EP3209820A1 - Vorrichtung und verfahren zum schmelzspinnen und kühlen einer filamentschar - Google Patents

Vorrichtung und verfahren zum schmelzspinnen und kühlen einer filamentschar

Info

Publication number
EP3209820A1
EP3209820A1 EP15784608.0A EP15784608A EP3209820A1 EP 3209820 A1 EP3209820 A1 EP 3209820A1 EP 15784608 A EP15784608 A EP 15784608A EP 3209820 A1 EP3209820 A1 EP 3209820A1
Authority
EP
European Patent Office
Prior art keywords
air
filaments
candle
cooling
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15784608.0A
Other languages
English (en)
French (fr)
Other versions
EP3209820B1 (de
Inventor
Klaus Schäfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Textile GmbH and Co KG
Original Assignee
Oerlikon Textile GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Textile GmbH and Co KG filed Critical Oerlikon Textile GmbH and Co KG
Publication of EP3209820A1 publication Critical patent/EP3209820A1/de
Application granted granted Critical
Publication of EP3209820B1 publication Critical patent/EP3209820B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • D02J13/001Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass in a tube or vessel

Definitions

  • the invention relates to a device for melt spinning and cooling a filament bundle according to the preamble of claim 1, as well as an executable by means of such a device method according to the preamble of claim 9.
  • a plurality of fine filamentary filaments are extruded through nozzle bores of a spinneret.
  • the spinneret is fed a molten polymer under high pressure.
  • the plurality of strand-like filaments are combined in their entirety or in bundles.
  • Prior to combining the filaments are cooled by a cooling air flow, so that the molten state of the filaments after exiting the nozzle bore into a solidified state.
  • the uniformity of the cooling of all filaments is of great importance.
  • filaments in the form of a filament bundle are guided inside the air candle in addition to the filaments which run outside an air candle in the form of a filament curtain.
  • Both the inner circumference and the outer circumference of this air candle communicate with the filaments in relation to their cooling.
  • the inner circumference of this air candle is formed as at least partially air-permeable jacket. Parts of the air cleaner are thus inter alia a perforated outer and a perforated inner cylinder.
  • This hollow cylindrical air candle requires a special Anornung the nozzle holes in the spinneret device.
  • the spinnerette device consists of one or more melt distributors and one or several spinnerets. No nozzle bores are present in an annular region of the spinnerette device which adjoins the air candle. Furthermore, both within and outside of this annular region each have a nozzle bore zone in which a plurality of nozzle bores are arranged. In contrast to conventional spinneret devices, which have nozzle bores only outside of an air filter, it is possible by means of the arrangement of the nozzle bores proposed here to place significantly more bores in the same space, always being able to achieve sufficient cooling on the condition.
  • the air candle has at least one connection, through which the cooling air is discharged to the air candle to, or out of the air candle out.
  • a separating cylinder is arranged in the interior of the air candle. This creates an outer channel adjacent to the outer cylinder and an inner channel adjacent to the inner cylinder. This separation makes the uniform cooling Development of the filament curtain and filament bundles easier because the cooling air of the filament curtain s and the filament bundle in the air candle do not mix. This separation within the air candle makes it possible to influence the flow separately in the outer channel and in the inner channel.
  • at least one air connection is assigned to each channel. Thus, a different flow state can be set in each channel.
  • this setting of different flow states is implemented by appropriate flow-influencing means.
  • the inner channel and the outer channel is assigned to each one, possibly adjustable throttle.
  • a single air connection for the air candle would suffice, but nevertheless different states can prevail or be set in the outer and inner channels.
  • These throttles may further fulfill a function of the flow rectification.
  • the uniform cooling manifests itself, for example, in a staple fiber process in that all the staple fibers produced are in the desired tolerance ranges with regard to their properties.
  • Fig. 1 shows schematically a cross-sectional view of a first embodiment of the device according to the invention
  • Fig. 2 shows schematically a sectional view of the first embodiment of the device according to the invention along the line A-A
  • FIG. 3 shows a schematic cross-sectional view of a second embodiment of the device according to the invention
  • Fig. 4 shows schematically a sectional view of the second embodiment of the device according to the invention along the line A-A
  • Fig. 5 shows schematically a cross-sectional view of a third embodiment of the device according to the invention
  • FIG. 1 shows a cross-sectional view of a first exemplary embodiment of the device according to the invention for carrying out the method according to the invention.
  • the device consists of a spinning device 1 and a cooling device 11 arranged below the spinning device 1.
  • the spinning device 1 has on a lower side a spinneret device which consists of a melt distributor 4 and a spinneret 5.
  • This spinneret 5 is disposed on the underside of the spinneret assembly and has a plurality of nozzle bores 6.
  • These nozzle bores 6 are arranged in two nozzle bore zones, with a first zone being formed by an outer ring of nozzle bores 6 and a second zone within the first zone is formed by a circular arrangement of nozzle bores 6.
  • the spinneret 5 is connected via the melt distributor 4 with a spinning pump 2.
  • the spinning pump 2 is connected via a melt feed 3 with a melt generator (not shown here), preferably connected to an extruder or a polycondensation.
  • the spinning pump 2, the melt distributor 4 and the spinneret 5 are heated.
  • so-called spin bars are generally used in which a plurality of spinnerets, for example, are held next to one another in a row.
  • the cooling device 11 below the spinning device 1 has an air candle 12 and the associated air channel 20.
  • the air candle 12 has a porous outer cylinder 13 and a porous inner Zy cylinder 14, which may be made for example of a non-woven, foam, mesh or a sintered material.
  • the air candle 12 adjoins the spinneret 5.
  • the air candle 12 is held concentrically with the spinneret 5, so that the air candle 12 is enveloped by a filament curtain 9, and so that the air candle 12 encloses a filament bundle 10.
  • Filamentschar 7 consists of just this filament curtain 9 and this filament bundle 10, wherein in each case a nozzle bore zone for the extrusion of filament curtain 9 and filament bundle 10 in the spinneret 5 is present.
  • an air channel 20 is connected to the air candle 12.
  • This air duct 20 communicates with a fan 21.1 in connection, through which the air filter 12 either supplied cooling air, or through which cooling air is discharged from the air candle 12.
  • a molten polymer is supplied via the spinning pump 2 under high pressure via the melt distributor 4 of the spinneret 5.
  • the polymer melt is forced through the formed on the bottom of a plurality of nozzle bores 6, so that a plurality of strand-like filaments 8 is formed.
  • the extruded filament bundle 7 forms an annular filament curtain 9 and a circular filament bundle 10, which are drawn off uniformly from the spinneret 5 by a withdrawal mechanism, not shown here.
  • a cooling medium is preferably supplied to a cooling air via the air passage 20 of the air candle 12 and in the space inside the air candle 12, which is located between the outer cylinder 13 and the inner cylinder 14 passes.
  • the cooling medium occurs evenly over the outer cylinder 13 of the air candle 12 to the outside and evenly over the inner cylinder 14 to the inside.
  • At the inner and outer circumference of the air candle 12 creates a radial outlet flow, which leads a cooling air flow in the direction of the filament bundle 7.
  • the cooling air flow penetrates into the filament bundle 7 and absorbs heat from filaments 8 of the filament bundle 7, so that the still liquid filaments 8 solidify gradually.
  • the cooling medium could also be removed from the air candle 12 by means of the blower 21.1.
  • ambient air is drawn in from the environment. This ambient air serves as cooling air by first penetrating the filament bundle 7, wherein the filaments 8 deliver their heat to the cooling air.
  • the cooling air flows via the outer cylinder 13 and the inner cylinder 14 into the air candle 12. About the air passage 20, the cooling air leaves the air candle 12 again.
  • the materials of the outer cylinder 13 and the inner cylinder 14 are coordinated so that optimum and preferably uniform cooling conditions for the filament curtain 9 and the filament bundle 10 arise.
  • two different nonwovens with different air resistances could be used for this purpose.
  • the two nozzle bore zones could also be formed by two different spinnerets 5. Even a single nozzle bore zone may consist of several spinnerets.
  • a plurality of circular spinnerets could be arranged to form a ring.
  • the nozzle bores 6, from which the filament bundle 10 is extruded, could also be distributed over several spinnerets.
  • one or more melt distributors 4 and one or more spinning pumps 2 could be used.
  • FIG. 2 schematically shows a sectional view of the first exemplary embodiment from FIG. 1 along the line AA.
  • the concentric arrangement of the regions of the filament bundle 7 and the air candle 12 can be seen particularly well.
  • the inner cylinder 14 of the air candle 12 is arranged.
  • the cooling air is supplied or removed.
  • the filaments 8 of the filament curtain 9 are arranged in a ring shape.
  • the cooling air flows, as indicated by the arrows, mainly radially through the filament bundle 7. If an overpressure prevails in the air filter 12, the cooling air flows radially outwards through the filament curtain 9 and radially inwardly through the filament bundle 10, in the direction of FIG filled arrowheads. If a negative pressure is applied to the air candle 12, the cooling air flows radially inward through the filament curtain 9 and radially outward through the filament bundle 10, in the direction of the dashed arrowheads.
  • FIG. 3 shows a cross-sectional view of a second exemplary embodiment of the device according to the invention for carrying out the method according to the invention. Many elements are the same as the first Embodiment of Fig. 1, which is why only addresses the changes.
  • a separating cylinder 15 is arranged here, so that an outer channel 16 assigned to the outer cylinder 13 and an inner channel 17 assigned to the inner cylinder 14 are formed.
  • an inner throttle 19 is arranged at the transition between air duct 20 and inner channel 17.
  • an outer throttle 18 is arranged at the transition between air duct 20 and outer duct 16.
  • the inner throttle 19 and the outer throttle 18 may be optionally adjustable with respect to their flow resistance. These two throttles can furthermore be designed such that they serve for the flow rectification.
  • the blower 21.1 either serve to supply cooling air to the air candle 12 or remove cooling air from the air candle 12.
  • Fig. 4 is a sectional view of the second embodiment of Fig. 3 is shown schematically along the line AA.
  • the two embodiments differ only by the separating cylinder 15, which divides the space between the outer cylinder 13 and inner cylinder 14 in the outer channel 16 and the inner channel 17.
  • Fig. 5 shows a third embodiment of the device according to the invention. Apart from the differences described below, this is constructed identically to the second exemplary embodiment from FIG. 3. The outer throttle 18 and the inner throttle 19 are missing in this exemplary embodiment. For the outer channel 16 and the inner channel 17 each receive a separate Heilzu- or air discharge.
  • the air duct 20 is divided by appropriate separating means.
  • the outer channel 16 is associated with a fan 21.1, the inner channel 17 another fan 21.2. Also in this way, the cooling air flows for the filament bundle 10 and the filament curtain 9 can be set separately from each other.
  • This version with two blowers offers many possibilities for cooling air flow.
  • both the inner channel 17 as well as the outer channel 16 are both subjected to pressure or both with negative pressure. Furthermore, a mutual control is possible.
  • the outer channel 16 is evacuated and the inner channel 17 are pressurized or vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Schmelzspinnen und Kühlen einer Filamentschar. Ziel der Erfindung ist es, möglichst viele Filamente auf kleinstem Raum auszuspinnen, und diese trotzdem gleichmäßig abzukühlen. Dies wird durch eine hohlzylindrische Luftkerze erreicht welche zusätzlich zu einem porösen Außen-Zylinder einen porösen Innen-Zylinder aufweist. So wird es möglich sowohl innerhalb, wie auch außerhalb der Luftkerze Filamente entlangzuführen und abzukühlen. Insbesondere bei der Herstellung von Stapelfasern ist dieser platzsparende Aufbau von Spinn- und Kühleinrichtung insbesondere aus wirtschaftlichen Gründen von besonderem Vorteil.

Description

Vorrichtung und Verfahren zum Schmelz spinnen und Kühlen einer
Filamentschar
Die Erfindung betrifft eine Vorrichtung zum Schmelz spinnen und Kühlen einer Filamentschar gemäß dem Oberbegriff des Anspruchs 1, sowie ein mittels einer solchen Vorrichtung ausführbaren Verfahrens gemäß dem Oberbegriff des Anspruchs 9.
Beim Schmelz spinnen von synthetischen Fasersträngen oder Fäden wird eine Vielzahl von feinen strangförmigen Filamenten durch Düsenbohrungen einer Spinndüse extrudiert. Hierzu wird der Spinndüse ein aufgeschmolzenes Polymer unter hohem Druck zugeführt. Zur Bildung eines Faserstranges oder mehrerer Fäden wird die Vielzahl der strangförmigen Filamente in ihrer Gesamtheit oder bündelweise zusammengefasst. Vor dem Zusammen- fassen werden die Filamente durch einen Kühlluftstrom abgekühlt, so dass sich der schmelzeflüssige Zustand der Filamente nach dem Austritt aus der Düsenbohrung in einen verfestigten Zustand umwandelt. Für die Qualität des Faserstranges bzw. der Fäden ist die Gleichmäßigkeit der Abkühlung aller Filamente von großer Bedeutung. Zur Abkühlung einer sehr großen Anzahl von Filamenten werden bekannte Verfahren und Vorrichtungen eingesetzt, bei welchem die Vielzahl der Filamente durch eine Ringspinndüse zu einem ringförmigen Filamentvorhang extrudiert wird und bei welchem innerhalb des Filamentvorhang s ein radial von innen nach außen durch eine als Blaskerze ausgeführte Luftkerze erzeugter Kühlluftstrom die Abkühlung der Filamentschar bewirkt. Eine derartige Vorrichtung ist beispielsweise aus der EP 1467005 AI bekannt. Der Kühlluftstrom zu Abkühlung der Filamentschar wird durch eine Blaskerze erzeugt, die einen porö- sen Außen-Zylinder aufweist, so dass über den gesamten Umfang der Blaskerze ein gleichmäßiger Kühlluftstrom radial austritt und den Filamentvor- hang zur Kühlung der Filamente durchdringt. Um den Tendenzen zu höheren Produktionsgeschwindigkeiten und größeren Produktionsleistungen folgen zu können, werden große Anzahlen von Filamenten mittels Spinndüsen extrudiert, die über eine sehr hohe Anzahl und Dichte von Düsenbohrungen verfügen, so dass die Filamentschar mit relativ hoher Dichte in dem Filament Vorhang geführt sind. In derartigen Fällen wird bei dem bekannten Verfahren und der bekannten Vorrichtung der Kühlluftstrom beim Durchtreten durch den Filamentvorhang von innen nach außen erwärmt. Dieser Effekt führt dazu, dass die äußeren Filamente des Filamentvorhanges nicht in dem Maße abgekühlt werden, wie die inneren Filamente des Filamentvorhang s. Diese Unterschiede in der Abkühlung wirken sich jedoch sehr nachteilig auf die Qualität des Faserstranges oder der Fäden aus. Neben einer gleichmäßigen Abkühlung der Filamente bei hohen Produktionsleistungen wird auch der Platzbedarf der gesamten Anlage immer wichtiger. Je größer der Platzbedarf ist, umso mehr Mittel müssen für die Produktionshalle bereitgestellt werden. In der EP1467005A1 ist zu- sätzlich zur Kühlung des Filamentvorhang s von innen eine weitere Kühlung von außen vorgesehen, um für eine große Filamentanzahl eine gleichmäßige Kühlung zu erreichen. Diese zusätzliche Kühleinrichtung vergrößert aber den Platzbedarf pro Spinndüse, und somit auch den Platzbedarf der kompletten Anlage.
Es ist somit Aufgabe der Erfindung, eine gattungsgemäße Vorrichtung und ein zugehöriges Verfahren bereitzustellen mit welcher möglichst viele Filamente auf kleinstem Raum ausgesponnen werden können, wobei trotzdem alle Filamente gleichmäßig abgekühlt werden.
Diese Aufgabe wird erfindungsgemäß gelöst, indem zusätzlich zu den Filamenten, welche außerhalb einer Luftkerze in Form eines Filamentvor- hangs laufen, innerhalb der Luftkerze Filamente in Form eines Filament- bündels geführt werden. So ergibt sich eine hohlzylindrisch ausgebildete Luftkerze. Sowohl der innere Umfang wie auch der äußere Umfang dieser Luftkerze stehen mit den Filamenten in Bezug zu deren Kühlung in Verbin- dung. Um sowohl die innerhalb der Luftkerze wie auch die außerhalb der Luftkerze laufenden Filamente mit Kühlluft zu beaufschlagen, ist zum einen der Außenumfang und zum anderen der Innenumfang dieser Luftkerze als zumindest teilweise luftdurchlässiger Mantel ausgebildet. Teile der Luftkerze sind somit unter anderem ein perforierter Außen- und ein perfo- rierter Innen-Zylinder. Dabei spielt keine Rolle, ob mittels der Luftkerze die Kühlluft angesaugt oder ausgeblasen wird. Mittels dieser Vorrichtung wird ein hauptsächlich radial zu den Filamenten strömender Kühlluftstrom erzeugt, an welchen alle Filamente gleichmäßig ihre thermische Energie abgeben können. Durch die zusätzlichen Filamente, welche innerhalb der Luftkerze verlaufen, können mehr Filamente auf kleinerem Raum ausgesponnen werden. Bei gleicher Produktionsleistung sinkt der Platzbedarf der gesamten Anlage, so dass die Kosten für die Bereitstellung einer Fabrikhalle sinken. Ebenso sinken die Kosten für den Stahlbau der Anlage und die Kosten für die elektrischen und fluidtechnischen Leitungssysteme.
Diese hohlzylindrische Luftkerze erfordert eine spezielle Anornung der Düsenbohrungen in der Spinndüseneinrichtung. Die Spinndüseneinrichtung besteht aus einem oder mehreren Schmelze Verteilern und aus einer oder mehreren Spinndüsen. In einem ringförmigen Bereich der Spinndüseneinrichtung, welcher an die Luftkerze angrenzt, sind keine Düsenbohrungen vorhanden. Des Weiteren existiert sowohl innerhalb wie auch außerhalb dieses ringförmigen Bereiches jeweils eine Düsenbohrungszone, in welcher mehrere Düsenbohrungen angeordnet sind. Im Gegensatz zu herkömmlichen Spinndüseneinrichtungen, welche lediglich außerhalb einer Luftkerze Düsenbohrungen aufweisen, ist es möglich mittels der hier vorgeschlagen Anordnung der Düsenbohrungen wesentlich mehr Bohrungen auf gleichem Raum zu platzieren, immer unter der Voraussetzung eine ausreichende Ab- kühlung erreichen zu können. Die Möglichkeit eine oder mehrere Spinndüsen zu verwenden bietet dem Konstrukteur die Chance die optimale Ausbildung der Vorrichtung in Bezug auf weitere Probleme wie z.B. der Dichtigkeit des Systems zu finden. Trotz der unterschiedlichen Art und Weise der Führung der Filamente sollen alle Filamente möglichst gleichmäßig abgekühlt werden. Dazu ist es im Allgemeinen notwendig, dass der Außen-Zylinder und der Innen-Zylinder unterschiedliche Luftwiderstände aufweisen. Diese Luftwiderstände der beiden Zylinder sind dabei so aufeinander abgestimmt, dass eben diese gleichmäßige Kühlung erreicht wird.
Die Luftkerze weist zumindest einen Anschluss auf, durch welchen die Kühlluft zur Luftkerze zu, oder aus der Luftkerze heraus abgeführt wird. In einer besonders bevorzugten Ausführungsform der Erfindung ist im inneren der Luftkerze ein Trennzylinder angeordnet. So entstehen ein Außen- Kanal angrenzend an den Außen-Zylinder und ein Innen- Kanal angrenzend an den Innen-Zylinder. Durch diese Trennung wird die gleichmäßige Küh- lung von Filamentvorhang und Filamentbündel erleichtert, weil sich die Kühlluft des Filamentvorhang s und die des Filamentbündels in der Luftkerze nicht vermischen. Durch diese Trennung innerhalb der Luftkerze wird eine getrennte Beeinflussung der Strömung im Außen-Kanal und im Innen-Kanal möglich. In einer weiteren Ausgestaltung der Erfindung ist dazu jedem Kanal zumindest ein Luftanschluss zugeordnet. So kann in jedem Kanal ein anderer Strömungszustand eingestellt werden.
In einer alternativen Ausführungsform wird diese Einstellung unterschiedlicher Strömungszustände durch entsprechende Mittel zur Strömungsbeeinflussung umgesetzt. Dem Innen-Kanal und dem Außen-Kanal ist dazu jeweils eine, unter Umständen einstellbare Drossel zugeordnet. In diesem Fall würde ein einzelner Luftanschluss für die Luftkerze ausreichen, wobei trotzdem unterschiedliche Zustände im Außen- und im Innen-Kanal herrschen bzw. eingestellt werden können. Diese Drosseln können des Weiteren eine Funktion der Strömungsgleichrichtung erfüllen. Mittels der oben dargestellten Vorrichtungsmerkmale ist es möglich ein Verfahren auszuführen, mittels welchem alle Filamente, welche aus einer Spinndüseneinrichtung ausgesponnen werden, gleichmäßig abgekühlt werden. Dabei sind in der Spinndüseneinrichtung besonders viele Düsenbohrungen auf kleinstem Raum angeordnet. Die gleichmäßige Abkühlung zeigt sich z.B. in einem Stapelfaserprozess dadurch, dass alle erzeugten Stapelfasern bezüglich ihrer Eigenschaften in den gewünschten Toleranzbereichen liegen. Die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren werden nachfolgend anhand einiger Ausführungsbeispiele der erfindungsgemäßen Vorrichtung unter Bezug auf die beigefügten Figuren näher erläutert.
Es stellen dar:
Fig. 1 schematisch eine Querschnittsansicht eines ersten Ausführungsbeispiels der erfindungsgemäßen Vorrichtung
Fig. 2 schematisch eine Schnittansicht des ersten Ausführungsbeispiels der erfindungsgemäßen Vorrichtung entlang der Linie A-A
Fig. 3 schematisch eine Querschnittsansicht eines zweiten Ausführungs- beispiels der erfindungsgemäßen Vorrichtung
Fig. 4 schematisch eine Schnittansicht des zweiten Ausführungsbeispiels der erfindungsgemäßen Vorrichtung entlang der Linie A-A Fig. 5 schematisch eine Querschnittsansicht eines dritten Ausführungsbeispiels der erfindungsgemäßen Vorrichtung
Es werden in allen Figuren die gleichen Bezugszeichen verwendet. In Fig. 1 ist eine Querschnittsansicht eines ersten Ausführungsbeispiels der erfin- dungsgemäßen Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens dargestellt. Die Vorrichtung besteht aus einer Spinneinrichtung 1 und einer unterhalb der Spinneinrichtung 1 angeordneten Kühleinrichtung 11. Die Spinneinrichtung 1 weist an einer Unterseite eine Spinndüseneinrichtung auf, welche aus einem Schmelze Verteiler 4 und einer Spinndüse 5 besteht. Diese Spinndüse 5 ist an der Unterseite der Spinndüseneinrichtung angeordnet und verfügt über eine Vielzahl von Düsenbohrungen 6. Diese Düsenbohrungen 6 sind in zwei Düsenbohrungszonen angeordnet, wobei eine erste Zone durch einen außen angeordneten Ring von Düsenbohrungen 6 gebildet wird und eine zweite Zone innerhalb der ersten Zone durch eine kreisförmige Anordnung von Düsenbohrungen 6 gebildet wird. Die Spinndüse 5 ist über den Schmelzeverteiler 4 mit einer Spinnpumpe 2 verbunden. Die Spinnpumpe 2 ist über eine Schmelzezufuhr 3 mit einem Schmelzeerzeuger (hier nicht dargestellt), vorzugsweise mit einem Extruder oder einer Polykondensation verbunden. Die Spinnpumpe 2, der Schmelze Verteiler 4 und die Spinndüse 5 sind beheizt. Hierzu werden in der Regel so genannte Spinnbalken eingesetzt, an denen mehrere Spinndüsen z.B. in einer Reihe nebeneinander gehalten sind.
Die Kühleinrichtung 11 unterhalb der Spinneinrichtung 1 weist eine Luft- kerze 12 und den dazu zugehörigen Luftkanal 20 auf. Die Luftkerze 12 besitzt einen porösen Außen-Zylinder 13 und einen porösen Innen-Zy linder 14, welche beispielsweise aus einem Vlies, Schaumstoff, Siebgewebe oder einem Sintermaterial hergestellt sein können. Am freien Ende grenzt die Luftkerze 12 an die Spinndüse 5 an. Die Luftkerze 12 ist konzentrisch zu der Spinndüse 5 gehalten, so dass die Luftkerze 12 von einen Filamentvorhang 9 umhüllt ist, und so dass die Luftkerze 12 ein Filamentbündel 10 umschließt. Eine aus der Spinndüse 5 extrudierte Filamentschar 7 besteht aus eben diesem Filamentvorhang 9 und diesem Filamentbündel 10, wobei jeweils eine Düsenbohrungszone zur Extrusion von Filamentvorhang 9 und Filamentbündel 10 in der Spinndüse 5 vorhanden ist.
Zur Kühlluftversorgung der Luftkerze 12 ist ein Luftkanal 20 an die Luftkerze 12 angeschlossen. Dieser Luftkanal 20 steht mit einem Gebläse 21.1 in Verbindung, durch welches der Luftkerze 12 entweder Kühlluft zugeführt, oder durch welches Kühlluft aus der Luftkerze 12 abgeführt wird.
Im Betriebszustand wird ein aufgeschmolzenes Polymer über die Spinnpumpe 2 unter hohem Druck über den Schmelze Verteiler 4 der Spinndüse 5 zugeführt. Innerhalb der Spinndüse 5 wird die Polymerschmelze durch die auf der Unterseite ausgebildete Vielzahl von Düsenbohrungen 6 gedrückt, so dass eine Vielzahl von strangförmigen Filamenten 8 entsteht. Die extru- dierte Filamentschar 7 bildet einen ringförmigen Filamentvorhang 9 und ein kreisförmiges Filamentbündel 10, welche gleichmäßig von der Spinndüse 5 durch ein hier nicht dargestelltes Abzugswerk abgezogen werden. Zur Abkühlung der frisch extrudierten Filamentschar 7 wird ein Kühlmedium vorzugsweise eine Kühlluft über den Luftkanal 20 der Luftkerze 12 zugeführt und in den Raum innerhalb der Luftkerze 12, welcher sich zwischen dem Außen-Zylinder 13 und dem Innen-Zylinder 14 befindet weitergeleitet. Nun tritt das Kühlmedium gleichmäßig über den Außen-Zylinder 13 der Luftkerze 12 nach außen und gleichmäßig über den Innen-Zylinder 14 nach innen aus. Am inneren und am äußeren Umfang Luftkerze 12 entsteht eine radiale Austrittsströmung, die einen Kühlluftstrom in Richtung der Filamentschar 7 führt. Der Kühlluftstrom dringt in die Filamentschar 7 ein und nimmt dabei Wärme von Filamenten 8 der Filamentschar 7 auf, so dass sich die noch flüssigen Filamente 8 allmählich verfestigen.
Alternativ könnte das Kühlmedium mittels des Gebläses 21.1 auch aus der Luftkerze 12 abgeführt werden. In diesem Fall wird Umgebungsluft aus der Umgebung angesaugt. Diese Umgebungsluft dient als Kühlluft indem sie zunächst die Filamentschar 7 durchdringt, wobei die Filamente 8 ihre Wärme an die Kühlluft abgeben. Im Folgenden strömt die Kühlluft über den Außen-Zylinder 13 und den Innen-Zylinder 14 in die Luftkerze 12 ein. Über den Luftkanal 20 verlässt die Kühlluft die Luftkerze 12 wieder.
Die Materialien des Außen-Zylinder 13 und des Innen-Zylinder 14 werden so aufeinander abgestimmt, dass optimale und vorzugsweise gleichmäßige Abkühlbedingungen für den Filamentvorhang 9 und das Filamentbündel 10 entstehen. Dazu könnten zum Beispiel zwei unterschiedliche Vliese mit unterschiedlichen Luftwiderständen verwendet werden.
Die hier dargestellte konstruktive Ausführung der Spinndüse ist lediglich beispielhaft. So könnten die beiden Düsenbohrungszonen ebenfalls durch zwei unterschiedliche Spinndüsen 5 gebildet werden. Auch eine einzelne Düsenbohrungszone kann aus mehreren Spinndüsen bestehen. Zur Extrusi- on der Kunststoffschmelze zu einem äußeren Filamentvorhang 9 könnten beispielsweise mehrere kreisförmige Spinndüsen zu einem Ring angeordnet seien. Auch die Düsenbohrungen 6 aus welchen das Filamentbündel 10 extrudiert wird, könnten sich auf mehrere Spinndüsen verteilen. Zur Versorgung der einen oder mehrerer Spinndüsen 5 könnten des Weiteren ein oder mehrere Schmelze Verteiler 4 und ein oder mehrere Spinnpumpen 2 verwendet werden. In Fig. 2 ist schematisch eine Schnittansicht des ersten Ausführungsbeipiels aus Fig. 1 entlang der Linie A-A dargestellt.
Hier ist besonders gut die konzentrische Anordnung der Bereiche der Filamentschar 7 und der Luftkerze 12 zu erkennen. Um das Filamentbündel 10 ist der Innen-Zylinder 14 der Luftkerze 12 angeordnet. Um den Innen- Zylinder 14 herum ist der Außen-Zylinder 13 angeordnet. In dem Raum zwischen diesen beiden Zylindern wird die Kühlluft zu- oder abgeführt. Um den Außen-Zylinder 13 sind ringförmig die Filamente 8 des Filamentvor- hangs 9 angeordnet. Die Kühlluft strömt, wie durch die Pfeile angedeutet, hauptsächlich radial durch die Filamentschar 7. Herrscht in der Luftkerze 12 ein Überdruck, so strömt die Kühlluft radial nach außen durch den Fila- mentvorhang 9 und radial nach innen durch das Filamentbündel 10, in Richtung der ausgefüllten Pfeilspitzen. Wird an die Luftkerze 12 ein Unterdruck angelegt, so strömt die Kühlluft radial nach innen durch den Fila- mentvorhang 9 und radial nach außen durch das Filamentbündel 10, in Richtung der gestrichelten Pfeilspitzen.
In dieser Ansicht wird deutlich, wie auf kleinstem Raum möglichst viele Filamente 8 ausgesponnen und abgekühlt werden können.
In Fig. 3 ist eine Querschnittsansicht eines zweiten Ausführungsbeispiels der erfindungsgemäßen Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens dargestellt. Viele Elemente entsprechen denen des ersten Ausführungsbeispiels aus Fig. 1, weswegen hier nur auf die Änderungen eingegangen wird.
Zwischen dem Außen-Zylinder 13 und dem Innen-Zylinder 14 ist hier ein Trenn-Zylinder 15 angeordnet, so dass ein dem Außen-Zylinder 13 zugeordneter Außen- Kanal 16 und ein dem Innen-Zylinder 14 zugeordneter In- nen-Kanal 17 entsteht. So werden die Möglichkeiten zur Abstimmung der Kühlluftströme durch das Filamentbündel 10 und den Filamentvorhang 9 erweitert. Dazu werden dem Außen-Kanal 16 und dem Innen-Kanal 17 se- parate Mittel zur Strömungsbeeinflussung zugeordnet. Am Übergang zwischen Luftkanal 20 und Innen-Kanal 17 ist eine Innen-Drossel 19 angeordnet. Am Übergang zwischen Luftkanal 20 und Außen-Kanal 16 ist eine Au- ßen-Drossel 18 angeordnet. Die Innen-Drossel 19 und die Außen-Drossel 18 können in Bezug auf Ihren Strömungswiderstand optional einstellbar sein. Diese beiden Drosseln können des Weiteren derart beschaffen sein, dass sie der Strömungsgleichrichtung dienen. Wie im ersten Ausführungsbeispiel aus Fig. 1 kann das Gebläse 21.1 entweder dazu dienen Kühlluft der Luftkerze 12 zuzuführen oder Kühlluft aus der Luftkerze 12 abzuführen.
In Fig. 4 ist schematisch eine Schnittansicht des zweiten Ausführungsbeispiels aus Fig. 3 entlang der Linie A-A dargestellt. Hier wird nur auf die Änderungen zum ersten Ausführungsbeispiel aus Fig. 2 eingegangen, da alle weiteren Elemente gleich sind. In dieser Ansicht unterscheiden sich die beiden Ausführungsbeispiele nur durch den Trenn-Zylinder 15, welcher den Raum zwischen Außen-Zylinder 13 und Innen-Zylinder 14 in den Außen- Kanal 16 und den Innen-Kanal 17 unterteilt. Fig. 5 zeigt ein drittes Ausführungsbeispiel der erfindungsgemäßen Vorrichtung. Dieses ist bis auf die im Folgenden beschriebenen Unterschiede identisch aufbaut wie das zweite Ausführungsbeispiel aus Fig. 3. Die Au- ßen-Drossel 18 und die Innen-Drossel 19 fehlen in diesem Ausführungsbei- spiel. Dafür erhalten der Außen-Kanal 16 und der Innen-Kanal 17 jeweils eine separate Luftzu- bzw. Luftabfuhr. Dazu ist der Luftkanal 20 durch entsprechende Trennmittel unterteilt. Dem Außen-Kanal 16 ist so ein Gebläse 21.1 zugeordnet, dem Innen-Kanal 17 ein weiteres Gebläse 21.2. Auch auf diese Weise können die Kühlluftströme für das Filamentbündel 10 und den Filamentvorhang 9 separat voneinander eingestellt werden. Diese Variante mit zwei Gebläsen bietet vielfältige Möglichkeiten der Kühlluftführung. So können sowohl der Innen-Kanal 17 wie auch der Außen-Kanal 16 beide mit Überdruck oder beide mit Unterdruck beaufschlagt werden. Des Weiteren ist eine wechselseitige Ansteuerung möglich. So kann der Außen-Kanal 16 besaugt und der Innen-Kanal 17 mit Überdruck beaufschlagt werden oder umgekehrt.
Mittels der oben beschriebenen Vorrichtungen und Verfahren ist eine besonders wirtschaftliche Produktion von Stapelfasern möglich. Zur Herstel- lung solcher Stapelfasern werden die Filamente nach der Abkühlung zunächst verstreckt im Anschluss gekräuselt und zuletzt geschnitten. Solche Polymerfasern dienen z.B. in der Textilindustrie als Ersatz von Baumwollfasern.

Claims

Patentansprüche
Vorrichtung zum Schmelz spinnen und Kühlen einer Filamentschar (7) mit einer Spinneinrichtung (1), welche eine Spinndüseneinrichtung (4, 5) mit einer Vielzahl von Düsenbohrungen (6) zum Extrudieren von Filamenten (8) zu einem ringförmigen Filamentvorhang (9) aufweist, und mit einer unterhalb der Spinneinrichtung (1) angeordneten Kühleinrichtung (11), welche eine konzentrisch zur Spinndüseneinrichtung (4, 5) gehaltene Luftkerze (12) im Inneren des Filamentvorhangs (9) aufweist, durch welche ein radial nach außen oder ein radial nach innen strömender Kühlluftstrom im Innern des Filamentvorhangs (9) zur Kühlung der Filamente (8) erzeugbar ist, wobei der äußere Umfang der Luftkerze (12) zumindest teilweise durch einen perforierten Außen-Zylinder (13) gebildet wird dadurch gekennzeichnet, dass die Luftkerze (12) hohlzylindrisch ausgeführt ist und der innere Umfang der Luftkerze (12) zumindest teilweise durch einen perforierten Innen-Zylinder (14) gebildet wird.
Vorrichtung nach Anspruch 1 dadurch gekennzeichnet; dass die Spinndüseneinrichtung (4, 5) zumindest zwei Düsenbohrungszonen aufweist, wobei mittels einer dieser Zonen ein Filamentbündel (10) extrudierbar ist, welches sich innerhalb der Luftkerze (12) ausbildet.
Vorrichtung nach Anspruch 2 dadurch gekennzeichnet; dass die Düsenbohrung szonen mittels einer oder mehrerer Spinndüsen (5) gebildet werden.
4. Vorrichtung nach den nach Anspruch 1 dadurch gekennzeichnet, dass der Außen-Zylinder (13) und der Innen-Zylinder (14) einen unterschiedlichen Luftwiderstand aufweisen.
5. Vorrichtung nach Anspruch 1 dadurch gekennzeichnet, dass die Luftkerze (12) einen oder mehrere Luftkanäle (20) zur Luftzufuhr und / oder zur Luftabfuhr aufweist.
6. Vorrichtung nach Anspruch 1 dadurch gekennzeichnet, dass innerhalb der Luftkerze (12) ein Trenn-Zylinder (15) angeordnet ist, so dass ein dem Außen-Zylinder (13) zugeordneter Außen-Kanal (16) und ein dem Innen-Zylinder (14) zugeordneter Innen-Kanal (17) entsteht.
7. Vorrichtung nach Anspruch 6 dadurch gekennzeichnet, dass dem Außen-Kanal (16) und dem Innen-Kanal (17) jeweils ein oder mehrere Luftzuführungen zugeordnet sind oder dass dem Außen-Kanal (16) und dem Innen-Kanal (17) jeweils ein oder mehrere Luftabführungen zugeordnet sind.
8. Vorrichtung nach Anspruch 6 dadurch gekennzeichnet, dass dem Außen-Kanal (16) und dem Innen-Kanal (17) jeweils zumindest ein Mittel zur Strömungsführung bzw. Strömungsbeeinflussung zugeordnet ist.
Verfahren, welches mittels der Vorrichtung aus den Ansprüchen 1 bis 8 ausführbar ist, dadurch gekennzeichnet, dass, die Filamente (8) des Filamentvorhangs (9) und die Filamente (8) des Filamentbündels (10) in gleicher Art und Weise abgekühlt werden.
EP15784608.0A 2014-10-23 2015-10-16 Vorrichtung und verfahren zum schmelzspinnen und kühlen einer filamentschar Not-in-force EP3209820B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014015729.6A DE102014015729A1 (de) 2014-10-23 2014-10-23 Vorrichtung und Verfahren zum Schmelzspinnen und Kühlen einer Filamentschar
PCT/EP2015/073984 WO2016062626A1 (de) 2014-10-23 2015-10-16 Vorrichtung und verfahren zum schmelzspinnen und kühlen einer filamentschar

Publications (2)

Publication Number Publication Date
EP3209820A1 true EP3209820A1 (de) 2017-08-30
EP3209820B1 EP3209820B1 (de) 2018-09-26

Family

ID=54347499

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15784608.0A Not-in-force EP3209820B1 (de) 2014-10-23 2015-10-16 Vorrichtung und verfahren zum schmelzspinnen und kühlen einer filamentschar

Country Status (6)

Country Link
EP (1) EP3209820B1 (de)
JP (1) JP2017531746A (de)
KR (1) KR20170072927A (de)
CN (1) CN107075735B (de)
DE (1) DE102014015729A1 (de)
WO (1) WO2016062626A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109811418B (zh) * 2019-03-11 2021-08-17 江阴市德赛环保设备有限公司 原生三维单组份纤维生产线及生产工艺
CN111809256A (zh) * 2020-07-07 2020-10-23 诸暨永新色纺有限公司 一种冰凉感抗菌涤纶poy丝的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712988A (en) * 1987-02-27 1987-12-15 E. I. Du Pont De Nemours And Company Apparatus for quenching melt sprun filaments
DE10109838A1 (de) * 2000-03-11 2001-09-20 Barmag Barmer Maschf Vorrichtung zum Abkühlen einer synthetischen Filamentschar beim Schmelzspinnen
DE10134003A1 (de) * 2001-07-12 2003-01-23 Neumag Gmbh & Co Kg Vorrichtung zum Schmelzspinnen und Kühlen einer Filamentschar
JP2004124338A (ja) * 2002-10-07 2004-04-22 Nan Ya Plast Corp 細デニールポリエステル中空予備延伸糸の製造方法及びその方法から製造された細デニールポリエステル中空予備延伸糸
EP1608801A1 (de) * 2003-04-03 2005-12-28 Saurer GmbH & Co. KG Verfahren und vorrichtung zur herstellung von bcf-faden
EP1467005A1 (de) 2003-04-12 2004-10-13 Saurer GmbH & Co. KG Verfahren und Vorrichtung zum Schmelzspinnen und Kühlen einer Filamentschar
DE202005007132U1 (de) * 2005-05-04 2005-08-04 Diolen Industrial Fibers Gmbh Spinnanlage zum Schmelzspinnen und Kühlen einer Filamentschar
WO2012097880A1 (de) * 2011-01-22 2012-07-26 Oerlikon Textile Gmbh & Co. Kg Vorrichtung zum abkühlen einer vielzahl synthetischer fäden

Also Published As

Publication number Publication date
CN107075735B (zh) 2019-02-01
DE102014015729A1 (de) 2016-04-28
WO2016062626A1 (de) 2016-04-28
CN107075735A (zh) 2017-08-18
EP3209820B1 (de) 2018-09-26
JP2017531746A (ja) 2017-10-26
KR20170072927A (ko) 2017-06-27

Similar Documents

Publication Publication Date Title
EP3692188B1 (de) Vorrichtung für die extrusion von filamenten und herstellung von spinnvliesstoffen
EP1725702B1 (de) Vorrichtung zum schmelzspinnen und abkühlen
DE102016112394A1 (de) Vorrichtung zum Schmelzspinnen und Abkühlen einer Filamentschar
WO2007131714A2 (de) Vorrichtung zum schmelzspinnen einer reihenförmigen filamentschar
WO2015024817A1 (de) Vorrichtung zur herstellung einer mehrzahl synthetischer fäden
WO2012113668A1 (de) Vorrichtung zum schmelzspinnen
EP3047056B1 (de) Vorrichtung zur herstellung mehrfarbiger gekräuselter verbundfäden
EP1735484B1 (de) Verfahren und vorrichtung zum schmelzspinnen mehrerer multifiler fäden
EP3209820B1 (de) Vorrichtung und verfahren zum schmelzspinnen und kühlen einer filamentschar
DE3941824A1 (de) Verfahren und spinnvorrichtung zur herstellung von mikrofilamenten
EP2569467B1 (de) Verfahren und vorrichtung zum schmelzspinnen und abkühlen einer vielzahl synthetischer fäden
EP1247883A2 (de) Vorrichtung und Verfahren zum Schmelzspinnen und Ablegen mehrerer Spinnkabel
EP2665849B1 (de) Vorrichtung zum abkühlen einer vielzahl synthetischer fäden
WO2004088008A1 (de) Verfahren und vorrichtung zur herstellung von bcf-fäden
WO2015176983A1 (de) Vorrichtung zur wirren ablage von extrudierten kunststofffasern
DE102015012845A1 (de) Vorrichtung zum Schmelzspinnen und Kühlen einer Filamentschar
DE102011011790A1 (de) Vorrichtung zum Extrudieren und Abkühlen einer Vielzahl von Monofilamenten
DE102015006409A1 (de) Vorrichtung zum Schmelzspinnen und Abkühlen einer Filamentschar
DE102012017825A1 (de) Verfahren und Vorrichtung zum Schmelzspinnen mehrerer multifiler Fäden
DE102013014572A1 (de) Vorrichtung zum Schmelzspinnen und Abkühlen synthetischer Filamente
DE102010024761A1 (de) Abkühlvorrichtung
EP1560952B1 (de) Verfahren und vorrichtung zum schmelzspinnen und abkuhlen einer vielzahl von synthetischen filamenten
DE102017000607A1 (de) Vorrichtung zum Abziehen, Verstrecken und Aufwickeln einer synthetischen Fadenschar
WO2017025372A1 (de) Verfahren und vorrichtung zum schmelzspinnen eines synthetischen fadens
DE10323532A1 (de) Schmelzspinnvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: D02J 13/00 20060101ALI20180329BHEP

Ipc: D01D 5/088 20060101AFI20180329BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180522

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1046156

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015006141

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190126

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015006141

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190126

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181016

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190501

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

26N No opposition filed

Effective date: 20190627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181016

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151016

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180926

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191016

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1046156

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201016