Bereichs 220 des Grundkörpers 210 sowie die Stirnseite 240, die Unterseite 232 der Arbeitskante 230 und ein an die Unterseite 232 der Arbeitskante 230 anschliessenden Teilbereich der Unterseite 222 des hinteren Bereichs 220 des Grundkörpers 210 mit einer Beschichtung 250 überzogen.
  • Die Beschichtung 250 besteht wiederum aus einer polymerbasierten Beschichtung, zum Beispiel Phenol-Formaldehydharz. Die Beschichtung der der Druckwalze zugewandten ersten Seite der Rakel 200 umfasst Hartstoffpartikel 260, während die Beschichtung der der Druckwalze abgewandten zweiten Seite der Rakel keine respektive im Wesentlichen kein Hartstoffpartikel umfasst. Dabei umfasst die erste Seite wiederum die Stirnseite 240 sowie die Unterseite 232 der Arbeitskante 230. Die zweite Seite umfasst die Oberseite 231 der Arbeitskante 230. Bei den Hartstoffpartikeln handelt es sich beispielswiese um kubisches B4C.
  • Auf der ersten Seite der Rakel 200 weist die gebrauchsfertige Beschichtung einen Gehalt an Phenol-Formaldehydharz von beispielsweise 80 Gew.% auf. Weiter umfasst die Beschichtung der ersten Seite einen Gehalt an kubischem B4C von 15 Gew.%. Die zweite Seite der Rakel 200 weist einen Gehalt an Phenol-Formaldehydharz von beispielsweise 95 Gew.% auf. Die zweite Seite der Rakel 200 ist im Wesentlichen frei von Partikeln.
  • Eine durchschnittliche Partikelgrösse der Hartstoffpartikel 260 liegt bei ungefähr 0.6 µm. Die Schichtdicke der ersten Beschichtung 250 misst im Bereich der Arbeitskante 230 z. B. 17 µm.
  • Fig. 3 zeigt eine dritte erfindungsgemässe Lamellenrakel 300 im Querschnitt. Die dritte Rakel 300 verfügt über einen Grundkörper 310, welcher im Bereich der Arbeitskante 330 in gleicher Weise wie die erste Rakel aus Fig. 1 mit einer Beschichtung 350 beschichtet ist. Entsprechend ist die Oberseite 331 der Arbeitskante 330, der Übergangsbereich 325 und ein an diesen anschliessenden Teilbereich der Oberseite 321 des hinteren Bereichs 320 des Grundkörpers 310 sowie die Stirnseite 340, die Unterseite 332 der Arbeitskante 330 und ein an die Unterseite 332 der Arbeitskante 330 anschliessenden Teilbereich der Unterseite 322 des hinteren Bereichs 320 des Grundkörpers 310 mit der Beschichtung 350 überzogen.
  • Bei der dritten Lamellenrakel liegt eine Beschichtung 350 vor, welche die Lamellenrakel 300 vollständig umgibt. Mit anderen Worten bedeckt die Beschichtung 350 sowohl die Oberseite 321 als auch die Unterseite 322 des hinteren Bereichs 320 des Grundkörpers 310 vollständig.
  • Die Beschichtung 350 besteht wiederum aus einer polymerbasierten Beschichtung, zum Beispiel Polyamid. Die Beschichtung der der Druckwalze zugewandten ersten Seite der Rakel 300 umfasst Hartstoffpartikel 360, während die Beschichtung der der Druckwalze abgewandten zweiten Seite der Rakel keine respektive im Wesentlichen kein Hartstoffpartikel umfasst. Dabei umfasst die erste Seite wiederum die Stirnseite 340 sowie die Unterseite 332 der Arbeitskante 330. Die zweite Seite umfasst die Oberseite 331 der Arbeitskante 330. Bei den Hartstoffpartikeln handelt es sich beispielswiese um Wolframpartikel.
  • Auf der ersten Seite der Rakel 300 weist die gebrauchsfertige Beschichtung einen Gehalt an Polyamid von beispielsweise 85 Gew.% auf. Weiter umfasst die Beschichtung der ersten Seite einen Gehalt an Wolframpartikeln von 8 Gew. % auf. Die zweite Seite der Rakel 300 weist einen Gehalt an Phenol-Formaldehydharz von beispielsweise 93 Gew.% auf. Die zweite Seite der Rakel 200 ist wiederum im Wesentlichen frei von Partikeln.
  • Eine durchschnittliche Partikelgrösse der Hartstoffpartikel 360 liegt bei ungefähr 0.3 µm. Die Schichtdicke der ersten Beschichtung 350 misst im Bereich der Arbeitskante 330 z. B. 12 µm.
  • Die vorstehend beschriebenen und in den Fig. 1 - 3 dargestellten Lamellenrakel sind lediglich als illustrative Beispiele für eine Vielzahl von realisierbaren Ausführungsformen zu verstehen.
  • Fig. 4 veranschaulicht ein Verfahren 400 zur Herstellung einer Lamellenrakel, wie sie z. B. in Fig. 1 abgebildet ist. Dabei wird in einem ersten Schritt 401 die Rakel elektrolytisch entfettet. Dabei wird die Rakel 100 zur elektrolytischen Entfettung als Anode geschaltet, um Fett vom Rakelkörper 110 zu entfernen. Durch die anodische elektrolytische Entfettung wird eine Wasserstoffversprödung vermieden. Anschliessend wird der Rakelkörper 110 erwärmt. In einem zweiten Schritt 402 erfolgt eine Beschichtung mit dem polymerbasierten Beschichtungsmaterial, in welchem die Hartstoffpartikel und gegebenenfalls weitere Partikel dispergiert und/oder andere Hilfsstoffe eingebracht sind. im letzten Schritt 403 erfolgt ein Trocknungs- und Härtungsschritt.
  • Die vorstehend beschriebenen Ausführungsformen und das Herstellungsverfahren sind jedoch lediglich als illustrative Beispiele zu verstehen, welche im Rahmen der Erfindung beliebig abgewandelt werden können.
  • So können die Grundkörper 110, 210, 310 der Rakel aus den Fig. 1 - 3 auch aus einem anderen Material, wie z. B. rostfreiem Stahl oder einem Karbon-Stahl, gefertigt sein. 3 Grundsätzlich können die Grundkörper der Rakel aus den Fig. 1 - 3 aber auch aus einem nichtmetallischen Material, wie z. B. Kunststoffen, bestehen. Dies kann insbesondere für Anwendungen im Flexodruck vorteilhaft sein.
  • Es ist auch möglich, anstelle der in den Fig. 1 - 3 gezeigten Grundkörpern jeweils Grundkörper mit einer anderen Form zu verwenden. Insbesondere können die Grundkörper eine keilförmige Arbeitskante oder einen nicht verjüngten Querschnitt mit abgerundeter Arbeitskante aufweisen. Die freien Stirnseiten 140, 240, 3403 der Arbeitskanten 130, 230, 330 können beispielsweise auch vollständig abgerundet ausgeformt sein.
  • Des Weiteren können die erfindungsgemässen Rakel aus den Fig. 1 - 3 auch anders dimensioniert sein. So können beispielsweise die Dicken der Arbeitsbereiche 130, 230, 330, gemessen von den jeweiligen Oberseiten 131, 231, 331 zu den jeweiligen Unterseiten 132, 232, 332, in einem Bereich von beispielsweise 0.040 - 0.200 mm variieren.
  • Ebenso können die Beschichtungen der Rakel aus den Fig. 1 - 3 weitere Beschichtungskomponenten und/oder zusätzliche Stoffe, wie z. B. Metallatome, Nichtmetallatome, anorganische Verbindungen und/oder organische Verbindungen, enthalten. Insbesondere können unterschiedliche Schmierstoffe oder Stoffe, welche die Härte der Beschichtung beeinflussen vorgesehen sein. Die zusätzlichen Stoffe können dabei auch partikelförmig sein.
  • Sämtliche der in den Figuren 1 - 3 gezeigten Rakel können beispielsweise mit einer oder mehreren weiteren Beschichtungen überzogen werden. Die weiteren Beschichtungen können im Bereich der Arbeitskanten und/oder der hinteren Bereiche vorliegen und z. B. die Verschleissfestigkeit der Arbeitskanten verbessern und/oder die hinteren Bereich vor Einflüssen durch aggressive Chemikalien schützen. Eine allfällige weitere Beschichtung ist vorzugsweise ebenfalls polymerbasiert. In Varianten können aber auch andere Beschichtungstypen eingesetzt werden.
  • Zusammenfassend ist festzustellen, dass neuartige Rakel geschaffen wurden, welche sich durch eine gute Verschleissfestigkeit auszeichnen und während der gesamten Lebensdauer ein gleichmässiges und streifenfreies Abstreichen von Druckfarbe ermöglichen und zudem kostengünstig in der Herstellung sind. Zugleich lassen sich die erfindungsgemässen Rakel in unterschiedlichsten Ausführungsformen realisieren, so dass sie gezielt an spezifische Verwendungszwecke angepasst werden können.

Claims (17)

  1. Rakel (100), insbesondere zum Abrakeln von Druckfarbe von einem Druckzylinder, umfassend einen Rakelkörper (110) mit einer Arbeitskante (130) sowie einer ersten Rakelseite (122), welche insbesondere im Betrieb dem Druckzylinder zugewandt ist, und einer zweiten Rakelseite (121), welche insbesondere im Betrieb vom Druckzylinder abgewandt ist, wobei der Rakelkörper (110) mit einer ein Polymer umfassenden Beschichtung (150) versehen ist, wobei die Beschichtung (150) wenigstens in einem Teilbereich Partikel (160) umfasst, und die Partikel (160) als Hartstoffpartikel (160) ausgebildet sind, dadurch gekennzeichnet, dass ein Massenanteil der Hartstoffpartikel (160) in der Beschichtung (150) auf der ersten Rakelseite (122) höher ist als ein Massenanteil der Hartstoffpartikel (160) in der Beschichtung (150) auf der zweiten Rakelseite (121).
  2. Rakel (100) nach Anspruch 1, dadurch gekennzeichnet, dass die Beschichtung (150) der ersten Rakelseite (122) Hartstoffpartikel (160) umfasst und die Beschichtung (150) der zweiten Rakelseite (121) im Wesentlichen frei von Hartstoffpartikel (160) ist.
  3. Rakel (100) nach Anspruch 2, dadurch gekennzeichnet, dass die Beschichtung (150) der zweiten Rakelseite (121) keine Partikel umfasst.
  4. Rakel (100) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein durchschnittlicher volumenäquivalenter Kugeldurchmesser der Hartstoffpartikel (160) kleiner als 1 '000 Nanometer, vorzugsweise kleiner als 500 Nanometer, besonders bevorzugt kleiner als 250 Nanometer ist.
  5. Rakel (100) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Hartstoffpartikel (160) mindestens einen der folgenden Stoffe umfassen:
    a) Metalloxide, insbesondere Aluminiumoxid und/oder Chromoxid;
    b) Diamant;
    c) Siliziumcarbid;
    d) Metallcarbid;
    e) Metallnitrid;
    f) Metallcarbonitrid;
    g) Borcarbid;
    h) kubisches Bornitrid;
    i) Wolframcarbid.
  6. Rakel (100) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Rakelkörper (110) aus einem Metall oder einer Metalllegierung gebildet ist.
  7. Rakel (100) nach Anspruch 6, dadurch gekennzeichnet, dass der Rakelkörper (110) aus Stahl besteht.
  8. Rakel (100) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Rakelkörper (110) aus einem Kunststoff ausgebildet ist.
  9. Verfahren zur Herstellung einer Rakel (100), insbesondere einer Rakel (100) nach einem der Ansprüche 1 bis 8, wobei bei einem Rakelkörper (110) mit einer Arbeitskante (130) eine erste Rakelseite (122), welche insbesondere im Betrieb dem Druckzylinder zugewandt ist, und eine zweite Rakelseite (121), welche insbesondere im Betrieb vom Druckzylinder abgewandt ist, mit einer ein Polymer umfassenden Beschichtung (150) beschichtet wird, welche wenigstens in einem Teilbereich Partikel (160) umfasst, und die Partikel (160) als Hartstoffpartikel (160) ausgebildet sind, dadurch gekennzeichnet, dass ein Massenanteil der Hartstoffpartikel (160) in der Beschichtung (150) auf der ersten Rakelseite höher ist als ein Massenanteil der Hartstoffpartikel (160) in der Beschichtung (150) auf der zweiten Rakelseite.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Rakelkörper (110) vor der Beschichtung erwärmt wird.
  11. Verfahren nach einem der Ansprüche 9 bis 10, dadurch gekennzeichnet, dass der Rakelkörper (110) vor der Beschichtung aufgeraut wird.
  12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass der Rakelkörper (110) vor der Beschichtung mechanisch und/oder elektrolytisch entfettet wird.
  13. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Rakel (100) zur elektrolytischen Entfettung als Anode geschaltet wird, um Fett mittels Kationen vom Rakelkörper (110) zu entfernen.
  14. Verfahren nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass vor der Beschichtung des Rakelkörpers (110) mit der ein Polymer umfassenden Beschichtung (150) eine Haftbeschichtung aufgetragen wird.
  15. Verfahren nach Anspruch 14, wobei nach der Auftragung der Haftbeschichtung und vor der Beschichtung des Rakelkörpers (110) mit der ein Polymer umfassenden Beschichtung (150) ein Zwischentrocknungsschritt erfolgt.
  16. Verfahren nach einem der Ansprüche 9 bis 15, dadurch gekennzeichnet, dass nach der Beschichtung des Rakelkörpers (110) ein Trocknungsschritt erfolgt, wobei insbesondere auf den Trocknungsschritt ein Erhärtungsschritt folgt.
  17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass der Erhärtungsschritt bei einer Temperatur von 150 °C bis 350 °C, vorzugsweise bei 200 °C bis 300 °C, insbesondere bei 230 °C bis 270 °C erfolgt.
EP16819023.9A 2015-12-10 2016-12-09 Rakel Active EP3386753B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16819023T PL3386753T3 (pl) 2015-12-10 2016-12-09 Rakiel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15199303.7A EP3178654A1 (de) 2015-12-10 2015-12-10 Rakel
PCT/EP2016/080473 WO2017097995A1 (de) 2015-12-10 2016-12-09 Rakel

Publications (2)

Publication Number Publication Date
EP3386753A1 EP3386753A1 (de) 2018-10-17
EP3386753B1 true EP3386753B1 (de) 2020-01-29

Family

ID=54848469

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15199303.7A Withdrawn EP3178654A1 (de) 2015-12-10 2015-12-10 Rakel
EP16819023.9A Active EP3386753B1 (de) 2015-12-10 2016-12-09 Rakel

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15199303.7A Withdrawn EP3178654A1 (de) 2015-12-10 2015-12-10 Rakel

Country Status (11)

Country Link
US (1) US10953649B2 (de)
EP (2) EP3178654A1 (de)
JP (1) JP2019500250A (de)
CN (1) CN108367565B (de)
BR (1) BR112018011159B1 (de)
CA (1) CA3005691C (de)
ES (1) ES2784689T3 (de)
HK (1) HK1252795A1 (de)
MX (1) MX2018006423A (de)
PL (1) PL3386753T3 (de)
WO (1) WO2017097995A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111391488A (zh) * 2020-03-26 2020-07-10 深圳市华星光电半导体显示技术有限公司 刮刀、印刷器具和基板的印刷方法
CN115157859A (zh) * 2022-07-12 2022-10-11 宁波湍流电子材料有限公司 一种层压法制造的油墨刮刀及其制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632668A (en) * 1993-10-29 1997-05-27 Minnesota Mining And Manufacturing Company Method for the polishing and finishing of optical lenses
EP0911157B1 (de) * 1997-10-24 2002-02-27 MDC Max Dätwyler Bleienbach AG Rakel zum Abrakeln überflüssiger Druckfarbe von der Oberfläche einer Druckform
SE519466C2 (sv) 2000-12-07 2003-03-04 Swedev Ab Schaber - eller rakelblad med beläggning av nickel innefattandes nötningsbeständiga partiklar och metod vid dess framställning
SE517846C2 (sv) * 2001-02-16 2002-07-23 Btg Eclepens Sa Självjusterande blad
JP2004034301A (ja) 2002-06-28 2004-02-05 Nikka Kk ドクターブレードおよびその製造方法
EP1745862A1 (de) * 2005-07-21 2007-01-24 C.B.G. Acciai S.r.l. Mit einem polymeren Material beschichteter Rakel zum Betrieb in Kombination mit einem Druckzylinder
US20100089263A1 (en) * 2005-08-10 2010-04-15 Think Laboratory Co., Ltd. Doctor blade
AU2006347817A1 (en) * 2006-08-29 2008-03-06 Daetwyler Swisstec Ag Doctor blade
CH699702A1 (de) * 2008-10-07 2010-04-15 Daetwyler Swisstec Ag Diamantbeschichtete Rakel.
DE102009029698A1 (de) * 2009-09-23 2011-03-24 Voith Patent Gmbh Klingenbeschichtung
EP2525984B1 (de) 2010-01-20 2016-03-30 Daetwyler Swisstec AG Rakel
WO2013133762A1 (en) * 2012-03-08 2013-09-12 Swedev Ab Electrolytically puls-plated doctor blade with a multiple layer coating
US20150299514A1 (en) * 2014-04-16 2015-10-22 Varel International Ind., L.P. Industrial tools with thermoset coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3386753A1 (de) 2018-10-17
CA3005691C (en) 2023-12-05
CN108367565A (zh) 2018-08-03
US20180319154A1 (en) 2018-11-08
ES2784689T3 (es) 2020-09-29
JP2019500250A (ja) 2019-01-10
PL3386753T3 (pl) 2020-06-29
WO2017097995A1 (de) 2017-06-15
HK1252795A1 (zh) 2019-06-06
BR112018011159A2 (pt) 2018-11-21
MX2018006423A (es) 2018-08-01
CN108367565B (zh) 2020-11-03
US10953649B2 (en) 2021-03-23
EP3178654A1 (de) 2017-06-14
CA3005691A1 (en) 2017-06-15
BR112018011159B1 (pt) 2023-02-07

Similar Documents

Publication Publication Date Title
EP2525984B1 (de) Rakel
EP2331329B1 (de) Diamantbeschichtete rakel
EP1264708B1 (de) Verfahren zur Herstellung einer chemikalienbeständigen Schutzschicht für Rotationskörper aus faserverstärktem Kunststoff und ein Rotationskörper
EP0934164B1 (de) Rakel für eine rotationsdruckmaschine
DE4408615C2 (de) Näpfchenwalze innerhalb eines Auftragswerks einer Rotationsdruckmaschine
EP3386753B1 (de) Rakel
EP2651632B1 (de) Imprägnierte klingenbeschichtung
DE19757897C1 (de) Anordnung für ein Farbwerk einer Rotationsdruckmaschine
WO2021074064A1 (de) Presswerkzeug und verfahren zum herstellen eines presswerkzeugs
DE10045515B4 (de) Rakel-Dosiersystem
EP2328754B1 (de) Rakel
DE102005062204A1 (de) Verschleißschutzbeschichtung
EP4045305B1 (de) Presswerkzeug
DE102007027383A1 (de) Farbkammerrakel in einem Farbwerk einer Rotationsdruckmaschine
DE102009028210A1 (de) Selbstkonditionierende Walzenbeschabung
DE10209297A1 (de) Oberfläche für Maschinenteile einer Druckmaschine
EP3308961A1 (de) Klingen mit thermischen spritzschichten
DE102011007391B3 (de) Verfahren zur Herstellung eines Zylinders einer Druckmaschine
DE102011078283B4 (de) Rotationsdruckmaschine mit einem Formzylinder und einem an diesen Formzylinder angestellten Farbwerk
DE102013011275A1 (de) Rakelblatt für eine Druckmaschine
EP1340623B1 (de) Oberfläche für Maschinenteile einer Druckmaschine
DE102006028860B4 (de) Gleitlagerbeschichtung
DE202022106780U1 (de) Druckform
DE102019217734A1 (de) Kolbenring für einen Kolben einer Brennkraftmaschine
DE102008007680A1 (de) Druckwerk für eine Verarbeitungsmaschine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190329

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191030

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER AND PARTNER PATENTANWAELTE AG, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1228204

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016008587

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20200401116

Country of ref document: GR

Effective date: 20200615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200621

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200529

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2784689

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: DAETWYLER SWISSTEC AG, CH

Free format text: FORMER OWNER: DAETWYLER SWISSTEC AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016008587

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201209

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20231221

Year of fee payment: 8

Ref country code: GB

Payment date: 20231220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231207

Year of fee payment: 8

Ref country code: SE

Payment date: 20231220

Year of fee payment: 8

Ref country code: NL

Payment date: 20231220

Year of fee payment: 8

Ref country code: IT

Payment date: 20231228

Year of fee payment: 8

Ref country code: FR

Payment date: 20231222

Year of fee payment: 8

Ref country code: DE

Payment date: 20231114

Year of fee payment: 8

Ref country code: CZ

Payment date: 20231201

Year of fee payment: 8

Ref country code: AT

Payment date: 20231221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231121

Year of fee payment: 8

Ref country code: BE

Payment date: 20231220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240129

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 8