-
Die Erfindung betrifft ein Verfahren zur Beschichtung einer Oberfläche eines Grundkörpers eines Zylinders einer Druckmaschine gemäß dem Oberbegriff des Anspruches 1.
-
Durch die
DE 103 49 446 B4 ist ein Verfahren zur Beschichtung einer Oberfläche eines Grundkörpers eines Zylinders einer Druckmaschine bekannt, bei dem die Mantelfläche des Zylinderballens mit einem Metall beschichtet wird.
-
Durch die
DE 29 14 255 A1 ist ein Zylinder einer Druckmaschine mit einem ein- oder mehrschichtigen Mantel bekannt, wobei eine Außenschicht mit einer maximalen Dicke von 0,15 mm aus Nickel und/oder Chrom von mindestens 30% Gewichtsanteilen und Beimengen weiterer Metalle wie z. B. Wolfram besteht.
-
Durch die
WO 2007/136994 A2 ist bekannt, Werkstücke mit einer Nickel und Wolfram enthaltenden Legierung galvanisch zu beschichten, wobei zur Ausbildung von nanokristallinen oder amorphen Strukturen der Beschichtung der Werkstücke der zur Ausführung des galvanischen Prozesses erforderliche elektrische Strom als eine Folge von Pulsen ausgebildet wird.
-
Durch die
EP 0 322 423 B1 ist ein Verfahren bekannt, bei dem eine Einlagerung von Hartstoffen in einem basischen Nickelgalvanisierungsbad vorgenommen wird, um eine Schutzschicht aus einem zähen Metall, in das Hartstoffkörner eingelagert sind, z. B. auf einer Farbübertragungswalze aufzubringen. Als Hartstoff werden Siliziumkarbid, Siliziumnitrid, Siliziumoxid, Korund, Wolframkarbid oder Diamantstaub verwendet.
-
Durch die
DE 10 2006 012 288 A1 ist ein Druckwerkzylinder einer Druckmaschine, insbesondere einer Rollendruckmaschine, bekannt, wobei dieser Druckwerkzylinder eine äußere Oberfläche und mindestens einen in die äußere Oberfläche eingebrachten Spannkanal zum Spannen mindestens einer Druckform oder mindestens eines Gummituchs auf diesem Druckwerkzylinder aufweist, wobei die gesamte äußere Oberfläche des Druckwerkzylinders einschließlich des oder jedes Spannkanals autokatalytisch mit Nickel und Phosphor gleichmäßig beschichtet ist, wobei vorzugsweise die gesamte äußere Oberfläche des Druckwerkzylinders einschließlich des oder jedes Spannkanals mit einer Dispersionsbeschichtung aus einer Nickel-Phosphor-Matrix mit in die Nickel-Phosphor-Matrix eingelagerten Hartstoffpartikeln und/oder Gleitpartikeln gleichmäßig beschichtet ist.
-
Durch die
DE 10 2009 010 080 A1 ist eine Tiefdruckform als Sleeve oder Zylinder mit einer ablösbaren Schicht bekannt, wobei auf einem Träger nacheinander eine Zwischenschicht und eine Trennschicht sowie eine strukturierte Hartstoffschicht angeordnet sind, wobei die strukturierte Hartstoffschicht aus einer binären oder ternären Nickelbasislegierung mit wenigstens Kobalt, Phosphor, Molybdän, Wolfram oder einer Kombination daraus als Legierungspartner besteht und wobei die Trennschicht eine zum Entfernen der darauf angeordneten Hartstoffschicht dienende Trennschicht ist, wobei die Hartstoffschicht eine Ballardhaut ist.
-
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Beschichtung einer Oberfläche eines Grundkörpers eines Zylinders einer Druckmaschine zu schaffen, bei dem zumindest eine Mantelfläche dieses Zylinders verschleißfest und chemisch beständig ausgebildet wird.
-
Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruches 1 gelöst.
-
Die mit der Erfindung erzielbaren Vorteile bestehen insbesondere darin, dass im Beschichtungsprozess trotz der Verwendung einer Nickel-haltigen Legierung eine hoch verschleißfeste und chemisch beständige Oberfläche ausgebildet wird. Vorteilhafterweise ist im Beschichtungsprozess zur Ausbildung der verschleißfesten und chemisch beständigen Oberfläche des Zylinders die Beschichtung in mindestens einer ihrer Eigenschaften einstellbar, wobei insbesondere ein Kristallwachstum des auf der Oberfläche des Grundkörpers abzuscheidenden Beschichtungswerkstoffes in seiner Größe und/oder Geschwindigkeit einstellbar ist, um ein Gefüge des auf der Oberfläche des Zylinders aufgetragenen Beschichtungswerkstoffes hinsichtlich zumindest der beiden divergierenden Eigenschaften Verschleißfestigkeit und Korrosionsbeständigkeit für den Gebrauchszweck in einer Druckmaschine optimal einzustellen. Dabei können sowohl die Art der Ausbildung des Beschichtungswerkstoffes als auch die Prozessführung zur der Herstellung der Beschichtung in vorteilhafter Weise gemeinsam dazu beitragen, dass die Verschleißfestigkeit und die Korrosionsbeständigkeit der Oberfläche des Zylinders für den beabsichtigten Verwendungszweck in der Druckmaschine optimal eingestellt werden.
-
Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird im Folgenden näher beschrieben.
-
Es zeigen:
-
1 einen Zylinder einer Druckmaschine;
-
2 eine Anordnung zur Durchführung eines Beschichtungsprozesses.
-
Die 1 zeigt in einer schematischen vereinfachten Darstellung einen Zylinder 01 einer Druckmaschine, z. B. einer Offsetrotationsdruckmaschine, wobei der Zylinder 01 vorzugsweise als ein Druckwerkszylinder ausgebildet ist, z. B. als ein Formzylinder oder als ein Übertragungszylinder, welche im Druckprozess der Druckmaschine sowohl hohen mechanischen Beanspruchungen als auch der Einwirkung von Prozessflüssigkeiten wie z. B. Druckfarben, Feuchtmitteln, Waschmitteln etc. ausgesetzt sind. Ein Zylinder 01 der vorgenannten Art weist einen vorzugsweise massiven, insbesondere metallischen Grundkörper 02 mit einer elektrisch leitenden Mantelfläche 03 auf, wobei die Mantelfläche 03 zu ihrem Schutz und damit zur Erhöhung der Gebrauchsdauer des Zylinders 01 durch Auftragung einer insbesondere gleichmäßigen flächendeckenden Beschichtung 04 verschleißfest und chemisch beständig ausgebildet oder zumindest auszubilden ist. An beiden Stirnseiten des Grundkörpers 02 sind in dessen axialer Verlängerung jeweils ein Zapfen 06 ausgebildet, mit denen der Zylinder 01 in einem Gestell der Druckmaschine, d. h. zwischen sich gegenüber stehenden Gestellwänden der Druckmaschine, gelagert werden kann. Der Grundkörper 02 des Zylinders 01 erstreckt sich über eine Länge l z. B. im Bereich von 500 mm bis 2400 mm, vorzugsweise zwischen 1200 mm und 2000 mm. Ein Durchmesser d des Grundkörpers 02 dieses Zylinders 01 liegt z. B. im Bereich von 140 mm bis 450 mm, vorzugsweise zwischen 280 mm und 340 mm. Eine in der 1 aus Gründen der Erkennbarkeit nicht maßstabsgerecht dargestellte Dicke d04 der auf der Mantelfläche 03 des Grundkörpers 02 aufgetragenen oder aufzutragenden Beschichtung 04 liegt z. B. im Bereich zwischen 0,01 mm und 0,5 mm.
-
Die 2 zeigt in einer gleichfalls schematischen vereinfachten Darstellung eine der Ausführung des Beschichtungsprozesses dienende Beschichtungsanlage mit einer Wanne 11, in welcher sich eine flüssige Elektrolytlösung 12 befindet. Zur Herstellung der Beschichtung 04 zumindest auf der Mantelfläche 03 des Grundkörpers 02 wird der Zylinder 01 zumindest mit seinem Grundkörper 02 in diese Elektrolytlösung 12 getaucht und zumindest die elektrisch leitfähige Mantelfläche 03 des Grundkörpers 02 wird mit einer Stromquelle 13 elektrisch leitend verbunden, so dass der Zylinder 01, d. h. zumindest dessen Mantelfläche 03, in der Elektrolytlösung 12 eine erste Elektrode bildet. In der Wanne 11 ist in der Elektrolytlösung 12 beabstandet vom Zylinder 01, d. h. ohne Berührungskontakt, eine zweite Elektrode 14 angeordnet, welche gleichfalls mit der Stromquelle 13 elektrisch leitend verbunden ist. Die zweite Elektrode 14 weist denjenigen Stoff auf, mit dem eine Oberfläche des Zylinders 01, zumindest aber die Mantelfläche 03 des Grundkörpers 02 des Zylinders 01, in dem durchzuführenden Beschichtungsprozess zu beschichten ist, d. h. den Beschichtungswerkstoff, der vorzugsweise als eine aus zwei oder mehr Metallen bestehende Legierung ausgebildet ist.
-
Als Beschichtungswerkstoff zur Ausbildung der verschleißfesten und chemisch beständigen Beschichtung 04 des Zylinders 01 wird ein zumindest Nickel aufweisender Stoff verwendet, der vorzugsweise mit Wolfram legiert ist, wobei eine solche Legierung z. B. zu 60% bis 95% aus Nickel und zu 5% bis 40% aus Wolfram besteht. Weitere Legierungsbestandteile oder alternative Legierungsbestandteile anstelle von Wolfram können Kobalt, Zink, Kupfer, Schwefel und bis zu 14% Phosphor sein, wobei die zweite Elektrode 14 zusätzlich zum Nickel nur einen einzigen oder mehrere dieser vorgenannten Legierungsbestandteile aufweisen kann. Zusätzlich zu mindestens einem der genannten Legierungsbestandteile weist der Beschichtungswerkstoff eine Beimischung von mindestens einem Dotierungselement mit einer Partikelgröße im Bereich von weniger als 8 μm auf, vorzugsweise von weniger als 5 μm. Insbesondere kann die Kristallgröße weniger als 1 μm messen und damit im Nanometerbereich liegen. Das mindestens eine Dotierungselement wird unter Beibehaltung zumindest einer seiner spezifischen Werkstoffeigenschaften, insbesondere seiner Härte, der Nickel-haltigen Legierung z. B. in Form eines Pulvers beigemischt und damit in das Gefüge der Legierung eingelagert. Solche Beimischungen können einerseits Hartstoffe sein, um mit diesen die Härte und damit die Verschleißfestigkeit der Beschichtung 04 zu steigern. Zusätzliche oder alternative Beimischungen können Teflon oder ein anderer Festschmierstoff sein, um die Gleiteigenschaften der Beschichtung 04 zu verbessern.
-
Die Härte des in das Gefüge des Nickel-haltigen Beschichtungswerkstoffes eingelagerten Dotierungselementes beträgt vorzugsweise mehr als 1000 HV (HV = Vickershärte), insbesondere mehr als 2000 HV, wobei die Härte z. B. nach DIN EN ISO 6507-1 (1998-01-00), Metallische Werkstoffe – Härteprüfung nach Vickers – Teil 1: Prüfverfahren, DIN Deutsches Institut für Normung e. V., ermittelt wird. Die Verwendung einer Nickel-haltigen Legierung als Beschichtungswerkstoff führt zwar zunächst zu einer Schwächung der Härte und der Verschleißfestigkeit der Beschichtung 04 gegenüber den Werten für die Härte und Verschleißfestigkeit, die erreicht werden könnten, wenn Nickel als weitgehend reiner Stoff als Beschichtungswerkstoff aufgetragen würde, jedoch wird diese durch die Verwendung der Nickel-haltigen Legierung bedingte Schwächung durch die Einlagerung mindestens eines als Hartstoff ausgebildeten Dotierungselementes in diese Legierung mehr als wettgemacht. Die Verwendung einer Nickel-haltigen Legierung als Beschichtungswerkstoff in Kombination mit mindestens einem in diese Legierung eingelagerten Dotierungselement gestattet es, die Beschichtung 04 zumindest auf der Mantelfläche 03 des Grundkörpers 02 des Zylinders 01 hinsichtlich ihrer Werkstoffeigenschaften, d. h. insbesondere hinsichtlich ihrer Verschleißfestigkeit bei gleichzeitiger chemischer Beständigkeit, d. h. Korrosionsfestigkeit, für den Verwendungszweck in einer Druckmaschine optimal einzustellen.
-
Als Hartstoffe eignen sich insbesondere keramische Werkstoffe, z. B. Karbide, Nitride oder Oxide. Aus der Stoffklasse der Karbide können insbesondere kovalente Karbide wie Borkarbid oder Siliziumkarbid oder metallartige Karbide wie Titankarbid, Wolframkarbid, Chromkarbid, Vanadiumkarbid, Niobkarbid oder Aluminiumkarbid in das Gefüge der Nickel-haltigen Legierung dotiert werden. Von den Nitriden eignen sich z. B. Siliziumnitrid oder Aluminiumnitrid. Von den Oxiden sind Aluminiumoxid, Siliziumoxid oder Zirkonoxid verwendbar. Mit den genannten Hartstoffen lässt sich für die Beschichtung 04 zumindest auf der Mantelfläche 03 des Grundkörpers 02 des Zylinders 01 eine Härte jeweils von mehr als 1000 HV erreichen, mit manchen bis zu 3000 HV oder gar 6000 HV. Zur Herstellung einer extrem harten Oberfläche wird Diamant verwendet, so dass die Oberfläche mit einer Härte bis zu 10.000 HV ausgebildet werden kann.
-
In vorteilhafter Weise wird die optimierte Ausbildung des Beschichtungswerkstoffes noch mit einer optimierten Prozessführung kombiniert, um weitere Eigenschaften des Gefüges der Beschichtung 04 zu beeinflussen. Insbesondere soll durch die Prozessführung ein Kristallwachstum des auf der Oberfläche des Grundkörpers 02 abgeschiedenen Stoffes in seiner Größe und/oder Geschwindigkeit beeinflusst werden. Dabei können z. B. folgende Prozessbedingungen gewählt und eingestellt werden: Im Beschichtungsprozess fließt zwischen den beiden genannten Elektroden ein elektrischer Strom, dessen Stromdichte vorzugsweise zwischen 3 A/dm2 und 25 A/dm2 beträgt, wobei zwischen den beiden genannten Elektroden eine elektrische Spannung zwischen 5 V und 30 V eingestellt wird. Die Elektrolytlösung 12 wird mittels einer Heizeinrichtung auf eine Temperatur vorzugsweise im Bereich zwischen z. B. 35°C und 70°C erwärmt. Mit den vorgenannten Prozessparametern lässt sich eine Abscheiderate im Bereich zwischen 0,5 μm/min und 25 μm/min einstellen, z. B. 1 μm/min bei einer Stromdichte von 5 A/dm2. Ohne dem mindestens einen eingelagerten Dotierungselement weist die derart vorgenommene Beschichtung 04 mit einem Nickel und Wolfram aufweisenden Beschichtungswerkstoff am Ende des Beschichtungsprozesses eine Härte z. B. zwischen 80 HV-0,1 und 600 HV-0,1 auf. Bei Verwendung eines Karbids oder Diamantpulvers als Dotierungselement, welches in das Gefüge der Nickel-haltigen Legierung eingelagert wird, wird zumindest eine Härte von 1000 HV-0,1 erreicht.
-
Eine zur Erzielung eines bestimmten Gefüges optimierte Prozessführung wird nun dadurch erreicht, dass die Stromquelle 13 vorzugsweise als eine gesteuerte oder zumindest steuerbare Stromquelle ausgebildet wird, so dass während einer Abscheidung des Beschichtungswerkstoffes auf der Oberfläche des Grundkörpers 02 der in der Elektrolytlösung 12 zwischen den beiden Elektroden fließende elektrische Strom durch eine Steuerung dieser Stromquelle 13 als eine Folge von Pulsen 17; 18 ausgebildet wird, wobei während der Abscheidung des Beschichtungswerkstoffes auf der Oberfläche des Grundkörpers 02 die Beschichtung 04 in einer ihrer Eigenschaften durch eine Modulation der Pulse 17; 18 des zwischen den beiden Elektroden fließenden Stroms eingestellt wird.
-
Mit der Pulsmodulation des zwischen dem Grundkörper 02 und der zweiten Elektrode 14 fließenden elektrischen Stroms wird als Eigenschaft der Beschichtung 04 vorzugsweise das Kristallwachstum des auf der Oberfläche des Grundkörpers 02 abgeschiedenen Stoffes, insbesondere des Nickel und Wolfram aufweisenden Stoffes, in seiner Größe und/oder Geschwindigkeit eingestellt, so dass in diesem Beschichtungsprozess hinsichtlich des auf der Oberfläche des Zylinders 01 abzuscheidenden Stoffes dessen kristalline Korngröße und/oder Abscheiderate in bedarfsgerechter Weise wählbar ist bzw. sind, wobei sich insbesondere die Wahl und Einstellung der kristallinen Korngröße auch auf eine Verteilungsdichte des in die Nickel-haltige Legierung eingelagerten Dotierungselementes auswirkt und damit z. B. die Härte und/oder die tribologischen Eigenschaften der Beschichtung 04 mit beeinflusst. Der zwischen dem Grundkörper 02 und der zweiten Elektrode 14 fließende elektrische Strom in Form von Pulsen 17; 18 wird z. B. mit einer Dauer im Bereich von 1 ms bis 100 ms eingestellt. In einer bevorzugten Ausführungsvariante wird der zwischen dem Grundkörper 02 und der zweiten Elektrode 14 fließende elektrische Strom in Form von zu einem festgelegten Bezugspotential 16 alternierenden Pulsen 17; 18 eingestellt, wobei die relativ zu dem Bezugspotential 16 eine unterschiedliche Polarität aufweisenden Pulse 17; 18 von oder an der Stromquelle 13 vorzugsweise derart eingestellt werden, dass eine Dauer der Pulse 17 der einen Polarität verschieden ist von einer Dauer der Pulse 18 der anderen Polarität.
-
Bezugszeichenliste
-
- 01
- Zylinder
- 02
- Grundkörper
- 03
- Mantelfläche
- 04
- Beschichtung
- 05
-
- 06
- Zapfen
- 07
-
- 08
-
- 09
-
- 10
-
- 11
- Wanne
- 12
- Elektrolytlösung
- 13
- Stromquelle
- 14
- Elektrode, zweite
- 15
-
- 16
- Bezugspotential
- 17
- Puls
- 18
- Puls
- d
- Durchmesser
- d04
- Dicke
- l
- Länge