EP3147380B1 - Acier inoxydable austenitique sans nickel - Google Patents
Acier inoxydable austenitique sans nickel Download PDFInfo
- Publication number
- EP3147380B1 EP3147380B1 EP16174780.3A EP16174780A EP3147380B1 EP 3147380 B1 EP3147380 B1 EP 3147380B1 EP 16174780 A EP16174780 A EP 16174780A EP 3147380 B1 EP3147380 B1 EP 3147380B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nickel
- amounts
- stainless steel
- austenitic stainless
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000963 austenitic stainless steel Inorganic materials 0.000 title claims description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 120
- 239000000203 mixture Substances 0.000 claims description 65
- 229910052757 nitrogen Inorganic materials 0.000 claims description 60
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 49
- 239000010949 copper Substances 0.000 claims description 34
- 229910000831 Steel Inorganic materials 0.000 claims description 31
- 239000011572 manganese Substances 0.000 claims description 31
- 239000010959 steel Substances 0.000 claims description 31
- 229910052802 copper Inorganic materials 0.000 claims description 27
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 26
- 229910052799 carbon Inorganic materials 0.000 claims description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 23
- 229910052750 molybdenum Inorganic materials 0.000 claims description 23
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 22
- 239000011733 molybdenum Substances 0.000 claims description 22
- 229910052759 nickel Inorganic materials 0.000 claims description 22
- 229910052748 manganese Inorganic materials 0.000 claims description 21
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 20
- 239000011651 chromium Substances 0.000 claims description 18
- 229910001220 stainless steel Inorganic materials 0.000 claims description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 239000004411 aluminium Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- 229910052745 lead Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052711 selenium Inorganic materials 0.000 claims description 2
- 229910052714 tellurium Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 239000000155 melt Substances 0.000 claims 3
- 229910045601 alloy Inorganic materials 0.000 description 64
- 239000000956 alloy Substances 0.000 description 64
- 230000007797 corrosion Effects 0.000 description 31
- 238000005260 corrosion Methods 0.000 description 31
- 238000005245 sintering Methods 0.000 description 19
- 238000007711 solidification Methods 0.000 description 15
- 230000008023 solidification Effects 0.000 description 15
- 238000007493 shaping process Methods 0.000 description 13
- 238000003754 machining Methods 0.000 description 11
- 238000005242 forging Methods 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 238000005272 metallurgy Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000010587 phase diagram Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 230000000930 thermomechanical effect Effects 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000774 hypoallergenic effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- A—HUMAN NECESSITIES
- A44—HABERDASHERY; JEWELLERY
- A44C—PERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
- A44C27/00—Making jewellery or other personal adornments
- A44C27/001—Materials for manufacturing jewellery
- A44C27/002—Metallic materials
- A44C27/003—Metallic alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
Definitions
- the present invention relates to nickel-free austenitic stainless steel compositions. More specifically, the present invention relates to nickel-free austenitic stainless steels particularly well suited for use in the fields of watchmaking and jewelery.
- the nickel-free austenitic stainless steel compositions are of interest for applications in the field of watchmaking and jewelery because they are non-magnetic and hypoallergenic.
- These nickel-free austenitic stainless steels are mainly based on Fe-Cr-Mn-Mo-CN elements. Indeed, to replace the nickel which guarantees the austenitic structure, it has been proposed to use elements such as manganese, nitrogen and carbon. These elements, however, have the effect of increasing certain mechanical properties such as the hardness, yield strength and strength of the resulting alloys, which makes it very difficult to shape the parts by machining and forging which are usual operations in the field of manufacturing components for watchmaking and jewelery.
- US2011 / 226391 disclosed a nickel-free austenitic stainless steel containing: 17.97% by weight of chromium (Cr), 17.8% by weight of manganese (Mn); 0.36% by weight of nickel (Ni); 0.51% by weight of molybdenum (Mo); 0.58% by weight of nitrogen (N), 0.48% by weight of carbon.
- compositions proposed by Berns and Gavriljuk can be obtained by performing the melting and solidification of the atmospheric pressure alloy elements but have high concentrations of manganese, carbon and nitrogen, in order to maximize the properties. mechanical. This results in shaping by machining and forging very difficult. In addition, the high concentration of manganese is unfavorable from the point of view of corrosion resistance.
- compositions are particularly intended for use in the production of parts that can be in contact with the human body (wristwatches, jewelry, medical prostheses).
- Examples of nickel-free austenitic stainless steels that can be used to produce parts coming into contact with the human body are disclosed by the European patent EP 875 591 B1 in the name of Böhler Brass GmbH.
- the compositions disclosed in this document exhibit in particular high concentrations of molybdenum, in order to obtain a corrosion resistance allowing the use of these alloys in the medical field.
- compositions are disclosed in particular in the European patent application. EP 2 455 508 A1 . Nevertheless, despite their low concentration in these compositions have high concentrations of carbon and nitrogen, resulting again in shaping by difficult machining and forging. By removing molybdenum, it is possible to reduce the carbon and nitrogen concentration while producing the alloy at atmospheric pressure, as disclosed in US Patent Application US 2013/0149188 A1 , but the corrosion resistance is then no longer sufficient for applications in the field of watchmaking and jewelery.
- Nitrogen and carbon are the only elements capable of completely offsetting the absence of nickel.
- these gammagenic elements have the effect of considerably increasing the hardness of the resulting austenitic steels by solid insertion solution, making very difficult the shaping operations such as machining and stamping such steels, particularly in the fields of watchmaking and jewelery.
- the effect of nitrogen is even more marked than that of carbon with regard to the hardness of the resulting austenitic steel. Its concentration must therefore be as low as possible. Nevertheless, a minimum nitrogen level is necessary to obtain a totally austenitic structure because, unlike nitrogen, carbon alone does not make it possible to obtain a austenitic structure without precipitates. However, these precipitates are detrimental in terms of polishing ability and corrosion resistance of austenitic steels.
- Manganese favors only the austenitic structure. Its presence is nevertheless essential in order to increase the solubility of the nitrogen and thus to guarantee the obtaining of a completely austenitic nickel-free structure. In fact, the more manganese is added, the higher the solubility of the nitrogen. However, manganese adversely affects the corrosion resistance of austenitic steels and is also responsible for increasing the hardness of austenitic steels. Manganese is therefore detrimental in terms of machinability and forgeability properties of the resulting steels.
- the presence of a small quantity of molybdenum is essential because it makes it possible to achieve a sufficient corrosion resistance as defined by the salt spray test from the ISO 9227 standard. Indeed, as shown with alloys 1.3816 and 1.3815, chromium alone does not make it possible to obtain sufficient corrosion resistance of the cladding parts in watchmaking. It is therefore necessary to also have some molybdenum which many studies have proven to improve the corrosion resistance of the resulting austenitic steels. In addition, the corrosion resistance increases with the nitrogen content as long as it is in solid solution. However, it is necessary to limit the concentration of molybdenum and chromium alloys because these elements favor the ferritic structure to the detriment of the austenitic structure. Therefore, to compensate for the effects of molybdenum and chromium, it would be necessary to increase the concentration of the alloy in elements such as nitrogen or carbon, which would go against the properties of machinability and forgeability of the alloys. .
- the first possibility consists in imposing a nitrogen overpressure during casting or remelting, for example using techniques known under the English names Pressurized Induction Melting or Pressure ElectroSlag Remelting. This makes it possible to increase the amount of nitrogen in the liquid alloy beyond the solubility at ambient atmospheric pressure, thus being able to limit or even prevent the formation of ferrite during solidification.
- the formation of pores is made more difficult because of the overpressure applied to the alloy which solidifies.
- the use of these techniques greatly increases the price of the alloys obtained, especially because the production facilities are expensive.
- the second possibility to avoid or limit the formation of porosity during the solidification of the alloy is to judiciously select the elements involved in the composition of the alloy, for example by increasing the concentrations of gammagens (C, Mn, Cu) and / or by reducing the concentrations of alphagenes (Cr, Mo) and / or by increasing the concentrations of elements that increase the solubility of nitrogen (Mn, Cr, Mo).
- Some elements have opposite effects, but not necessarily in the same proportions. Thus, completely austenitic solidification avoiding the release of nitrogen by ferrite formation is possible at ambient atmospheric pressure, or even lower.
- the other technique that can be used to manufacture nickel-free austenitic steel components uses powder metallurgy, for example by injection molding, a technique also known by the Anglo-Saxon name Metal Injection Molding or MIM. In this case, it is not necessary to use a 100% austenitic powder, since nitrogen can be added during sintering, thus transforming the ferrite residue into austenite.
- compositions of a nickel-free austenitic stainless steel whose forming operations are facilitated, which exhibit sufficient corrosion resistance, and which can be obtained by conventional metallurgy (foundry) in particular at ambient atmospheric pressure or by metallurgy of powders.
- sufficient resistance to corrosion is meant sufficient strength for the fields of watchmaking and jewelery as defined in particular by the salt spray test (ISO 9227).
- the nickel-free stainless steel contains at least one of S, Pb, B, Bi, P, Te, Se, Nb, V, Ti, Zr, Hf, Ce, Ca , Co, Mg which can each be present with a mass concentration of up to 1%.
- a nickel-free austenitic stainless steel is understood to mean an alloy containing not more than 0.5% by mass percentage of nickel.
- Potential impurities means elements that are not intended to modify one (or more) properties of the alloy, but whose presence is unavoidable because of the melting process. In particular in the field of watchmaking and jewelery, it is necessary to limit the presence of these impurities to the maximum, since these impurities can in particular form in the alloy non-metallic inclusions such as oxides, sulfides and silicones. silicates which may have adverse consequences on the corrosion resistance and the polishing ability of the resulting alloys.
- the mass concentration of the molybdenum must be less than 2.5%. Indeed, the presence of molybdenum is necessary because it promotes the resistance of the resulting steels to corrosion, in particular the resistance to pitting corrosion. It is, however, necessary to limit the concentration of molybdenum to small quantities because molybdenum has the disadvantage of favoring the ferritic structure. Consequently, the higher the molybdenum concentration, the more elements such as nitrogen, carbon and manganese which favor the austenitic structure must be added, but which have the disadvantage of making the resulting alloy harder and therefore less easy machinable and forgeable.
- the mass concentration of the copper must be greater than 0.5% and less than 4%.
- the copper which, in the prior art, is considered as an impurity is added voluntarily in the compositions according to the invention, in particular because the copper favors the austenitic structure and thus makes it possible to limit the concentration of nitrogen and carbon.
- the presence of copper improves the resistance of alloys to generalized corrosion and intrinsically promotes the machinability and forging ability of the alloys according to the invention.
- the copper concentration must however be limited to 4% because the copper tends to weaken the steel at high temperature, which can make thermomechanical treatments difficult.
- the manganese concentration of the alloys according to the invention must be greater than 10% and less than 20%. It is known that manganese promotes the solubility of nitrogen in nickel-free austenitic stainless steel compositions. However, the higher the concentration of manganese, the harder the alloys and the poorer their ability to be machined and forged. In addition, their resistance to corrosion decreases. Therefore, by teaching to limit the manganese concentration of nickel-free stainless steel alloys, the present invention makes it possible to promote the resistance of these alloys to corrosion as well as their ability to be machined and forged. However, a minimum concentration of manganese is necessary to be able to guarantee a sufficient solubility of the nitrogen, in particular to be able to solidify the alloy at ambient atmospheric pressure.
- nickel-free austenitic stainless steel comprises in percentages by weight of carbon in proportions of 0.2 ⁇ C ⁇ 1%.
- nickel-free austenitic stainless steel comprises, in mass percentages of molybdenum, in proportions of 1 ⁇ Mo ⁇ 2%.
- the first two compositions are especially interesting when the corresponding nickel-free austenitic steel is obtained by conventional metallurgy (casting, recasting and thermomechanical treatments). Indeed, at ambient atmospheric pressure, without overpressure, the solidification is completely austenitic, thus avoiding the formation of unwanted pores in the alloy.
- these compositions are optimized so that the temperature at which precipitates such as carbides or nitrides appear as low as possible. The temperature range of the austenitic domain is therefore maximal, thus facilitating all the thermomechanical treatments.
- the advantage of the first composition, containing 1% copper, lies in the fact that the temperature range of the austenitic phase is higher than that of the second composition, which contains 2% copper.
- the second composition containing 2% copper will be easier to shape by machining and stamping. Indeed, copper naturally promotes the machinability and forgeability properties of alloys.
- the nitrogen and carbon content can be reduced while ensuring an austenitic structure.
- the first two compositions can also be interesting in the case of metallurgical shaping of the powders. Indeed, these compositions make it possible to obtain particularly dense components after sintering, in particular by carrying out a sintering in the liquid phase, a technique better known by its English name "supersolidus liquid-phase sintering".
- the third and fourth compositions are especially suitable for metallurgical shaping of powders.
- they offer the possibility of performing solid-phase sintering in an atmosphere containing a reduced nitrogen partial pressure. This thus makes it possible to complete the atmosphere with, for example, hydrogen, known to improve the densification of stainless steels during sintering. Since these alloys also have a low interstitial content after sintering, any subsequent sintering operations such as machining or forging are further facilitated.
- these two compositions are optimized so that the onset temperature of the precipitates, such as carbides or nitrides, is as low as possible. It should be noted, however, that although these third and fourth compositions are particularly well suited to metallurgical shaping of the powders, these compositions can also be obtained by the traditional route using, for example, a nitrogen overpressure during melting and solidification.
- the aim was to maximize the corrosion resistance and hardness of austenitic steels by favoring high levels of nitrogen and molybdenum in alloys.
- the specification for wearing parts usable in the field of watchmaking and jewelery is different.
- the alloys proposed have optimized properties that make them particularly well suited for use in the fields of watchmaking and jewelery.
- the machinability of the alloys according to the invention is improved, mainly because the quantity of nitrogen present in these alloys is low. Indeed, by limiting the molybdenum content to less than 2.5% by weight and by adding other gamma elements such as carbon and copper, the amount of nitrogen can be reduced while ensuring an austenitic structure. The addition of a little sulfur (up to 0.015% by weight) also improves the machinability, by manganese sulfide formation, but you have to be careful because it can have an impact on the resistance to corrosion of the alloy obtained. It is specified that machinability means any type of machining operation such as drilling, milling, boring or other.
- Nitrogen being the main element that increases the mechanical properties in this type of alloy, a limited concentration of nitrogen makes it possible to obtain a shaping by deformation easier.
- the copper reduces the rate of hardening of the alloy, which therefore facilitates its shaping by deformation. Finally, thanks to copper, there is a better resistance to generalized corrosion.
- the invention also relates to the use of a nickel-free austenitic stainless steel as described above for producing trim elements for timepieces and jewelery articles.
- the present invention proceeds from the general inventive idea which consists in proposing alloys of austenitic stainless steels without nickel representing a very good compromise between their ability to be machined and forged and their resistance to corrosion, taking into account the specific problems. in the field of watchmaking.
- the compositions proposed can be obtained by means of conventional metallurgy (foundry), in particular under pressure ambient atmospheric which is very advantageous from the point of view of production costs, or by metallurgy of powders with very high densities after sintering.
- concentrations of alphagenic elements such as chromium and molybdenum are defined to obtain sufficient corrosion resistance.
- the concentrations of manganese, carbon and nitrogen are sufficiently low to promote the ability of the resulting alloys in machining and forging but high enough to be able to obtain the alloy by melting and solidification at atmospheric pressure or to obtain very good parts. dense by metallurgy of powders.
- the concentrations are optimized to obtain a maximum temperature range of the austenitic domain.
- the copper makes it possible to reduce the concentration of the above-mentioned gamma-elements, to facilitate shaping by machining or deformation, and to improve the resistance to generalized corrosion.
- the copper concentration must however be limited because the copper decreases the temperature range of the austenitic domain and tends to weaken the austenitic steel at high temperature, making it more difficult the possible thermomechanical treatments (forging / rolling, annealing, etc.). .
- composition whose phase diagram is illustrated at figure 1 (Fe-17Cr-17Mn-2Mo-1Cu-0.3C-0.5N)
- the temperature the appearance of the precipitates is as low as possible (intersection between line 1 and line 3).
- the temperature range of the austenitic domain is therefore the widest possible.
- This composition is also interesting for obtaining very dense parts by powder metallurgy. Indeed, the existence of a wide "austenite-liquid" domain (between lines 4, 5 and 6) at 900 mbar of nitrogen makes it possible to perform sintering in the liquid phase without loss of nitrogen.
- the sintering temperature is then defined to have about 30% of liquid during sintering.
- the increase in copper concentration makes it possible to shift the boundary of the austenitic domain (line 6) to lower nitrogen concentrations.
- the concentration of manganese can be reduced and the alloy obtained after solidification contains less nitrogen. Due to this higher concentration of copper and reduced concentrations of nitrogen and manganese, machinability and deformability of the alloy are facilitated compared to the first composition.
- the higher copper concentration reduces the temperature range of the austenitic domain, the latter is maximum for the target nitrogen concentration (between 1300 ° C and 1050 ° C).
- composition illustrated in figure 3 Fe-17Cr-11Mn-2Mo-1Cu-0.25C-0.4N
- this composition is optimized for metallurgical shaping of the powders.
- the sintering can be carried out at high temperature (1300 ° C.) with a reduced nitrogen partial pressure (about 600mbars).
- the sintering atmosphere can therefore be supplemented with hydrogen, which thanks to its high reducing power improves the densification of the parts obtained after sintering.
- composition illustrated in figure 4 (Fe-17Cr-14.5Mn-2Mo-2Cu-0.22C-0.35N) is also of interest for metallurgical shaping of the powders. Compared to the previous example, sintering can be carried out at high temperature (1300 ° C) with an even lower nitrogen partial pressure (about 400 mbar). Finally, this alloy has a very low concentration of interstitial elements, thus facilitating any machining or forging operations after sintering.
- the table shown at figure 5 allows to compare the MARC (Measure of Alloying for Resistance to Corrosion) indices of the above examples of compositions with standard austenitic stainless steels with nickel and nickel-free austenitic stainless steels available on the market.
- the MARC index is a great way to compare the corrosion resistance of austenitic steels, especially those without nickel. The higher the MARC index, the more resistant the alloy is to corrosion.
- This table comprises two standard austenitic stainless steels with nickel commonly used in watchmaking and jewelery, six commercial nickel-free austenitic stainless steels, as well as the four examples of preferred compositions mentioned above.
- MARC Cr % + 3.3 MB % + 20 VS % + 20 NOT % - 0.5 mn % - 0.25 Or % .
- compositions according to the invention have in particular a higher MARC index than that of the austenitic stainless steel 1.4435 which is the steel most commonly used in watchmaking and jewelery.
- Three of the four examples of compositions according to the invention even have a MARC index higher than that of steel 1.4539 which is known for its excellent resistance to corrosion.
- the present invention seeks to improve the machinability and deformability of nickel-free austenitic stainless steels by teaching to reduce the contents of these alloys in carbon and nitrogen and to add copper.
- the alloys proposed have, however, indices superior to those of alloys 1.3816 and 1.3815, which is sufficient to allow them to pass with success salt spray corrosion tests.
- the first, second and fourth examples of compositions according to the invention exhibit pressure austenitic solidification. atmospheric, thus avoiding the use of special installations. This therefore reduces the cost of the alloys obtained.
- the present invention is not limited to the embodiments which have just been described and that various simple modifications and variants can be envisaged by those skilled in the art without departing from the scope of the invention as defined. by the appended claims.
- the alloys proposed have an excellent compromise between corrosion resistance, ease of shaping (machinability and forgeability) and density of the parts after sintering. It is indeed possible to sinter the parts at low nitrogen pressure and to compensate with hydrogen.
- the metal matrix can be produced using the steel compositions according to the invention. It is also possible to treat the sintered parts under high isostatic pressure, also known by its English name High Isostatic Pressure. It is It is also possible to sinter under high pressure isostatic parts shaped by pressing or injection molding. It is also possible to make semi-finished products under high isostatic pressure. Finally, it is possible to forge the pieces after sintering.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Adornments (AREA)
Description
- La présente invention concerne des compositions d'aciers inoxydables austénitiques sans nickel. Plus précisément, la présente invention concerne des aciers inoxydables austénitiques sans nickel particulièrement bien adaptés à une utilisation dans les domaines de l'horlogerie et de la bijouterie.
- Les compositions d'aciers inoxydables austénitiques sans nickel sont intéressantes pour des applications dans le domaine de l'horlogerie et de la bijouterie car elles sont amagnétiques et hypoallergéniques.
- Depuis plus de 50 ans, de nombreuses compositions d'aciers inoxydables austénitiques sans nickel ont été proposées. En effet, dans les compositions d'aciers inoxydables austénitiques, on a très tôt cherché à supprimer le nickel, tout d'abord pour des questions de coût puis, plus récemment, pour des raisons de santé publique car le nickel est connu pour provoquer des réactions allergiques.
- Ces aciers inoxydables austénitiques sans nickel sont principalement basés sur les éléments Fe-Cr-Mn-Mo-C-N. En effet, pour remplacer le nickel qui garantit la structure austénitique, il a été proposé d'utiliser des éléments tels que le manganèse, l'azote et le carbone. Ces éléments ont cependant pour effet d'augmenter certaines propriétés mécaniques comme la dureté, la limite élastique et la résistance des alliages résultants, ce qui rend très difficile la mise en forme des pièces par usinage et forgeage qui sont des opérations habituelles dans le domaine de la fabrication de composants pour l'horlogerie et la bijouterie.
US2011/226391 divulgué un acier inoxydable austénitique sans nickel contenant: 17.97 % en poids de chrome (Cr), 17.8 % en poids de manganèse (Mn); 0.36 % en poids de nickel (Ni); 0.51 % en poids de molybdène (Mo); 0.58 % en poids deazote (N), 0.48 % en poids de carbone. - Un exemple d'un acier austénitique sans nickel est divulgué par le
brevet européen EP 1 786 941 B1 . Dans ce document, les compositions proposées par Berns et Gavriljuk peuvent être obtenues en réalisant la fusion et la solidification des éléments d'alliage à pression atmosphérique mais présentent des concentrations élevées en manganèse, en carbone et en azote, dans le but de maximiser les propriétés mécaniques. Cela se traduit par une mise en forme par usinage et forgeage très difficile. De plus, la concentration élevée en manganèse est défavorable du point de vue de la résistance à la corrosion. - Certaines compositions récemment proposées sont notamment destinées à une utilisation pour la réalisation de pièces pouvant être en contact avec le corps humain (montres-bracelets, bijoux, prothèses médicales). Des exemples d'aciers inoxydables austénitiques sans nickel pouvant être utilisés pour réaliser des pièces venant en contact avec le corps humain sont divulgués par le brevet européen
EP 875 591 B1 - Pour éviter l'usage d'installations spéciales permettant de fondre et de solidifier les alliages avec une surpression d'azote, des compositions sont notamment divulguées dans la demande de brevet européen
EP 2 455 508 A1 . Néanmoins, malgré leur faible concentration en manganèse, ces compositions présentent des concentrations élevées en carbone et en azote, se traduisant à nouveau par une mise en forme par usinage et forgeage difficile. En éliminant le molybdène, il est possible de réduire la concentration en carbone et en azote tout en produisant l'alliage à pression atmosphérique, comme divulgué dans la demande de brevet américainUS 2013/0149188 A1 , mais la résistance à la corrosion n'est alors plus suffisante pour des applications dans le domaine de l'horlogerie et de la bijouterie. - Dans le domaine de l'horlogerie et de la bijouterie, où il est nécessaire de fabriquer de grandes séries de pièces ayant souvent des formes complexes, il est donc nécessaire d'obtenir un compromis entre aptitude à la mise en forme (usinabilité et forgeabilité) et résistance à la corrosion. Il faut de plus privilégier les alliages obtenus sous pression atmosphérique, pour des questions de coûts.
- Pour obtenir un acier austénitique (et donc amagnétique) inoxydable apte à venir en contact avec le corps humain, l'absence de nickel doit être compensée par d'autres éléments gammagènes qui favorisent la structure austénitique. Le choix est limité et les éléments gammagènes les plus courants sont l'azote, le carbone et le manganèse.
- L'azote et le carbone sont les seuls éléments capables de compenser totalement l'absence de nickel. Toutefois, ces éléments gammagènes ont notamment pour effet d'augmenter considérablement la dureté des aciers austénitiques résultants par solution solide d'insertion, rendant très difficiles les opérations de mise en forme telles que usinage et étampage de tels aciers, notamment dans les domaines de l'horlogerie et de la bijouterie. L'effet de l'azote est encore plus marqué que celui du carbone en ce qui concerne la dureté de l'acier austénitique résultant. Sa concentration doit donc être la plus faible possible. Néanmoins, un taux d'azote minimal est nécessaire pour obtenir une structure totalement austénitique car, contrairement à l'azote, le carbone seul ne permet pas d'obtenir une structure austénitique sans précipités. Or, ces précipités sont néfastes en termes d'aptitude au polissage et de résistance à la corrosion des aciers austénitiques.
- Le manganèse ne favorise que peu la structure austénitique. Sa présence est néanmoins indispensable afin d'augmenter la solubilité de l'azote et donc garantir l'obtention d'une structure sans nickel totalement austénitique. En effet, plus l'on ajoute de manganèse, plus la solubilité de l'azote est élevée. Cependant, le manganèse nuit à la résistance des aciers austénitiques à la corrosion et est également responsable d'un accroissement de la dureté des aciers austénitiques. Le manganèse est donc néfaste pour ce qui est des propriétés d'usinabilité et de forgeabilité des aciers résultants.
- La présence en faible quantité de molybdène est indispensable, car elle permet d'atteindre une résistance à la corrosion suffisante telle que définie par le test au brouillard salin issu de la norme ISO 9227. En effet, comme montré avec les alliages 1.3816 et 1.3815, le chrome seul ne permet pas d'obtenir une résistance à la corrosion suffisante des pièces d'habillage en horlogerie. Il est donc nécessaire d'avoir également un peu de molybdène dont de nombreuses études ont prouvé qu'il améliore la résistance à la corrosion des aciers austénitiques résultants. De plus, la résistance à la corrosion augmente avec la teneur en azote aussi longtemps que celui-ci est en solution solide. Il faut cependant limiter la concentration en molybdène et en chrome des alliages car ces éléments favorisent la structure ferritique au détriment de la structure austénitique. Par conséquent, pour compenser les effets du molybdène et du chrome, il faudrait augmenter la concentration de l'alliage en éléments tels que l'azote ou le carbone, ce qui irait à l'encontre des propriétés d'usinabilité et de forgeabilité des alliages.
- Deux voies pour produire un acier austénitique sans nickel sont possibles.
- La voie traditionnelle consiste à obtenir des semi-produits par coulée, suivie d'une éventuelle refonte pour affiner la composition de l'alliage puis de différents traitements thermomécaniques. Comme l'azote est introduit ici dans l'alliage liquide, la solidification des aciers inoxydables austénitiques sans nickel est par conséquent particulièrement critique. En effet, en fonction notamment de la composition de l'alliage et de la pression partielle d'azote, de la ferrite peut être formée à partir de l'état liquide, pouvant engendrer de la porosité dans l'alliage solidifié. La solubilité de l'azote dans la ferrite étant beaucoup moins grande que dans l'austénite, l'azote peut être relargué dans le liquide sous forme gazeuse, créant ainsi de la porosité non désirée.
- Il existe deux possibilités principales pour éviter ou du moins limiter la formation de la porosité mentionnée ci-dessus. La première possibilité consiste à imposer une surpression d'azote lors de la coulée ou de la refonte, par exemple en utilisant des techniques connues sous leurs dénominations anglo-saxonnes Pressurized Induction Melting ou Pressure ElectroSlag Remelting. Cela permet d'augmenter la quantité d'azote dans l'alliage liquide au-delà de la solubilité à pression atmosphérique ambiante, pouvant ainsi limiter voire éviter la formation de ferrite lors de la solidification. De plus, la formation des pores est rendue plus difficile du fait de la surpression appliquée à l'alliage qui se solidifie. Toutefois, l'utilisation de ces techniques augmente fortement le prix des alliages obtenus, notamment car les installations de production sont coûteuses.
- La deuxième possibilité pour éviter ou limiter la formation de porosité lors de la solidification de l'alliage est de sélectionner judicieusement les éléments entrant dans la composition de l'alliage, par exemple en augmentant les concentrations en éléments gammagènes (C, Mn, Cu) et/ou en réduisant les concentrations en éléments alphagènes (Cr, Mo) et/ou en augmentant les concentrations en éléments qui augmentent la solubilité de l'azote (Mn, Cr, Mo). Certains éléments ont des effets opposés, mais pas forcément dans les mêmes proportions. Ainsi, une solidification totalement austénitique évitant le relargage d'azote par formation de ferrite est possible à pression atmosphérique ambiante, voire inférieure.
- La solution consistant à couler et refondre l'acier sous pression atmosphérique ambiante est bien meilleur marché que la solution consistant à travailler avec une surpression d'azote et est donc à privilégier. Il y a par contre des contraintes qui pèsent sur les compositions des alliages qu'il est possible de couler à pression atmosphérique ambiante.
- L'autre technique utilisable pour fabriquer des composants en acier austénitique sans nickel fait appel à la métallurgie des poudres, par exemple par moulage par injection, technique également connue sous sa dénomination anglo-saxonne Metal Injection Moulding ou MIM. Dans ce cas, il n'est pas nécessaire d'utiliser une poudre 100% austénitique, car de l'azote peut encore être ajouté pendant le frittage, transformant ainsi le reste de ferrite en austénite.
- La présente invention a pour but de remédier aux problèmes susmentionnés ainsi qu'à d'autres encore en procurant des compositions d'un acier inoxydable austénitique sans nickel dont les opérations de mise en forme soient facilitées, qui présente une résistance à la corrosion suffisante et qui puisse être obtenu par métallurgie conventionnelle (fonderie) en particulier à pression atmosphérique ambiante ou par métallurgie des poudres. Par résistance suffisante à la corrosion, on entend une résistance suffisante pour les domaines de l'habillage horloger et de la bijouterie telle que notamment définie par le test au brouillard salin (norme ISO 9227).
- A cet effet, la présente invention concerne un acier inoxydable austénitique sans nickel comprenant en pourcentages massiques :
- du chrome en proportions 10 < Cr < 21% ;
- du manganèse en proportions 10< Mn < 20% ;
- du molybdène en proportions 0 < Mo < 2,5% ;
- du cuivre en proportions 0,5 ≤ Cu < 4% ;
- du carbone en proportions 0,15 < C < 1% ;
- de l'azote en proportions 0 < N ≤ 1 ;
- du nickel en proportions 0 ≤ Ni < 0,5% , et
- Selon une autre caractéristique de l'invention, l'acier inoxydable austénitique sans nickel comprend en pourcentages massiques :
- du chrome en proportions 15 < Cr < 21% ;
- du manganèse en proportions 10 < Mn < 20% ;
- du molybdène en proportions 0 < Mo < 2,5% ;
- du cuivre en proportions 0,5 ≤ Cu < 4% ;
- du carbone en proportions 0,15% < C < 1% ;
- de l'azote en proportions 0 < N ≤ 1 ;
- du silicium en proportions 0 ≤ Si < 2% ;
- du nickel en proportions 0 ≤ Ni < 0,5% ;
- du tungstène en proportions 0 ≤ W < 4% ;
- de l'aluminium en proportions 0 ≤ Al < 3%, et
- Selon encore une autre caractéristique de l'invention, l'acier inoxydable sans nickel contient au moins un des éléments parmi S, Pb, B, Bi, P, Te, Se, Nb, V, Ti, Zr, Hf, Ce, Ca, Co, Mg qui peuvent être présents chacun avec une concentration massique jusqu'à 1%.
- Au sens de la présente invention, on entend par acier inoxydable austénitique sans nickel un alliage ne contenant pas plus de 0,5% en pourcentage massique de nickel.
- Par impuretés éventuelles, on entend des éléments n'ayant pas pour but de modifier une (ou plusieurs) propriété(s) de l'alliage, mais dont la présence est inévitable car issus du procédé de fusion. En particulier dans le domaine de l'horlogerie et de la bijouterie, il est nécessaire de limiter la présence de ces impuretés au maximum, car ces impuretés peuvent notamment former dans l'alliage des inclusions non métalliques telles que des oxydes, des sulfides et des silicates qui peuvent avoir des conséquences néfastes sur la résistance à la corrosion et l'aptitude au polissage des alliages résultants.
- Dans les compositions d'aciers inoxydables austénitiques sans nickel conformes à l'invention, la concentration massique du molybdène doit être inférieure à 2,5%. En effet, la présence du molybdène est nécessaire car elle favorise la résistance des aciers résultants à la corrosion, en particulier la résistance à la corrosion par piqûre. Il convient cependant de limiter la concentration du molybdène à de faibles quantités car le molybdène présente l'inconvénient de favoriser la structure ferritique. Par conséquent, plus la concentration en molybdène est importante, plus il faut ajouter des éléments tels que l'azote, le carbone et le manganèse qui favorisent la structure austénitique mais qui ont comme inconvénient de rendre l'alliage résultant plus dur et donc moins facilement usinable et forgeable.
- Par ailleurs, dans les compositions d'aciers inoxydables austénitiques sans nickel conformes à l'invention, la concentration massique du cuivre doit être supérieure à 0,5% et inférieure à 4%. Le cuivre qui, dans l'art antérieur, est considéré comme une impureté est ajouté volontairement dans les compositions selon l'invention, notamment parce que le cuivre favorise la structure austénitique et permet donc de limiter la concentration en azote et en carbone. En outre, la présence du cuivre améliore la résistance des alliages à la corrosion généralisée et favorise intrinsèquement l'usinabilité et l'aptitude au forgeage des alliages selon l'invention. La concentration en cuivre doit toutefois être limitée à 4% car le cuivre a tendance à fragiliser l'acier à haute température, ce qui peut rendre difficiles les traitements thermomécaniques.
- De même, la concentration en manganèse des alliages selon l'invention doit être supérieure à 10% et inférieure à 20%. Il est connu que le manganèse favorise la solubilité de l'azote dans les compositions d'aciers inoxydables austénitiques sans nickel. Cependant, plus la concentration en manganèse est élevée, plus les alliages sont durs et moins bonne est leur aptitude à être usinés et forgés. En outre, leur résistance à la corrosion diminue. Par conséquent, en enseignant de limiter la concentration en manganèse des alliages d'acier inoxydable sans nickel, la présente invention permet de favoriser la résistance de ces alliages à la corrosion ainsi que leur aptitude à être usinés et forgés. Toutefois, une concentration minimale de manganèse est nécessaire pour pouvoir garantir une solubilité suffisante de l'azote, afin notamment de pouvoir solidifier l'alliage à pression atmosphérique ambiante.
- Selon encore une autre caractéristique de l'invention, l'acier inoxydable austénitique sans nickel comprend en pourcentages massiques du carbone en proportions 0,2 ≤ C < 1%.
- Selon encore une autre caractéristique de l'invention, l'acier inoxydable austénitique sans nickel comprend en pourcentages massiques du molybdène en proportions 1 ≤ Mo ≤ 2%.
- Des exemples de compositions préférées sont donnés par les formules suivantes :
- Fe-17Cr-17Mn-2Mo-1Cu-0,3C-0,5N
- Fe-17Cr-12Mn-2Mo-2Cu-0,33C-0,4N
- Fe-17Cr-11 Mn-2Mo-1Cu-0,25C-0,4N
- Fe-17Cr-14,5Mn-2Mo-2Cu-0,22C-0,35N
- Les deux premières compositions sont surtout intéressantes lorsque l'acier austénitique sans nickel correspondant est obtenu par métallurgie conventionnelle (coulée, refonte et traitements thermomécaniques). En effet, à pression atmosphérique ambiante, sans surpression, la solidification est totalement austénitique, évitant ainsi la formation de porosités non désirées dans l'alliage. De plus, ces compositions sont optimisées afin que la température à laquelle des précipités tels que des carbures ou des nitrures apparaissent soit la plus basse possible. La plage de températures du domaine austénitique est donc maximale, facilitant ainsi tous les traitements thermomécaniques.
- L'intérêt de la première composition, contenant 1% de cuivre, réside dans le fait que la plage de températures de la phase austénitique est plus élevée que celle de la deuxième composition, qui contient 2% de cuivre. La deuxième composition, contenant 2% de cuivre sera par contre plus facile à mettre en forme par usinage et étampage. En effet, le cuivre favorise naturellement les propriétés d'usinabilité et de forgeabilité des alliages. De plus, en mettant davantage de cuivre, on peut diminuer la teneur en azote et en carbone tout en assurant une structure austénitique.
- Outre le fait qu'elles peuvent être obtenues par métallurgie conventionnelle, les deux premières compositions peuvent aussi être intéressantes en cas de mise en forme par métallurgie des poudres. En effet, ces compositions permettent d'obtenir des composants particulièrement denses après frittage, en réalisant notamment un frittage en phase liquide, technique mieux connue sous sa dénomination anglo-saxonne « supersolidus liquid-phase sintering ».
- Les troisième et quatrième compositions sont spécialement adaptées à une mise en forme par métallurgie des poudres. Elles offrent notamment la possibilité de réaliser un frittage en phase solide dans une atmosphère contenant une pression partielle d'azote réduite. Cela permet ainsi de compléter l'atmosphère avec par exemple de l'hydrogène, connu pour améliorer la densification des aciers inoxydables pendant le frittage. Ces alliages possédant de plus une faible teneur en éléments interstitiels après frittage, les éventuelles opérations de mise en forme après frittage telles qu'usinage ou forgeage sont en outre facilitées. De même, ces deux compositions sont optimisées pour que la température d'apparition des précipités, tels que des carbures ou des nitrures, soit la plus basse possible. On notera cependant que, bien que ces troisième et quatrième compositions soient particulièrement bien adaptées à une mise en forme par métallurgie des poudres, ces compositions peuvent être aussi obtenues par la voie traditionnelle en utilisant par exemple une surpression d'azote lors de la fusion et de la solidification.
- Dans la majorité des cas, dans l'art antérieur, le but recherché était de maximiser la résistance à la corrosion et la dureté des aciers austénitiques en privilégiant des teneurs élevées en azote et en molybdène dans les alliages.
- Toutefois, dans le cas de la présente invention, le cahier des charges pour des pièces d'habillage utilisables dans le domaine de l'horlogerie et de la bijouterie est différent. Ainsi, les alliages proposés possèdent des propriétés optimisées qui les rendent particulièrement bien adaptés pour leur utilisation dans les domaines de l'habillage horloger et de la bijouterie.
- En premier lieu, l'usinabilité des alliages selon l'invention est améliorée, principalement car la quantité d'azote présente dans ces alliages est faible. En effet, en limitant la teneur en molybdène à une valeur inférieure à 2.5% en poids et en ajoutant d'autres éléments gammagènes tels que le carbone et le cuivre, la quantité d'azote peut être réduite tout en garantissant une structure austénitique. L'ajout d'un peu de souffre (jusqu'à 0,015% en poids) permet également d'améliorer l'usinabilité, par formation de sulfure de manganèse, mais il faut être prudent car cela peut avoir un impact sur la résistance à la corrosion de l'alliage obtenu. On précise que par usinabilité on entend tout type d'opération d'usinage telle que perçage, fraisage, alésage ou autre.
- En second lieu, la forgeabilité des alliages selon l'invention est également améliorée.
- L'azote étant le principal élément qui augmente les propriétés mécaniques dans ce type d'alliage, une concentration limitée en azote permet d'obtenir une mise en forme par déformation plus aisée.
- Autre élément important, le cuivre permet de diminuer le taux d'écrouissage de l'alliage, ce qui par conséquent facilite sa mise en forme par déformation. Enfin, grâce au cuivre, on observe une meilleure résistance à la corrosion généralisée.
- L'invention concerne également l'utilisation d'un acier inoxydable austénitique sans nickel tel que décrit ci-dessus pour la réalisation d'éléments d'habillage pour pièces d'horlogerie et d'articles de bijouterie.
- D'autres caractéristiques et avantages de la présente invention ressortiront plus clairement de la description détaillée qui suit d'un mode de réalisation de l'acier austénitique sans nickel selon l'invention, cet exemple étant donné à titre purement illustratif et non limitatif seulement en liaison avec le dessin annexé sur lequel :
- la
figure 1 est un diagramme de phases illustrant le premier exemple de composition Fe-17Cr-17Mn-2Mo-1Cu-0,3C-0,5N de l'acier inoxydable austénitique sans nickel selon l'invention ; - la
figure 2 est un diagramme de phases illustrant le deuxième exemple de composition Fe-17Cr-12Mn-2Mo-2Cu-0,33C-0,4N de l'acier inoxydable austénitique sans nickel selon l'invention ; - la
figure 3 est un diagramme de phases illustrant le troisième exemple de composition Fe-17Cr-11Mn-2Mo-1Cu-0,25C-0,4N de l'acier inoxydable austénitique sans nickel selon l'invention ; - la
figure 4 est un diagramme de phases illustrant le quatrième exemple de composition Fe-17Cr-14,5Mn-2Mo-2Cu-0,22C-0,35N de l'acier inoxydable austénitique sans nickel selon l'invention ; - la
figure 5 est un tableau présentant des compositions d'aciers inoxydables austénitiques en concentrations massiques, et - la
figure 6 est un diagramme de Schaeffler tel que défini par Gavriljuk et Berns dans l'ouvrage « High Nitrogen Steels », éditions Springer 2010 qui permet de prédire la structure d'un alliage après trempe en fonction de la composition. - La présente invention procède de l'idée générale inventive qui consiste à proposer des alliages d'aciers inoxydables austénitiques sans nickel représentant un très bon compromis entre leur aptitude à être usiné et forgé et leur résistance à la corrosion, en prenant en compte les problématiques spécifiques au domaine de l'habillage horloger. En outre, les compositions proposées peuvent être obtenues par le biais de la métallurgie conventionnelle (fonderie), en particulier à pression atmosphérique ambiante ce qui est très avantageux du point de vue des coûts de production, ou par métallurgie des poudres avec des densités très élevées après frittage. Les concentrations en éléments alphagènes tels que le chrome et le molybdène sont définies pour obtenir une résistance à la corrosion suffisante. Les concentrations en manganèse, en carbone et en azote sont suffisamment faibles pour favoriser l'aptitude des alliages résultants à l'usinage et au forgeage mais suffisamment élevées pour pouvoir obtenir l'alliage par fusion et solidification à pression atmosphérique ou pour obtenir des pièces très denses par métallurgie des poudres. De plus, les concentrations sont optimisées pour obtenir une plage de températures maximale du domaine austénitique. Finalement le cuivre permet de réduire la concentration des éléments gammagènes mentionnés ci-dessus, de faciliter la mise en forme par usinage ou déformation, et d'améliorer la résistance à la corrosion généralisée. La concentration en cuivre doit cependant être limitée, car le cuivre diminue la plage de températures du domaine austénitique et a tendance à fragiliser l'acier austénitique à haute température, rendant plus difficile les éventuels traitements thermomécaniques (forgeage/laminage, recuits, etc.).
- Pour le premier exemple de composition, dont le diagramme de phase est illustré à la
figure 1 (Fe-17Cr-17Mn-2Mo-1Cu-0,3C-0,5N), on voit qu'il est possible d'obtenir une solidification totalement austénitique à pression atmosphérique et que pour la concentration en azote obtenue après solidification, la température d'apparition des précipités est la plus faible possible (intersection entre la ligne 1 et la ligne 3). La plage de températures du domaine austénitique est donc la plus large possible. Cette composition est également intéressante pour l'obtention de pièces très denses par métallurgie des poudres. En effet, l'existence d'un large domaine « austénite-liquide » (entre les lignes 4, 5 et 6) à 900 mbars d'azote permet de réaliser un frittage en phase liquide sans perte d'azote. La température de frittage est alors définie de façon à avoir environ 30% de liquide lors du frittage. - Pour le deuxième exemple de composition illustré à la
figure 2 (Fe-17Cr-12Mn-2Mo-2Cu-0,33C-0,4N), l'augmentation de la concentration en cuivre permet de déplacer la frontière du domaine austénitique (ligne 6) vers de plus basses concentrations en azote. Ainsi, la concentration en manganèse peut être réduite et l'alliage obtenu après solidification contient moins d'azote. Grâce à cette concentration plus élevée en cuivre et aux concentrations réduites en azote et en manganèse, l'usinabilité et la déformabilité de l'alliage sont facilitées par rapport à la première composition. Bien que la concentration plus élevée en cuivre réduise la plage de températures du domaine austénitique, cette dernière est maximale pour la concentration en azote visée (entre 1300°C et 1050°C). - Pour le troisième exemple de composition illustré à la
figure 3 (Fe-17Cr-11Mn-2Mo-1Cu-0,25C-0,4N), il y a formation de ferrite en cas de solidification à pression atmosphérique, cela pouvant se traduire par de la porosité dans l'alliage solidifié. Toutefois, cette composition est optimisée pour une mise en forme par métallurgie des poudres. En effet, pour cette composition, le frittage peut être réalisé à haute température (1300°C) avec une pression partielle en azote réduite (env. 600mbars). L'atmosphère de frittage peut donc être complétée avec de l'hydrogène, qui grâce à son fort pouvoir réducteur améliore la densification des pièces obtenues après frittage. - Le quatrième exemple de composition illustré à la
figure 4 (Fe-17Cr-14,5Mn-2Mo-2Cu-0,22C-0,35N) est également intéressant pour une mise en forme par métallurgie des poudres. Par rapport à l'exemple précédant, le frittage peut être réalisé à haute température (1300°C) avec une pression partielle en azote encore plus faible (env. 400 mbars). Finalement, cet alliage présente une très faible concentration en éléments interstitiels, facilitant ainsi les éventuelles opérations d'usinage ou de forgeage après frittage. - Le tableau illustré à la
figure 5 permet de comparer les indices MARC (Measure of Alloying for Résistance to Corrosion) des exemples de compositions ci-dessus avec les aciers inoxydables austénitiques standards avec nickel et les aciers inoxydables austénitiques sans nickel disponibles sur le marché. L'indice MARC est un excellent moyen de comparer la résistance à la corrosion des aciers austénitiques, particulièrement ceux sans nickel. Plus l'indice MARC est élevé, plus l'alliage est résistant à la corrosion. Ce tableau comprend deux aciers inoxydables austénitiques standards avec nickel couramment utilisés en horlogerie et en bijouterie, six aciers inoxydables austénitiques sans nickel commerciaux, ainsi que les quatre exemples de compositions préférées mentionnés ci-dessus. De plus, la dernière ligne du tableau présente, pour chaque alliage, l'indice MARC tel que défini par Speidel, M.O., « Nitrogen containing austenitic stainless steel", Materialwissenschaft und Werkstofftechnik », 37(2006), pp. 875-880. Il s'agit de la somme de la concentration des éléments entrant dans la composition des aciers inoxydables austénitiques concernés : - Les exemples de compositions conformes à l'invention présentent notamment un indice MARC supérieur à celui de l'acier inoxydable austénitique 1.4435 qui est l'acier le plus couramment utilisé en horlogerie et bijouterie. Trois des quatre exemples de compositions selon l'invention ont même un indice MARC supérieur à celui de l'acier 1.4539 qui est connu pour son excellente résistance à la corrosion.
- La présente invention cherche à améliorer l'usinabilité et la déformabilité des aciers inoxydables austénitiques sans nickel en enseignant de réduire les teneurs de ces alliages en carbone et en azote et d'ajouter du cuivre. Ainsi, bien qu'ayant des indices plus faibles que ceux des alliages 1.4456, 1.4452, UNS S29225 et UNS S29108, les alliages proposés ont cependant des indices supérieurs à ceux des alliages 1.3816 et 1.3815, ce qui est suffisant pour leur permettre de passer avec succès les tests de corrosion au brouillard salin. En outre, par rapport aux alliages 1.4456, 1.4452, UNS S29225 et UNS S29108 qui subissent une étape de fusion et de solidification sous surpression d'azote, les premier, deuxième et quatrième exemples de compositions selon l'invention présentent une solidification austénitique à pression atmosphérique, permettant ainsi d'éviter l'utilisation d'installations spéciales. Cela réduit par conséquent le coût des alliages obtenus.
- Finalement, la position de ces différents alliages sur le diagramme de Schaeffler est illustrée sur la
figure 6 . Les quatre exemples de compositions préférées, comme les autres alliages présentés, se situent tous dans le domaine austénitique du diagramme. Cela confirme si nécessaire la stabilité de la structure austénitique pour les compositions selon l'invention. On voit entre outre que les exemples de compositions se situent entre les alliages 1.3816/1.3815 (qui possèdent une résistance à la corrosion trop faible) et les alliages 1.4456/1.4452/UNS S29225/UNS S29108 (qui sont très difficiles à mettre en forme par usinage et forgeage, et dont le prix de revient est élevé car produits sous surpression d'azote). - Il va de soi que la présente invention n'est pas limitée aux modes de réalisations qui viennent d'être décrits et que diverses modifications et variantes simples peuvent être envisagées par l'homme du métier sans sortir du cadre de l'invention tel que défini par les revendications annexées. On notera en particulier que les alliages proposés présentent un excellent compromis entre résistance à la corrosion, facilité de mise en forme (usinabilité et forgeabilité) et densité des pièces après frittage. Il est en effet possible de fritter les pièces à basse pression d'azote et de compenser avec de l'hydrogène. D'autre part, dans le cas des matériaux composites à matrice métallique, la matrice métallique peut être réalisée à l'aide des compositions d'aciers selon l'invention. Il est aussi possible de traiter les pièces frittées sous haute pression isostatique, technique également connue sous sa dénomination anglo-saxonne High Isostatic Pressure. Il est également possible de fritter sous haute pression isostatique des pièces mises en forme par pressage ou moulage par injection. Il est aussi possible de faire des produits semi-finis sous haute pression isostatique. Enfin, il est possible de forger les pièces après frittage.
le solde étant constitué par le fer et les impuretés éventuelles dues à la fusion.
Claims (11)
- Acier inoxydable austénitique sans nickel comprenant en pourcentages massiques :- du chrome en proportions 10 < Cr < 21% ;- du manganèse en proportions 10< Mn < 20% ;- du molybdène en proportions 0 < Mo < 2,5% ;- du cuivre en proportions 0,5 < Cu < 4% ;- du carbone en proportions 0,15 < C < 1% ;- de l'azote en proportions 0 < N ≤ 1, et- du nickel en proportions 0 ≤ Ni ≤ 0,5% ;- du silicium en proportions 0≤Si<2%;- du tungstène en proportions 0≤W<4%;- de l'aluminium en proportions 0≤Al<3%;le solde étant constitué par le fer et les impuretés éventuelles dues à la fusion,
l'acier inoxydable austénitique sans nickel comprenant en pourcentages massiques du carbone en proportions 0,25 < C < 1% lorsque cet acier comprend du manganèse en proportions 15 ≤ Mn < 20%,
le solde étant constitué par le fer et les impuretés éventuelles dues à la fusion. - Acier inoxydable austénitique sans nickel selon la revendication 1, caractérisé en ce qu'il comprend en pourcentages massiques :- du chrome en proportions 15 < Cr < 21% ;- du manganèse en proportions 10 < Mn < 20% ;- du molybdène en proportions 0 < Mo < 2,5% ;- du cuivre en proportions 0,5 < Cu < 4% ;- du carbone en proportions 0,15% < C < 1% ;- de l'azote en proportions 0 < N ≤ 1 ;- du silicium en proportions 0 ≤ Si < 2% ;- du nickel en proportions 0 ≤ Ni < 0,5% ;- du tungstène en proportions 0 ≤ W < 4% ;- de l'aluminium en proportions 0 ≤ Al < 3%, etle solde étant constitué par le fer et les impuretés éventuelles dues à la fusion.
- Acier inoxydable austénitique sans nickel selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que sa composition, exprimée en pourcentages massiques, est donnée par la formule Fe-17Cr-11 Mn-2Mo-1Cu-0,25C-0,4N.
- Acier inoxydable austénitique sans nickel selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que sa composition, exprimée en pourcentages massiques, est donnée par la formule Fe-17Cr-12Mn-2Mo-2Cu-0,33C-0,4N.
- Acier inoxydable austénitique sans nickel selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que sa composition, exprimée en pourcentages massiques, est donnée par la formule Fe-17Cr-14,5Mn-2Mo-2Cu-0,22C-0,35N.
- Acier inoxydable austénitique sans nickel selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que sa composition, exprimée en pourcentages massiques, est donnée par la formule Fe-17Cr-17Mn-2Mo-1Cu-0,3C-0,5N.
- Acier inoxydable austénitique sans nickel selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend en pourcentages massiques du cuivre en proportions 0,5 ≤ Cu < 4%.
- Acier inoxydable austénitique sans nickel selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comprend en pourcentages massiques du carbone en proportions 0,2 ≤ C < 1%.
- Acier inoxydable austénitique sans nickel selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend en pourcentages massiques du molybdène en proportions 1 ≤ Mo ≤ 2%.
- Acier inoxydable sans nickel selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il contient au moins un des éléments parmi S, Pb, B, Bi, P, Te, Se, Nb, V, Ti, Zr, Hf, Ce, Ca, Co, Mg qui peuvent être présents chacun avec une concentration massique jusqu'à 1%.
- Pièces d'horlogerie et de bijouterie en un acier inoxydable austénitique sans nickel selon l'une quelconque des revendications 1 à 10.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15186980.7A EP3147378A1 (fr) | 2015-09-25 | 2015-09-25 | Acier inoxydable austénitique sans nickel |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3147380A1 EP3147380A1 (fr) | 2017-03-29 |
EP3147380B1 true EP3147380B1 (fr) | 2018-10-17 |
Family
ID=54238278
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15186980.7A Withdrawn EP3147378A1 (fr) | 2015-09-25 | 2015-09-25 | Acier inoxydable austénitique sans nickel |
EP16174780.3A Active EP3147380B1 (fr) | 2015-09-25 | 2016-06-16 | Acier inoxydable austenitique sans nickel |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15186980.7A Withdrawn EP3147378A1 (fr) | 2015-09-25 | 2015-09-25 | Acier inoxydable austénitique sans nickel |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170088923A1 (fr) |
EP (2) | EP3147378A1 (fr) |
JP (1) | JP6435297B2 (fr) |
CN (2) | CN106987785A (fr) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3486009B1 (fr) * | 2017-11-17 | 2024-01-17 | The Swatch Group Research and Development Ltd | Procédé de frittage d'un acier inoxydable austenitique |
RU2650949C1 (ru) * | 2017-11-27 | 2018-04-18 | Юлия Алексеевна Щепочкина | Сталь для изготовления ювелирных изделий |
KR102020507B1 (ko) * | 2017-12-20 | 2019-09-10 | 주식회사 포스코 | 강도, 표면전도성이 향상된 비자성 오스테나이트계 스테인리스강 |
CN108330409B (zh) * | 2018-03-23 | 2020-08-04 | 长春工业大学 | 超高冲击韧度的韧强钢及其制备方法 |
EP4219781A1 (fr) * | 2018-11-16 | 2023-08-02 | The Swatch Group Research and Development Ltd | Matériau composite à matrice métallique et procédé de fabrication d'un tel matériau |
CN109355594B (zh) * | 2018-12-22 | 2022-04-01 | 佛山培根细胞新材料有限公司 | 一种铜钒钴改性不锈钢及其加工与热处理方法 |
CH715726B1 (fr) * | 2019-01-11 | 2022-10-14 | Richemont Int Sa | Procédé d'obtention d'un composant fonctionnel pour mouvement horloger. |
CN110117746B (zh) * | 2019-02-01 | 2021-07-27 | 上海加宁新材料科技有限公司 | 一种高性能无磁不锈钢的制造方法 |
EP3739076A1 (fr) * | 2019-05-16 | 2020-11-18 | The Swatch Group Research and Development Ltd | Composition de poudre d'acier inoxydable austenitique sans nickel et piece realisee par frittage au moyen de cette poudre |
EP3835438A1 (fr) * | 2019-12-13 | 2021-06-16 | The Swatch Group Research and Development Ltd | Acier inoxydable dur paramagnetique et son procede de fabrication |
CN111519006B (zh) * | 2020-04-24 | 2021-04-20 | 深圳市泛海统联精密制造股份有限公司 | 一种高锰氮无镍不锈钢的真空固溶方法 |
FR3118064B1 (fr) * | 2020-12-23 | 2023-12-01 | Univ De Lorraine | Pièces d’horlogerie amagnétiques et procédé de traitement thermomécanique pour l’obtention de telles pièces. |
CN112553533B (zh) * | 2020-12-25 | 2022-05-10 | 宝钢德盛不锈钢有限公司 | 一种经济性高强度奥氏体不锈钢 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB778597A (en) * | 1955-02-15 | 1957-07-10 | Ford Motor Co | Improvements in or relating to the manufacture of nitrogen-rich wrought austenitic alloys |
JPS61238943A (ja) * | 1985-04-15 | 1986-10-24 | Kobe Steel Ltd | 耐銹性の優れた高強度非磁性鋼 |
JPS62136557A (ja) * | 1985-12-07 | 1987-06-19 | Kobe Steel Ltd | 耐銹性を有する高強度非磁性鋼 |
JPH0753896B2 (ja) * | 1986-11-17 | 1995-06-07 | 株式会社神戸製鋼所 | 耐銹性および被削性の良好な高Mn非磁性鋼 |
JP3486936B2 (ja) * | 1993-12-08 | 2004-01-13 | セイコーエプソン株式会社 | 時計外装部品用材料および時計用外装部品 |
ES2150813T3 (es) | 1997-04-29 | 2000-12-01 | Bohler Edelstahl Gmbh & Co Kg | Empleo de una aleacion biocompatible y tolerable por la piel. |
JP4178670B2 (ja) * | 1999-06-28 | 2008-11-12 | セイコーエプソン株式会社 | マンガン合金鋼と軸、ネジ部材 |
JP4221133B2 (ja) * | 2000-02-10 | 2009-02-12 | セイコーエプソン株式会社 | マンガン合金鋼 |
JP2001294993A (ja) * | 2000-02-10 | 2001-10-26 | Seiko Epson Corp | プリンタ |
DE102004043134A1 (de) * | 2004-09-07 | 2006-03-09 | Hans Prof. Dr.-Ing. Berns | Höchstfester nichtrostender austenitischer Stahl |
US8337749B2 (en) * | 2007-12-20 | 2012-12-25 | Ati Properties, Inc. | Lean austenitic stainless steel |
KR101089718B1 (ko) * | 2009-07-13 | 2011-12-07 | 한국기계연구원 | 텅스텐 및 몰리브덴이 첨가된 고강도·고내식 탄질소 복합첨가 오스테나이트계 스테인리스강 및 이의 제조방법 |
KR101089714B1 (ko) * | 2009-07-13 | 2011-12-07 | 한국기계연구원 | 텅스텐이 첨가된 고강도·고내식 탄질소 복합첨가 오스테나이트계 스테인리스강 및 이의 제조방법 |
WO2011007921A1 (fr) | 2009-07-13 | 2011-01-20 | 한국기계연구원 | Acier inoxydable austénitique très résistant mécaniquement et à la corrosion, comprenant un additif complexe de carbone et d'azote, et procédé de fabrication correspondant |
JP2011219809A (ja) * | 2010-04-08 | 2011-11-04 | Honda Motor Co Ltd | 高強度鋼板 |
FI125442B (fi) * | 2010-05-06 | 2015-10-15 | Outokumpu Oy | Matalanikkelinen austeniittinen ruostumaton teräs ja teräksen käyttö |
KR101377251B1 (ko) | 2011-12-13 | 2014-03-26 | 한국기계연구원 | 저온인성이 우수한 탄질소 복합첨가 오스테나이트계 스테인리스강 및 이의 제조방법 |
EP2728028B1 (fr) * | 2012-11-02 | 2018-04-04 | The Swatch Group Research and Development Ltd. | Alliage d'acier inoxydable sans nickel |
JP6560881B2 (ja) * | 2015-03-26 | 2019-08-14 | 日鉄ステンレス株式会社 | 極低透磁率ステンレス鋼線材、ならびに耐久性に優れる鋼線、異形線 |
-
2015
- 2015-09-25 EP EP15186980.7A patent/EP3147378A1/fr not_active Withdrawn
-
2016
- 2016-06-16 EP EP16174780.3A patent/EP3147380B1/fr active Active
- 2016-07-20 US US15/214,667 patent/US20170088923A1/en not_active Abandoned
- 2016-08-05 JP JP2016154312A patent/JP6435297B2/ja active Active
- 2016-09-23 CN CN201610847224.5A patent/CN106987785A/zh active Pending
- 2016-09-23 CN CN202111366891.9A patent/CN114045445A/zh active Pending
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
JP6435297B2 (ja) | 2018-12-05 |
CN106987785A (zh) | 2017-07-28 |
EP3147380A1 (fr) | 2017-03-29 |
EP3147378A1 (fr) | 2017-03-29 |
US20170088923A1 (en) | 2017-03-30 |
CN114045445A (zh) | 2022-02-15 |
JP2017061741A (ja) | 2017-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3147380B1 (fr) | Acier inoxydable austenitique sans nickel | |
EP3543368B1 (fr) | Alliages à haute entropie pour composants d'habillage | |
EP2467505B1 (fr) | Superalliage base nickel et pièces réalisées en ce superalliage | |
WO2017216500A1 (fr) | Composition d'acier | |
BE1006333A3 (fr) | Nouvel alliage ternaire a base d'argent. | |
EP3240915B1 (fr) | Alliage précieux léger de titane et d'or et composant d'horlogerie ou de bijouterie réalisé dans un alliage précieux léger de titane et d'or | |
CN103502488A (zh) | Cu-Ni-Zn-Mn合金 | |
FR3078978A1 (fr) | Composition d'acier | |
EP2914759B1 (fr) | Alliage d'acier inoxydable sans nickel | |
FR2742448A1 (fr) | Acier pour la fabrication de pieces de mecanique secables et piece obtenue | |
CH714802A2 (fr) | Alliages à haute entropie pour composants d'habillage. | |
EP2402467B1 (fr) | Alliage d'or à dureté améliorée | |
EP1051531B1 (fr) | Acier et procede pour la fabrication de pieces de mecanique secables | |
EP0964071A1 (fr) | Acier inoxydable ferritique et pièce extérieure d'habillement pour montre réalisée en un tel acier | |
CH711568A2 (fr) | Acier inoxydable austénitique sans nickel. | |
WO2009092920A2 (fr) | Pièce de bijouterie ou d'horlogerie en alliage d'or massif, de couleur blanche, éclatante dans toute la masse | |
FR2764906A1 (fr) | Alliages d'or gris 18 et 14 carats pour bijouterie, sans nickel et sans palladium | |
FR2815044A1 (fr) | Alliage d'or gris 18 carats pour bijouterie, sans nickel et sans palladium | |
CH707203B1 (fr) | Alliage d'acier inoxydable sans nickel. | |
CH703143B1 (fr) | Alliage à base de palladium. | |
BE523002A (fr) | ||
BE471485A (fr) | ||
BE484147A (fr) | ||
CH647263A5 (en) | Non-ferrous alloy based on nickel - contg. vanadium, chromium, aluminium and silicon | |
BE389823A (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170929 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602016006398 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C22C0038000000 Ipc: C22C0038020000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/04 20060101ALI20180604BHEP Ipc: C22C 38/06 20060101ALI20180604BHEP Ipc: C22C 38/02 20060101AFI20180604BHEP Ipc: C21D 6/00 20060101ALI20180604BHEP Ipc: C22C 38/20 20060101ALI20180604BHEP Ipc: C22C 38/22 20060101ALI20180604BHEP Ipc: C22C 38/38 20060101ALI20180604BHEP Ipc: A44C 27/00 20060101ALI20180604BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180626 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016006398 Country of ref document: DE Ref country code: AT Ref legal event code: REF Ref document number: 1054125 Country of ref document: AT Kind code of ref document: T Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181017 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1054125 Country of ref document: AT Kind code of ref document: T Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190217 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190117 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190117 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190217 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190118 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016006398 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
26N | No opposition filed |
Effective date: 20190718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190616 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160616 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230615 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230702 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240521 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240522 Year of fee payment: 9 |