EP3216979B1 - Schalungssystem - Google Patents

Schalungssystem Download PDF

Info

Publication number
EP3216979B1
EP3216979B1 EP16158965.0A EP16158965A EP3216979B1 EP 3216979 B1 EP3216979 B1 EP 3216979B1 EP 16158965 A EP16158965 A EP 16158965A EP 3216979 B1 EP3216979 B1 EP 3216979B1
Authority
EP
European Patent Office
Prior art keywords
formwork
concrete
pressure sensors
pressure
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16158965.0A
Other languages
English (en)
French (fr)
Other versions
EP3216979A1 (de
Inventor
Annalisa KERN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kern Tunneltechnik SA
Original Assignee
Kern Tunneltechnik SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kern Tunneltechnik SA filed Critical Kern Tunneltechnik SA
Priority to EP16158965.0A priority Critical patent/EP3216979B1/de
Priority to US15/450,799 priority patent/US9945229B2/en
Publication of EP3216979A1 publication Critical patent/EP3216979A1/de
Application granted granted Critical
Publication of EP3216979B1 publication Critical patent/EP3216979B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • E21D11/105Transport or application of concrete specially adapted for the lining of tunnels or galleries ; Backfilling the space between main building element and the surrounding rock, e.g. with concrete
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • E21D11/102Removable shuttering; Bearing or supporting devices therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D5/00Lining shafts; Linings therefor
    • E21D5/04Lining shafts; Linings therefor with brick, concrete, stone, or similar building materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast

Definitions

  • the present invention relates to a formwork system, in particular for tunneling, comprising at least one support arrangement for supporting a formwork comprising a plurality of formwork elements, which formwork system has at least one control for the support of the formwork elements and the concrete supply for the space to be concreted.
  • Such a formwork system is for example from the European patent 2 626 509 , the DE 28 26 623 A1 , the JP 2008 088696 A , the DE 100 40 777 A1 or the JP 2 932323 B2 known.
  • a formwork system in particular for tunneling, known, which comprises at least one support assembly for supporting at least one formwork element, which formwork system further comprises at least one concrete pump, a plurality of concrete feeds to the shuttering element and at least one controller, wherein on the formwork element at least two pressure sensors vertically arranged at different positions and are connected to the control of the formwork system, which pressure sensors are designed to measure the pressure acting on the formwork elements pressure at at least two different heights of the formwork element, and that the control is designed, the pump operation in response to the signal of the pressure sensors to control.
  • a formwork system with the features of the preamble of claim 1 is from the post-published EP 3,168,413 A1 known.
  • At least two pressure sensors are arranged vertically in different positions on the shuttering element and / or on the support arrangement and connected to the control of the shuttering system.
  • the pressure sensors are designed to measure the pressure acting on the formwork elements due to the concrete loaded in the formwork at at least two different heights of the formwork element.
  • the control system is designed to control the concrete infeeds individually depending on the signal from the pressure sensors. In this way it is possible to detect the concrete pressure acting at different points on the formwork element or preferably a plurality of formwork elements and the control can compare pressure values measured with nominal values by the pressure sensors and individually control the concrete feed so that the concrete pressure at the different points of the concrete Shuttering elements set specifications. In this way, a concrete wall, in particular a concrete vault with predetermined homogeneous material properties in the entire wall or vault area can be produced.
  • the support assembly has at least one hydraulic support beam for supporting the formwork element and the controller is designed to control the force of the support beam in dependence on the pressure measured in the pressure sensors.
  • the pressure can thus be regulated not only on the individual concrete supply, but also on the Abstütztik means of the support beams.
  • the pressure sensors need not be provided in the formwork itself, but may be disposed on the force receiving elements of the formwork elements, e.g. at the points where the support structure statically supports the formwork element.
  • the entire formwork consists of several formwork elements, as is customary in tunneling, one is able to accurately detect the pressure acting on the individual formwork elements pressure on the support points of the formwork elements and the concrete feeders and / or the supporting force of the hydraulic support beams to control or regulate accordingly.
  • the pressure sensor is arranged at the connection point between the support beams and the formwork element and / or the support arrangement.
  • Such an arrangement is easy to implement, e.g. by per se known force transducer.
  • the pressure sensors are distributed uniformly over the entire surface of the wall and thus over the surface of the formwork elements, if several are used. On In this way, a very good pressure distribution of the concrete can be detected on the formwork and possibly readjusted.
  • the formwork system includes at least one vibrator, and the controller is designed to control the vibrator as a function of the pressure measured in the pressure sensors.
  • the vibrating device can be arranged, for example, in connection with the formwork elements.
  • external vibrators can also be provided in connection with the concrete feeders, which influence the viscosity of the supplied concrete.
  • a plurality of vibrators are arranged at different locations of the formwork element and the controller is designed to control the vibrator individually as a function of the signals of the pressure sensors.
  • the vibrators are arranged evenly distributed over the formwork elements. In this way, a uniform compression can be achieved over the surface of the formwork.
  • the controller is designed to control the concrete pump in response to the signals of the pressure sensors.
  • Different concrete pumps can be provided for different concrete feeds and the delivery pressure of the concrete pump can be influenced by the pressure exerted by the concrete on the formwork element.
  • the at least one concrete pump is connected via at least one distributor device with a plurality of concrete feeders.
  • the controller is designed to control the distributor device as a function of the signals from the pressure sensors in order to achieve a homogeneous, predetermined pressure profile and thus desired material properties of the concrete wall created.
  • the controller has a screen for displaying the formwork elements and the pressure values measured there.
  • a screen for displaying the formwork elements and the pressure values measured there.
  • an operator can see which pressure values have been recorded on different parts of the formwork elements and can immediately detect whether the concrete has been supplied in a predetermined manner to the space behind the formwork elements. This is e.g. In the construction of a tunnel vault is extremely important because it must be ensured that the concrete at all points beyond the formwork elements consistently fills the gap between a tunnel wall and the formwork elements and thus is able to meet the required strength properties of the tunnel arch.
  • this has at least four formwork elements, which are supported by at least four support beams against the support assembly.
  • the four formwork elements are more or less the form the upper semicircle of the tunnel arch.
  • the four formwork elements are curved for this purpose and form a vaulted area for a tunnel arch.
  • the formwork system preferably has a plurality of horizontally arranged one behind the other support arrangements with their own formwork elements.
  • the controller is then designed to control the pressurization of the formwork elements of the individual support arrangements individually as a function of the pressure values of the pressure sensors. In this way, a homogeneous tunnel formwork over a greater length can be produced in one operation, over the area a very good homogeneity of the concrete wall is achieved.
  • a concrete wall is constructed in which the pressure acting on the formwork element pressure is determined at different locations by means of pressure sensors and the at least one concrete pump and / or the concrete feed is controlled in response to the signals of the pressure sensors or be.
  • care can be taken by the individual control of the concrete feed or the concrete pump (s) that a uniform pressure profile or a predetermined pressure profile over the surface of the formwork elements is achieved, which brings tunnel vault with required strength properties with it.
  • the signals of the pressure sensors and vibrators or distribution devices can be controlled between the concrete feeders so as to fill the concrete supply to the individual points between a tunnel wall and the formwork elements as evenly and homogeneously.
  • the signals of the pressure sensors are used.
  • the signals of other sensors such as e.g. Temperature sensors, optical sensors or chemical sensors for the control of the support assembly, the individual concrete feeders and the vibrators are used.
  • the properties of the concrete filled into the formwork can thus be ascertained, evaluated and utilized for the control of the concrete feeders, support arrangement and vibrating devices.
  • the controller preferably has a screen, which represents the formwork system area, as well as a Beton Valllan Attache for the different areas of the formwork elements.
  • the measured forces are preferably via software evaluated and displayed digitally and visually.
  • the controller has an interface for controlling other components, such as a vibrator, as well as for loading the data on external media or on an additional PC. Due to the detected signals of the pressure sensors, the compression control can take place automatically beyond the formwork elements.
  • a counter-check is made to the static calculation of the shuttering process.
  • the safety for the formwork system as well as for the persons who operate the formwork system is considerably increased. Homogeneous and better tunnel walls are achieved, which optimizes concreting processes.
  • the invention achieves the creation of standards compliant concrete walls and vaults.
  • the outputs of the controller can also be used for safety systems, if voltage overshoots or pressure peaks at individual points of the formwork elements should be detected.
  • the invention contributes to the quality assurance of the building.
  • An essential aspect of the invention is that on the targeted control of the concrete pump and / or the concrete supply and / or the at least one vibrating the compression processes of the concrete beyond the formwork elements can be controlled specifically and individually, thus desired material properties of the finished concrete wall or achieve the finished concrete vault.
  • a tunnel formwork system usually has a plurality of formwork elements, e.g. four formwork elements distributed over the vault sector and three to six support assemblies in a row, each with four formwork elements, so that in total the system preferably has between ten and fifty formwork elements.
  • Fig. 1 shows a tunnel formwork system 10 according to the invention, which is located in a broken tunnel vault 12.
  • the tunnel formwork system 10 comprises a support arrangement 14 for supporting a formwork 15, which consists of articulated interconnected formwork elements 16-26 whose outer side is slightly curved and the tunnel vault 12 assigns. Between the outside of the formwork elements 16-26 and the tunnel vault or the Tunneln 12 a void 28 is formed, which is filled with concrete 13.
  • the support assembly 14 includes hydraulic support beams 30 to support the formwork members 16-26 with a predetermined pressure against the filled concrete 13.
  • the formwork system 10 according to the invention is controlled by a central controller 32, which preferably has a screen 34 for displaying the formwork system of the associated measured values.
  • the formwork system 10 further comprises a concrete feed pump 36 with a manifold 38 and concrete pipes 40, which run to individual concrete feeders 42, which in the Fig. 2 and 5 are shown in more detail.
  • the central controller 32 is connected to pressure sensors 44, as well as with temperature sensors or Ultrasonic transducer 46, which detect both the pressure acting on the formwork elements 16-26 pressure due to the filled concrete and the temperature of the concrete, so as to give the central control 32 feedback, on the one hand on the density and the degree of filling of the concrete in the space between the Outside of the formwork elements 16-26 and the tunnel wall 12 as well as the chemical reaction in the setting of the concrete, which is associated with a heat generation or a change in density.
  • the controller is also connected to a concrete analysis device 48, which evaluates, for example, the setting behavior of a concrete sample and possibly its strength in order to conclude conclusions about the strength and the concrete between the formwork elements 16-26 and the tunnel wall can.
  • the controller 32 is of course connected to the concrete pump 36, as well as to the distribution device 38. Furthermore, the controller preferably has a USB port 50, as well as a wireless port 52, such as Wi-Fi® or Bluetooth®.
  • a USB port 50 as well as a wireless port 52, such as Wi-Fi® or Bluetooth®.
  • Fig. 3 also shows the formwork system 10 Fig. 1 , here the connection of the central controller 32 with vibrators 54 is shown.
  • the central controller 32 can individually control the individual vibrators 54 as a function of the sensor values in order to effect a targeted compaction of the concrete in the different regions of the tunnel wall 12, in order to ensure as homogeneous a concrete quality as possible over the entire tunnel wall 12.
  • Fig. 4 shows the connection of the central controller 32 with mirror difference sensors 56, which may be, for example, pressure sensors, optical sensors, thermal sensors, ultrasonic sensors or chemical sensors. These mirror-difference sensors 56 are uniformly distributed over the outside of the formwork elements 16-26. In this way, it is easily possible, a different level h1, h2 of the concrete 13 on the two sides of the To detect the tunnel wall and to ensure by individual control of the concrete feeders 42 and vibrator 54 that the filling level is even on both sides or is compensated.
  • mirror difference sensors 56 may be, for example, pressure sensors, optical sensors, thermal sensors, ultrasonic sensors or chemical sensors.
  • Fig. 5 shows the connection of the central controller 32 with the individual concrete feeders 42.
  • the concrete pump 36 and the manifold 38 and other unillustrated distribution elements, such as shut-off valves it is possible to supply the concrete specifically to the individual concrete feeders 42 so as to be homogeneous To reach concrete feed.
  • Fig. 6 shows the connection of the central controller 32 with pressure transducers 58, which extend evenly over the upper portion of the tunnel formwork, ie on the upper formwork elements 20-24, so that it can be verified by this arrangement of pressure sensors 58, whether the concrete 13 between the tunnel wall 12 and the outside of the formwork elements 16-26 is actually completely filled, which is reflected in corresponding pressure values.
  • These pressure sensors can also be designed as hydraulic cylinders that deliver a controllable support pressure for the formwork elements.
  • These pressure sensors 58 can therefore also be used for pressure control of the support pressure of the formwork elements 20 to 24.
  • FIG. 7 a plan view of the formwork system according to the invention according to the Fig. 1-6 , but in isolation, ie not in operating position in a tunnel vault 12.
  • Fig. 8 shows a formwork system 60 for the production of straight walls.
  • the formwork system 60 includes a support assembly 62, a central controller 32 with a display 34, a concrete pump 36, possibly a manifold, not shown, optionally a concrete analyzer 48 and a number of planar formwork members 72-78 arranged one above the other and side by side are so as to form a wall of desired size.
  • the controller is connected via a first control line 80 with concrete feeders 82. Via a second control line 84, the controller 32 is connected to a temperature sensor or ultrasonic sensor 86. Via a third control line 88 and a fourth control line 90, the controller 32 is connected to pressure transducers 92. To this The central controller 32 detects the pressure conditions as well as the temperature conditions on the concrete 13 side facing the formwork 71, which is formed from the individual shuttering elements 72-78.
  • Fig. 9 shows the formwork system 60 Fig. 8 in supervision. It should be noted here that in the figures identical or functionally identical parts are provided with identical reference numerals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Schalungssystem, insbesondere für den Tunnelbau, umfassend wenigstens eine Stützanordnung zur Abstützung einer aus mehreren Schalungselementen bestehenden Schalung, welches Schalungssystem wenigstens eine Steuerung für die Abstützung der Schalungselemente und die Betonzufuhr für den zu betonierenden Raum aufweist.
  • Ein derartiges Schalungssystem ist beispielsweise aus dem europäischen Patent 2 626 509 , der DE 28 26 623 A1 , der JP 2008 088696 A , der DE 100 40 777 A1 oder der JP 2 932323 B2 bekannt.
  • Aus der JP 2009 155819 A ist ein Schalungssystem, insbesondere für den Tunnelbau, bekannt geworden, welches wenigstens eine Stützanordnung zur Abstützung von wenigstens einem Schalungselement umfasst, welches Schalungssystem ferner wenigstens eine Betonpumpe, mehrere Betonzuführungen zu dem Schalungselement und wenigstens eine Steuerung aufweist, wobei an dem Schalungselement wenigstens zwei Drucksensoren an vertikal unterschiedlichen Positionen angeordnet und mit der Steuerung des Schalungssystems verbunden sind, welche Drucksensoren konzipiert sind, den auf die Schalungselemente einwirkenden Druck an wenigstens zwei unterschiedlichen Höhen des Schalungselements zu messen, und dass die Steuerung konzipiert ist, den Pumpenbetrieb in Abhängigkeit von dem Signal der Drucksensoren zu steuern. Ein Schalungssystem mit den Merkmalen des Oberbegriffs des Anspruchs 1 ist aus der nachveröffentlichten EP 3 168 413 A1 bekannt.
  • Es ist Aufgabe der Erfindung, das gattungsgemäße Schalungssystem derart weiterzubilden, dass individuelle Verhältnisse bei der Erstellung einer Betonwand, insbesondere eines Betongewölbes besser berücksichtigt werden können.
  • Diese Aufgabe wird durch ein Schalungssystem mit den Merkmalen des Anspruches 1 gelöst. Diese Aufgabe wird des Weiteren durch ein Verfahren mit den Merkmalen des Anspruches 13 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der zugeordneten abhängigen Ansprüche. Vorteilhafte Weiterbildungen der Erfindung sind ebenfalls in der Beschreibung und in den Zeichnungen offenbart.
  • Erfindungsgemäß sind an dem Schalungselement und/oder an der Stützanordnung wenigstens zwei Drucksensoren vertikal in unterschiedlichen Positionen angeordnet und mit der Steuerung des Schalungssystems verbunden. Die Drucksensoren sind konzipiert, den aufgrund des in die Schalung eingefüllten Betons auf die Schalungselemente einwirkenden Druck an wenigstens zwei unterschiedlichen Höhen des Schalungselements zu messen. Die Steuerung ist konzipiert, die Betonzuführungen individuell in Abhängigkeit von dem Signal der Drucksensoren zu steuern. Auf diese Weise ist es möglich, den an unterschiedlichen Stellen auf das Schalungselement bzw. vorzugsweise mehrere Schalungselemente einwirkenden Betondruck zu erfassen und die Steuerung kann durch die Drucksensoren gemessenen Druckwerte mit Sollwerten vergleichen und die Betonzuführung individuell so ansteuern, dass der Betondruck an den unterschiedlichen Stellen der Schalungselemente gesetzten Vorgaben entspricht. Auf diese Weise kann eine Betonwand, insbesondere ein Betongewölbe mit vorgegebenen homogenen Materialeigenschaften in dem gesamten Wand- oder Gewölbebereich hergestellt werden.
  • Gemäß der Erfindung hat die Stützanordnung wenigstens einen hydraulischen Stützträger zur Abstützung des Schalungselements und die Steuerung ist konzipiert, die Kraft des Stützträgers in Abhängigkeit von dem in den Drucksensoren gemessenen Druck zu steuern. Der Druck kann somit nicht nur über die individuelle Betonzuführung, sondern auch über den Abstützdruck mittels der Stützträger einreguliert werden. Zudem müssen die Drucksensoren nicht in der Schalung selbst vorgesehen sein, sondern können an den Kraftaufnahmeelementen der Schalungselemente angeordnet sein, z.B. an den Punkten, an denen die Trägerstruktur statisch das Schalungselement abstützt. Insbesondere, wenn die gesamte Schalung aus mehreren Schalungselementen besteht, wie das beim Tunnelbau üblich ist, ist man so in der Lage über die Abstützpunkte der Schalungselemente den auf die einzelnen Schalungselemente einwirkenden Druck genau zu erfassen und die Betonzuführungen und/oder die Abstützkraft der hydraulischen Stützträgern entsprechend zu steuern bzw. zu regulieren.
  • In einer technisch einfachen Ausführungsform ist der Drucksensor an dem Verbindungspunkt zwischen dem Stützträgern und dem Schalungselement und/oder der Stützanordnung angeordnet. Eine derartige Anordnung ist leicht zu realisieren, z.B. durch an sich bekannte Kraftaufnehmer.
  • Vorzugsweise sind mehrere, insbesondere eine Vielzahl von Drucksensoren flächig verteilt über das Schalungselement angeordnet. Vorzugsweise sind die Drucksensoren gleichmäßig über die gesamte Fläche der Wand und damit über die Fläche der Schalungselemente angeordnet, wenn mehrere verwendet werden. Auf diese Weise kann eine sehr gute Druckverteilung des Betons auf die Schalung erfasst und evtl. nachreguliert werden.
  • Erfindungsgemäß enthält das Schalungssystem wenigstens eine Rütteleinrichtung und die Steuerung ist konzipiert, die Rütteleinrichtung in Abhängigkeit von dem in den Drucksensoren gemessenen Druck zu steuern. Auf diese Weise kann in Bereichen, in welchen der auf die Schalung einwirkende Betondruck zu niedrig ist, durch Nachrütteln des Betons in den Bereichen erzielt werden, dass der Betondruck zunimmt. Die Rütteleinrichtung kann z.B. in Verbindung mit den Schalungselementen angeordnet sein. Es können jedoch auch Außenrüttler in Verbindung mit den Betonzuführungen vorgesehen werden, die Einfluss auf die Viskosität des zugeführten Betons nehmen.
  • Vorzugsweise sind mehrere Rütteleinrichtungen an unterschiedlichen Stellen des Schalungselements angeordnet und die Steuerung ist konzipiert, die Rütteleinrichtung individuell in Abhängigkeit von den Signalen der Drucksensoren zu steuern. Auf diese Weise kann ein vorgegebenes Druckprofil des Betons auf die Schalungselemente erreicht werden, das zu gewünschten homogenen Festigkeitseigenschaften der erstellten Betonwand über die Fläche führt. Vorzugsweise sind die Rütteleinrichtungen flächig gleichmäßig über die Schalungselemente verteilt angeordnet. Auf diese Weise kann über die Fläche der Schalung eine gleichmäßige Verdichtung erzielt werden.
  • In einer vorteilhaften Weiterbildung der Erfindung ist die Steuerung konzipiert, die Betonpumpe in Abhängigkeit von den Signalen der Drucksensoren zu steuern. So können z.B. für unterschiedliche Betonzuführungen unterschiedliche Betonpumpen vorgesehen sein und über den Förderdruck der Betonpumpe kann Einfluss genommen werden auf den Druck, den der Beton auf das Schalungselement ausübt.
  • Vorzugsweise ist die wenigstens eine Betonpumpe über wenigstens eine Verteilereinrichtung mit mehreren Betonzuführungen verbunden. Die Steuerung ist in diesem Fall dazu konzipiert, die Verteilereinrichtung in Abhängigkeit von den Signalen der Drucksensoren zu steuern, um auf diese Weise ein homogenes, vorgegebenes Druckprofil und damit gewünschte Materialeigenschaften der erstellten Betonwand zu erzielen.
  • Vorzugsweise weist die Steuerung einen Bildschirm zur Darstellung der Schalungselemente und der dort gemessenen Druckwerte auf. Auf diese Weise kann ein Operator sehen, welche Druckwerte an unterschiedlichen Teilen der Schalungselemente aufgenommen wurden und kann sogleich erfassen, ob der Beton in vorgegebener Weise dem Raum hinter den Schalungselementen zugeführt worden ist. Dies ist z.B. bei der Erstellung eines Tunnelgewölbes äußerst wichtig, da sichergestellt werden muss, dass der Beton an allen Stellen jenseits der Schalungselemente durchgängig den Zwischenraum zwischen einer Tunnelwand und den Schalungselementen ausfüllt und damit in der Lage ist, den geforderten Festigkeitseigenschaften des Tunnelgewölbes zu genügen.
  • In einer vorteilhaften Weiterbildung des erfindungsgemäßen Schalungssystems hat dieses zumindest vier Schalungselemente, die durch wenigstens vier Stützträger gegen die Stützanordnung abgestützt sind. Eine derartige Anordnung ist somit für ein Tunnelgewölbe sinnvoll, wobei die vier Schalungselemente mehr oder weniger den oberen Halbkreis des Tunnelgewölbes bilden. Vorzugsweise sind hierfür die vier Schalungselemente gewölbt und bilden eine Gewölbefläche für ein Tunnelgewölbe.
  • Da eine Tunnelschalung in der Regel sehr lang ist, hat das erfindungsgemäße Schalungssystem vorzugsweise mehrere horizontal hintereinander angeordnete Stützanordnungen mit eigenen Schalungselementen. Die Steuerung ist dann konzipiert, die Druckbeaufschlagung der Schalungselemente der einzelnen Stützanordnungen individuell in Abhängigkeit von den Druckwerten der Drucksensoren zu steuern. Auf diese Weise kann eine homogene Tunnelschalung über eine größere Länge in einem Vorgang hergestellt werden, wobei über die Fläche eine sehr gute Homogenität der Betonwand erzielt wird.
  • In einem erfindungsgemäßen Verfahren, das das erfindungsgemäße Schalungssystem nutzt, wird eine Betonwand errichtet, in der mittels Drucksensoren der auf das Schalungselement wirkende Druck an unterschiedlichen Stellen ermittelt wird und die wenigstens eine Betonpumpe und/oder die Betonzuführung in Abhängigkeit von den Signalen der Drucksensoren gesteuert wird bzw. werden. Auf diese Weise kann durch die individuelle Steuerung der Betonzuführung bzw. der Betonpumpe(n) dafür Sorge getragen werden, dass ein gleichmäßiges Druckprofil oder ein vorgegebenes Druckprofil über die Fläche der Schalungselemente erzielt wird, was Tunnelgewölbe mit geforderten Festigkeitseigenschaften mit sich bringt.
  • Durch die Signale der Drucksensoren lassen sich auch Rütteleinrichtungen bzw. Verteilereinrichtungen zwischen den Betonzuführungen ansteuern, um so die Betonzuführung zu den individuellen Stellen zwischen einer Tunnelwand und den Schalungselementen möglichst gleichmäßig und homogen zu füllen.
  • Neben den Signalen der Drucksensoren können auch die Signale anderer Sensoren wie z.B. Temperatursensoren, optischer Sensoren oder chemischer Sensoren für die Steuerung der Stützanordnung, der individuellen Betonzuführungen und der Rütteleinrichtungen verwendet werden.
  • Durch die Erfindung können somit die Eigenschaften des in die Schalung eingefüllten Betons festgestellt, ausgewertet und für die Steuerung der Betonzuführungen, Stützanordnung und Rütteleinrichtungen genutzt werden. Zur besseren Bedienung hat die Steuerung vorzugsweise einen Bildschirm, der das Schalungssystem flächig darstellt, als auch eine Betonfüllanzeige für die unterschiedlichen Bereiche der Schalungselemente. Die gemessenen Kräfte werden vorzugsweise über eine Software ausgewertet und digital sowie visuell angezeigt. Vorzugsweise hat die Steuerung eine Schnittstelle zur Ansteuerung weiterer Komponenten, wie z.B. eine Rütteleinrichtung, als auch zum Aufspielen der Daten auf externe Datenträger bzw. auf einen zusätzlichen PC. Aufgrund der erfassten Signale der Drucksensoren kann die Verdichtungssteuerung jenseits der Schalungselemente automatisch erfolgen.
  • Man hat durch die Erfindung eine Gegenkontrolle zur statischen Berechnung des Schalungsprozesses. Die Sicherheit für das Schalungssystem als auch für die Personen, die das Schalungssystem bedienen wird beträchtlich erhöht. Es werden homogenere und bessere Tunnelwände erzielt, wodurch die Abläufe beim Betonieren optimiert werden. Durch die Erfindung wird die Erstellung von Normen konformen Betonwänden und Gewölben erreicht. Die Ausgänge der Steuerung können auch für Sicherheitssysteme genutzt werden, wenn Spannungsüberhöhung oder Drucküberhöhungen an einzelnen Stellen der Schalungselemente erfasst werden sollten. Die Erfindung trägt zur Qualitätssicherung des Bauwerks bei.
  • Ein wesentlicher Aspekt der Erfindung besteht darin, dass über die gezielte Steuerung der Betonpumpe und/oder der Betonzuführung und/oder der wenigstens einen Rütteleinrichtung die Verdichtungsprozesse des Betons jenseits der Schalungselemente gezielt und individuell gesteuert werden können, um somit gewünschte Materialeigenschaften der fertigen Betonwand bzw. des fertigen Betongewölbes zu erzielen.
  • Es ist für den Fachmann offensichtlich, dass die einzelnen Komponenten der Erfindung einfach oder mehrfach vorgesehen werden können bzw. diese können auch als integrierte Einheit oder verteilt an mehreren Stellen ausgebildet sein. Die Steuerung kann mehrere Rechner umfassen, die über die Länge des Tunnels verteilt sind. Ebenso weist üblicherweise ein Tunnelschalungssystem eine Vielzahl von Schalungselementen auf, z.B. vier Schalungselemente über dem Gewölbesektor verteilt und drei bis sechs Stützanordnungen hintereinander mit jeweils vier Schalungselementen, so dass insgesamt die Anlage vorzugsweise zwischen zehn und fünfzig Schalungselemente aufweist.
  • Folgende Ausdrücke werden synonym verwendet: Rütteleinrichtung - Rüttler; Druckaufnehmer - Drucksensor; Temperaturaufnehmer - Temperatursensor
  • Die Erfindung wird nachfolgend beispielsweise anhand der schematischen Zeichnungen beschrieben. In dieser zeigen:
  • Fig. 1
    eine stirnseitige Ansicht auf ein erfindungsgemäßes Tunnelschalungssystem,
    Fig. 2
    einen Schnitt II-II aus Fig. 1,
    Fig. 3
    eine Ansicht gemäß Fig. 1 mit einer Ansteuerung von Rütteleinrichtungen,
    Fig. 4
    eine Ansicht gemäß Fig. 1 mit einer Spiegeldifferenzstandskontrolle,
    Fig. 5
    eine Ansicht gemäß Fig. 1 mit einer individuellen Ansteuerung von Betonzuführungen,
    Fig. 6
    eine Ansteuerung gemäß Fig. 1 mit einer zentralen Erfassung und Auswertung von Drucksensoren,
    Fig. 7
    eine Ansicht VII aus Fig. 1,
    Fig. 8
    eine stirnseitige Ansicht einer zweiten Ausführungsform eines erfindungsgemäßen Schalungssystems zur Herstellung von ebenen Wänden,
    Fig. 9
    eine Ansicht auf das Schalungssystem gemäß Fig. 8 von oben.
  • Fig. 1 zeigt ein erfindungsgemäßes Tunnelschalungssystem 10, das sich in einem ausgebrochenen Tunnelgewölbe 12 befindet. Das erfindungsgemäße Tunnelschalungssystem 10 umfasst eine Stützanordnung 14 zur Abstützung einer Schalung 15, die aus gelenkig miteinander verbundenen Schalungselementen 16-26 besteht, deren Außenseite leicht gewölbt ist und dem Tunnelgewölbe 12 zuweist. Zwischen der Außenseite der Schalungselemente 16-26 und dem Tunnelgewölbe bzw. der Tunnelnd 12 ist ein Leerraum 28 gebildet, der mit Beton 13 verfüllt wird. Die Stützanordnung 14 enthält hydraulische Stützträger 30, um die Schalungselemente 16-26 mit einem vorgegebenen Druck gegen den eingefüllten Beton 13 abzustützen. Das erfindungsgemäße Schalungssystem 10 wird gesteuert durch eine zentrale Steuerung 32, die vorzugsweise einen Bildschirm 34 zur Darstellung des Schalungssystems der zugeordneten Messwerte aufweist. Das Schalungssystem 10 umfasst ferner eine Betonförderpumpe 36 mit einer Verteilereinrichtung 38 und Betonleitungen 40, die zu einzelnen Betonzuführungen 42 laufen, die in den Fig. 2 und 5 genauer dargestellt sind. Die zentrale Steuerung 32 ist mit Druckaufnehmern 44 verbunden, als auch mit Temperaturaufnehmern oder Ultraschallmessgeber 46, die sowohl den auf die Schalungselemente 16-26 einwirkenden Druck aufgrund des eingefüllten Betons als auch die Temperatur des Betons erfassen, um somit der zentralen Steuerung 32 Rückmeldung zugeben, zum einen über die Dichte und den Füllgrad des Betons in dem Zwischenraum zwischen der Außenseite der Schalungselemente 16-26 und der Tunnelwand 12 als auch über die chemische Reaktion beim Abbinden des Betons, die mit einer Wärmeerzeugung oder einer Veränderung der Dichte einhergeht. Durch die Erfassung der Temperatur oder der Dichte kann somit gut erfasst werden, wie weit die Abbinde-Reaktion vorangeht. Optional ist hierfür die Steuerung auch mit einem Betonanalyseeinrichtung 48 verbunden, das z.B. das Abbindeverhalten einer Betonprobe als auch evtl. dessen Festigkeit auswertet, um damit Rückschlüsse auf die Festigkeit und des Betons zwischen den Schalungselementen 16-26 und der Tunnelwand schließen zu können.
  • Die Steuerung 32 ist selbstverständlich mit der Betonpumpe 36 verbunden, als auch mit der Verteilereinrichtung 38. Des Weiteren hat die Steuerung vorzugsweise einen USB-Anschluss 50, als auch einen Funkanschluss 52, z.B. Wi-Fi® oder Bluetooth®. Durch die in Fig. 1 dargestellte Erfassung der Temperatur- Dichte und Druckverhältnisse ist es dem Schalungssystem möglich, die einzelnen Betonzuführungen 42 und/oder die Hydraulikstützen 30 derart zu steuern, dass zum einen der Beton in einer gewünschten Weise einfließt und verdichtet wird, als auch den vorgegebenen Druckverhältnissen entsprechen, um so eine gewünschte Qualität der Betonschalung sicherzustellen.
  • Fig. 3 zeigt ebenfalls das Schalungssystem 10 aus Fig. 1, wobei hier die Verbindung der zentralen Steuerung 32 mit Rüttlern 54 dargestellt ist. Die zentrale Steuerung 32 kann die einzelnen Rüttler 54 in Abhängigkeit von den Sensorwerten individuell ansteuern, um so eine gezielte Verdichtung des Betons in den unterschiedlichen Bereichen der Tunnelwand 12 zu bewirken, um so eine möglichst homogene Betonqualität über die gesamte Tunnelwand 12 sicherzustellen.
  • Fig. 4 zeigt die Verbindung der zentralen Steuerung 32 mit Spiegeldifferenz-Sensoren 56, welche beispielsweise Drucksensoren, optische Sensoren, Thermosensoren, Ultraschallsensoren oder chemische Sensoren sein können. Diese Spiegeldifferenz-Sensoren 56 sind gleichmäßig über die Außenseite der Schalungselemente 16-26 verteilt. Auf diese Weise ist es leicht möglich, einen unterschiedlichen Füllstand h1, h2 des Betons 13 an den beiden Seiten der Tunnelwandung zu erfassen und durch individuelle Ansteuerung der Betonzuführungen 42 und Rüttler 54 dafür Sorge zu tragen, dass der Füllspiegel auf beiden Seiten gleichmäßig ist bzw. ausgeglichen wird.
  • Fig. 5 zeigt die Verbindung der zentralen Steuerung 32 mit den einzelnen Betonzuführungen 42. Durch die Ansteuerung der Betonpumpe 36 und der Verteilereinrichtung 38 und weiterer nicht dargestellter Verteilerelemente, wie z.B. Sperrventile, ist es möglich, den Beton gezielt den einzelnen Betonzuführungen 42 zuzuführen, um so eine homogene Betonzufuhr zu erreichen. Idealerweise erfolgt die Betonzufuhr über die relativ gleichmäßig verteilten Betonzuführungen 42 in Verbindung mit einer entsprechenden Betätigung der Rütteleinrichtungen 54 aus Fig. 3.
  • Fig. 6 zeigt die Verbindung der zentralen Steuerung 32 mit Druckaufnehmern 58, die sich gleichmäßig über den oberen Abschnitt der Tunnelschalung erstrecken, d.h. über die oberen Schalungselemente 20-24, so dass durch diese Anordnung von Druckaufnehmern 58 verifiziert werden kann, ob der Beton 13 zwischen der Tunnelwandung 12 und der Außenseite der Schalungselemente 16-26 tatsächlich vollständig gefüllt ist, was sich in entsprechenden Druckwerten niederschlägt. Diese Druckaufnehmer können auch als Hydraulikzylinder ausgebildet sein, die einen steuerbaren Abstützdruck für die Schalungselemente liefern. Diese Druckaufnehmer 58 können daher auch zur Drucksteuerung des Abstützdrucks der Schalungselemente 20 bis 24 verwendet werden.
  • Schließlich zeigt Fig. 7 eine Aufsicht auf das erfindungsgemäße Schalungssystem gemäß den Fig. 1-6, allerdings in Alleindarstellung, d.h. nicht in Betriebsposition in einer Tunnelgewölbe 12.
  • Fig. 8 zeigt ein Schalungssystem 60 zur Herstellung gerader Wände. Das Schalungssystem 60 umfasst eine Stützanordnung 62, eine zentrale Steuerung 32 mit einem Display 34, eine Betonpumpe 36, evtl. eine Verteilereinrichtung, die nicht dargestellt ist, optional eine Betonanalyseeinrichtung 48 und eine Anzahl an ebenen Schalungselementen 72-78, die übereinander und nebeneinander angeordnet sind, um so eine Wand gewünschter Größe zu bilden. Die Steuerung ist über eine erste Steuerleitung 80 mit Betonzuführungen 82 verbunden. Über eine zweite Steuerleitung 84 ist die Steuerung 32 mit einem Temperatursensor oder Ultraschallsensor 86 verbunden. Über eine dritte Steuerleitung 88 und eine vierte Steuerleitung 90 ist die Steuerung 32 mit Druckaufnehmern 92 verbunden. Auf diese Weise erfasst die zentrale Steuerung 32 die Druckverhältnisse als auch die Temperaturverhältnisse an der dem Beton 13 zugewandten Seite der Schalung 71, die aus den einzelnen Schalungselementen 72-78 gebildet wird.
  • Fig. 9 zeigt das Schalungssystem 60 aus Fig. 8 in Aufsicht. Es sei hier bemerkt, dass in den Figuren identische oder funktionsgleiche Teile mit identischen Bezugszeichen versehen sind.
  • Die Erfindung kann von der dargestellten Ausführungsform abweichen, die somit nicht als begrenzend für den Erfindungsgedanken verstanden werden soll. Die Erfindung kann innerhalb des Schutzbereichs der nachfolgenden Ansprüche beliebig variiert werden.
  • Bezugszeichenliste
  • 10
    Tunnelschalungssystem
    12
    Tunnelwand - Tunnelgewölbe
    13
    Betonschicht
    14
    Stützanordnung
    15
    Schalung
    16-26
    Schalungselemente
    28
    Leerraum
    30
    Stützzylinder/Stützträger
    32
    zentrale Steuerung
    34
    Bildschirm
    36
    Betonförderpumpe
    38
    Verteilereinrichtung
    40
    Betonleitungen
    42
    Betonzuführungen in die Schalung
    44
    Druckaufnehmer
    46
    Temperaturaufnehmer/Ultraschallsensoren
    48
    Betonanalyseeinrichtung
    50
    USB- oder sonstiges Interface
    52
    Wi-Fi oder WLAN-Transmitter
    54
    Rüttler
    56
    Sensoren
    58
    Druckaufnehmer
    60
    Schalungssystem für ebene Wände
    71
    Ebene Schalung
    80
    erste Steuerleitung
    82
    Betonzuführung
    84
    zweite Steuerleitung
    86
    Temperatursensor/Ultraschallsensor
    88
    dritte Steuerleitung
    90
    vierte Steuerleitung
    92
    Drucksensor

Claims (14)

  1. Schalungssystem (10; 60), insbesondere für den Tunnelbau, umfassend wenigstens eine Stützanordnung (14) zur Abstützung von wenigstens einem Schalungselement (16-26; 72-78), welches Schalungssystem ferner wenigstens eine Betonpumpe (36), mehrere Betonzuführungen (42) zu dem Schalungselement und wenigstens eine Steuerung (32) aufweist, wobei an dem Schalungselement (16-26; 72-78) und/oder an der Stützanordnung (14) wenigstens zwei Drucksensoren (44; 92) an vertikal unterschiedlichen Positionen angeordnet und mit der Steuerung (32) des Schalungssystems verbunden sind, welche Drucksensoren (44; 92) konzipiert sind, den auf die Schalungselemente (16-26; 72-78) einwirkenden Druck an wenigstens zwei unterschiedlichen Höhen des Schalungselements zu messen, wobei die Steuerung (32) konzipiert ist, die Betonzuführungen (42) individuell in Abhängigkeit von dem Signal der Drucksensoren (44; 92) zu steuern und wobei die Stützanordnung (14) wenigstens einen hydraulischen Stützträger (30) zur Abstützung des Schalungselements (16-26; 72-78) aufweist, wobei die Steuerung (32) konzipiert ist, die Kraft des Stützträgers (30) in Abhängigkeit von den mit den Drucksensoren (44; 92) gemessenen Druckwerten zu steuern, dadurch gekennzeichnet, dass das Schalungssystem wenigstens eine Rütteleinrichtung (54) umfasst, und dass die Steuerung (32) konzipiert ist, die Rütteleinrichtung (54) in Abhängigkeit von den mit den Drucksensoren (44; 92) gemessenen Druckwerten steuerbar ist.
  2. Schalungssystem (10; 60) nach Anspruch 1, dadurch gekennzeichnet, dass mindestens einer der Drucksensoren (44; 92) am Verbindungspunkt zwischen dem Stützträger (30) und dem Schalungselement (16-26; 72-78) und/oder der Stützanordnung (14) angeordnet ist.
  3. Schalungssystem (10; 60) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mehrere Drucksensoren (44; 92) flächig verteilt über das Schalungselement (16-26; 72-78) angeordnet sind.
  4. Schalungssystem (10; 60) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere Drucksensoren (44; 92) zwischen dem Schalungselement (16-26; 72-78) und der Stützanordnung (14) angeordnet sind.
  5. Schalungssystem (10; 60) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere Rütteleinrichtungen (54) an unterschiedlichen Stellen des Schalungselements (16-26; 72-78) angeordnet sind, und dass die Steuerung (32) konzipiert ist, die Rütteleinrichtungen individuell in Abhängigkeit von den Signalen der Drucksensoren (44; 92) zu steuern.
  6. Schalungssystem (10; 60) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rütteleinrichtung (54) in einer Betonzuführung angeordnet ist.
  7. Schalungssystem (10; 60) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuerung (32) konzipiert ist, die Betonpumpe (36) in Abhängigkeit von den Signalen der Drucksensoren (44; 92) zu steuern.
  8. Schalungssystem (10; 60) nach Anspruch 7, dadurch gekennzeichnet, dass die wenigstens eine Betonpumpe (36) über wenigstens eine Verteilereinrichtung (38) mit den Betonzuführungen (42) verbunden ist, und dass die Steuerung (32) konzipiert ist, die Verteilereinrichtung (38) in Abhängigkeit von den Signalen der Drucksensoren (44; 92) zu steuern.
  9. Schalungssystem (10; 60) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuerung (32) einen Bildschirm (34) zur Darstellung der Schalungselemente (16-26; 72-78) und der dort gemessenen Druckwerte aufweist.
  10. Schalungssystem (10; 60) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es zumindest vier Schalungselemente (16-26; 72-78) aufweist, die durch wenigstens vier Stützzylinder (30) gegen die Stützanordnung (14) abgestützt sind.
  11. Schalungssystem (10; 60) nach Anspruch 10, dadurch gekennzeichnet, dass die Schalungselemente (16-26) gewölbt sind und eine Schalung (15) für ein Tunnelgewölbe bilden.
  12. Schalungssystem (10; 60) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es mehrere horizontal hintereinander angeordnete Stützanordnungen (14) mit eigenen Schalungselementen (16-26; 72-78) enthält, und dass die Steuerung (32) konzipiert ist, die Druckbeaufschlagung der Schalungselemente der einzelnen Stützanordnungen (14) in Abhängigkeit von den Druckwerten der Drucksensoren (44; 92) zu steuern.
  13. Verfahren zum Errichten einer Betonwand mit einem Schalungssystem (10; 60) nach einem der vorherigen Ansprüche, wobei mittels der Drucksensoren (44; 92) der auf das Schalungselement (16-26; 72-78) wirkende Betondruck an unterschiedlichen Stellen ermittelt und die wenigstens eine Betonpumpe (36) und/oder die Betonzuführungen (42) in Abhängigkeit von den Signalen der Drucksensoren (44; 92) gesteuert wird/werden, dadurch gekennzeichnet, dass wenigstens eine Rütteleinrichtung (54) in Abhängigkeit von den Signalen der Drucksensoren (44; 92) gesteuert wird.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass wenigstens eine Verteilereinrichtung zwischen den Betonzuführungen (42) in Abhängigkeit von den Signalen der Drucksensoren (44; 92) gesteuert wird.
EP16158965.0A 2016-03-07 2016-03-07 Schalungssystem Active EP3216979B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16158965.0A EP3216979B1 (de) 2016-03-07 2016-03-07 Schalungssystem
US15/450,799 US9945229B2 (en) 2016-03-07 2017-03-06 Formwork system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16158965.0A EP3216979B1 (de) 2016-03-07 2016-03-07 Schalungssystem

Publications (2)

Publication Number Publication Date
EP3216979A1 EP3216979A1 (de) 2017-09-13
EP3216979B1 true EP3216979B1 (de) 2019-05-08

Family

ID=55484918

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16158965.0A Active EP3216979B1 (de) 2016-03-07 2016-03-07 Schalungssystem

Country Status (2)

Country Link
US (1) US9945229B2 (de)
EP (1) EP3216979B1 (de)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737462B2 (ja) * 2016-05-31 2020-08-12 戸田建設株式会社 覆工コンクリート類の充填検知方法及びコンクリート類の充填検知センサ
CN107448217A (zh) * 2017-09-25 2017-12-08 中铁十七局集团第工程有限公司 一种实用隧道衬砌台车振捣系统
JP7179436B2 (ja) * 2017-10-24 2022-11-29 株式会社フジタ 防水シート
JP6975611B2 (ja) * 2017-10-24 2021-12-01 株式会社フジタ 防水シート
JP6969999B2 (ja) * 2017-12-14 2021-11-24 株式会社フジタ コンクリート打設型枠
JP6983055B2 (ja) * 2017-12-21 2021-12-17 株式会社フジタ 覆工コンクリート打設装置
JP6970004B2 (ja) * 2017-12-21 2021-11-24 株式会社フジタ 覆工コンクリート打設装置
JP7182899B2 (ja) * 2018-04-25 2022-12-05 清水建設株式会社 トンネル覆工施工管理システム、トンネル覆工施工管理方法
DE102018111120A1 (de) * 2018-05-09 2019-11-14 J. Wagner Gmbh Verfahren zum Betrieb einer Fördervorrichtung und Fördervorrichtung
JP7018614B2 (ja) * 2018-08-03 2022-02-14 株式会社奥村組 コンクリート構造物における誘発目地の形成方法
JP7018615B2 (ja) * 2018-08-06 2022-02-14 株式会社奥村組 トンネル覆工コンクリートの天端部打設方法
JP7153266B2 (ja) * 2018-10-01 2022-10-14 清水建設株式会社 トンネル覆工施工システム、トンネル覆工施工方法
PL3663484T3 (pl) * 2018-12-04 2022-11-07 Peri Se Układ i sposób do przesyłania danych do przeprowadzania analizy nacisku na element szalunkowy
JP7100896B2 (ja) * 2019-02-28 2022-07-14 有限会社 伊藤 セントルにおける車輪ユニットの取り付け方法及びセントルの車輪ユニット案内装置
DE102019108781A1 (de) 2019-04-03 2020-10-08 Peri Gmbh Computergestütztes Verfahren und Einrichtung zur optimierten Steuerung der Förderleistung einer Betonpumpe oder dergleichen
US11402287B2 (en) 2019-09-10 2022-08-02 Structural Group, Inc. Mechanical formwork pressure sensor for in-situ measurement of fluid pressure during concrete matertal placement and method of using the same
CN110486055A (zh) * 2019-09-11 2019-11-22 刘怀福 一种隧道二衬混凝土浇筑防脱空振捣控制装置及方法
CN110656958B (zh) * 2019-10-15 2021-02-26 中铁五局集团第一工程有限责任公司 一种平稳式施工装置
CN110645019B (zh) * 2019-10-15 2021-02-26 中铁五局集团第一工程有限责任公司 一种集成式隧道施工设备
CN110645020B (zh) * 2019-10-15 2021-02-26 中铁五局集团第一工程有限责任公司 一种施工设备行走方法
DE102019127693A1 (de) 2019-10-15 2021-04-15 Putzmeister Engineering Gmbh Steuerarmatur, Anordnung und Verfahren zur Herstellung von Betonbauteilen
CN110617070B (zh) * 2019-10-15 2020-12-11 中铁五局集团第一工程有限责任公司 一种隧道施工方法
CN111022074B (zh) * 2019-10-28 2021-08-03 中国人民解放军96782部队 一种全液压控制泵控分离的钢模台车
CN110987161A (zh) * 2019-12-16 2020-04-10 辽宁工程技术大学 一种矿用吸能防冲巷道支架频率检测装置
DE102019219918A1 (de) * 2019-12-17 2021-06-17 Peri Gmbh Schalungsplatte für eine Schalungsvorrichtung
CN110924988B (zh) * 2019-12-20 2021-03-23 浙江正方交通建设有限公司 隧道二衬混凝土溜槽浇筑体系及施工方法
CN112392508B (zh) * 2020-11-06 2023-06-23 湖南五新模板有限公司 一种防上浮仰拱模板装置
CN112502745A (zh) * 2020-12-15 2021-03-16 中国铁建重工集团股份有限公司 一种浇筑系统及衬砌台车
CN114704086B (zh) * 2022-04-06 2024-02-20 河南省中创建筑工程有限公司 一种模板装置
CN115354849B (zh) * 2022-08-30 2023-06-23 河南省水利第一工程局 滑动模板智能控制系统及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168413A1 (de) * 2015-11-16 2017-05-17 ÖSTU-STETTIN Hoch- und Tiefbau GmbH Vorrichtung und verfahren zum ausbau eines tunnels

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1591907A (en) * 1925-08-01 1926-07-06 Harvey J Yager Collapsible and portable core form
US2213159A (en) * 1937-07-23 1940-08-27 Trussed Concrete Steel Co Concrete form
US2705359A (en) * 1953-05-28 1955-04-05 Strandberg Arthur Beck Monolithic building construction
DE1434325A1 (de) * 1961-05-17 1968-10-24 Josef Boessner Schalungshaut fuer eine Kletterschaltung und Verfahren zur Herstellung turmartiger Bauwerke aus Beton
GB1142313A (en) * 1965-02-19 1969-02-05 Byggforbattring Ab A method of sliding-mould concrete casting, and a sliding mould for use in such casting
US3775929A (en) * 1971-06-11 1973-12-04 Laser Alignment Method for installing ceilings
US3973885A (en) * 1973-03-07 1976-08-10 Enor Nominees Pty. Limited Apparatus for progressively constructing a wall of cementitious material
US4126407A (en) * 1975-07-09 1978-11-21 Ahlgren Nils H Methods of shifting heavy and/or loaded structures
US4040774A (en) * 1976-04-29 1977-08-09 Research-Cottrel, Inc. Apparatus for constructing concrete walls
US4505622A (en) * 1977-05-17 1985-03-19 Magyar Szenbanyaszati Troszt Process and arrangement for the support of underground cavity systems by an efficient safety casing wall
SE432792B (sv) * 1982-04-01 1984-04-16 Dynapac Maskin Ab Forfarande och anordning for att astadkomma optimal packningsgrad vid packning av olika material sasom asfalt, jord etc medelst en vibrerande velt
DE3406980C1 (de) * 1984-02-25 1985-04-04 Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen Verfahren und Vorrichtung zum fortlaufenden Auskleiden eines Tunnels mit Ortbeton
DE3826623A1 (de) * 1988-08-05 1990-02-08 Schlecht Karl Verfahren und vorrichtung zur ueberwachung, steuerung und/oder regelung des fuelldrucks bei der tunnelbetonierung
US4930935A (en) * 1988-12-29 1990-06-05 David W. Somero Screeding apparatus and method
US4974700A (en) * 1989-06-12 1990-12-04 Gates & Sons, Inc. Movable support mechanism for construction of elevator shafts and the like
JP2932323B2 (ja) * 1991-08-06 1999-08-09 清水建設株式会社 シールド掘進機
SE501234C2 (sv) * 1993-04-29 1994-12-12 Thurner Geodynamik Ab Förfarande och anordning för mätning och dokumentation av packningsresultat och styrning av en vält vid packning av ett utlagt underlag
US5471391A (en) * 1993-12-08 1995-11-28 Caterpillar Inc. Method and apparatus for operating compacting machinery relative to a work site
JP2842855B2 (ja) * 1996-02-22 1999-01-06 株式会社東洋テクノス セミシールド工法における長距離推進工法及び装置
US5991687A (en) * 1997-07-02 1999-11-23 Case Corporation System and method for communicating information related to a geographical area
US6188942B1 (en) * 1999-06-04 2001-02-13 Caterpillar Inc. Method and apparatus for determining the performance of a compaction machine based on energy transfer
DE10040777A1 (de) * 2000-08-21 2002-03-07 Tachus Gmbh Verfahren und Maschine für den Tunnelbau, Schalelement und Schalsystem
CA2354226A1 (en) * 2001-01-31 2002-07-31 Cal Holland Robotic apparatus and method for non-destructive maintenance of intersecting conduits
JP4669173B2 (ja) * 2001-09-05 2011-04-13 酒井重工業株式会社 振動型締固め車両における締固め度管理装置
US6880643B1 (en) * 2002-02-07 2005-04-19 Novariant, Inc. System and method for land-leveling
JP2003270080A (ja) * 2002-03-15 2003-09-25 Hitachi Industries Co Ltd 振動試験装置および振動試験方法
US7731450B2 (en) * 2006-09-07 2010-06-08 Caterpillar Inc. Method of operating a compactor machine via path planning based on compaction state data and mapping information
JP2008088696A (ja) * 2006-10-02 2008-04-17 Maeda Corp トンネル覆工の施工方法
DE102007018743A1 (de) * 2007-04-22 2008-10-23 Bomag Gmbh Verfahren und System zur Steuerung von Verdichtungsmaschinen
JP2009155819A (ja) * 2007-12-25 2009-07-16 Kajima Corp トンネル内の覆工コンクリート打設装置
US8142103B2 (en) * 2009-02-20 2012-03-27 Caterpillar Trimble Control Technologies Llc Wireless sensor with kinetic energy power arrangement
DE102011076131A1 (de) * 2011-05-19 2012-11-22 Hamm Ag System zur Bereitstellung von einen Vibrationszustand repräsentierenden Informationen für den Betrieb vibrationsemittierender Maschinen, insbesondere Baumaschinen
GB2498524B (en) * 2012-01-17 2016-07-27 M3 Group Ltd Tunnel Lining
EP2626509B1 (de) 2012-02-08 2015-04-08 Kern Tunneltechnik SA Schalungsanordnung
EP2981649B1 (de) * 2013-04-02 2019-04-24 Roger Arnold Stromsoe Bodenverdichtungssystem und -verfahren

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168413A1 (de) * 2015-11-16 2017-05-17 ÖSTU-STETTIN Hoch- und Tiefbau GmbH Vorrichtung und verfahren zum ausbau eines tunnels

Also Published As

Publication number Publication date
US9945229B2 (en) 2018-04-17
US20170254202A1 (en) 2017-09-07
EP3216979A1 (de) 2017-09-13

Similar Documents

Publication Publication Date Title
EP3216979B1 (de) Schalungssystem
DE19652811B4 (de) Verfahren und Einrichtung zum Beschichten von Tunnelinnenwänden mit Spritzbeton
EP2927372B1 (de) Selbstfahrende baumaschine und verfahren zum steuern einer selbstfahrenden baumaschine
EP1727964B1 (de) Vortrieb von rohrelementen im untergrund
EP3168413B1 (de) Vorrichtung und verfahren zum ausbau eines tunnels
EP3112542A1 (de) Vorrichtung und verfahren zur wärmeentkopplung von betonierten gebäudeteilen
DE102015106296A1 (de) Wärmedämmelement
EP4118023A1 (de) Verfahren zum bilden einer führungsstruktur zum führen einer aufzugkabine in einem aufzugschacht
EP3513039B1 (de) Messsignalauswertungsverfahren
DE102016124106A1 (de) Einstellung des verdichtungsaufwands unter verwendung von vibrationssensoren
EP2354344B1 (de) Vorrichtung zum Anbringen eines von einem Gebäude vorkragenden Tragbalkens
DE202009010486U1 (de) Schalldämmwand aus Gabionen mit Kern aus Holzspannbeton
EP3296476A1 (de) Anordnung zum verbinden einer gebäudewand mit einer boden- oder deckenplatte und formbaustein für eine solche anordnung
DE2700594A1 (de) Verbau fuer eine baugrubenwand und verfahren zur herstellung
DE3407938A1 (de) Verfahren und vorrichtung zum pruefen bzw. verfestigen des baugrundes bei bohrpfaehlen
CH715137A2 (de) Verfahren und Vorrichtung zum Ausbau von Hohlräumen unter Tage.
EP3460134B1 (de) Vorrichtung zum kraftuebertragenden verbinden zweier bauteile
WO2010075855A1 (de) Dornsystem für den betonbau
AT16064U1 (de) Wandkonstruktion
DE19504235A1 (de) Verfahren zur Herstellung von wärmeisolierten Tafeln für die Großtafelbauweise
AT513020B1 (de) Halbfertig-Bauteil zum Erstellen von Bauwerken
EP2591353B1 (de) Vorrichtung und verfahren zur in situ charakterisierung der qualitätsparameter und/oder der eigenschaften von anorganischen bindemittelsystemen
AT523597A2 (de) Schalungssystem, Ankervorrichtung, Ankerstab, Verwendung eines Ankerstabs und Verfahren
DE102020132151A1 (de) Verfahren und Vorrichtung zur additiven Fertigung von Bauwerken oder Bauteilen von Bauwerken
EP3123867B1 (de) Verfahren und vorrichtung zur vereinfachten ausrichtung einer füllmaschine zur wurstherstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170925

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180711

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1130404

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004507

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KERN TUNNELTECHNIK SA

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190508

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190809

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004507

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

26N No opposition filed

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240321

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240326

Year of fee payment: 9

Ref country code: GB

Payment date: 20240320

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240328

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 9