EP2331329B1 - Diamantbeschichtete rakel - Google Patents

Diamantbeschichtete rakel Download PDF

Info

Publication number
EP2331329B1
EP2331329B1 EP09818733.9A EP09818733A EP2331329B1 EP 2331329 B1 EP2331329 B1 EP 2331329B1 EP 09818733 A EP09818733 A EP 09818733A EP 2331329 B1 EP2331329 B1 EP 2331329B1
Authority
EP
European Patent Office
Prior art keywords
coating
doctor blade
nickel
phosphorus
working edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09818733.9A
Other languages
English (en)
French (fr)
Other versions
EP2331329A1 (de
Inventor
Hans Jörg BRUDERMANN
Sibylle Stiltz
Andreas HÜGLI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daetwyler Swisstec AG
Original Assignee
Daetwyler Swisstec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daetwyler Swisstec AG filed Critical Daetwyler Swisstec AG
Priority to PL09818733T priority Critical patent/PL2331329T3/pl
Publication of EP2331329A1 publication Critical patent/EP2331329A1/de
Application granted granted Critical
Publication of EP2331329B1 publication Critical patent/EP2331329B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F9/00Rotary intaglio printing presses
    • B41F9/06Details
    • B41F9/08Wiping mechanisms
    • B41F9/10Doctors, scrapers, or like devices
    • B41F9/1072Blade construction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21GCALENDERS; ACCESSORIES FOR PAPER-MAKING MACHINES
    • D21G3/00Doctors
    • D21G3/005Doctor knifes

Definitions

  • the invention relates to a doctor blade, in particular for doctoring off printing ink from a surface of a printing form and / or for use as a paper doctor blade, comprising a flat and elongate base body with a working edge region formed in a longitudinal direction, wherein at least the working edge region having a first coating on the base a nickel-phosphorus alloy is coated. Furthermore, the invention relates to a method for the production and the use of a doctor blade.
  • scrapers are used, in particular, for scraping off excess printing ink from the surfaces of printing cylinders or printing rollers.
  • the quality of the squeegee has a decisive influence on the print result. Unevenness or irregularities of the standing with the impression cylinder working edges of the doctor blade lead z. B. to incomplete stripping of the ink from the webs of the printing cylinder. This can lead to an uncontrolled release of ink on the print carrier.
  • the working edge portions of the doctor blade are pressed against the surfaces of the printing cylinders or printing rollers during stripping and are moved relative thereto.
  • the working edges especially in rotary printing machines, exposed to high mechanical loads, which bring a corresponding wear. Squeegees are therefore basically consumables, which must be replaced periodically.
  • Squeegees are usually based on a steel body with a specially shaped working edge or working edge area.
  • the working edges of the doctor blade can also be provided with coatings or coatings of metals and / or plastics.
  • Metallic coatings often contain nickel or chromium, which may be mixed or alloyed with other atoms and / or compounds. The material properties of the coatings in particular have a significant influence on the mechanical and tribological properties of the doctor blade
  • squeegee for printing described which have a first layer of chemical nickel having dispersed therein hard material particles and a second layer with a low surface energy.
  • the second layer preferably consists of a coating of chemically nickel with fluorine-based resin particles or of a purely organic resin.
  • Such coated doctor blades have an improved wear resistance compared to uncoated doctor blades. However, the lifetime is still not completely satisfactory. In addition, it has been shown that it can come with the use of such squeegee, especially in the run-in phase to uncontrolled banding, which is also undesirable.
  • the object of the invention is to provide a squeegee associated with the technical field mentioned above, which has an improved wear resistance and during the entire life of a precise scraping, in particular of ink allows.
  • monocrystalline and / or polycrystalline diamond particles are dispersed in the first coating, with a particle size of the diamond particles measuring at least 5 nm and less than 50 nm.
  • nickel-phosphorus alloy which forms the basis for the first coating
  • a nickel-phosphorus alloy which forms the basis for the first coating
  • Such alloys can in particular be deposited without current and are then also referred to as chemically nickel.
  • the expression "based on a nickel-phosphorus alloy” means that the nickel-phosphorus alloy is the main constituent of the first coating. In this case, in the first coating in addition to the nickel-phosphorus alloy quite other types of atoms and / or chemical compounds may be present, which have a smaller proportion than the nickel-phosphorus alloy.
  • the nickel-phosphorus alloy and any other types of atoms and / or chemical compounds present form a matrix for the monocrystalline and / or polycrystalline diamond particles.
  • the proportion of the nickel-phosphorus alloy in the matrix is preferably at least 50% by weight, particularly preferably at least 75% by weight and very particularly preferably at least 95% by weight.
  • Particularly advantageous is the matrix of the first coating except for unavoidable impurities exclusively of a nickel-phosphorus alloy.
  • the first coating is correspondingly, except for unavoidable impurities, exclusively of a nickel-phosphorus alloy having dispersed therein monocrystalline and / or polycrystalline diamond particles.
  • the monocrystalline and / or polycrystalline diamond particles are dispersed in the first coating. This means, in particular, that the diamond particles are present substantially uniformly distributed in the first coating.
  • the particle size is understood to mean, in particular, a maximum dimension and / or external dimension of the monocrystalline and / or polycrystalline diamond particles.
  • the diamond particles generally also have a certain distribution or a scattering width. Therefore, diamond particles with different particle sizes are especially present at the same time in the first coating.
  • the monocrystalline and / or polycrystalline diamond particles dispersed in the first coating based on a nickel-phosphorus alloy with the particle sizes of at least 5 nm and less than 50 nm according to the invention substantially improve the wear resistance of the working edges or working edge regions of the doctor blade , This brings in particular a long life of the inventive doctor blade with it.
  • the working edges are optimally stabilized by the first coating based on a nickel-phosphorus alloy with the diamond particles dispersed therein.
  • This results in a sharply defined contact zone between the doctor blade and the printing cylinder or the pressure roller, which in turn allows a very precise scraping or doctoring off of ink.
  • the contact zone remains over the entire life of the doctor blade or over the entire printing process largely stable.
  • the doctor blade according to the invention has extremely favorable sliding properties on the printing cylinders or printing rollers commonly used. As a result, when the doctor blade according to the invention is used for deburring, wear on the printing cylinders or printing rollers is also reduced.
  • monocrystalline and / or polycrystalline diamond particles with a particle size of at least 5 nm and less than 50 nm have proven to be the best possible choice.
  • Diamond with a mono- and / or polycrystalline structure has proven to be an optimal material for the particles according to the invention, in particular because of its high hardness and its chemical inertness with respect to a multiplicity of potential reaction partners.
  • diamond with mono- and / or polycrystalline structure is not to be confused with other forms of carbon, such as.
  • the proportion of the particle surface in relation to the particle volume is very large in comparison with particle sizes in the micrometer range. Accordingly, the particle surface, which also contacts and interacts with the surrounding nickel-phosphorus alloy, has a not insignificant influence on the properties of the diamond particles, which apparently has a positive effect on the properties of the doctor blade according to the invention.
  • diamond particles with a particle size of at least 5 nm and less than 50 nm therefore results in interaction with nickel-phosphorus alloys novel coatings for doctor blade with superior mechanical and tribological properties.
  • a phosphorus content of the nickel-phosphorus alloy is preferably 7-12% by weight. Coatings of this kind have proven particularly suitable in combination with the monocrystalline and / or polycrystalline diamond particles according to the invention, since in particular a higher wear resistance is obtained during the entire service life of the doctor blade. A phosphorus content of 7 - 12% by weight also improves the corrosion resistance, the tarnish resistance and the inertness of the nickel-phosphorus alloy. A phosphorus content of 7 to 12% by weight also has a positive effect on the sliding properties of the doctor blade as well as the stability of the working edge, which makes it possible to paint or scrub off printing ink very precisely. Furthermore, at a phosphorus content of 7 - 12 wt% on the commonly used primers for doctor blade, such. As steel, given a good adhesion.
  • a layer thickness of the first coating is advantageously 1-10 ⁇ m. Such thicknesses of the first coating provide optimum protection of the working edge of the doctor blade. In addition, such sized first coatings have a high intrinsic stability, which effectively reduces the partial or total delamination of the first coating, for example during the doctoring of printing ink from a printing cylinder.
  • a volume density of the monocrystalline and / or polycrystalline diamond particles in the first coating is 5-20%, particularly preferably 15-20%. Squeegees with such volume densities show a very good wear resistance and a long service life. At the same time, there is also an optimally sharply defined contact zone between the doctor blade and the pressure cylinder or pressure roller, wherein the contact zone remains substantially constant or stable over the entire service life of the doctor blade.
  • hard material particles are contained in the first coating.
  • hard material particles in this context, in particular metal carbides, metal nitrides, ceramics and intermetallic phases, which preferably have a hardness of at least 1000 HV, understood.
  • boron nitride BN
  • boron carbide BC
  • chromium oxide Cr 2 O 3
  • titanium diboride TiB 2
  • zirconium nitride ZrN
  • zirconium carbide ZrC
  • titanium carbide TiC
  • silicon carbide SiC
  • titanium nitride TiN
  • aluminum oxide or corundum Al 2 O 3
  • tungsten carbide WC
  • vanadium carbide VC
  • TaC tantalum carbide
  • zirconium dioxide ZrO 2
  • Si 3 N 4 silicon nitride
  • the additional hard material particles comprise aluminum oxide particles or particles of corundum (Al 2 O 3 ) with a particle size of 0.3-0.5 ⁇ m.
  • Such hard particles are characterized in particular by their hardness, mechanical strength, chemical resistance and good sliding properties.
  • the stability of the first coating or the nickel-phosphorus alloy in combination with the monocrystalline and / or polycrystalline diamond particles is further increased, which improves the quality of the working edge and a over the entire life of the doctor blade allows particularly uniform and accurate doctoring.
  • hard material particles as particles of aluminum oxide and / or particle sizes of less than 0.3 ⁇ m and / or provide more than 0.5 microns. Under certain circumstances, however, this is at the expense of the wear resistance and / or stability of the doctor blade. Whether and which type of additional hard material particles of the first coating is added, may also depend on the intended use of the doctor and is z. B. determined by the material and the surface finish of the printing cylinder and / or pressure rollers.
  • a second coating based on a further nickel-phosphorus alloy is arranged on the first coating.
  • a second coating based on a further nickel-phosphorus alloy can serve in particular as a protective layer for the first coating, whereby the wear resistance and stability of the working edge of the doctor blade can be further increased.
  • a second coating can serve as a stable matrix for further additives which positively influence doctoring off with the doctor according to the invention.
  • a phosphorus content of the further nickel-phosphorus alloy of the second coating is smaller than a phosphorus content of the nickel-phosphorus alloy of the first coating.
  • the combination of coatings with different proportions of phosphorus in particular a higher wear protection of the working edge is achieved while maintaining a further stabilization of the working edge.
  • a phosphorus content of the further nickel-phosphorus alloy of the second coating of 6-9% by weight has proven to be particularly suitable.
  • the phosphorus content of the further nickel-phosphorus alloy of the second coating can also be less than 6% or more than 9%. It is also possible in principle to provide a comparable phosphorus content in the first coating and the second coating or to form a higher phosphorus content in the second coating than in the first coating. However, this can be at the expense of the quality of the working edge of the doctor blade.
  • a layer thickness of the second coating measures in particular 0.5-3 ⁇ m. Such layer thicknesses guarantee, in particular, a high intrinsic stability of the second coating and at the same time a good protective effect for the first coating, which benefits the stability of the working edge as a whole.
  • the second coating contains polymer particles.
  • the polymer particles advantageously contain polytetrafluoroethylene (PTFE) and in particular have a particle size of 0.5-1 ⁇ m.
  • PTFE polytetrafluoroethylene
  • polymer particles in the second coating can produce a lubricating effect, which in turn improves the sliding properties of the working edge of the doctor during doctoring.
  • Polymer particles comprising polytetrafluoroethylene and especially polymer particles, which consist entirely of polytetrafluoroethylene, have proved to be particularly advantageous, especially at a particle size of 0.5-1 ⁇ m.
  • such polymer particles in conjunction with a nickel-phosphorus alloy having a phosphorus content of 6 - 9%, such polymer particles contribute to a high-quality working edge, which allows a very precise and gentle for a printing cylinder and / or a pressure roller buffing.
  • polymer particles containing polytetrafluoroethylene may also contain additional polymeric materials. It is likewise possible to use polymer particles without polytetrafluoroethylene or to provide particle sizes of less than 0.5 or more than 1 ⁇ m. It is also possible to completely dispense with polymer particles in the second coating. However, the advantages mentioned above are at least partially eliminated.
  • a first coating based on a nickel-phosphorus alloy can be deposited on a working edge region of the doctor blade which is formed in a longitudinal direction of a flat and elongated base body.
  • monocrystalline and / or polycrystalline diamond particles having a particle size of at least 5 nm and less than 50 nm are dispersed in the first coating.
  • the deposition of the first coating is carried out by an electroless deposition or coating process.
  • the working edge or optionally the entire base body of the doctor blade is immersed in a suitable electrolyte bath with monocrystalline and / or polycrystalline diamond particles suspended therein and coated in a manner known per se.
  • the monocrystalline and / or polycrystalline diamond particles suspended in the electrolyte bath are incorporated into the nickel-phosphorus alloy during the coating or deposition process and are thus dispersed in the deposited nickel-phosphorus alloy essentially randomly distributed.
  • the diamond particles Due to the relatively small particle size of at least 5 nm and less than 50 nm and the associated relatively large ratio of surface area to volume, the diamond particles are distributed evenly despite their considerable density in the entire electrolyte solution. Since the frictional forces occurring between the surface of the diamond particles and the liquid in the electrolyte bath are generally greater than the gravitational force acting on the diamond particles, a drop in the diamond particles during the deposition process is largely prevented. This ultimately leads to an extremely uniform incorporation of the diamond particles in the first coating.
  • a high-quality first coating can be produced, which in particular has a high contour accuracy with respect to the working edge of the doctor blade or with respect to the main body of the doctor blade and a very uniform layer thickness distribution.
  • an extremely uniform nickel-phosphorus alloy with particularly uniformly distributed monocrystalline and / or polycrystalline diamond particles is formed by the electroless deposition, which optimally follows the contour of the working edge of the doctor blade or the base body, which decisively contributes to the quality of the doctor blade.
  • plastics can also be used as the basic body for the doctor blade and in a simpler manner Be provided manner with the first coating of the nickel-phosphorus alloy.
  • a second coating based on a further nickel-phosphorus alloy is applied to the first coating, it can be deposited both by an electroless plating process and by a galvanic plating process.
  • the electroless deposition has proven to be particularly suitable.
  • the second coating is advantageously also subjected to this heat treatment.
  • the heat treatment induces solid state reactions in the nickel-phosphorus alloys which increase the hardness of the nickel-phosphorous alloys in the first coating, and optionally also in the second coating.
  • the temperatures of 100-500.degree. C., in particular 170-300.degree. C. are preferably maintained during a holding time of 0.5-15 hours, more preferably 0.5-8 hours. Such temperatures and hold times have been found to be optimal to achieve sufficient hardness of the nickel-phosphorus alloys.
  • Temperatures of less than 100 ° C are also possible here. In this case, however, very long and mostly uneconomical holding times are required. Higher temperatures than 500 ° C, depending on the material of the body, in principle also feasible, but the curing process of the nickel-phosphorus alloy is more difficult to control.
  • the heat treatment advantageously takes place only after the deposition or application of the second coating on the first coating.
  • oxide formation on the surface of the first coating, which is covered by the second coating is prevented.
  • this results in better adhesion between the first coating and the second coating, and on the other hand, the overall uniformity of the doctor blade in the region of the working edge is improved.
  • a second coating is provided, it is deposited on all sides, in particular on a jacket region of the base body present with respect to the longitudinal direction, preferably on the entire base body.
  • the jacket region of the main body which is present with respect to the longitudinal direction, or preferably the entire main body, is covered on all sides with the second coating.
  • the main body can z. B. be completely immersed in the electrolyte bath. This is not possible with the sole coating of the working edge provided with the first coating, since the basic body may then have to be aligned in a complicated manner with respect to the liquid surface of the electrolyte bath.
  • Fig. 1 is a first slat blade 100 shown in cross section.
  • the lamella blade 100 includes a base body 111 made of steel, which on the in Fig. 1 left side has a rear portion 112 with a substantially rectangular cross-section.
  • a doctor blade thickness, measured from the top 112.1 to the bottom 112.2 of the rear area, is about 0.2 mm.
  • a length of the main body 111 or the lamella blade 100 measured perpendicular to the plane of the sheet is, for example, 1000 mm.
  • FIG. 1 Right side of the base body 111 is tapered step-like to form a working edge portion 113 and a working edge of the upper side 112.1 of the rear portion 112 ago.
  • An upper side 113.1 of the working edge 113 lies on a plane below the plane of the upper side 112.1 of the rear region 112, but is essentially parallel or plane-parallel to the upper side 112.1 of the rear region 112.
  • Between the rear portion 112 and the working edge 113 is a concave shaped transition region 112.5 before.
  • the lower side 112.2 of the rear region 112 and the lower side 113.2 of the working edge 113 lie in a common plane, which is plane-parallel to the upper side 112.1 of the rear region 112 and plane-parallel to the upper side 113.1 of the working edge 113.
  • a width of the main body 111, measured from the free end of the rear region to the end face 114 of the working edge 113 measures, for example, 40 mm.
  • a thickness of the working edge 113, measured from the top 113.1 to the bottom 113.2 of the working edge is for example, 0.060 - 0.150 mm, which corresponds to about half the blade thickness in the rear area 112.
  • a width of the working edge region 113, measured at the upper side 113.1 of the working edge 113 from the front side 114 to the transitional region 112.5, is for example 0.8-5 mm.
  • a free end face 114 of the right-hand free end of the working edge 113 extends from the upper side 113.1 of the working edge 113 obliquely downwards to the lower side to the lower side 113.2 of the working edge 113.
  • the front side 114 has an angle of approximately 45 ° or 135 ° with respect to the upper side 113.1 of the working edge 113 or with respect to the lower side 113.2 of the working edge 113.
  • An upper transition region between the top 113.1 and the end face 114 of the working edge 113 is rounded.
  • a lower transition region between the end face 114 and the bottom 113.2 of the working edge 113 is rounded.
  • the working edge 113 of the lamella blade 100 is further surrounded by a first coating 120.
  • the first coating 120 completely covers the upper side 113.1 of the working edge 113, the concave transition region 112.5 and a subregion of the upper side 112.1 of the rear region 112 of the main body 111 adjoining this.
  • the first coating 120 covers the end face 114, the underside 113.2 of the working edge 113 and a subregion of the underside 112.2 of the rear region 112 of the base body 111 adjoining the underside 113.2 of the working edge 113.
  • the first coating 120 is z. B. essentially from a currentless deposited nickel-phosphorus alloy with a phosphorus content of z. B. 10 wt .-%. Therein polycrystalline diamond particles 120.1 having a particle size of, for example, 15-40 nm are dispersed. The volume fraction of the polycrystalline diamond particles 120.1 is z. 18%.
  • the layer thickness of the first coating 120 measures in the region of the working edge 113 z. B. 5 microns. In the region of the upper side 112.1 and the lower side 112.2 of the rear region 112, the layer thickness of the first coating 120 decreases continuously, with the result that the first coating 120 ends in a wedge shape in a direction away from the working edge 113.
  • a slat blade 200 according to the invention is shown in cross-section.
  • the lamellae blade 200 includes a base body 211 made of steel, which is formed substantially identical to the base body 111 of the first sipe blade 100 from Fig. 1 ,
  • the working edge 213 of the second fin blade 200 is surrounded by a first coating 220.
  • the first coating 220 completely covers the upper side 213.1 of the working edge 213, the transition region 212.5 and a subregion of the upper side 212.1 of the rear region 212 of the base body adjoining this.
  • the first coating 220 covers the front side 214, the underside 213.2 of the working edge 213 and a subregion of the lower side 212.2 of the rear region 212 of the base body 211 which adjoins the underside 213.2 of the working edge 213.
  • the first coating 220 of the second Lammellenrakel 200th consists, for example, essentially of a currentless deposited nickel-phosphorus alloy with a phosphorus content of z. B. 12 wt .-%.
  • the first coating are polycrystalline diamond particles 220.1 (in Fig. 2 symbolized by circles) and adhesive particles 220.2 of aluminum oxide (Al 2 O 3 ) (in Fig. 2 symbolized by pentagons) dispersed.
  • the diamond particles 220.1 have a particle size of, for example, 15-40 nm, while the hard material particles 220.2 or the particles of aluminum oxide have a particle size of 0.4 ⁇ m.
  • the volume fraction of polycrystalline diamond particles 220.1 is z. For example 15%.
  • the layer thickness of the first coating 220 measures in the region of the working edge 213 z. B. 5 microns. In the region of the upper side 212.1 and the lower side 212.2 of the rear region 212, the layer thickness of the first coating 220 continuously decreases, so that the first coating 220 ends in a wedge shape in a direction away from the working edge 213.
  • the upper side 212.1 and the lower side 212.2 of the rear region 212 and the rear end side of the main body 211 are covered with the second coating 221.
  • the jacket region of the main body 211 with respect to the plane perpendicular to the plane longitudinal direction of the main body 211 and the second blade bar 200 is thus completely and completely surrounded by at least one of the two coatings 220, 221.
  • the plane parallel to the leaf level and in Fig. 2 invisible front and rear side surfaces of the main body 211 may also be covered with the second coating 221.
  • the second coating 221 consists of a further electrolessly deposited nickel-phosphorus alloy with a phosphorus content of about 7%.
  • the phosphorus content of the first coating 210 is thus greater than the phosphorus content of the second coating 220.
  • the layer thickness of the second coating 221 is, for example, 1.8 ⁇ m.
  • polymer particles 221.1 are dispersed in the second coating 221.
  • the polymer particles 221.1 consist z.
  • Fig. 3 is a method 300 for producing a doctor blade, as z.
  • Tie Fig. 1 and 2 are shown schematically shown.
  • a first step 301 the working edges 113, 213 of the base bodies 111, 211 to be coated are immersed in a suitable and known aqueous electrolyte bath with polycrystalline and / or monocrystalline diamond particles 120.1, 220.1 having a particle size of, for example, 10 to 40 nm suspended therein , If, as with the Lammellenrakel out Fig. 2 additional hard material particles 220 are to be installed in the coating, the additional hard particles 220 are also suspended in the electrolyte bath.
  • the additional hard particles 220 are also suspended in the electrolyte bath.
  • the subsequent deposition process among other nickel ions from a nickel salt, z.
  • nickel sulfate by a reducing agent, for.
  • sodium hypophosphite reduced in aqueous environment to elemental nickel and deposited on the working edges 113, 213 to form a nickel-phosphorus alloy and embedding the polycrystalline and / or monocrystalline diamond particles 120.1, 220.1 and, if present, the additional hard particles 220.2.
  • This is done without the application of an electrical voltage or completely de-energized under moderately acidic conditions (pH 4 - 6.5) and at elevated temperatures of for example 70 - 95 ° C.
  • the phosphorus content in the first coatings 120, 220 can be controlled in a manner known per se by the concentrations and mixing ratios of the educts in the electrolyte bath.
  • a second coating 220 is provided, in a second step 302, the base body 211 with the first coating 210 in another and known per se aqueous electrolyte bath with polymer particles 220.1 suspended therein, z. B. of polytetrafluoroethylene with a particle size of 0.6 - 0.8 microns, immersed.
  • the subsequent deposition process proceeds in the same way as described in the first step 301 for the first coatings 120, 220.
  • the second step 302 is omitted and, if desired, the third step 303 is performed directly.
  • a third step 303 the coated base bodies 111, 211 are subjected to a heat treatment during, for example, two hours and at a temperature of 300 ° C.
  • the first coatings 120, 220 and, if present, the second coating 221 cure.
  • the finished lamellae 100, 200 are cooled and ready for use.
  • first lamellae 100 As has been shown in test experiments, the in Fig. 1 depicted first lamellae 100 a very high wear resistance and stability over the entire life. For comparison, in a lamellar blade, as in Fig. 1 is shown dispensed in a first comparative experiment on the introduction of diamond particles 120.1 in the first coating 120. It has been found that such doctor blade without diamond particles have a lower wear resistance and correspondingly shorter life than the inventive lamellae 100 from Fig. 1 ,
  • the second lamellae 200 off Fig. 2 has proved to be even more stable and wear-resistant in further test trials compared to the first lamella blade 100.
  • the main body 11 in Fig. 1 also from another material, such. As stainless steel or carbon steel, be made. In this case, it may be advantageous for economic reasons to attach the second coating 21 only in the region of the working edge 13 in order to reduce the material consumption in the coating.
  • the base body 11 but also made of a non-metallic material such. As plastics exist. This may be advantageous in particular for applications in flexographic printing.
  • the basic body 111, 211 from the Fig. 1 and 2 can have a wedge-shaped working edge or a non-tapered cross-section with a rounded working edge.
  • the free end faces 114, 214 of the right-hand free ends of the working edges 113, 213 may for example also be formed completely rounded.
  • inventive doctor blades 100, 200 from the Fig. 1 and 2 also be different dimensions.
  • the thicknesses of the working areas 113, 213, measured from the upper sides 113.1, 213.1 to the lower sides 113.2, 213.2 of the working areas 113, 213, can vary within a range of 0.040-0.200 mm.
  • all coatings 120, 220, 221 of the two blade squeegee 100, 200 more alloy components and / or additional substances such.
  • metal atoms non-metal atoms, inorganic compounds and / or organic compounds.
  • doctor blades which brings a high wear resistance and stability of the doctor blade.
  • a more exact inking, in particular of printing ink on printing cylinders or printing rollers becomes possible, in particular during the entire service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Rotary Presses (AREA)
  • Chemically Coating (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft eine Rakel, insbesondere zum Abrakeln von Druckfarbe von einer Oberfläche einer Druckform und/oder zur Verwendung als Papierstreichmesser, umfassend einen flachen und länglichen Grundkörper mit einem in einer longitudinalen Richtung ausgebildeten Arbeitskantenbereich, wobei wenigstens der Arbeitskantenbereich mit einer ersten Beschichtung auf der Basis einer Nickel-Phosphor-Legierung überzogen ist. Des Weiteren bezieht sich die Erfindung auf ein Verfahren zur Herstellung sowie die Verwendung einer Rakel.
  • Stand der Technik
  • In der Druckindustrie kommen Rakel insbesondere zum Abstreichen überschüssiger Druckfarbe von den Oberflächen von Druckzylindern bzw. Druckwalzen zum Einsatz. Besonders beim Tiefdruck und Flexodruck hat die Qualität der Rakel einen entscheidenden Einfluss auf das Druckergebnis. Unebenheiten oder Unregelmässigkeiten der mit dem Druckzylinder in Kontakt stehenden Arbeitskanten der Rakel führen z. B. zu einer unvollständigen Abstreifung der Druckfarbe von den Stegen der Druckzylinder. Dadurch kann es auf dem Druckträger zu einer unkontrollierten Abgabe von Druckfarbe kommen.
  • Die Arbeitskantenbereiche der Rakel sind während dem Abstreifen an die Oberflächen der Druckzylinder oder Druckwalzen angepresst und werden relativ zu diesen bewegt. Somit sind die Arbeitskanten, insbesondere bei Rotationsdruckmaschinen, hohen mechanischen Belastungen ausgesetzt, welche einen entsprechenden Verschleiss mit sich bringen. Rakel sind daher grundsätzlich Verbrauchsgegenstände, welche periodisch ausgetauscht werden müssen.
  • Rakel basieren meist auf einem Grundkörper aus Stahl mit einer speziell ausgeformten Arbeitskante bzw. Arbeitskantenbereich. Um die Lebensdauer der Rakel zu verbessern, können die Arbeitskanten der Rakel zudem mit Beschichtungen oder Überzügen aus Metallen und/oder Kunststoffen versehen werden. Metallische Beschichtungen enthalten oft Nickel oder Chrom, welche gegebenenfalls mit anderen Atomen und/oder Verbindungen vermischt bzw. legiert vorliegen. Die stofflichen Beschaffenheiten der Beschichtungen beeinflussen dabei im Besonderen die mechanischen und tribologischen Eigenschaften der Rakel massgeblich
  • In der WO 2003/064157 (Nihon New Chrome Co. Ltd.) sind z. B. Rakel für die Drucktechnik beschrieben, welche eine erste Lage aus chemischem Nickel mit darin dispergierten Hartstoffpartikeln und eine zweite Lage mit einer niedrigen Oberflächenenergie aufweisen. Die zweite Lage besteht bevorzugt aus einem Überzug aus chemisch Nickel mit Fluor-basierten Harzpartikeln oder aus einem rein organischen Harz. Derartig beschichtete Rakel verfügen zwar gegenüber unbeschichteten Rakeln über eine verbesserte Verschleissfestigkeit. Die Lebensdauer ist jedoch nach wie vor nicht vollständig befriedigend. Zudem hat sich gezeigt, dass es bei der Verwendung derartiger Rakel insbesondere in der Einlaufphase zu unkontrollierter Streifenbildung kommen kann, was ebenfalls unerwünscht ist.
  • Es besteht daher nach wie vor Bedarf nach einer verbesserten Rakel, welche im Besonderen über eine längere Lebensdauer verfügt und gleichzeitig ein optimales Abstreichen erlaubt.
  • Darstellung der Erfindung
  • Aufgabe der Erfindung ist es, eine dem eingangs genannten technischen Gebiet zugehörende Rakel zu schaffen, welche eine verbesserte Verschleissfestigkeit aufweist und während der gesamten Lebensdauer ein exaktes Abstreichen, insbesondere von Druckfarbe, ermöglicht.
  • Die Lösung der Aufgabe ist durch die Merkmale des Anspruchs 1 definiert. Gemäss der Erfindung sind in der ersten Beschichtung monokristalline und/oder polykristalline Diamantpartikel dispergiert, wobei eine Partikelgrösse der Diamantpartikel wenigstens 5 nm und weniger als 50 nm misst.
  • Unter einer Nickel-Phosphor-Legierung, welche die Basis für die erste Beschichtung bildet, wird in diesem Zusammenhang eine Mischung aus Nickel und Phosphor verstanden, wobei der Phosphorgehalt der Legierung insbesondere bei 1 - 15 Gew.-% liegt. Derartige Legierungen können insbesondere stromlos abgeschieden werden und werden dann auch als chemisch Nickel bezeichnet. Der Ausdruck "auf der Basis einer Nickel-Phosphor-Legierung" bedeutet, dass die Nickel-Phosphor-Legierung den Hauptbestandteil der ersten Beschichtung bildet. Dabei können in der ersten Beschichtung zusätzlich zur Nickel-Phosphor-Legierung durchaus noch andere Atomsorten und/oder chemische Verbindungen vorliegen, welche einen geringeren Anteil aufweisen als die Nickel-Phosphor-Legierung. Die Nickel-Phosphor-Legierung und die gegebenenfalls vorhandenen anderen Atomsorten und/oder chemischen Verbindungen bilden eine Matrix für die monokristallinen und/oder polykristallinen Diamantpartikel. Bevorzugt beträgt der Anteil der Nickel-Phosphor-Legierung in der Matrix wenigstens 50 Gew.-%, insbesondere bevorzugt wenigstens 75 Gew.-% und ganz besonders bevorzugt wenigstens 95 Gew.-%. Besonders vorteilhaft besteht die Matrix der ersten Beschichtung bis auf unvermeidbare Verunreinigungen ausschliesslich aus einer Nickel-Phosphor-Legierung. Idealerweise besteht die erste Beschichtung entsprechend bis auf unvermeidbare Verunreinigungen ausschliesslich aus einer Nickel-Phosphor-Legierung mit darin dispergierten monokristallinen und/oder polykristallinen Diamantpartikeln.
  • Erfindungsgemäss sind die monokristallinen und/oder polykristallinen Diamantpartikel in der ersten Beschichtung dispergiert. Dies bedeutet insbesondere, dass die Diamantpartikel im Wesentlichen gleichmässig verteilt in der ersten Beschichtung vorliegen.
  • Unter der Partikelgrösse wird in diesem Zusammenhang insbesondere eine maximale Dimension und/oder äussere Abmessung der monokristallinen und/oder polykristallinen Diamantpartikel verstanden. Bezüglich der Partikelgrösse weisen die Diamantpartikel im Allgemeinen zudem eine gewisse Verteilung bzw. eine Streubreite auf. In der ersten Beschichtung liegen daher insbesondere zugleich Diamantpartikel mit unterschiedlichen Partikelgrössen vor.
  • Wie sich gezeigt hat, verbessern die in der ersten Beschichtung auf der Basis einer Nickel-Phosphor-Legierung dispergierten monokristallinen und/oder polykristallinen Diamantpartikel mit den erfindungsgemässen Partikelgrössen von wenigstens 5 nm und weniger als 50 nm die Verschleissfestigkeit der Arbeitskanten bzw. Arbeitskantenbereiche der Rakel wesentlich. Dies bringt insbesondere eine lange Lebensdauer der erfindungsgemässen Rakel mit sich.
  • Zugleich werden die Arbeitskanten durch die erste Beschichtung auf der Basis einer Nickel-Phosphor-Legierung mit den darin dispergierten Diamantpartikeln optimal stabilisiert. Daraus ergibt sich eine scharf begrenzte Kontaktzone zwischen der Rakel und dem Druckzylinder bzw. der Druckwalze, was wiederum insbesondere ein äusserst exaktes Abstreichen bzw. Abrakeln von Druckfarbe ermöglicht. Die Kontaktzone bleibt dabei über die gesamte Lebensdauer der Rakel bzw. über den gesamten Druckprozess weitgehend stabil.
  • Des Weiteren weisen die erfindungsgemässen Rakel äusserst günstige Gleiteigenschaften auf den üblicherweise verwendeten Druckzylindern bzw. Druckwalzen auf. Dadurch wird bei der Verwendung der erfindungsgemässen Rakel zum Abraklen auch ein Verschleiss der Druckzylinder bzw. Druckwalzen reduziert.
  • Um die Verbesserung der Verschleissfestigkeit und die optimale Stabilisierung der Arbeitskanten der Rakel zu erreichen, haben sich monokristalline und/oder polykristalline Diamantpartikel mit einer Partikelgrösse von wenigstens 5 nm und weniger als 50 nm als bestmögliche Wahl herausgestellt. Diamant mit mono- und/oder polykristalliner Struktur hat sich dabei insbesondere aufgrund seiner hohen Härte und seiner chemischen Inertheit gegenüber einer Vielzahl von potentiellen Reaktionspartnern als optimales Material für die erfindungsgemässen Partikel herausgestellt. Dabei ist Diamant mit mono- und/oder polykristalliner Struktur nicht zu verwechseln mit anderen Formen von Kohlenstoff, wie z. B. Graphit, Glaskohlenstoff, Graphen, Russ oder dem amorphen diamantartigen Kohlenstoff ("diamond-like carbon"; "DLC"). Diese Formen des Kohlenstoffs bringen die erfindungsgemässen Vorteile nur beschränkt oder gar nicht mit sich.
  • Bei den erfindungsgemässen Partikelgrössen ist der Anteil der Partikeloberfläche im Verhältnis zum Partikelvolumen im Vergleich zu Partikelgrössen im Mikrometerbereich sehr gross. Entsprechend hat die Partikeloberfläche, welche zudem mit der umgebenden Nickel-Phosphor-Legierung in Kontakt steht und wechselwirkt, einen nicht unwesentlichen Einfluss auf die Eigenschaften der Diamantpartikel, was sich augenscheinlich positiv auf die Eigenschaften der erfindungsgemässen Rakel auswirkt.
  • Bei der Verwendung von Diamantpartikeln mit geringeren Partikelgrössen als 5 nm nimmt insbesondere die Verschleissfestigkeit der Arbeitskante der Rakel ab, womit sich die Lebensdauer der Rakel verkürzt. Bei Partikelgrössen von 50 nm und mehr reduziert sich insbesondere die Stabilisierung der Arbeitskante der Rakel, was das exakte Abstreichen von Druckfarbe verschlechtert.
  • Die Zugabe von Diamantpartikeln mit einer Partikelgrösse von wenigstens 5 nm und weniger als 50 nm ergibt daher im Zusammenspiel mit Nickel-Phosphor-Legierungen neuartige Beschichtungen für Rakel mit überlegenen mechanischen und tribologischen Eigenschaften.
  • Bevorzugt beträgt ein Phosphorgehalt der Nickel-Phosphor-Legierung 7 - 12 Gew-%. Derartige Beschichtungen haben sich in Kombination mit den erfindungsgemässen monokristallinen und/oder polykristallinen Diamantpartikeln als besonders geeignet erwiesen, da dadurch insbesondere eine höhere Verschleissfestigkeit während der gesamten Lebensdauer der Rakel erhalten wird. Ein Phosphorgehalt von 7 - 12 Gew-% verbessert zudem die Korrosionsbeständigkeit, die Anlaufbeständigkeit und die Inertheit der Nickel-Phosphor-Legierung. Ebenfalls positiv wirkt sich ein Phosphorgehalt von 7 - 12 Gew-.% auf die Gleiteigenschaften der Rakel sowie die Stabilität der Arbeitskante aus, womit ein besonders exaktes Abstreichen bzw. Abrakeln von Druckfarbe möglich ist. Des Weiteren ist bei einem Phosphorgehalt von 7 - 12 Gew-% auf den üblicherweise verwendeten Grundkörpern für Rakel, wie z. B. Stahl, eine gute Anhaftung gegeben.
  • Prinzipiell ist es aber auch möglich einen geringeren Phosphorgehalt als 7 Gew.-% oder eine grösseren Phosphorgehalt als 12 Gew.-% vorzusehen. Die vorstehend genannten positiven Effekte verringern sich jedoch dadurch oder entfallen gar gänzlich.
  • Eine Schichtdicke der ersten Beschichtung beträgt mit Vorteil 1 - 10 µm. Derartige Dicken der ersten Beschichtung bieten einen optimalen Schutz der Arbeitskante der Rakel. Zudem weisen derart bemessene erste Beschichtungen eine hohe Eigenstabilität auf, was die teilweise oder vollständige Delamination der ersten Beschichtung, beispielsweise während des Abrakeln von Druckfarbe von einem Druckzylinder, wirkungsvoll reduziert.
  • Dicken von weniger als 1 µm sind zwar möglich, die Verschleissfestigkeit der Arbeitskante bzw. der Rakel nimmt dabei aber rasch ab. Grössere Dicken als 10 µm sind auch machbar. Diese sind einerseits aber weniger ökonomisch und wirken sich teilweise negativ auf die Qualität der Arbeitskante aus.
  • Insbesondere beträgt eine Volumendichte der monokristallinen und/oder polykristallinen Diamantpartikel in der ersten Beschichtung 5 - 20 %, besonders bevorzugt 15 - 20 %. Rakel mit derartigen Volumendichten zeigen eine äusserst gute Verschleissfestigkeit und lange Lebensdauer. Gleichzeitig ergibt sich auch eine optimal scharf begrenzte Kontaktzone zwischen Rakel und Druckzylinder bzw. Druckwalze, wobei die Kontaktzone über die gesamte Lebensdauer der Rakel im Wesentlichen konstant bzw. stabil bleibt.
  • Es ist grundsätzlich auch möglich, monokristalline und/oder polykristalline Diamantpartikel mit grösseren oder kleineren Volumenanteilen vorzusehen. Dabei wird aber unter Umständen die Verschleissfestigkeit und/oder die Stabilität der Rakel während dem Druckprozess beeinträchtigt.
  • In einer weiteren vorteilhaften Ausführungsform sind in der ersten Beschichtung zusätzliche Hartstoffpartikel enthalten. Unter dem Begriff Hartstoffpartikel werden in diesem Zusammenhang insbesondere Metallcarbide, Metallnitride, Keramiken und intermetallische Phasen, welche bevorzugt eine Härte von wenigstens 1000 HV aufweisen, verstanden. Hierzu zählen beispielsweise kubisches Bornitrid (BN), Borcarbid (BC), Chromoxid (Cr2O3), Titandiborid (TiB2), Zirkonnitrid (ZrN), Zirkoncarbid (ZrC), Titancarbid (TiC), Siliziumcarbid (SiC), Titannitrid (TiN), Aluminium-Oxid bzw. Korund (Al2O3), Wolframcarbid (WC), Vanadiumcarbid (VC), Tantalcarbid (TaC), Zirkondioxid (ZrO2) und/oder Siliziumnitrid (Si3N4).
  • Sind zusätzliche Hartstoffpartikel in der ersten Beschichtung vorhanden, kann insbesondere die Verschleissfestigkeit der Arbeitskante weiter verbessert werden. Idealerweise umfassen die zusätzlichen Hartstoffpartikel Aluminiumoxid-Partikel bzw. Partikel aus Korund (Al2O3) mit einer Partikelgrösse von 0.3 - 0.5 µm. Derartige Hartstoffpartikel zeichnen sich insbesondere durch ihre Härte, mechanische Festigkeit, chemische Resistenz und guten Gleiteigenschaften aus. Durch die Aluminiumoxid-Partikel, insbesondere bei einer Partikelgrösse von 0.3 - 0.5 µm wird die Stabilität der ersten Beschichtung bzw. der Nickel-Phosphor-Legierung in Kombination mit den monokristallinen und/oder polykristallinen Diamantpartikel weiter erhöht, was die Qualität der Arbeitskante verbessert und ein über die gesamte Lebensdauer der Rakel besonders gleichmässiges und exaktes Abrakeln ermöglicht.
  • Grundsätzlich ist es jedoch auch möglich, andere Hartstoffpartikel als Partikel aus Aluminiumoxid einzusetzen und/oder Partikelgrössen von weniger als 0.3 µm und/oder mehr als 0.5 µm vorzusehen. Dies geht aber unter Umständen zu Lasten der Verschleissfestigkeit und/oder Stabilität der Rakel. Ob und welche Sorte von zusätzlichen Hartstoffpartikeln der ersten Beschichtung zugegeben wird, kann auch vom Verwendungszweck der Rakel abhängen und wird z. B. vom Material und der Oberflächenbeschaffenheit der Druckzylinder und/oder Druckwalzen mitbestimmt.
  • Erfindungsgemäss ist auf der ersten Beschichtung eine zweite Beschichtung auf der Basis einer weiteren Nickel-Phosphor-Legierung angeordnet. Eine zweite Beschichtung auf der Basis einer weiteren Nickel-Phosphor-Legierung kann insbesondere als Schutzschicht für die erste Beschichtung dienen, wodurch die Verschleissfestigkeit und Stabilität der Arbeitskante der Rakel weiter erhöht werden kann. Eine zweite Beschichtung kann zudem als stabile Matrix für weitere Zusatzstoffe dienen, welche das Abrakeln mit der erfindungsgemässen Rakel positiv beeinflussen.
  • Erfindungsgemäss ist ein Phosphorgehalt der weiteren Nickel-Phosphorlegierung der zweiten Beschichtung kleiner als ein Phosphorgehalt der Nickel-Phosphorlegierung der ersten Beschichtung. Durch die Kombination von Beschichtungen mit unterschiedlichen Phosphoranteilen wird insbesondere ein höherer Verschleissschutz der Arbeitskante erzielt und zugleich eine weitere Stabilisierung der Arbeitskante erhalten. Ein Phosphorgehalt der weiteren Nickel-Phosphor-Legierung der zweiten Beschichtung von 6 - 9 Gew.-% hat sich hierbei als besonders geeignet erwiesen.
  • Grundsätzlich kann der Phosphorgehalt der weiteren Nickel-Phosphor-Legierung der zweiten Beschichtung aber auch weniger als 6 % oder mehr als 9 % betragen. Ebenso ist es prinzipiell möglich, in der ersten Beschichtung und der zweiten Beschichtung einen vergleichbaren Phosphorgehalt vorzusehen oder in der zweiten Beschichtung einen höheren Phosphorgehalt auszubilden als in der ersten Beschichtung. Dies kann jedoch zu Lasten der Qualität der Arbeitskante der Rakel gehen.
  • Eine Schichtdicke der zweiten Beschichtung misst insbesondere 0.5 - 3 µm. Derartige Schichtdicken garantieren im Besonderen eine hohe Eigenstabilität der zweiten Beschichtung und zugleich eine gute Schutzwirkung für die erste Beschichtung, was der Stabilität der Arbeitskante insgesamt zu Gute kommt.
  • Es liegt jedoch auch im Rahmen der Erfindung, eine zweite Beschichtung mit einer Schichtdicke von weniger als 0.5 µm oder mehr als 3 µm zu realisieren. Dies verringert aber unter Umständen die Stabilität und Verschleissfestigkeit der Arbeitskante der Rakel.
  • In einer besonders bevorzugten Ausführungsform enthält die zweite Beschichtung Polymerpartikel. Dabei enthalten die Polymerpartikel mit Vorteil Polytetrafluorethylen (PTFE) und weisen insbesondere eine Partikelgrösse von 0.5 - 1 µm auf. Mit Vorteil bestehen die Polymerpartikel, bis auf unvermeidbare Verunreinigungen, vollständig aus Polytetrafluorethylen.
  • Polymerpartikel in der zweiten Beschichtung können insbesondere eine Schmierwirkung hervorrufen, was wiederum die Gleiteigenschaften der Arbeitskante der Rakel beim Abrakeln verbessert. Polymerpartikel umfassend Polytetrafluorethylen und ganz besonders Polymerpartikel, welche vollständig aus Polytetrafluorethylen bestehen, haben sich dabei insbesondere bei einer Partikelgrösse von 0.5 - 1 µm als besonders vorteilhaft erwiesen. Im Besonderen in Verbindung mit einer Nickel-Phosphor-Legierung mit einem Phosphorgehalt von 6 - 9 % tragen derartige Polymerpartikel zu einer qualitativ hochstehenden Arbeitskante bei, welche ein äusserst präzises und für einen Druckzylinder und/oder eine Druckwalze schonendes Abraklen ermöglicht.
  • Grundsätzlich können Polymerpartikel, welche Polytetrafluorethylen enthalten, auch zusätzliche Polymermaterialien enthalten. Ebenso ist es möglich, Polymerpartikel ohne Polytetrafluorethylen einzusetzen oder Partikelgrössen von weniger als 0.5 oder mehr als 1 µm vorzusehen. Auch ist es möglich, voll ständig auf Polymerpartikel in der zweiten Beschichtung zu verzichten. Dabei entfallen jedoch die vorstehend genannten Vorteile wenigstens teilweise.
  • Zur Herstellung einer Rakel, insbesondere einer erfindungsgemässen Rakel, kann auf einem in einer longitudinalen Richtung eines flachen und länglichen Grundkörpers ausgebildeten Arbeitskantenbereich der Rakel eine erste Beschichtung auf der Basis einer Nickel-Phosphor-Legierung abgeschieden werden. Dabei werden in der ersten Beschichtung monokristalline und/oder polykristalline Diamantpartikel mit einer Partikelgrösse von wenigstens 5 nm und weniger als 50 nm dispergiert.
  • Mit Vorteil erfolgt die Abscheidung der ersten Beschichtung durch ein stromloses Abscheide- bzw. Beschichtungsverfahren. Zur Abscheidung der ersten Beschichtung auf der Basis einer Nickel-Phosphor-Legierung wird in diesem Fall kein elektrischer Strom verwendet, wodurch sich derartige Abscheideverfahren klar von den galvanischen Abscheidetechniken unterscheiden. Zur stromlosen Abscheidung bzw. Beschichtung wird die Arbeitskante oder gegebenenfalls der gesamte Grundkörper der Rakel in ein geeignetes Elektrolytbad mit darin suspendierten monokristallinen und/oder polykristallinen Diamantpartikeln eingetaucht und in an und für sich bekannter Weise beschichtet. Die im Elektrolytbad suspendierten monokristallinen und/oder polykristallinen Diamantpartikel werden während dem Beschichtungs- bzw. Abscheideprozess in die Nickel-Phosphor-Legierung mit eingebaut und werden so im Wesentlichen zufällig verteilt in der abgeschiedenen Nickel-Phosphor-Legierung dispergiert. Aufgrund der relativ geringen Partikelgrösse von wenigstens 5 nm und weniger als 50 nm und dem damit verbundenen relativ grossen Verhältnis von Oberfläche zu Volumen, sind die Diamantpartikel trotz ihrer erheblichen Dichte gleichmässig in der gesamten Elektrolytlösung verteilt. Da die zwischen der Oberfläche der Diamantpartikel und der Flüssigkeit im Elektrolytbad auftretenden Reibkräfte im Allgemeinen grösser sind als die auf die Diamantpartikel wirkende Gravitationskraft, wird ein Absinken der Diamantpartikel während dem Abscheideprozess nämlich weitgehend verhindert. Dies führt schliesslich auch zu einem äusserst gleichmässigen Einbau der Diamantpartikel in die erste Beschichtung.
  • Durch ein stromloses Abscheideverfahren kann daher eine qualitativ hochstehende erste Beschichtung erzeugt werden, welche insbesondere eine hohe Konturentreue gegenüber der Arbeitskante der Rakel bzw. gegenüber dem Grundkörper der Rakel sowie eine sehr gleichmässige Schichtdickenverteilung aufweist. Mit anderen Worten wird durch die stromlose Abscheidung eine äusserst gleichmässige Nickel-Phosphor-Legierung mit besonders gleichmässig verteilten monokristallinen und/oder polykristallinen Diamantpartikeln gebildet, welche der Kontur der Arbeitskante der Rakel bzw. dem Grundkörper optimal folgt, was entscheidend zur Qualität der Rakel beiträgt.
  • Aufgrund der stromlosen Abscheidung der Nickel-Phosphor-Legierung können grundsätzlich auch Kunststoffe als Grundkörper für die Rakel eingesetzt und in einfacher Art und Weise mit der ersten Beschichtung aus der Nickel-Phosphor-Legierung versehen werden.
  • Grundsätzlich ist es aber auch denkbar, die erste Beschichtung durch ein galvanisches Verfahren auf dem Grundkörper abzuscheiden. Es hat sich aber gezeigt, dass derartig abgeschiedene erste Beschichtungen weniger gleichmässig ausgebildet sind und insgesamt eine reduzierte Stabilität und Anhaftung auf dem Grundkörper aufweisen.
  • Falls eine zweite Beschichtung auf der Basis einer weiteren Nickel-Phosphor-Legierung auf der ersten Beschichtung angebracht wird, kann diese sowohl durch ein stromloses Beschichtungsverfahren, als auch durch ein galvanisches Beschichtungsverfahren abgeschieden werden. Insbesondere für das Abscheiden einer zweiten Beschichtung auf der Basis einer weiteren Nickel-Phosphor-Legierung mit darin dispergierten Polymerpartikeln hat sich aber die stromlose Abscheidung als besonders geeignet erwiesen.
  • Weiter bevorzugt wird die erste Beschichtung zur Aushärtung einer Wärmebehandlung, insbesondere bei einer Temperatur von 100 = 500°C, insbesondere 170 - 300°C, unterzogen. Falls vorhanden wird mit Vorteil auch die zweite Beschichtung dieser Wärmebehandlung unterzogen. Durch die Wärmebehandlung werden Festkörperreaktionen in den Nickel-Phosphor-Legierungen induziert, welche die Härte der Nickel-Phosphor-Legierungen in der ersten Beschichtung, und gegebenenfalls auch in der zweiten Beschichtung, erhöhen. Die Temperaturen von 100 - 500°C, insbesondere 170 - 300°C, werden dabei bevorzugt während einer Haltezeit von 0.5 - 15 Stunden, besonders bevorzugt 0.5 - 8 Stunden, gehalten. Derartige Temperaturen und Haltezeiten haben sich als optimal erwiesen, um ausreichende Härten der Nickel-Phosphor-Legierungen zu erzielen.
  • Temperaturen von weniger als 100°C sind hierbei ebenfalls möglich. In diesem Fall sind jedoch sehr lange und meist unökonomische Haltezeiten erforderlich. Höhere Temperaturen als 500°C sind, je nach Material des Grundkörpers, prinzipiell auch machbar, dabei ist jedoch der Härteprozess der Nickel-Phosphor-Legierung schwieriger steuerbar.
  • Grundsätzlich kann aber auch vollständig auf eine Wärmebehandlung verzichtet werden. Allerdings geht dies zu Lasten der Verschleissfestigkeit bzw. Lebensdauer der Rakel.
  • Falls zwei Beschichtungen auf dem Grundkörper angeordnet werden, erfolgt die Wärmebehandlung mit Vorteil erst nach dem Abscheiden bzw. dem Auftragen der zweiten Beschichtung auf der ersten Beschichtung. Dadurch wird insbesondere eine Oxidbildung auf der Oberfläche der ersten Beschichtung, welche von der zweiten Beschichtung bedeckt ist, verhindert. Dies bringt einerseits eine bessere Haftung zwischen der ersten Beschichtung und der zweiten Beschichtung mit sich und andererseits wird die Gleichmässigkeit der Rakel im Bereich der Arbeitskante insgesamt verbessert.
  • Falls eine zweite Beschichtung vorgesehen ist, wird diese insbesondere auf einem bezüglich der longitudinalen Richtung vorliegenden Mantelbereich des Grundkörpers, bevorzugt auf dem gesamten Grundkörper, allseitig abgeschieden. In diesem Fall ist der bezüglich der longitudinalen Richtung vorliegenden Mantelbereich des Grundkörpers oder bevorzugt der gesamte Grundkörper, allseitig mit der zweiten Beschichtung bedeckt. Abgesehen davon, dass der Grundkörper der Rakel so bestmöglich vor Umwelteinflüssen und insbesondere den teilweise chemisch aggressiven Druckfarben geschützt wird, vereinfacht sich dadurch der Beschichtungsvorgang. Der Grundkörper kann z. B. vollständig in das Elektrolytbad eingetaucht werden. Dies ist bei der alleinigen Beschichtung der mit der ersten Beschichtung versehenen Arbeitskante nicht möglich, da der Grundkörper dann unter Umständen in aufwändiger Weise bezüglich der Flüssigkeitsoberfläche des Elektrolytbads ausgerichtet werden muss.
  • Prinzipiell kann aber auch lediglich die mit der ersten Beschichtung versehene Arbeitskante mit der zweiten Beschichtung versehen werden.
  • Aus der nachfolgenden Detailbeschreibung und der Gesamtheit der Patentansprüche ergeben sich weitere vorteilhafte Ausführungsformen und Merkmalskombinationen der Erfindung.
  • Kurze Beschreibung der Zeichnungen
  • Die zur Erläuterung des Ausführungsbeispiels verwendeten Zeichnungen zeigen:
  • Fig. 1
    Einen Querschnitt durch einen ersten Lamellenrakel mit einer Beschichtung im Bereich der Arbeitskante;
    Fig. 2
    Einen Querschnitt durch eine erfindungsgemässe Lamellenrakel mit einer Zweifachbeschichtung im Bereich der Arbeitskante;
    Fig. 3
    Eine schematische Darstellung eines Verfahrens zur Herstellung einer Rakel.
  • Grundsätzlich sind in den Figuren gleiche Teile mit gleichen Bezugszeichen versehen.
  • Wege zur Ausführung der Erfindung
  • In Fig. 1 ist eine erste Lamellenrakel 100 im Querschnitt dargestellt. Die Lamellenrakel 100 beinhaltet einen Grundkörper 111 aus Stahl, welcher auf der in Fig. 1 linken Seite einen hinteren Bereich 112 mit einem im Wesentlichen rechteckigen Querschnitt aufweist. Eine Rakeldicke, gemessen von der Oberseite 112.1 zur Unterseite 112.2 des hinteren Bereichs, beträgt ca. 0.2 mm. Eine senkrecht zur Blattebene gemessene Länge des Grundkörpers 111 bzw. der Lamellenrakel 100 beträgt beispielsweise 1000 mm.
  • Auf der in Fig. 1 rechten Seite ist der Grundkörper 111 zur Ausbildung eines Arbeitskantenbereichs 113 bzw. einer Arbeitskante von der Oberseite 112.1 des hinteren Bereichs 112 her stufenartig verjüngt. Eine Oberseite 113.1 der Arbeitskante 113 liegt auf einer Ebene unterhalb der Ebene der Oberseite 112.1 des hinteren Bereichs 112, ist aber im Wesentlichen parallel bzw. planparallel zur Oberseite 112.1 des hinteren Bereichs 112 ausgebildet. Zwischen dem hinteren Bereich 112 und der Arbeitskante 113 liegt ein konkav ausgeformter Übergangsbereich 112.5 vor. Die Unterseite 112.2 des hinteren Bereichs 112 und die Unterseite 113.2 der Arbeitskante 113 liegen in einer gemeinsamen Ebene, welche planparallel zur Oberseite 112.1 des hinteren Bereichs 112 und planparallel zur Oberseite 113.1 der Arbeitskante 113 ausgebildet ist. Eine Breite des Grundkörpers 111, gemessen vom freien Ende des hinteren Bereichs bis zur Stirnseite 114 der Arbeitskante 113, misst beispielsweise 40 mm. Eine Dicke der Arbeitskante 113, gemessen von der Oberseite 113.1 zur Unterseite 113.2 der Arbeitskante, beträgt beispielsweise 0.060 - 0.150 mm, was ungefähr der halben Rakeldicke im hinteren Bereich 112 entspricht. Eine Breite des Arbeitskantenbereichs 113, gemessen an der Oberseite 113.1 der Arbeitskante 113 von der Stirnseite 114 bis zum Übergangsbereich 112.5, beträgt beispielsweise 0.8 - 5 mm.
  • Eine freie Stirnseite 114 des rechts liegenden freien Endes der Arbeitskante 113 verläuft von der Oberseite 113.1 der Arbeitskante 113 schräg nach links unten zur Unterseite 113.2 der Arbeitskante 113 hin. Die Stirnseite 114 weist dabei bezüglich der Oberseite 113.1 der Arbeitskante 113 bzw. bezüglich der Unterseite 113.2 der Arbeitskante 113 einen Winkel von ca. 45° bzw. 135° auf. Ein oberer Übergangsbereich zwischen der Oberseite 113.1 und der Stirnseite 114 der Arbeitskante 113 ist abgerundet. Ebenso ist ein unterer Übergangsbereich zwischen der Stirnseite 114 und der Unterseite 113.2 der Arbeitskante 113 abgerundet.
  • Die Arbeitskante 113 der Lamellenrakel 100 ist des Weiteren von einer ersten Beschichtung 120 umgeben. Die erste Beschichtung 120 bedeckt dabei die Oberseite 113.1 der Arbeitskante 113, den konkav ausgeformten Übergangsbereich 112.5 und einen an diesen anschliessenden Teilbereich der Oberseite 112.1 des hinteren Bereichs 112 des Grundkörpers 111 vollständig. Ebenso bedeckt die erste Beschichtung 120 die Stirnseite 114, die Unterseite 113.2 der Arbeitskante 113 und einen an die Unterseite 113.2 der Arbeitskante 113 anschliessenden Teilbereich der Unterseite 112.2 des hinteren Bereichs 112 des Grundkörpers 111.
  • Die erste Beschichtung 120 besteht z. B. im Wesentlichen aus einer stromlos abgeschiedenen Nickel-Phosphor-Legierung mit einem Phosphoranteil von z. B. 10 Gew.-%. Darin sind polykristalline Diamantpartikel 120.1 mit einer Partikelgrösse von beispielsweise 15 - 40 nm dispergiert. Der Volumenanteil der polykristallinen Diamantpartikel 120.1 beträgt z. B. 18 %. Die Schichtdicke der ersten Beschichtung 120 misst im Bereich der Arbeitskante 113 z. B. 5 µm. Im Bereich der Oberseite 112.1 und der Unterseite 112.2 des hinteren Bereichs 112 nimmt die Schichtdicke der ersten Beschichtung 120 kontinuierlich ab, so dass die erste Beschichtung 120 in einer Richtung von der Arbeitskante 113 weg keilförmig ausläuft.
  • In Fig. 2 ist eine erfindungsgemässe Lamellenrakel 200 im Querschnitt dargestellt. Die Lamellenrakel 200 beinhaltet einen Grundkörper 211 aus Stahl, welcher im Wesentlichen identisch ausgebildet ist wie der Grundkörper 111 der ersten Lamellenrakel 100 aus Fig. 1.
  • Die Arbeitskante 213 der zweiten Lamellenrakel 200 ist von einer ersten Beschichtung 220 umgeben. Die erste Beschichtung 220 bedeckt dabei die Oberseite 213.1 der Arbeitskante 213, den Übergangsbereich 212.5 und einen an diesen anschliessenden Teilbereich der Oberseite 212.1 des hinteren Bereichs 212 des Grundkörpers vollständig. Ebenso bedeckt die erste Beschichtung 220 die Stirnseite 214, die Unterseite 213.2 der Arbeitskante 213 und einen an die Unterseite 213.2 der Arbeitskante 213 anschliessenden Teilbereich der Unterseite 212.2 des hinteren Bereichs 212 des Grundkörpers 211.
  • Die erste Beschichtung 220 der zweiten Lammellenrakel 200. besteht z.B. im Wesentlichen aus einer stromlos abgeschiedenen Nickel-Phosphor-Legierung mit einem Phosphoranteil von z. B. 12 Gew.-%. In der ersten Beschichtung sind polykristalline Diamantpartikel 220.1 (in Fig. 2 durch Kreise symbolisiert) und Haftstoffpartikel 220.2 aus Aluminiumoxid (Al2O3) (in Fig. 2 durch Fünfecke symbolisiert) dispergiert. Die Diamantpartikel 220.1 weisen dabei eine Partikelgrösse von beispielsweise 15 - 40 nm auf, während die Hartstoffpartikel 220.2 bzw. die Partikel aus Aluminiumoxid eine Partikelgrösse von 0.4 µm aufweisen. Der Volumenanteil der polykristallinen Diamantpartikel 220.1 beträgt z. B. 15%. Die Schichtdicke der ersten Beschichtung 220 misst im Bereich der Arbeitskante 213 z. B. 5 µm. Im Bereich der Oberseite 212.1 und der Unterseite 212.2 des hinteren Bereichs 212 nimmt die Schichtdicke der ersten Beschichtung 220 kontinuierlich ab, so dass die erste Beschichtung 220 in einer Richtung von der Arbeitskante 213 weg keilförmig ausläuft.
  • Die erste Beschichtung 220 und die übrigen Bereiche des Grundkörpers 211, welche nicht von der ersten Beschichtung 220 bedeckt sind, sind vollständig von einer zweiten Beschichtung 221 umgeben. Somit sind auch die Oberseite 212.1 und die Unterseite 212.2 des hinteren Bereichs 212 sowie die hintere Stirnseite des Grundkörpers 211 mit der zweiten Beschichtung 221 bedeckt. Der Mantelbereich des Grundkörpers 211 bezüglich der senkrecht zur Blattebene liegenden longitudinalen Richtung des Grundkörpers 211 bzw. des zweiten Lamellenrakels 200 ist damit vollständig und rundum von wenigstens einer der beiden Beschichtungen 220, 221 umgeben. Die planparallel zur Blattebene liegenden und in Fig. 2 nicht sichtbaren vorderen und hinteren Seitenflächen des Grundkörpers 211 können ebenfalls mit der zweiten Beschichtung 221 bedeckt sein.
  • Die zweite Beschichtung 221 besteht aus einer weiteren stromlos abgeschiedenen Nickel-Phosphor-Legierung mit einem Phosphoranteil von ca. 7%. Der Phosphoranteil der ersten Beschichtung 210 ist damit grösser als der Phosphoranteil der zweiten Beschichtung 220. Die Schichtdicke der zweiten Beschichtung 221 beträgt beispielsweise 1.8 µm. In der zweiten Beschichtung 221 sind zudem Polymerpartikel 221.1 dispergiert. Die Polymerpartikel 221.1 bestehen z. B. aus Polytetrafluorethylen (PTFE) und weisen eine Partikelgrösse von beispielsweise 0.6 - 0.8 µm auf.
  • In Fig. 3 ist ein Verfahren 300 zur Herstellung einer Rakel, wie sie z. B. in den Fig. 1 und 2 abgebildet sind, schematisch dargestellt. Dabei werden in einem ersten Schritt 301 die zu beschichtenden Arbeitskanten 113, 213 der Grundkörper 111, 211 in ein geeignetes und an sich bekanntes wässriges Elektrolytbad mit darin suspendierten polykristallinen und/oder monokristallinen Diamantpartikeln 120.1, 220.1 mit einer Partikelgrösse von beispielsweise 10 - 40 nm eingetaucht. Falls, wie bei der Lammellenrakel aus Fig. 2 zusätzliche Hartstoffpartikel 220 in die Beschichtung eingebaut werden sollen, werden die zusätzlichen Hartstoffpartikel 220 ebenfalls im Elektrolytbad suspendiert. Während dem anschliessenden Abscheideprozess werden unter anderem Nickelionen aus einem Nickelsalz, z. B. Nickelsulfat, durch ein Reduktionsmittel, z. B. Natriumhypophosphit, in wässriger Umgebung zu elementarem Nickel reduziert und auf den Arbeitskanten 113, 213 unter Ausbildung einer Nickel-Phosphor-Legierung und unter Einbettung der polykristallinen und/oder monokristallinen Diamantpartikeln 120.1, 220.1 sowie, falls vorhanden, der zusätzlichen Hartstoffpartikel 220.2 abgeschieden. Dies geschieht ohne das Anlegen einer elektrischen Spannung bzw. vollständig stromlos unter mässig sauren Bedingungen (pH 4 - 6.5) und bei erhöhten Temperaturen von beispielsweise 70 - 95°C. Der Phosphorgehalt in den ersten Beschichtungen 120, 220 kann in an sich bekannter Weise durch die Konzentrationen und Mischverhältnisse der Edukte im Elektrolytbad kontrolliert werden.
  • Falls wie bei der zweiten Lamellenrakel 200 aus Fig. 2 zusätzlich eine zweite Beschichtung 220 vorgesehen ist, wird in einem zweiten Schritt 302 der Grundkörper 211 mit der ersten Beschichtung 210 in ein weiteres und an sich bekanntes wässriges Elektrolytbad mit darin suspendierten Polymerpartikeln 220.1, z. B. aus Polytetrafluorethylen mit einer Partikelgrösse von 0.6 - 0.8 µm, eingetaucht. Der anschliessende Abscheideprozess verläuft in der gleichen Weise wie bereits beim ersten Schritt 301 für die ersten Beschichtungen 120, 220 beschrieben. Für den Fall, dass wie bei der ersten Lamellenrakel aus Fig. 1 keine zweite Beschichtung vorgesehen ist, entfällt der zweite Schritt 302 und es wird, falls erwünscht, direkt der dritte Schritt 303 durchgeführt.
  • In einem dritten Schritt 303 werden die beschichteten Grundkörper 111, 211 während beispielsweise zwei Stunden und bei einer Temperatur von 300°C einer Wärmebehandlung zugeführt. Damit härten die ersten Beschichtungen 120, 220 und falls vorhanden die zweite Beschichtung 221 aus. Zum Schluss werden die fertigen Lamellenrakel 100, 200 abgekühlt und sind damit einsatzbereit.
  • Wie sich in Testversuchen gezeigt hat, weist die in Fig. 1 abgebildete erste Lamellenrakel 100 eine sehr hohe Verschleissfestigkeit und Stabilität über die gesamte Lebensdauer auf. Zum Vergleich wurde bei einer Lamellenrakel, wie sie in Fig. 1 dargestellt ist, in einem ersten Vergleichsversuch auf das Einbringen von Diamantpartikeln 120.1 in die erste Beschichtung 120 verzichtet. Dabei hat sich gezeigt, dass derartige Rakel ohne Diamantpartikel eine geringere Verschleissfestigkeit und entsprechend kürzere Lebensdauer aufweisen als die erfindungsgemässe Lamellenrakel 100 aus Fig. 1.
  • In einem zweiten Vergleichsversuch wurden bei einer Lamellenrakel, wie sie in Fig. 1 dargestellt ist, anstelle der Diamantpartikel 120.1, welche eine Partikelgrösse von ca. 10-40 nm aufweisen, grössere Diamantpartikel mit einer Partikelgrösse von ca. 100 nm eingesetzt. Die Arbeitskante der Rakel war in diesem Fall jedoch über die gesamte Lebensdauer der Rakel betrachtet weniger stabil als bei der Lamellenrakel 100 aus Fig. 1.
  • Die zweite Lamellenrakel 200 aus Fig. 2 hat sich in weiteren Testversuchen im Vergleich mit der ersten Lamellenrakel 100 als teilweise noch stabiler und verschleissfester erwiesen.
  • Die vorstehend beschriebenen Ausführungsformen sowie die Herstellungsverfahren sind lediglich als illustrative Beispiele zu verstehen, welche im Rahmen der Erfindung beliebig abgewandelt werden können.
  • So kann der Grundkörper 11 in Fig. 1 auch aus einem anderen Material, wie z. B. rostfreier Stahl oder einem Karbon-Stahl, gefertigt sein. In diesem Fall kann es aus ökonomischen Gründen vorteilhaft sein, die zweite Beschichtung 21 lediglich im Bereich der Arbeitskante 13 anzubringen, um den Materialverbrauch bei der Beschichtung zu reduzieren. Grundsätzlich kann der Grundkörper 11 aber auch aus einem nichtmetallischen Material, wie z. B. Kunststoffen, bestehen. Dies kann insbesondere für Anwendungen im Flexodruck vorteilhaft sein.
  • Es ist aber auch möglich, anstelle der Grundkörper 111, 211 aus den Fig. 1 und 2 Grundkörper mit anderen Formen zu verwenden. Insbesondere können die Grundkörper eine keilförmige Arbeitskante oder einen nicht verjüngten Querschnitt mit abgerundeter Arbeitskante aufweisen. Die freien Stirnseiten 114, 214 der rechts liegenden freien Enden der Arbeitskanten 113, 213 können beispielsweise auch vollständig abgerundet ausgeformt sein.
  • Des Weiteren können die erfindungsgemässen Rakeln 100, 200 aus den Fig. 1 und 2 auch anders dimensioniert sein. So können beispielsweise die Dicken der Arbeitsbereiche 113, 213, gemessen von den Oberseiten 113.1, 213.1 zu den Unterseiten 113.2, 213.2 der Arbeitsbereiche 113, 213, in einem Bereich von 0.040 - 0.200 mm variieren.
  • Ebenso können sämtliche Beschichtungen 120, 220, 221 der beiden Lamellenrakel 100, 200 weitere Legierungskomponenten und/oder zusätzliche Stoffe, wie z. B. Metallatome, Nichtmetallatome, anorganische Verbindungen und/oder organische Verbindungen, enthalten.
  • Bei den beiden in den Fig. 1 und 2 dargestellten Lamellenrakeln 100, 200 ist es auch möglich, die Mantelbereiche der Grundkörper 111, 211 bezüglich der senkrecht zur Blattebene liegenden longitudinalen Richtung der Grundkörper 111, 211 vollständig und rundum mit den ersten Beschichtungen 120, 220 zu umgeben.
  • Zusammenfassend ist festzustellen, dass ein neuartiger Aufbau für Rakel geschaffen wurde, welcher eine hohe Verschleissfestigkeit und Stabilität der Rakel mit sich bringt. Mit den erfindungsgemässen Rakeln wird insbesondere während der gesamten Lebensdauer ein exakteres Abstreichen, insbesondere von Druckfarbe auf Druckzylindern bzw. Druckwalzen, möglich.

Claims (15)

  1. Rakel (100, 200), insbesondere zum Abrakeln von Druckfarbe von einer Oberfläche einer Druckform und/oder zur Verwendung als Papierstreichmesser, umfassend einen flachen und länglichen Grundkörper (111, 211) mit einem in einer longitudinalen Richtung ausgebildeten Arbeitskantenbereich (113, 213), wobei wenigstens der Arbeitskantenbereich (113, 213) mit einer ersten Beschichtung (120, 220) auf der Basis einer Nickel-Phosphor-Legierung überzogen ist, und in der ersten Beschichtung (120, 220) monokristalline und/oder polykristalline Diamantpartikel (120.1, 220.1) dispergiert sind, wobei eine Partikelgrösse der Diamantpartikel (120.1, 220.1) wenigstens 5 nm und weniger als 50 nm misst, und auf der ersten Beschichtung (120, 220) eine zweite Beschichtung (221) auf der Basis einer weiteren Nickel-Phosphor-Legierung angeordnet ist, dadurch gekennzeichnet, dass ein Phosphorgehalt der weiteren Nickel-Phosphor-Legierung der zweiten Beschichtung (221) kleiner als ein Phosphorgehalt der Nickel-Phosphorlegierung der ersten Beschichtung ist,
  2. Rakel (100, 200) nach Anspruch 1, dadurch gekennzeichnet, dass ein Phosphorgehalt der Nickel-Phosphor-Legierung in der ersten Beschichtung (120, 220) 7 - 12 Gew.-% beträgt.
  3. Rakel (100, 200) nach einem der Ansprüche 1 - 2, dadurch gekennzeichnet, dass eine Schichtdicke der ersten Beschichtung (120, 220) 1 - 10 µm beträgt.
  4. Rakel (100, 200) nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass eine Volumendichte der Diamantpartikel (120.1, 220.1) in der ersten Beschichtung 5 - 20 %, insbesondere 15 - 20 %, beträgt.
  5. Rakel (100, 200) nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass in der ersten Beschichtung (220) zusätzliche Hartstoffpartikel (220.2) enthalten sind.
  6. Rakel (100, 200) nach Anspruch 5, dadurch gekennzeichnet, dass die zusätzlichen Hartstoffpartikel (220.2) Aluminiumoxid-Partikel mit einer Partikelgrösse von 0.3-0.5 µm umfassen.
  7. Rakel (100, 200) nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, dass ein Phosphorgehalt der weiteren Nickel-Phosphor-Legierung der zweiten Beschichtung (221) 6 - 9 Gew.-% beträgt.
  8. Rakel (100, 200) nach einem der Ansprüche 1 - 7, dadurch gekennzeichnet, dass eine Schichtdicke der zweiten Beschichtung (221) 0.5 - 3 µm misst.
  9. Rakel (100, 200) nach einem der Ansprüche 1 - 8, dadurch gekennzeichnet, dass die zweite Beschichtung (221) Polymerpartikel (221.1) enthält.
  10. Rakel (100, 200) nach Anspruch 9, dadurch gekennzeichnet, dass die Polymerpartikel (221.1) Polytetrafluorethylen enthalten und insbesondere eine Partikelgrösse von 0.5 - 1 µm aufwelsen.
  11. Verfahren (300) zur Herstellung einer Rakel, insbesondere einer Rakel (100, 200) nach einem der Ansprüche 1 - 10, wobei auf einem in einer longitudinalen Richtung eines flachen und länglichen Grundkörpers (111, 211) ausgebildeten Arbeitskantenbereich (113, 213) der Rakel (100, 200) eine erste Beschichtung (120, 220) auf der Basis einer Nickel-Phosphor-Legierung abgeschieden wird, und in der ersten Beschichtung (120, 220) monokristalline und/oder polykristalline Diamantpartikel (120.1, 220.1) mit einer Partikelgrösse von wenigstens 5 nm und weniger als 50 nm dispergiert werden, und auf der ersten Beschichtung (220) eine zweite Beschichtung (221) auf der Basis einer weiteren Nickel-Phosphor-Legierung abgeschieden wird, dadurch gekennzeichnet, dass ein Phosphorgehalt der weiteren Nickel-Phosphor-Legierung der zweiten Beschichtung (221) kleiner als ein Phosphorgehalt der Nickel-Phosphorlegierung der ersten Beschichtung ist.
  12. Verfahren (300) nach Anspruch 11, dadurch gekennzeichnet, dass die erste Beschichtung (120, 220) durch ein stromloses Beschichtungsverfahren abgeschieden wird.
  13. Verfahren (300) nach einem der Ansprüche 11 - 12, dadurch gekennzeichnet, dass die zweite Beschichtung (221) mit darin dispergierten Polymerpartikeln (221.1) abgeschieden wird.
  14. Verfahren (300) nach einem der Ansprüche 11 - 13, dadurch gekennzeichnet, dass die erste Beschichtung (120, 220) zur Aushärtung einer Wärmebehandlung, insbesondere bei einer Temperatur von 100 - 500°C, Insbesondere 170 - 300°C, unterzogen wird.
  15. Verwendung einer Rakel (100, 200) nach einem der Ansprüche 1 - 10 zum Abrakeln von Druckfarbe von einer Oberfläche einer Druckform, insbesondere einer Druckform für den Flexodruck, den Tiefdruck und/oder den Dekortiefdruck.
EP09818733.9A 2008-10-07 2009-09-10 Diamantbeschichtete rakel Not-in-force EP2331329B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09818733T PL2331329T3 (pl) 2008-10-07 2009-09-10 Rakiel z powłoką diamentową

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01592/08A CH699702A1 (de) 2008-10-07 2008-10-07 Diamantbeschichtete Rakel.
PCT/CH2009/000303 WO2010040236A1 (de) 2008-10-07 2009-09-10 Diamantbeschichtete rakel

Publications (2)

Publication Number Publication Date
EP2331329A1 EP2331329A1 (de) 2011-06-15
EP2331329B1 true EP2331329B1 (de) 2015-10-07

Family

ID=40329063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09818733.9A Not-in-force EP2331329B1 (de) 2008-10-07 2009-09-10 Diamantbeschichtete rakel

Country Status (11)

Country Link
US (1) US20110226144A1 (de)
EP (1) EP2331329B1 (de)
JP (1) JP5373917B2 (de)
CN (1) CN102256795B (de)
BR (1) BRPI0920669A2 (de)
CH (1) CH699702A1 (de)
DK (1) DK2331329T3 (de)
ES (1) ES2554557T3 (de)
MX (1) MX2011003523A (de)
PL (1) PL2331329T3 (de)
WO (1) WO2010040236A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2525984T3 (en) 2010-01-20 2016-06-27 Daetwyler Swisstec Ag Rakel
JP5614538B2 (ja) * 2010-09-30 2014-10-29 アイテック株式会社 複合めっき被膜の形成方法
DE102010062901A1 (de) 2010-12-13 2012-06-14 Voith Patent Gmbh Imprägnierte Klingenbeschichtung
CN102199764A (zh) * 2011-05-11 2011-09-28 芜湖海成科技有限公司 一种金刚石复合镀镀层
WO2013133762A1 (en) * 2012-03-08 2013-09-12 Swedev Ab Electrolytically puls-plated doctor blade with a multiple layer coating
EP3178654A1 (de) * 2015-12-10 2017-06-14 Daetwyler Swisstec Ag Rakel
TWI574846B (zh) * 2016-02-18 2017-03-21 財團法人工業技術研究院 凹版印刷裝置
EP3308961B1 (de) * 2016-10-13 2024-10-23 Daetwyler Swisstec Ag Klingen mit thermischen spritzschichten und verfahren
GB2560969A (en) * 2017-03-30 2018-10-03 Ajt Eng Ltd Electroless plating
KR102018879B1 (ko) * 2018-01-24 2019-09-05 국방과학연구소 내마모성 이중 코팅 구조체
EP4004256B1 (de) * 2019-07-26 2024-01-17 ENI S.p.A. Mehrschichtiger nickel-phosphor-verbund
CN112038558B (zh) * 2020-07-23 2022-11-18 惠州锂威新能源科技有限公司 一种极片涂层刮除系统及极片涂层刮除方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3110842A1 (de) * 1981-03-20 1982-09-30 Basf Ag, 6700 Ludwigshafen Rakel fuer den tiefdruck mit kunststoff-druckschichten
JPH04116198A (ja) * 1990-08-31 1992-04-16 Tokyo Daiyamondo Kogu Seisakusho:Kk ダイヤモンド共析メッキ被膜およびそのメッキ法
EP1197584A1 (de) * 2000-10-10 2002-04-17 BTG Eclépens S.A. Beschichtigungsklinge und Verfahren zur Herstellung
SE519466C2 (sv) * 2000-12-07 2003-03-04 Swedev Ab Schaber - eller rakelblad med beläggning av nickel innefattandes nötningsbeständiga partiklar och metod vid dess framställning
JP4325901B2 (ja) * 2002-01-29 2009-09-02 日本ニュークローム株式会社 表面処理ドクターブレード
US7152526B2 (en) * 2002-01-29 2006-12-26 Nihon New Chrome Co., Ltd. Surface treated doctor blade
JP3913118B2 (ja) * 2002-06-13 2007-05-09 忠正 藤村 超微粒ダイヤモンド粒子を分散した金属薄膜層、該薄膜層を有する金属材料、及びそれらの製造方法
JP2004057841A (ja) * 2002-07-24 2004-02-26 Yasunao Dan 塗工機用ドクターブレード
EP1868813A2 (de) * 2005-04-15 2007-12-26 Nihon New Chrome Co. Ltd. Oberflächenbehandelte rakel
JP2006315399A (ja) * 2005-04-15 2006-11-24 Nippon New Chrome Kk 表面処理ドクターブレード
CN200981359Y (zh) * 2006-08-23 2007-11-28 中国第一汽车集团公司 钢铁工件上的双层镍磷合金层膜
CN101122044A (zh) * 2007-05-16 2008-02-13 深圳清华大学研究院 含纳米金刚石的镍基复合镀层及其超声波辅助制备方法

Also Published As

Publication number Publication date
CN102256795B (zh) 2015-03-11
ES2554557T3 (es) 2015-12-21
WO2010040236A1 (de) 2010-04-15
DK2331329T3 (en) 2016-01-04
US20110226144A1 (en) 2011-09-22
PL2331329T3 (pl) 2016-01-29
BRPI0920669A2 (pt) 2015-12-29
CH699702A1 (de) 2010-04-15
EP2331329A1 (de) 2011-06-15
CN102256795A (zh) 2011-11-23
MX2011003523A (es) 2011-05-02
JP2012505087A (ja) 2012-03-01
JP5373917B2 (ja) 2013-12-18

Similar Documents

Publication Publication Date Title
EP2331329B1 (de) Diamantbeschichtete rakel
EP2525984B1 (de) Rakel
DE60120483T2 (de) Rakel und verfahren bei deren herstellung
DE69614093T2 (de) Verbessertes rakelmesser für tampondruckmaschinen und dieses aufweisende maschinen
EP1264708B1 (de) Verfahren zur Herstellung einer chemikalienbeständigen Schutzschicht für Rotationskörper aus faserverstärktem Kunststoff und ein Rotationskörper
EP2328754B1 (de) Rakel
DE3110842A1 (de) Rakel fuer den tiefdruck mit kunststoff-druckschichten
EP3386753B1 (de) Rakel
DE68922211T2 (de) Hydrophobe oleophile mikroporöse Farbwalzen.
DE69100405T2 (de) Rasterwalze mit einer gemusterten schicht in einer galvanischen deckschicht und walzkörper für eine derartige walze.
DE102005040151A1 (de) Nanopartikelschicht
EP3308961B1 (de) Klingen mit thermischen spritzschichten und verfahren
DE68921978T2 (de) Hydrophobe oleophile mikroporöse Farbwalzen.
DE2110520B2 (de) Verfahren zum Beschichten eines zementierten Carbidgegenstandes
EP0322423B1 (de) Herstellungsverfahren für abriebfeste beschichtungen insbesondere auf farbübertragungswalzen
DE102010042371B3 (de) Verfahren zur Beschichtung einer Oberfläche eines Grundkörpers eines Zylinders einer Druckmaschine
DE102009039388B4 (de) Wendeschneidplatte mit einem Farbauftrag zur Benutzungs- und/oder Verschleißerkennung und Verfahren zur Herstellung einer solchen Wendeschneidplatte
DE102008007680A1 (de) Druckwerk für eine Verarbeitungsmaschine
DE102022108533A1 (de) Verfahren zur Herstellung einer chemisch NiP-Elektrolytdispersion mit einzulagernden Feststoffpartikeln
DE102011007391B3 (de) Verfahren zur Herstellung eines Zylinders einer Druckmaschine
EP1509632A2 (de) Verfahren zur oberfl chenbehandlung eines rakelelementes
DE202008003640U1 (de) Rakel mit einer Beschichtung
DE10209296A1 (de) Feuchtwalze für Feuchtwerke in Druckmaschinen
WO1995015853A1 (de) Rakel für tiefdruck-rotationsmaschinen
DE19836392A1 (de) Oberflächenbeschichtung, körnige Mischung zur Zufuhr zu einer Plasmabeschichtung und Oberflächenbeschichtungsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110311

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120914

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150430

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 753492

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER AND PARTNER PATENTANWAELTE AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009011686

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2554557

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20151221

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160103

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160207

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160208

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009011686

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

26N No opposition filed

Effective date: 20160708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160901

Year of fee payment: 8

Ref country code: FI

Payment date: 20160919

Year of fee payment: 8

Ref country code: CH

Payment date: 20160825

Year of fee payment: 8

Ref country code: DK

Payment date: 20160927

Year of fee payment: 8

Ref country code: GB

Payment date: 20160902

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160829

Year of fee payment: 8

Ref country code: FR

Payment date: 20160829

Year of fee payment: 8

Ref country code: PL

Payment date: 20160826

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20160902

Year of fee payment: 8

Ref country code: ES

Payment date: 20160922

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160929

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160923

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160910

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 753492

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160910

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160910

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009011686

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170910

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171001

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170910

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170910

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170910

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515