EP1727964B1 - Vortrieb von rohrelementen im untergrund - Google Patents

Vortrieb von rohrelementen im untergrund Download PDF

Info

Publication number
EP1727964B1
EP1727964B1 EP05706512A EP05706512A EP1727964B1 EP 1727964 B1 EP1727964 B1 EP 1727964B1 EP 05706512 A EP05706512 A EP 05706512A EP 05706512 A EP05706512 A EP 05706512A EP 1727964 B1 EP1727964 B1 EP 1727964B1
Authority
EP
European Patent Office
Prior art keywords
expansion
elements
measured
fluid
expansion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05706512A
Other languages
English (en)
French (fr)
Other versions
EP1727964A1 (de
Inventor
Stefan Trümpi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1727964A1 publication Critical patent/EP1727964A1/de
Application granted granted Critical
Publication of EP1727964B1 publication Critical patent/EP1727964B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/005Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries by forcing prefabricated elements through the ground, e.g. by pushing lining from an access pit
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/38Waterproofing; Heat insulating; Soundproofing; Electric insulating
    • E21D11/385Sealing means positioned between adjacent lining members
    • E21D11/386Sealing means positioned between adjacent lining members inflatable sealing means

Definitions

  • the invention relates to a method for determining the propulsion force, whose eccentricity with respect to the neutral axis and / or the propulsion direction in the propulsion of tubular elements for creating an elongated structure in a soft, stony and / or rocky ground, wherein a pressing device and the front side in the joints of Tubing arranged, fluid-filled expansion elements can be used. Furthermore, the invention relates to a method for controlling the driving force, the eccentricity and the feed direction, as well as an application of the method.
  • the pipe string is pressed by successive application of tubular elements in the soil, with a controllable headpiece shows the way.
  • the new pipe elements are lowered into a press shaft and propelled forward with a press device until the next pipe section can be used.
  • the pipe elements have a diameter of up to several meters, a pipe string of pipe elements, for example, 1 to 4 m in diameter can reach a length of 1 to 2 km or more.
  • the head of the pipe string can be removed and added the necessary termination devices and lines.
  • the removed from the conveyor head earth material must be dissipated in the opposite direction to the usually approximately horizontal pipe jacking, this can be done in a conventional manner with conveyor belts, rubble cars or the like. Furthermore, in the case of appropriate soil, it is possible to produce thin-flow conveyance in closed pipes.
  • the inventor has set itself the task of creating a method of the type mentioned, with which at least one of the three parameters driving force, eccentricity with respect to the neutral axis and propulsion direction is optimally determined and optionally stored and / or used for process control.
  • the object is achieved according to the invention by measuring the deformation in at least one part of the expansion elements distributed over the entire length of the pipe string, calculating the propulsion force and the eccentricity from these parameters and storing the values and / or compared with stored defaults.
  • the deformation is measured, the driving force and the eccentricity are calculated from these parameters, and the values are entered into control commands for the pressing direction and / or the individual Fluid supply to or the individual fluid drain from the expansion elements converted.
  • the records can also be used for quality assurance, which is qualitatively and quantitatively comprehensible. Furthermore, the construction progress can be compared at any time with a configured setpoint for the pipe run.
  • a running process control are used until the specified default values again comply with the setpoint values for the configured pipe path. This takes place in the sense of a rolling planning of the process flow.
  • a flowable medium is referred to, in particular a gas, a liquid of low or high viscosity, a gel, a pasty mass or the like.
  • an expansion element is arranged with a measuring device in each joint. While - as mentioned - in each joint an expansion element must be arranged, the measuring elements can also be partially omitted, preferably periodically.
  • a measuring device for the pressure can be arranged in each 2nd, 3rd, 4th, ... nth expansion element.
  • a regular arrangement is not mandatory, but advantageous.
  • the deformation can be measured, which is usually by measuring the elongation of the joints.
  • shear deformation and / or other parameters known per se can also be measured. This is preferably done on at least three regularly distributed over the circumference points, so in the case of strain measurement, the geometry of the expansion plane of a joint can be determined.
  • the fluid pressure in the expansion elements is conveniently measured by means of a manometer. If a deviation of the fluid pressure from the target value is detected on the basis of the measured parameters, a corresponding control command causes a supply or outflow of fluid, or the propelling force is increased or decreased accordingly.
  • the control commands can be made individually to a specific actuator, but also in groups to multiple actuators.
  • the expansion element can assume any conventional geometric shape with respect to the cross section. In the simplest case this is circular. However, the cross-sectional shape may also be square, rectangular, with the same or different wall thicknesses. Elastic materials which can also be fiber-reinforced and whose mechanical properties can be adapted to the object-specific forces and geometrical conditions are suitable materials.
  • the ratio of the applied force K1 to the allowable force K2 can be monitored by periodically or continuously calculating the ratio. If the ratio reaches or exceeds 1, an alarm is automatically triggered and / or the relevant position is shown on a display, the operator can intervene immediately.
  • the expansion element inserted between the rearmost pipe element of the pipe string and the newly introduced pipe element is preferably pre-compressed and the parameters measured in the process are stored.
  • the geometrical cross section of the expansion element is determined during pre-upsetting.
  • the evaluation is preferably done in real time, so not time-shifted.
  • a pipe string 14 is propelled, which extends in a few meters depth approximately parallel to the earth surface 16.
  • the individual pipe elements 18 are lowered by means of a lifting device 20 in the press shaft 12.
  • An abutment 22 supporting pressing device 24 is aligned with the tubing string 14.
  • a pressure ring 26 presses the front side on the rearmost pipe element 18 and pushes the entire pipe string 14 in the feed direction 28 by the length l a tubular element 18 forward. Then the pressure ring 26 is withdrawn, a new tubular element 18 is lowered and with the interposition of an expansion element 44 (FIG. Fig. 3 ) precisely. Then the insertion takes place by a further tube length I.
  • the displaced soil is reduced by a head piece 30 in a conventional manner. This is done for example by a built-in excavator 32, a milling machine or other known in mining equipment. With a treadmill, not shown, the excavated soil 34 in the direction of the press shaft 24, that is opposite to the propulsion direction 28, promoted.
  • the propulsion takes place as mentioned step by step.
  • One step involves the insertion of a tubular element 18, the feed of the tubing string 14 by the length l of the tubular element 18 in the feed direction 28.
  • the feed force 40 (FIG. Fig. 3 ) is applied via the expansion elements 44 (shown below) ( Fig. 3 ) transmitted from pipe element to pipe element 18.
  • tubing string 14 generally runs approximately parallel to the earth's surface 16.
  • the tubing string 14 may, however, also run at any other angle.
  • the headpiece 30 usually has a locating device 36, so the situation can be determined at any time and any necessary corrections are made. Next can be precisely excavated at a possibly necessary repair or replacement of the head piece 30, an auxiliary shaft.
  • Fig. 2 is an S-piece of a road 38 with underlying tubing 14th indicated.
  • the pipe string 14 is performed with the largest possible bending radius through the S-piece, the projected pipe path runs as straight as possible. By measuring and process control according to the present invention, the pipe string 14 can follow the projected pipe path as far as possible.
  • Fig. 3 shows the end faces 42 of two tubular elements 18, on which a driving force 40 is exerted.
  • the two end faces 42 of the tubular elements 18 are pushed by a trained as a hollow profile expansion element 44.
  • the cavity of the expansion element 44 is filled with a pressure-resistant fluid 46, the pressure p can rise to much more than 100 bar.
  • connection area of the two. Pipe elements 18 is covered with a collar 48 which has a guiding and sealing function.
  • the sealing function is supported by an inserted O-ring 50.
  • the expansion element 44 is formed from an elastomer tubular.
  • the circulating hose has no division into sections. The pressure is, therefore, except for the geodesic difference, always the same around, even with the largest pressure application, which in Fig. 5 is shown with the dotted, deformed expansion element 44.
  • tubular elements 18 are shown. These may be, for example, round, square, rectangular, rectangular with a transverse wall or arched.
  • the elements have a diameter or a corresponding linear mass of one or more meters. They consist for example of concrete, fiber concrete or a metal.
  • Fig. 7 shows cross-sections of expansion elements 44. These are circular, square, elliptical, rounded long rectangular, cassette-shaped and convex on both sides. There are a large variety of cross sections, the walls can be partially reinforced.
  • Fig. 8 is the circumferential expansion element 44 divided into three equal sections A, B, C, which are not hydraulically connected to each other.
  • Each section of the expansion element 44 may have a fitting with a filler cock 58 and a vent cock 66. There can be an active change of direction.
  • an expansion element 44 according to Fig. 8 can with appropriate arrangement directly the guide head 30 ( Fig. 1 ) to be controlled. Usual are three to six sectors.
  • the measurement data management of pressure and deformation, in particular the elongation, takes place in the tubing 18 or outside thereof with a processor.
  • the filler cock 58 and the vent cock 66 can also be controlled by a processor via corresponding actuators.
  • the data transmission from and to the processor via electrical or optical cables or via radio, even using the Internet.
  • the cavities of all actuatable expansion elements 44 can be connected to one another in a communicating manner via the pressure line 56.
  • the pressure line 56 extending over the entire length in the interior of the tubing string 14 may be connected to all the expansion elements 54 or only a part thereof.
  • the expansion plane in a joint 70 is determined.
  • the magnitude and eccentricity 72 of the resulting propulsion force 40 can be determined in place and magnitude by means of a reversible load-deformation law of the joint function described.
  • the size and direction of the earth pressures can be determined transversely to the neutral axis N and thus the knowledge about the size of the risk of damage or even breakage of the tubular elements 18 in the transverse direction can be obtained.
  • the joint 70 may also run concentrically, spirally or according to a more complicated, but not transverse forces generating geometric shape according to a variant, not shown.
  • the expansion element 44 By a compression of the expansion element 44 in the joint 70, during which the described filling cock 58 and / or vent cock 66 are opened and thus the fluid 46 can freely enter and exit the cavity of the expansion element 44, the expansion element 44 is deformed without the pressure in the cavity of the expansion element 44 changes.
  • the force-transmitting bearing surface of the expansion element 44 on the end faces 42 of the tubular elements and thus also the propulsion force 40 can be increased.
  • the deformation behavior of the expansion element 44 can be controlled within certain limits according to the requirements.
  • Sectioned expansion elements 44 represent independent hydraulic vessels which may have mutually different internal pressures. As a common parameter, these sections only have the geometry of the plane of elongation. By controlling the pressure, or the amount of fluid 46 present in the cavity of the individual sections of the expansion element 44, the position of the resulting driving force 40 is influenced in place and amount. With a purposeful application of this property, the divided expansion member 40 can accurately control and control the position and size of the eccentricity 52 of the driving force 40.
  • the fluid pressure p in the cavity of the expansion element 44 is everywhere the same size, and the size of the force transmitted through the expansion element 44 per unit length of the expansion element 44 measured in the circumferential direction is only on the size of the support width of the expansion element 44th depending on the end faces of the elements and in particular independent of the remaining geometry of the expansion element 44.
  • the eccentricity 52 of the resulting propulsion force 40 can be made independent of the elongation of the expansion element 44 or kept within small limits. This represents a significant improvement in the properties of the expansion elements 44 described.
  • the pressure of the fluid 46 within the expansion element 44 is further monitored and controlled, thereby controlling the sealing performance of the expansion element 44.
  • the fluid 46 in the expander can be exchanged with a hardening fluid, for example, with a cement suspension. This is pressed under a certain pressure in the cavity of the expansion element 44 and used so after hardening for a permanent bias and a sealing pressure.
  • a hardening fluid for example, with a cement suspension. This is pressed under a certain pressure in the cavity of the expansion element 44 and used so after hardening for a permanent bias and a sealing pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Electric Cable Installation (AREA)
  • Earth Drilling (AREA)
  • Control Of Metal Rolling (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Ermitteln der Vortriebskraft, deren Exzentrizität bezüglich der neutralen Achse und/oder der Vortriebsrichtung beim Vortrieb von Rohrelementen zum Erstellen eines länglichen Bauwerks in einem weichen, steinigen und/oder felsigen Untergrund, wobei eine Pressvorrichtung und stirnseitig in den Fugen des Rohrstrangs angeordnete, fluidgefüllte Dehnelemente eingesetzt werden. Weiter betrifft die Erfindung ein Verfahren zum Steuern der Vortriebskraft, der Exzentrizität und der Vorschubrichtung, sowie eine Anwendung des Verfahrens.
  • Das klassische Verlegen von Rohrleitungen erfolgt in Gräben, wo sie Stück für Stück in ein Bett eingelegt, abgedichtet und wieder eingedeckt werden.
  • In einem überbauten, coupierten oder sonstwie im oberen Bereich schwierigen Gelände bietet sich als an sich bekannte Alternative an, aus einem abgeteuften Schacht einen Rohrstrang in das Erdreich zu treiben. Es wird ein möglichst gerade verlaufender Sollweg für den Rohrstrang projektiert, wobei allfällige Hindernisse in einem möglichst grossen Kurvenradius umgangen werden.
  • Der Rohrstrang wird durch sukzessives Anlegen von Rohrelementen in das Erdreich gepresst, wobei ein steuerbares Kopfstück den Weg weist. Die neuen Rohrelemente werden in einen Pressschacht abgesenkt und mit einer Pressvorrichtung vorwärts getrieben, bis das nächste Rohrstück eingesetzt werden kann. Die Rohrelemente haben einen Durchmesser von bis zu mehreren Metern, ein Rohrstrang aus Rohrelementen von beispielsweise 1 bis 4 m Durchmesser kann eine Länge von 1 bis 2 km oder mehr erreichen.
  • In einem Zielschacht kann das Kopfstück des Rohrstrangs entnommen und die notwendigen Abschlussvorrichtungen und -leitungen zugefügt werden.
  • Mit zunehmender Vortriebslänge nehmen die erforderlichen Vorpresskräfte infolge der Mantelreibung der Rohrelemente zu. Je nach der Länge des Rohrstrangs und der anzuwendenden Presskraft können Zwischenpressstationen oder Zwischenschächte für weitere Pressvorrichtungen erstellt werden, mit welchen die Reichweite entsprechend erhöht werden kann.
  • Das vom Förderkopf abgetragene Erdmaterial muss in Gegenrichtung zum meist etwa horizontalen Rohrvortrieb abgeführt werden, dies kann in an sich bekannter Weise mit Förderbändern, Schuttwagen oder dgl. erfolgen. Weiter ist bei entsprechendem Erdreich eine Dünnstromförderung in geschlossenen Rohren möglich.
  • Die hohen Vortriebskräfte müssen möglichst gleichmässig und ohne lokale Spannungskonzentrationen stirnseitig von Rohrelement zu Rohrelement übertragen werden, was im Direktkontakt nicht ohne Beschädigungen möglich wäre. Es ist bekannt, dem Rohrquerschnitt entsprechende Druckübertragungsringe aus Holzwerkstoffen einzulegen.
  • Beim Pressvortrieb werden die Rohrelemente sowohl in axialer als auch in radialer Richtung stark beansprucht. Die Vorpresskräfte müssen den Brustwiderstand und die Reibung zwischen dem Rohrmantel und dem Erdreich überwinden. Richtungskorrekturen führen, neben einer Zunahme der Vorpresskräfte, vor allem zu einer ungleichförmigen Verteilung der Druckspannungen der Rohrstirnseiten und im Rohrelement selbst. Weitere Einwirkungen, wie z. B. Zwängungskräfte und Eigengewicht, beanspruchen die Rohre auch in radialer Richtung.
  • In der CH 574023 A5 wird eine Fugendichtung für einen Rohrstrang beschrieben, der im Pressvortrieb hergestellt wird. Zwischen den Stirnseiten der einzelnen Rohrelemente wird ein Dehnelement angeordnet, das einen geschlossenen Hohlraum bildet. Dieser ist mit einem unter Druck stehenden Füllmittel so auspressbar, dass die Stirnseiten der benachbarten Bauelemente auseinandergedrückt werden.
  • Der Erfinder hat sich die Aufgabe gestellt, ein Verfahren der eingangs genannten Art zu schaffen, mit welchem wenigstens einer der drei Parameter Vortriebskraft, Exzentrizität bezüglich der neutralen Achse und Vortriebsrichtung optimal ermittelt wird und wahlweise gespeichert und/oder zur Prozesssteuerung eingesetzt werden kann.
  • Bezüglich der Ermittlung der Parameter wird die Aufgabe erfindungsgemäss dadurch gelöst, dass in wenigstens einem über die ganze Länge des Rohrstrangs verteilten Teil der Dehnelemente der Fluiddruck und/oder der Fugen die Verformung gemessen, aus diesen Parametern die Vortriebskraft und die Exzentrizität berechnet und die Werte gespeichert und/oder mit gespeicherten Standardwerten verglichen werden. Zur Prozesssteuerung werden in wenigstens einem über die ganze Länge des Rohrstrangs verteilten Teil der Dehnelemente der Fluiddruck und/oder der Fugen die Verformung gemessen, aus diesen Parametern die Vortriebskraft und die Exzentrizität berechnet, und die Werte in Steuerbefehle für die Pressrichtung und/oder die individuelle Fluidzufuhr zu bzw. den individuellen Fluidabfluss von den Dehnelementen umgewandelt. Spezielle und weiterbildende Ausführungsformen des Verfahrens sind Gegenstand von abhängigen Patentansprüchen.
  • Mit dem erfindungsgemässen Verfahren kann eine lückenlose, jederzeit reproduzierbare Bauwerksdokumentation aufgezeichnet und erstellt werden.
  • Die Aufzeichnungen können auch zur Qualitätssicherung verwendet werden, welche qualitativ und quantitativ nachvollziehbar ist. Weiter kann der Baufortschritt jederzeit mit einem projektierten Sollwert für den Rohrweg verglichen werden.
  • Bei Abweichungen kann jederzeit die Variante nach der vorliegenden Erfindung, eine laufende Prozesssteuerung, eingesetzt werden, bis die vorgegebenen Standardwerte wieder die Sollwerte für den projektierten Rohrweg einhalten. Dies erfolgt im Sinne einer rollenden Planung des Prozessablaufs.
  • Selbstverständlich können beide erfindungsgemässen Prozesse, das Ermitteln der Parameter und die Steuerung gleichzeitig ablaufen.
  • Der englische Ausdruck Fluid ist auch in der deutschen Sprache üblich geworden, damit wird ein fliessfähiges Medium bezeichnet, insbesondere ein Gas, eine Flüssigkeit niedriger oder hoher Viskosität, ein Gel, eine pastöse Masse oder dgl.
  • Vorzugsweise ist in jeder Fuge ein Dehnelement mit einer Messvorrichtung angeordnet. Während - wie erwähnt - in jeder Fuge ein Dehnelement angeordnet sein muss, können die Messelemente auch teilweise weggelassen werden, vorzugsweise periodisch. Beispielsweise kann in jedem 2., 3., 4., ... n. Dehnelement eine Messvorrichtung für den Druck angeordnet sein. Selbstverständlich ist eine regelmässige Anordnung nicht zwingend, aber vorteilhaft. In den gleichen oder unterschiedlichen Fugen kann die Verformung gemessen werden, wobei dies in der Regel mittels Messung der Dehnung der Fugen besteht. Es können jedoch auch die Scherverformung und/oder andere an sich bekannte Parameter gemessen werden. Dies erfolgt vorzugsweise an mindestens drei regelmässig über den Umfang verteilten Stellen, so kann im Falle der Dehnungsmessung die Geometrie der Dehnungsebene einer Fuge bestimmt werden.
  • Der Fluiddruck in den Dehnelementen wird zweckmässig mittels eines Manometers gemessen. Wird aufgrund der gemessenen Parameter eine Abweichung des Fluiddrucks vom Sollwert festgestellt, veranlasst ein entsprechender Steuerbefehl eine Zufuhr oder einen Abfluss von Fluid, oder die Vortriebskraft wird entsprechend erhöht oder erniedrigt. Die Steuerbefehle können individuell an einen spezifischen Aktor erfolgen, jedoch auch gruppenweise an mehrere Aktoren.
  • Das Dehnelement kann bezüglich des Querschnitts jede übliche geometrische Form annehmen. Im einfachsten Fall ist dies kreisförmig. Die Querschnittsform kann jedoch auch quadratisch, rechteckig, mit gleichen oder unterschiedlichen Wanddicken sein. Als Material bieten sich elastische Werkstoffe an, welche auch faserverstärkt sein können und deren mechanische Eigenschaften an die objektspezifischen Kräfte und geometrischen Verhältnisse anpassbar sind.
  • In Bezug auf den Querschnitt kreisförmige, ovale, elliptische oder rechteckige Dehnelemente haben die geometrische Eigenschaft, dass bei spannungsfrei erzeugten Vorstauchungen der Dehnelemente deren Auflagebreiten auf der Rohrstimfläche nur in geringem Masse abhängig sind von den unter Kraft auftretenden Stauchungen. Dies hat zur Folge, dass auch bei stark schiefen Dehnungsebenen in den Fugen die spezifischen, von den Dehnelementen übertragenen Kräfte entlang des Rohrumfangs nur geringfügig variieren und damit die Exzentrizitäten der Vortriebskraft bezüglich der neutralen Achse der Rohre gering bleiben, was einen starken Gegensatz zu den bisher meist verwendeten Fugen aus Holzwerkstoffen bedeutet.
  • Weiter kann das Verhältnis der ausgeübten Kraft K1 zur zulässigen Kraft K2 durch periodische oder kontinuierliche Berechnung des Verhältnisses überwacht werden. Falls das Verhältnis 1 erreicht oder überschreitet, wird automatisch ein Alarm ausgelöst und/oder die betreffende Stelle auf einem Display angezeigt, der Operator kann sofort einschreiten.
  • Schliesslich wird im Pressschacht das zwischen das hinterste Rohrelement des Rohrstrangs und das neu eingeführte Rohrelement eingelegte Dehnelement vorzugsweise vorgestaucht und die dabei gemessenen Parameter gespeichert. Mit anderen Worten wird beim Vorstauchen der geometrische Querschnitt des Dehnelements festgelegt. Wie bei allen übrigen Messungen erfolgt das Auswerten vorzugsweise in Echtzeit, also nicht zeitverschoben.
  • Die Erfindung, insbesondere auch die dazu notwendigen Vorrichtungen, werden anhand von in der Zeichnung dargestellten Ausführungsbeispiele, welche auch Gegenstand von abhängigen Patentansprüchen sind, näher erläutert. Es zeigen schematisch:
    • Fig. 1 einen Vertikalschnitt durch einen Pressschacht mit einem Rohrstrang,
    • Fig. 2 den Verlauf eines Rohrstrangs unterhalb eines Strassenabschnitts,
    • Fig. 3 einen Axialschnitt durch zwei stirnseitig aneinanderliegende Rohrelemente,
    • Fig. 4 einen Radialschnitt durch ein Dehnelement,
    • Fig. 5 ein Detail einer Stossverbindung zweier Rohrelemente mit einer Mess- und Fülleinrichtung, gemäss V von Fig. 3,
    • Fig. 6 verschiedene Querschnittsformen von Rohrelementen,
    • Fig. 7 verschiedene Querschnittformen von Dehnelementen,
    • Fig. 8 eine Variante von Fig. 3 mit sektorieller Unterteilung des Dehnelements, und
    • Fig. 9 eine Variante gemäss Fig. 3 mit Dehnungsmessung.
  • Im Untergrund 10, vom weichen Erdreich bis zum monolithischen Fels, wird ausgehend von einem Pressschacht 12 ein Rohrstrang 14 vorgetrieben, welcher in einigen Metern Tiefe etwa parallel zur Erdoberfläche 16 verläuft. Die einzelnen Rohrelemente 18 werden mittels einer Hebevorrichtung 20 in den Pressschacht 12 abgesenkt.
  • Eine sich auf ein Widerlager 22 abstützende Pressvorrichtung 24 ist auf den Rohrstrang 14 ausgerichtet. Vorliegend handelt es sich um Hydraulikpressen, es können jedoch auch pneumatische Pressen oder Hubspindeln eingesetzt werden. Ein Druckring 26 drückt stirnseitig auf das hinterste Rohrelement 18 und drückt den ganzen Rohrstrang 14 in Vorschubrichtung 28 um die Länge l eines Rohrelements 18 vorwärts. Dann wird der Druckring 26 zurückgezogen, ein neues Rohrelement 18 abgesenkt und unter Zwischenlage eines Dehnelements 44 (Fig. 3) präzis angesetzt. Dann erfolgt der Einschub um eine weitere Rohrlänge I.
  • Gleichzeitig mit dem Einpressen des Rohrstrangs 18 in den Untergrund 10 wird durch ein Kopfstück 30 in an sich bekannter Weise das verdrängte Erdreich abgebaut. Dies erfolgt beispielsweise durch einen eingebauten Bagger 32, eine Fräse oder einem anderen im Bergbau bekannten Arbeitsgerät. Mit einem nicht gezeichneten Laufband wird das abgetragene Erdreich 34 in Richtung des Pressschachts 24, also entgegen der Vortriebsrichtung 28, gefördert.
  • Der Vortrieb erfolgt wie erwähnt schrittweise. Ein Schritt beinhaltet das Einsetzen eines Rohrelements 18, den Vorschub des Rohrstrangs 14 um die Länge l des Rohrelements 18 in Vorschubrichtung 28. Die Vorschubkraft 40 (Fig. 3) wird über die nachstehend gezeigten Dehnelemente 44 (Fig. 3) von Rohrelement zu Rohrelement 18 übertragen.
  • Wie erwähnt, verläuft der Rohrstrang 14 in der Regel etwa parallel zur Erdoberfläche 16. Der Rohrstrang 14 kann aber auch in jedem beliebigen anderen Winkel verlaufen.
  • Aus verschiedenen Gründen kann es während dem Vorschieben eines Rohr strangs 18 zu Exzentrizitäten kommen, wie dies in Fig. 3 im Detail dargestellt wird.
  • Das Kopfstück 30 weist meist ein Ortungsgerät 36 auf, so kann die Lage jederzeit festgestellt und allenfalls notwendige Korrekturen vorgenommen werden. Weiter kann bei einer allenfalls notwendigen Reparatur oder Auswechslung des Kopfstücks 30 ein Hilfsschacht präzis ausgehoben werden.
  • In Fig. 2 ist ein S-Stück einer Strasse 38 mit darunter liegendem Rohrstrang 14 angedeutet. Der Rohrstrang 14 wird mit möglichst grossem Biegeradius durch das S-Stück geführt, der projektierte Rohrweg verläuft möglichst gerade. Durch Messen und Prozesssteuerung gemäss der vorliegenden Erfindung kann der Rohrstrang 14 dem projektierten Rohrweg weitestgehend folgen.
  • Fig. 3 zeigt die Stirnseiten 42 zweier Rohrelemente 18, auf welche eine Vortriebskraft 40 ausgeübt wird. Die beiden Stirnseiten 42 der Rohrelemente 18 werden durch ein als Hohlprofil ausgebildetes Dehnelement 44 gestossen. Der Hohlraum des Dehnelements 44 ist mit einem druckfesten Fluid 46 gefüllt, der Druck p kann auf weit mehr als 100 bar ansteigen.
  • Der Verbindungsbereich der beiden. Rohrelemente 18 ist mit einer Manschette 48 abgedeckt, welche eine Führungs- und Dichtungsfunktion hat. Die Dichtungsfunktion wird durch einen eingelegten O-Ring 50 unterstützt.
  • Es kann während dem Vorschieben eines Rohrstrangs 14 aus Rohrelementen 18 zu Exzentrizitäten 52 der Vorschubkraft 40 bezüglich der neutralen Achse N des Rohrstrangs 14 kommen. Die Gründe dafür liegen in den unterschiedlichen Reibungsverhältnissen entlang der Kontaktfläche 54 der Rohrelemente 18 und dem Untergrund 10, hauptsächlich aber in geplanten und unvorhergesehenen Steuerbewegungen sowie Massungenauigkeiten in den Rohrelementen 18, insbesondere bei der Verwendung von Fugenelementen aus Holzwerkstoffen, welche eine ausgeprägte nicht lineare, irreversible Last-Verformungs-Charakteristik aufweisen. Die erwähnten Exzentrizitäten 52 erzeugen Drehmomente um Achsen, die in einer senkrecht zur Vortriebsrichtung 28 stehenden Ebene liegen. Zur Erhaltung des Gleichgewichts wird die Mobilisierung von zu diesen Momenten gegenläufigen, betragsmässig gleich grossen Drehmomenten durch rechtwinklig zur Vortriebsrichtung 28 wirkende Erddrücken notwendig. Diese Erddrücke stellen bedeutende Belastungen dar, welche im Extremfall zu einem Bruch von Rohrelementen 18 führen.
  • Erfindungsgemäss sind alle Hohlräume der Dehnelemente 44 über den ganzen Rohrstrang 14 über eine Druckleitung 56 verbunden, wie dies in Fig. 4 und 5 gezeigt wird. Diese Druckleitung 56 ist über einen Füllhahn 58 mit der Armatur 60 jedes angeschlossenen Dehnelements 54 verbunden. Mit einem Hebel 62 kann der Füllhahn 58 geöffnet werden. Die Armatur 60 ist auch mit einem Druckmessgerät 64 und einem Entlüftungshahn 66 bestückt, über welchen überflüssiges Fluid in den Innenraum des Rohrstrangs 14 abgelassen werden kann.
  • In der Ausführungsform nach Fig. 4 ist das Dehnelement 44 aus einem Elastomer schlauchförmig ausgebildet. Der umlaufende Schlauch hat keine Aufteilung in Sektionen. Der Druck ist deshalb, bis auf den geodätischen Unterschied, immer rundherum gleich, auch bei grösster Druckanwendung, was in Fig. 5 mit dem punktierten, verformten Dehnelement 44 dargestellt ist.
  • In Fig. 6 sind einige mögliche Querschnitte von Rohrelementen 18 dargestellt. Diese können beispielsweise rund, quadratisch, rechteckig, rechteckig mit einer Querwand oder gewölbeartig ausgebildet sein. Die Elemente haben einen Durchmesser bzw. ein entsprechendes Linearmass von einem oder mehreren Metern. Sie bestehen beispielsweise aus Beton, Faserbeton oder einem Metall.
  • Fig. 7 zeigt Querschnitte von Dehnelementen 44. Diese sind kreisförmig, quadratisch, elliptisch, langrechteckig abgerundet, kassettenförmig und beidseits konvex ausgebildet. Es gibt eine grosse Vielfalt von Querschnitten, die Wände können teilweise verstärkt ausgebildet sein.
  • In der Ausführungsform nach Fig. 8 ist das umlaufende Dehnelement 44 in drei gleich grosse Sektionen A, B, C aufgeteilt, welche hydraulisch nicht miteinander verbunden sind. Jede Sektion des Dehnelements 44 kann eine Armatur mit einem Füllhahn 58 und einem Entlüftungshahn 66 aufweisen. Es kann eine aktive Richtungsänderung erfolgen. Mit einem Dehnelement 44 gemäss Fig. 8 kann bei entsprechender Anordnung direkt der Führungskopf 30 (Fig. 1) gesteuert werden. Üblich sind drei bis sechs Sektoren.
  • In der Ausführungsform gemäss Fig. 9 wird die Dehnung zwischen den Stirnseiten 42 der Rohrelemente 18 mit einem Dehnungsmesser 68 gemessen.
  • Die Messdatenverwaltung von Druck und Verformung, insbesondere der Dehnung, erfolgt im Rohrstrang 18 oder ausserhalb davon mit einem Prozessor. Der Füllhahn 58 und der Entlüftungshahn 66 können über entsprechende Aktoren ebenfalls von einem Prozessor gesteuert werden. Die Datenübertragung vom und zum Prozessor erfolgt über elektrische oder optische Kabel bzw. über Funk, auch unter Einsatz des Internets. Diese wie üblich verwendeten elektronischen Bauteile sind der Übersichtlichkeit wegen nicht gezeichnet.
  • Von wesentlicher Bedeutung ist dagegen, dass die Hohlräume aller betätigbaren Dehnelemente 44 über die Druckleitung 56 kommunizierend miteinander verbunden werden können. Die sich im Innern des Rohrstrangs 14 über die ganze Länge erstreckende Druckleitung 56 kann mit allen Dehnelementen 54 oder nur einem Teil davon verbunden sein. Durch den Füllhahn 58 wird der Hohlraum eines Dehnelements 44 vor dem Aufbringen der Vortriebskraft 40 zweckmässig mit einer drucksteifen Flüssigkeit, auch Fluid 46 genannt, gefüllt und durch mindestens einen Entlüftungshahn 66 gleichzeitig entlüftet. Über diese beiden Hahnen 58, 66 besteht auch die Möglichkeit, den vorhandenen Innendruck des Fluids 46 mit einem Druckmessgerät 64 zu messen. Mit Hilfe von mindesten drei punktuellen Messungen der Dehnung von Fugen 70 in Vortriebsrichtung 28 wird die Dehnungsebene in einer Fuge 70 bestimmt. Durch den erhaltenen Parameterdruck des Fluids 46 und die Geometrie der Dehnungsebene in der Fuge 70 kann mit Hilfe eines reversiblen Last-Verformungsgesetzes der beschriebenen Fugenfunktion die Grösse und Exzentrizität 72 der resultierenden Vortriebskraft 40 in Ort und Betrag ermittelt werden. Daraus kann wiederum die Grösse und Richtung der Erddrücke quer zur neutralen Achse N ermittelt und damit die Kenntnis über die Grösse der Gefährdung einer Beschädigung oder gar eines Bruchs der Rohrelemente 18 in Querrichtung gewonnen werden. Somit steht eine zuverlässige und genaue Methode zur Überwachung und Steuerung der Vortriebskräfte 40 zur Verfügung, welche mit einfachen, wirtschaftlichen und robusten Mitteln auskommt. Die Fuge 70 kann nach einer nicht dargestellten Variante auch konzentrisch, spiralförmig oder nach einer komplizierteren, jedoch keine Querkräfte erzeugenden geometrischen Form verlaufen.
  • Durch eine Stauchung des Dehnelements 44 in der Fuge 70, während der die beschriebenen Füllhahn 58 und/oder Entlüftungshahn 66 geöffnet sind und somit das Fluid 46 frei in den Hohlraum des Dehnelements 44 ein- und austreten kann, wird das Dehnelement 44 deformiert, ohne dass sich der Druck im Hohlraum des Dehnelements 44 ändert. Durch eine solche Vorstauchung kann die kraftübertragende Auflagefläche des Dehnelements 44 auf den Stirnseiten 42 der Rohrelemente und damit auch die Vortriebskraft 40 erhöht werden. Durch eine gezielte Vorstauchung kann somit das Deformationsverhalten des Dehnelements 44 in gewissen Grenzen gemäss den Anforderungen gesteuert werden.
  • In mehrere Abschnitte unterteilte, d. h. sektionierte Dehnelemente 44 stellen unabhängige hydraulische Gefässe dar, die zueinander unterschiedliche Innendrücke aufweisen können. Als gemeinsamen Parameter weisen diese Abschnitte lediglich die Geometrie der Dehnungsebene auf. Durch das Steuern des Druckes, bzw. der vorhandenen Menge Fluid 46 im Hohlraum der einzelnen Abschnitte des Dehnelements 44 wird die Lage der resultierenden Vortriebskraft 40 in Ort und Betrag beeinflusst. Mit einer gezielten Anwendung dieser Eigenschaft kann das unterteilte Dehnelement 40 die Lage und Grösse der Exzentrizität 52 der Vortriebskraft 40 genau kontrolliert und gesteuert werden.
  • Fehlen bei einem Dehnelement 44 diese Unterteilungen, so ist der Fluiddruck p im Hohlraum des Dehnelements 44 überall gleich gross, und die Grösse der über das Dehnelement 44 übertragenen Kraft je Längeneinheit des Dehnelements 44 in Umfangrichtung gemessen ist nur von der Grösse der Auflagebreite des Dehnelements 44 auf den Stirnseiten der Elemente abhängig und insbesondere von der übrigen Geometrie des Dehnelements 44 unabhängig. Durch eine geschickte Wahl von Eigenschaften und Geometrie, sowie Vorstauchung des Dehnelements 44 gelingt es, die Abhängigkeit der stirnseitigen Fugenauflagefläche je Längeneinheit von der Stauchung des Dehnelements 44 klein zu halten. Damit kann auch die Exzentrizität 52 der resultierenden Vortriebskraft 40 von der Dehnung des Dehnelements 44 unabhängig gemacht oder in kleinen Grenzen gehalten werden. Dies stellt eine bedeutende Verbesserung der Eigenschaften der beschriebenen Dehnelemente 44 dar.
  • Nach erfolgtem Vortrieb bestehen für die Weiterverwendung des beschriebenen Dehnelements 44 im wesentlichen zwei Möglichkeiten:
    • Der Innendruck des Dehnelements 44 wird abgesenkt und diese vom Innenraum des erstellten Bauwerks her ausgebaut. Damit kann das Dehnelement 44 wieder verwendet werden.
    • Das Dehnelement 44 bleibt eingebaut und wird als Bauwerksabdichtung für den Endzustand weiterverwendet.
  • Der Druck des Fluids 46 innerhalb des Dehnelements 44 wird weiter überwacht und gesteuert und damit die Dichtungsleistung des Dehnelements 44 kontrolliert.
  • Das Fluid 46 im Dehnelement kann mit einer sich erhärtenden Flüssigkeit ausgetauscht werden, beispielsweise, mit einer Zement-Suspension. Diese wird unter einem bestimmten Druck in den Hohlraum des Dehnelements 44 eingepresst und so nach erfolgter Erhärtung für eine dauerhafte Vorspannung und einen Dichtdruck verwendet.
  • Zusammenfassend kann festgestellt werden, dass erfindungsgemäss die Möglichkeit besteht, mit dem beschriebenen Aufbau des Dehnelements 44 das ganze Bauwerk auf einfache Art und Weise zu überbrücken, bzw. vorzuspannen, mit all den damit verbundenen Vorteilen.

Claims (12)

  1. Verfahren zum Ermitteln
    - der Vortriebskraft (40),
    - der Exzentrizität (52) der Vortriebskraft (40) bezüglich der neutralen Achse (N) und/oder
    - der Vortriebsrichtung (28)
    beim Vortrieb von Rohrelementen (18) zum Erstellen eines länglichen Bauwerks in weichem, steinigem und/oder felsigem Untergrund, wobei eine Pressvorrichtung (24) und stirnseitig in den Fugen (70) des Rohrstrangs (14) angeordnete, fluidgefüllte Dehnelemente (44) eingesetzt werden, dadurch gekennzeichnet, dass in wenigstens einem über die ganze Länge des Rohrstrangs (14) verteilten Teil der Dehnelemente (44) der Fluiddruck (p) und/oder in wenigstens einem über die ganze Länge des Rohrstrangs (14) verteilten Teil der Fugen (70) die Verformung gemessen wird, aus diesen Parametern die Vortriebskraft (40) und die Exzentrizität (52) berechnet und die Werte gespeichert und/oder mit gespeicherten Standardwerten verglichen werden.
  2. Verfahren zum Steuern
    - der Vortriebskraft (40),
    - Minimalisieren der Exzentrizität (52) der Vortriebskraft (40) bezüglich der neutralen Achse (N) und/oder
    - der Vortriebsrichtung (28)
    beim Vortrieb von Rohrelementen (28) zum Erstellen eines länglichen Bauwerks in weichem, steinigem und/oder felsigem Untergrund (10), wobei eine Pressvorrichtung (24) und stirnseitig in den Fugen (70) des Rohrstrangs (14) angeordnete, fluidgefüllte Dehnelemente (44) eingesetzt werden, dadurch gekennzeichnet, dass in wenigstens einem über die ganze Länge des Rohrstrangs (14) verteilten Teil der Dehnelemente (44) der Fluiddruck (p) und/oder in wenigstens einem über die ganze Länge des Rohrstrangs (14) verteilten Teil der Fugen (70) die Verformung gemessen wird, aus diesen Parametern die Vortriebskraft (40) und die Exzentrizität (52) berechnet, und die Werte in Steuerbefehle für die Pressvorrichtung (24) und/oder die individuelle Fluidzufuhr zu bzw. den individuellen Fluidabfluss von den Dehnelementen (44) umgewandelt werden.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Verformung, vorzugsweise die Dehnung oder die Scherverformung, in allen Fugen (70) gemessen wird.
  4. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Verformung, vorzugsweise die Dehnung in einer Fuge (70) an wenigstens drei Stellen, vorzugsweise regelmässig über den Umfang verteilt, gemessen und die Geometrie der Dehnungsebene der Fuge (70) bestimmt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Fluiddruck (p) in jedem Abschnitt (A, B, C) eines sektoriell unterteilten Dehnelements (44) gemessen und bei entsprechendem Steuerbefehl abschnittweise eine individuelle Fluidmenge zu- oder abgeführt wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass mit dem vordersten Dehnelement (44) ein Kopfstück (30) gesteuert wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Fluiddruck (p) in einem mit einer drucksteifen Flüssigkeit gefüllten Dehnelement (44) gemessen wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Fluiddruck (p) in einem im Querschnitt kreisförmigen, ovalen, elliptischen oder in Richtung wenigstens einer Stirnseite (42) der Rohrelemente (18) runden Dehnelement (44) gemessen wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Verhältnis von ausgeübter Kraft (K1) zu zulässiger Kraft (K2) periodisch oder kontinuierlich berechnet und überwacht, und bei K 1 K 2 1
    Figure imgb0001
    vorzugsweise Alarm ausgelöst wird.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die bei einem Vorstauchen des Dehnelementes (44) im Pressschacht (12) gemessenen Parameter gespeichert werden.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Auswertung in Echtzeit erfolgt.
  12. Anwendung des Verfahrens nach Anspruch 1 zu einer qualitativ und quantitativ nachvollziehbaren Qualitätssicherung beim Vortrieb von Rohrelementen (18) zur Erstellung eines Bauwerks im Untergrund.
EP05706512A 2004-02-19 2005-02-17 Vortrieb von rohrelementen im untergrund Active EP1727964B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2712004 2004-02-19
PCT/CH2005/000090 WO2005080753A1 (de) 2004-02-19 2005-02-17 Vortrieb von rohrelementen im untergrund

Publications (2)

Publication Number Publication Date
EP1727964A1 EP1727964A1 (de) 2006-12-06
EP1727964B1 true EP1727964B1 (de) 2008-03-05

Family

ID=34866024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05706512A Active EP1727964B1 (de) 2004-02-19 2005-02-17 Vortrieb von rohrelementen im untergrund

Country Status (12)

Country Link
US (1) US8231306B2 (de)
EP (1) EP1727964B1 (de)
JP (1) JP4767871B2 (de)
KR (1) KR101181882B1 (de)
CN (1) CN1973113B (de)
AT (1) ATE388302T1 (de)
AU (1) AU2005214470B2 (de)
CA (1) CA2556370C (de)
DE (1) DE502005003096D1 (de)
HK (1) HK1106812A1 (de)
MX (1) MXPA06009421A (de)
WO (1) WO2005080753A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2674569A1 (de) 2012-06-15 2013-12-18 Stefan Trümpi Fugendichtung für Rohrvortriebe
WO2018050556A1 (de) 2016-09-15 2018-03-22 Jackcontrol Ag Messsignalauswertungsverfahren

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1835126A1 (de) 2006-03-16 2007-09-19 Sika Technology AG Abdichtungsverfahren und -vorrichtung von Vortriebselementen
DE202006005297U1 (de) * 2006-04-01 2006-06-14 Baumgartner, Franz, Dipl.-Ing. Druckausgleichsring
DE202012101383U1 (de) * 2012-04-16 2012-05-07 Elke Baumgartner Druckausgleichsring zur Anordnung zwischen zwei Vortriebsrohren eines unterirdischen Rohrvortriebs
CH709476A1 (de) * 2014-04-07 2015-10-15 Stefan Trümpi Verfahren zum Dichten von Fugen beim Pressrohrvortrieb.
CN104565534B (zh) * 2014-11-24 2017-06-06 余澄玉 一种在软弱土中铺设构件的方法
NL2020541B1 (en) * 2018-03-06 2019-09-13 Fugro N V Position Monitoring of a Gasket between Tunnel Segments
JP6990668B2 (ja) * 2019-02-26 2022-01-12 公益財団法人鉄道総合技術研究所 地盤探査装置
GB2595270B (en) 2020-05-20 2022-09-28 Namaya Ltd Systems and methods of constructing intake-output assemblies for water desalination plants
GB2595716A (en) 2020-06-04 2021-12-08 Namaya Ltd Systems assemblies and methods of pipe ramming prefabricated members with a structured layout

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3388724A (en) * 1965-04-05 1968-06-18 Exxon Research Engineering Co Submarine insulated lng pipeline
CH574023A5 (en) * 1973-07-24 1976-03-31 Schmitter Adolf Junction seal for channels or conduits - has ring expansion member anchored to one channel inflated to force ends apart
US3881776A (en) * 1973-11-23 1975-05-06 Us Navy Vermiculating polytoroidal thruster
US4095435A (en) * 1975-04-08 1978-06-20 Koichi Uemura Method of advancing a plurality of longitudinally arranged movable constructional units forwardly successively in a self-running manner and apparatus for performing same
US4095655A (en) * 1975-10-14 1978-06-20 Still William L Earth penetration
CA1151436A (en) * 1979-06-16 1983-08-09 Michael A. Richardson Installation of tunnel linings
JPS563796A (en) * 1979-06-16 1981-01-16 Marcon Int Ltd Method of lining tunnel and tunnel lining piece assembly
DE3414180A1 (de) * 1984-04-14 1985-10-24 Georg Prinzing GmbH & Co KG Betonformen- und Maschinenfabrik, 7902 Blaubeuren Dichtungseinrichtung fuer aneinanderstossende, zumindest etwa rohrfoermige bauteile, insbesondere fuer betonformteile
JPS60219395A (ja) * 1984-04-16 1985-11-02 株式会社 イセキ開発工機 管推進装置
JPS60246993A (ja) * 1984-05-22 1985-12-06 植村 厚一 地中筒体の前進方法及びその装置
JPS621996A (ja) * 1985-05-23 1987-01-07 トピー栄進建設株式会社 推進管の曲線推進工法
DE3539897A1 (de) * 1985-11-11 1987-05-21 Kev Metro Koezlekedesi Es Metr Verfahren und einrichtung zur herstellung von in geschlossenem profil geradlinig gefuehrten, unterirdischen bauobjekten, insbesondere von tunnelartigen bauten unter dem rasenniveau durch einpressen in das erdreich der rohrelemente
US4718459A (en) * 1986-02-13 1988-01-12 Exxon Production Research Company Underwater cryogenic pipeline system
JP2576978B2 (ja) * 1986-12-15 1997-01-29 株式会社 青木建設 曲線推進工法用推進管の接続具
AU612831B2 (en) * 1988-06-08 1991-07-18 Kidoh Construction Co., Ltd. Method and apparatus for laying pipes in the ground with advance of propulsion shafts installed with pipe-supporting attachments
JP3575527B2 (ja) * 1998-12-02 2004-10-13 大日本土木株式会社 推力監視装置
DE60319545T2 (de) * 2002-07-17 2009-04-02 Shell Internationale Research Maatschappij B.V. Verfahren zur verbindung von expandierbaren rohren
CN1257342C (zh) * 2003-03-19 2006-05-24 钱奂云 一种掘进机及其施工方法
CN100510320C (zh) * 2003-03-20 2009-07-08 黄恩总 隧道挖掘方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2674569A1 (de) 2012-06-15 2013-12-18 Stefan Trümpi Fugendichtung für Rohrvortriebe
WO2018050556A1 (de) 2016-09-15 2018-03-22 Jackcontrol Ag Messsignalauswertungsverfahren

Also Published As

Publication number Publication date
ATE388302T1 (de) 2008-03-15
CN1973113B (zh) 2011-02-09
US20070280786A1 (en) 2007-12-06
JP2007523276A (ja) 2007-08-16
EP1727964A1 (de) 2006-12-06
WO2005080753A1 (de) 2005-09-01
CA2556370A1 (en) 2005-09-01
AU2005214470A1 (en) 2005-09-01
AU2005214470B2 (en) 2010-07-15
DE502005003096D1 (de) 2008-04-17
CA2556370C (en) 2012-06-12
MXPA06009421A (es) 2007-03-23
CN1973113A (zh) 2007-05-30
US8231306B2 (en) 2012-07-31
KR20060129484A (ko) 2006-12-15
KR101181882B1 (ko) 2012-09-11
JP4767871B2 (ja) 2011-09-07
HK1106812A1 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
EP1727964B1 (de) Vortrieb von rohrelementen im untergrund
DE3009837C2 (de) Vorrichtung zum unterirdischen Verlegen von Rohrleitungen
EP0264622A1 (de) Verfahren zum Überwachen der Verformungen von Bauteilen mit Lichtwellenleitern
EP2543770A1 (de) Vorrichtung und Verfahren zum Vermessen von Düsenstrahlsäulen im Untergrund
EP3168413B1 (de) Vorrichtung und verfahren zum ausbau eines tunnels
EP3534145A1 (de) Fugenversuchsstand
DE19707286C1 (de) Vorrichtung und Verfahren zum grabenlosen Verlegen von Steinzeugrohren
EP3513039B1 (de) Messsignalauswertungsverfahren
DE2053725A1 (de) Verfahren und Vorrichtung zum Abdich ten einer Leckstelle in Leitungen
EP1930506B1 (de) Lastprüfelement
EP2674569A1 (de) Fugendichtung für Rohrvortriebe
DE102006042500B4 (de) Vorrichtung zur Untersuchung von Materialeigenschaften eines Baustoffs
EP3792403A1 (de) Verfahren zum herstellen eines vollverdrängungsbohrpfahles, schraubassistenzsystem zum führen eines schraubvorgangs in einem derartigen verfahren sowie software für ein derartiges schraubassistenzsystem
DE2505980A1 (de) Verfahren zum vortrieb von im wesentlichen ringfoermigen bauteilen, insbesondere fuer den hoch- und tiefbau
DE102017118041B4 (de) Verfahren und Vorrichtung zum Prüfen der Belastungsfähigkeit eines Bauwerks
EP1904716B1 (de) Erstellung eines rohrstrangs im untergrund
CH704231A2 (de) Rohrleitung mit mindestens zwei Rohrelementen und einem zwischen den Stirnseiten der Rohrelemente befindlichen Schlauch als Druckübertragungsmittel und Dichtung.
Pilgerstorfer et al. Passing a major fault zone three times: NATM helps TBM to succeed
DE2105432C3 (de) Verfahren zur Herstellung eines in Längsrichtung vorgespannten Verbundpfahles
EP2475823A2 (de) Verfahren zum betrieb einer verbaueinrichtung, sowie verbaueinrichtung selbst
AT523597A2 (de) Schalungssystem, Ankervorrichtung, Ankerstab, Verwendung eines Ankerstabs und Verfahren
EP1835126A1 (de) Abdichtungsverfahren und -vorrichtung von Vortriebselementen
DE1658451C (de) Verfahren zum Erzeugen von Rißfugen in Bauteilen aus Beton, insbesondere in Fahrbahndecken
DE19527608C2 (de) Unterwasser-Verbundpfähle
DE102005027759A1 (de) Verfahren und Vorrichtung zur In-Situ-Bestimmung von Dehnungen an Massivbauwerken

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20060919

17Q First examination report despatched

Effective date: 20070316

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005003096

Country of ref document: DE

Date of ref document: 20080417

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080616

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG WINTERTHUR

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080805

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080605

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080705

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

26N No opposition filed

Effective date: 20081208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080605

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: EIGERSTRASSE 2 POSTFACH, 3000 BERN 14 (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200219

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: TRUEMPI, STEFAN, CH

Free format text: FORMER OWNER: TRUEMPI, STEFAN, CH

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20220217

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230220

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230223

Year of fee payment: 19

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 388302

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 20

Ref country code: CH

Payment date: 20240301

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240219

Year of fee payment: 20