EP3105805A1 - Batterie lithium-ion comprenant une cathode riche en lithium et une anode a base de graphite - Google Patents

Batterie lithium-ion comprenant une cathode riche en lithium et une anode a base de graphite

Info

Publication number
EP3105805A1
EP3105805A1 EP15706904.8A EP15706904A EP3105805A1 EP 3105805 A1 EP3105805 A1 EP 3105805A1 EP 15706904 A EP15706904 A EP 15706904A EP 3105805 A1 EP3105805 A1 EP 3105805A1
Authority
EP
European Patent Office
Prior art keywords
lithium
positive electrode
battery according
negative electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15706904.8A
Other languages
German (de)
English (en)
Inventor
Irina Profatilova
Lise Daniel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP3105805A1 publication Critical patent/EP3105805A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the general field of lithium-ion rechargeable batteries.
  • the invention relates to rechargeable lithium - ion batteries comprising a lithium rich positive electrode material and a graphite - based negative electrode material.
  • the invention also relates to a method for preparing lithium-ion batteries comprising such electrodes.
  • the invention relates to a method for cycling lithium-ion batteries comprising such electrodes, with moderate capacities making it possible to improve the life of a lithium-ion battery cell.
  • the Li-ion batteries comprise one or more positive electrode (s), one or more negative electrode (s), an electrolyte and a separator composed of a porous polymer or any other suitable material so to avoid any direct contact between the electrodes.
  • Li-ion batteries are increasingly being used as an autonomous power source, particularly in applications related to electric mobility. This trend can be explained in particular by densities of mass and volumetric energy which are much higher than those of conventional nickel cadmium (Ni-Cd) and nickel-metal hydride (Ni-MH) accumulators, an absence of memory effect, a self-discharge low compared to other accumulators and also by a drop in costs per kilowatt hour related to this technology.
  • Ni-Cd nickel cadmium
  • Ni-MH nickel-metal hydride
  • Carbon based materials in particular graphite, have been successfully developed and widely marketed as electrochemically active negative electrode materials for Li-ion batteries. These materials are particularly effective because of their structure conducive to intercalation and deintercalation lithium and their stability during different charging and discharging cycles.
  • Li-ion batteries comprising negative electrode graphite materials are generally designed so that the reversible capacitance (N) of the negative electrode is greater than the reversible capacitance (P) of the positive electrode (P. Arora, RE White, Capacity fade mechanism and side reactions in lithium-ion batteries, J. Electrochem Soc, Vol 145 (1998) 3647-3667, B. Son, M.-H. Ryou, J. Choi, S. Kim, JM Ko, YM Lee, Effect of cathode / anode area on the electrochemical performance of lithium-ion batteries, J. Power Sources, Vol 243 (2013) 641-647, Y. Li, M. Bettge, B. Polzin, Y. Zhu, M. Balasubramanian, DP Abraham Understanding Long-Term Cycling Performance of
  • the batteries thus designed have a N / P ratio> 1 (1.05 - 1.3).
  • excess graphite is placed in the cell to prevent lithium plating to the negative electrode during charging and discharging cycles which results in degradation of the battery.
  • this excess graphite leads to a decrease in the specific energy density of the cell.
  • batteries having N / P ratios ⁇ 1 have been designed comprising a lithium titanate (Li 4 TisOi 2, LTO) negative electrode material as described in US2009 / 0035662, US2011 / 0281148 and US2013 / 164584.
  • Li 4 TisOi 2, LTO lithium titanate
  • the LTO-based material is a negative electrode material well known to those skilled in the art which has several specific characteristics. When it is of spinel structure, it has a high operating voltage of about 1.5 V and a theoretical low specific capacitance of 175 mAh / g. With respect to the graphite which has an operating voltage of approximately 0.15 V and a theoretical specific capacity of 372 mAh / g, the LTO-based material therefore has a reduced energy density. Thanks to the tension Because of the high operating efficiency and because of the absence of SEI layer on the surface of this electrode, there is no risk of lithium plating on the surface of the LTO material. On the other hand, the lithiation of graphite can lead to a deposition of metallic lithium during the formation of the "SEI" layer. Thus, it is not possible to design batteries having a N / P ratio ⁇ 1 when the material of the negative electrode is based on graphite.
  • the LTO material is generally used as a nanoscale material to achieve high lithium intercalation / deintercalation kinetics. High power applications are thus appropriate but the associated cost is high.
  • graphite is used as a micron or submicron size material and is generally less expensive than the LTO material.
  • Li-ion batteries Another problem with Li-ion batteries is the ability of said batteries to withstand the repetition of charging and discharging cycles that involve deep discharge, ie, close to 0 volt (V). These charge and deep discharge cycles can decrease the full accessible capacity of said batteries. For example, a battery that has an initial charge of 3 V can, after 150 cycles of charge and deep discharge, have a full accessible capacity significantly lower than the initial capacity.
  • SEI Solid Electrolyte Interphase
  • Li-ion battery cell comprising electrode materials that both avoids the problems of lithium plating and increases the resistance to capacitance loss.
  • the term "lithium-rich positive electrode material" is intended to mean any lamellar oxide of general formula:
  • the invention also relates to a method for preparing Li-ion batteries according to the invention.
  • the subject of the invention is a particular cycling method for the batteries according to the invention.
  • FIG. 1 compares the specific discharge capacities of Li-ion battery cells having different N / P ratios as a function of the number of charge and discharge cycles
  • FIG. 2 represents a scanning electron microscope micrograph of a lithium-rich material for a positive electrode
  • FIG. 3 also shows a scanning electron microscope micrograph of a lithium-rich material for a positive electrode
  • FIG. 4 shows a scanning electron micrograph of a graphite-based material for negative electrode.
  • Li-ion batteries generally include a positive electrode, a negative electrode, a separator between the electrodes and an electrolyte comprising lithium ions.
  • the lithium ions move towards the negative electrode by passing through a separator.
  • the same ions move from the negative electrode to the positive electrode again through a separator.
  • the Li-ion battery according to the invention comprises a lithium-rich positive electrode material.
  • Said electrode material A lithium-rich positive comprises an active material which is generally a lithiated metal oxide selected from nickel, cobalt and / or manganese and optionally another doping metal.
  • the lithium-rich positive electrode material may also include carbon fibers.
  • these are vapor phase growth carbon fibers (VGCF for "Vapor Grown Carbon Fibers") marketed by the company Showa Denko.
  • VGCF vapor phase growth carbon fibers
  • Other types of suitable carbon fibers may be carbon nanotubes, doped nanotubes (possibly graphite), carbon nanofibers, doped nano fibers (possibly graphite), carbon nanotubes single sheets or nanotubes multi-walled carbon. Synthetic methods for these materials may include arc discharge, laser ablation, plasma torch, and chemical vapor phase decomposition.
  • the lithium-rich positive electrode material may further comprise one or more binders.
  • the binder (s) may be chosen from polybutadiene-styrene latices and organic polymers, and preferably from polybutadiene-styrene latices, polyesters, polyethers, methylmethacrylate polymer derivatives, polymeric derivatives and the like. acrylonitrile, methylcellulose carboxyl and its derivatives, polyvinyl acetates or polyacrylate acetate, polyvinylidene fluorides, and mixtures thereof.
  • the Li-ion battery according to the invention comprises a negative electrode material based on graphite.
  • the graphite carbon may be chosen from synthetic graphite carbons, and natural from natural precursors followed by a purification and / or a post treatment.
  • Other active carbon materials may be used such as pyrolytic carbon, amorphous carbon, activated carbon, coke, coal tar pitch and graphene. Mixtures of graphite with one or more of these materials are possible.
  • Materials having a core - shell structure may be used when the core comprises high capacity graphite and when the shell comprises a carbon - based material protecting the core from degradation due to the repeated phenomenon of intercalation / deintercalation of lithium ions. .
  • the graphite negative electrode material may further comprise one or more binders as for the positive electrode.
  • the binders described above for the positive electrode can be used for the negative electrode.
  • the Li-ion battery according to the invention also comprises a separator located between the electrodes. It plays the role of electrical insulator. Several materials can be used as separators.
  • the separators are generally composed of porous polymers, preferably polyethylene and / or polypropylene.
  • the Li-ion battery according to the invention also comprises an electrolyte, preferably a liquid.
  • This electrolyte generally comprises one or more lithium salts and one or more solvents.
  • the lithium salt or salts generally comprise inert anions.
  • Suitable lithium salts may be selected from lithium bis [(trifluoromethyl) sulfonyl] imide (LiN (CF 3 S 0 2 ) 2 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), bis (oxalato) borate lithium (LiBOB), lithium difluoro (oxolato) borate (LiDFOB), lithium bis (perfluoroethylsulfonyl) imide (LiN (CF 3 CF 2 SiO 2 ) 2 ), LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4, Lil, LiCH 3 S0 3, LiB (C 2 0 4) 2, LiR F SOSR F, LiN (R F S 0 2) 2, liC (R F S0 2) 3, R F is a group selected from fluorine atom and a perfluoroalkyl group having between one and
  • the lithium salt or salts are preferably dissolved in one or more solvents chosen from aprotic polar solvents, for example ethylene carbonate (denoted “EC”), propylene carbonate, dimethyl carbonate, diethyl carbonate (denoted “DEC”) and methyl and ethyl carbonate.
  • aprotic polar solvents for example ethylene carbonate (denoted “EC”), propylene carbonate, dimethyl carbonate, diethyl carbonate (denoted “DEC”) and methyl and ethyl carbonate.
  • the invention also relates to a method for preparing Li-ion batteries according to the invention, comprising the following steps:
  • Q + rev is the reversible surface capacity of the positive electrode (mAh / cm 2 );
  • L denotes the density of active material for the negative electrode (mg / cm);
  • L denotes the density of active material for the positive electrode (mg / cm 2 );
  • Q ' rev.spe refers to the specific reversible capacity of the negative electrode (mAh / mg);
  • Q rev.spe designates the specific reversible capacitance of the positive electrode (mAh / mg),
  • N / P 1, a material for positive electrode rich in lithium as defined above, on a current collector;
  • a method for preparing Li-ion batteries according to the invention comprises the following steps:
  • the invention also relates to a particular cycling method of a Li-ion battery according to the invention comprising the following steps:
  • the cycles being carried out at a capacity of between C / 20 and C, C denoting the capacity of the Li-ion battery.
  • the first activation cycle is at a capacity of C / 10.
  • the following charging and discharging cycles occur at a capacitance of C / 2.
  • a high voltage is used during the activation cycle.
  • This "overvoltage” can be likened to an additional capacity of the lithium-rich positive electrode material.
  • Said material is used as a “sacrificed lithium” material in this step to form SEI ("Solid Electrolyte Interphase") on the graphite-based negative electrode active material.
  • An active material for lithium rich positive electrode is provided by Umicore and has the formula Lii i2 Mno, 5Nio, 2Coo, i 0 2.
  • the positive electrode is prepared by mixing 86% by weight of active material, 3% by weight of Super P® carbon additive, 3% by weight of carbon fiber (VGCF) and 8% by weight of dissolved polyvinylidene fluoride. in N-methyl-2-pyrrolidone (NMP).
  • Two types of electrode are prepared, one for comparison and one according to the invention.
  • the two electrodes are manufactured by depositing the mixture respectively on an aluminum sheet 20 ⁇ thick.
  • the electrodes are dried and calendered at 80 ° C so that they each have a porosity of 35%.
  • Figures 2 and 3 show snapshots with a scanning electron microscope of the positive electrode thus manufactured. Preparation of the negative electrode
  • Active graphite material is provided by Hitachi (SMGHE2). Two types of electrode are prepared, one for comparison and one according to the invention, by mixing 96% by weight of graphite, 2% by weight of carboxyl methyl cellulose (CMC) and 2% by weight of Styrofan latex, c. that is, a carboxylated styrene-butadiene copolymer.
  • CMC carboxyl methyl cellulose
  • Styrofan latex c. that is, a carboxylated styrene-butadiene copolymer.
  • the resulting mixture is respectively deposited on a copper sheet 15 ⁇ thick and then dried and compressed by calendering at 80 ° C.
  • the negative electrodes thus manufactured each have a porosity of 43%.
  • the density of electrode material is 4.46 mg / cm 2
  • FIG. 4 represents a scanning electron microscope photograph of the positive electrode thus produced.
  • Table 1 shows that the positive electrode is designed such that a specific reversible surface capacitance of 1.25 mAh / cm 2 is measured. A specific reversible surface capacitance of 1.58 mAh / cm 2 is measured for the negative electrode.
  • Table 1 shows that the positive electrode is designed such that a specific reversible surface capacitance of 1.77 mAh / cm 2 is measured. A specific reversible surface capacity of 1.77 mAh / cm 2 is measured for the negative electrode.
  • the Celgard® 2500 separator is used to prevent short circuits between the positive electrode and the negative electrode during charging and discharging cycles.
  • the area of this separator is 16 cm 2 .
  • the electrolyte used is a mixture of ethylene carbonate, methyl ethyl carbonate and dimethyl carbonate (EC / EMC / DMC) in a ratio 1/1/1 by volume with the lithium salt LiPF 6 at 1M.
  • the Celgard® 2500 separator is a microporous single-layer membrane with a thickness of 25 ⁇ made of polypropylene.
  • FIG. 1 shows a graph comparing the specific discharge capacities of three Li-ion battery cells each comprising a lithium-rich positive electrode material and a graphite-based negative electrode material. with different N / P ratios depending on the number of charge and discharge cycles.
  • FIG. 1 clearly shows that the electrochemical behavior (curve A) is very unstable with respect to the cell of the battery A. A drop in electrochemical performance is observed and a specific discharge capacity of about 100 mAh / g is measured after about 150 cycles.
  • Figure 1 shows on the other hand that the electrochemical performances (curves B and C respectively) of the cells of the battery B and the battery C are similar after about 1 80 cycles. Indeed, a specific discharge capacity of about 150 mAh / g is measured for the 2 cells.
  • the analysis of FIG. 1 therefore firstly shows that by using the cycling method according to the invention, a clear improvement in the electrochemical performances is observed. It further results from the analysis of Figure 1 that it is no longer necessary to put excess graphite in a Li-ion battery cell. As a result, the energy density of the cell is increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

L'invention a pour objet une batterie lithium-ion comprenant un matériau pour électrode négative à base de graphite, un matériau pour électrode positive riche en lithium, un électrolyte et un séparateur caractérisée en que la capacité réversible (N) de ladite électrode négative est égale à la capacité réversible (P) de ladite électrode positive de telle sorte que ladite batterie présente un ratio N/P = 1. L'invention a également pour objet un procédé de préparation de batteries Li-ion selon l'invention Enfin, l'invention a pour objet un procédé de cyclage d'une batterie lithium-ion selon l'invention.

Description

BATTERIE LITHIUM-ION C OMPRENANT UNE CATHODE RICHE EN LITHIUM ET UNE ANODE A BASE DE GRAPHITE L 'invention concerne le domaine général des batteries rechargeables lithium-ion.
Plus précisément, l 'invention concerne les batteries rechargeables lithium-ion comprenant un matériau pour électrode positive riche en lithium et un matériau pour électrode négative à base de graphite .
L 'invention concerne également un procédé de préparation de batteries lithium-ion comprenant de telles électrodes .
Enfin, l' invention concerne un procédé de cyclage de batteries lithium-ion comprenant de telles électrodes, à des capacités modérées permettant d' améliorer la durée de vie d'une cellule de batterie lithium-ion.
Classiquement, les batteries Li-ion comprennent une ou plusieurs électrode(s) positive(s), une ou plusieurs électrode(s) négative(s), un électrolyte et un séparateur composé d'un polymère poreux ou de tout autre matériau approprié afin d ' éviter tout contact direct entre les électrodes .
Les batteries Li-ion sont de plus en plus utilisées comme source d'énergie autonome, en particulier dans les applications liées à la mobilité électrique. Cette tendance s'explique notamment par des densités d'énergie massique et vo lumique nettement supérieures à celles des accumulateurs classiques nickel cadmium (Ni-Cd) et nickel- hydrure métallique (Ni-MH), une absence d' effet mémoire, une autodécharge faible par rapport à d' autres accumulateurs et également par une baisse des coûts au kilowatt-heure liée à cette technologie.
Les matériaux à base de carbone, en particulier de graphite ont été développés avec succès et largement commercialisés comme matériaux électrochimiquement actifs d'électrode négative pour accumulateurs Li-ion. Ces matériaux sont particulièrement performants du fait de leur structure propice à l'intercalation et la désintercalation du lithium et de leur stabilité au cours des différents cycles de charge et de décharge.
Les batteries Li-ion comprenant des matériaux à base de graphite pour électrode négative sont généralement conçues de telle sorte que la capacité réversible (N) de l'électrode négative est supérieure à la capacité réversible (P) de l'électrode positive (P. Arora, R.E. White. Capacity fade mechanism and side reactions in lithium-ion batteries. J. Electrochem. Soc, Vol. 145 (1998) 3647-3667 ; B. Son, M. -H. Ryou, J. Choi, S. -H. Kim, J. M. Ko, Y. M. Lee. Effect of cathode/anode area ratio on electrochemical performance of lithium-ion batteries. J. Power Sources, Vol. 243 (2013) 641-647; Y. Li, M. Bettge, B. Polzin, Y. Zhu, M. Balasubramanian, D.P. Abraham. Understanding Long-Term Cycling Performance of
Li1.2Ni0.15Mn0.55Coo.102-Graphite Lithium-Ion Cells. J. Electrochem. Soc, 160 (5) A3006-A3019 (2013;). Un ratio N/P est alors défini.
Les batteries ainsi conçues présentent un ratio N/P > 1 (1,05 - 1,3). Ainsi, du graphite en excès est placé dans la cellule afin d'éviter le plaquage de lithium à l'électrode négative durant les cycles de charge et de décharge qui entraîne une dégradation de la batterie. Cependant, cet excès de graphite mène à une diminution de la densité d'énergie spécifique de la cellule.
Pour faire face à ces problèmes, des batteries présentant des ratios N/P < 1 ont été conçues comprenant un matériau pour électrode négative à base de titanate de lithium (Li4TisOi2, LTO) comme le décrivent les documents suivants US2009/0035662, US2011/0281148 et US2013/164584.
Le matériau à base de LTO est un matériau pour électrode négative bien connu de l'homme du métier qui possède plusieurs caractéristiques spécifiques. Quand il est de structure spinelle, il présente une tension de fonctionnement élevée d'environ 1,5 V et une faible capacité spécifique théorique de 175 mAh/g. Par rapport au graphite qui présente une tension de fonctionnement d'environ 0,15 V et une capacité spécifique théorique de 372 mAh/g, le matériau à base de LTO présente donc une densité d'énergie réduite. Grâce à la tension de fonctionnement élevée et du fait de l ' absence de couche SEI à la surface de cette électrode, il n 'y a aucun risque de plaquage de lithium à la surface du matériau à base de LTO . En revanche, la lithiation du graphite peut entraîner un dépôt de lithium métallique lors de la formation de la couche « SEI » . Ainsi, il n' est pas possible de concevoir des batteries présentant un ratio N/P < 1 lorsque le matériau de l ' électrode négative est à base de graphite.
De plus, le matériau à base de LTO est généralement utilisé en tant que matériau de taille nanométrique pour atteindre des cinétiques d'intercalation/désintercalation d ' ions lithium élevées. Les applications haute puissance sont ainsi appropriées mais le coût associé est élevé. De son côté, le graphite est utilisé en tant que matériau de taille micronique ou submicronique et est généralement moins cher que le matériau à base de LTO .
Une autre problématique liée aux batteries Li-ion concerne la capacité desdites batteries à supporter la répétition des cycles de charge et de décharge qui impliquent une décharge profonde, c ' est-à- dire proche de 0 vo lt (V) . Ces cycles de charge et de décharge profonde peuvent diminuer la pleine capacité accessible desdites batteries . Par exemple, une batterie qui a une charge initiale de 3 V peut, après 150 cycles de charge et de décharge profonde, avoir une pleine capacité accessible nettement inférieure à la capacité initiale.
Une conséquence de cet affaiblissement de capacité est la nécessité de recharger fréquemment la batterie, ce qui est peu pratique pour l 'utilisateur.
Les cycles de charge et de décharge sont également à l ' origine d'un autre phénomène. Des produits issus des réactions thermodynamiques se déroulant au sein d'un accumulateur Li-ion s ' accumulent sur la surface du matériau actif pour former une couche appelée « Solid Electrolyte Interphase » (SEI) . Cette SEI est un élément essentiel au bon fonctionnement de l ' accumulateur Li-ion, bien que responsable de l' importante capacité irréversible observée lors du premier cycle, car non seulement elle conduit très bien les ions lithium mais elle présente aussi l ' avantage de stopper la décomposition catalytique du solvant.
Il serait donc avantageux de fournir une cellule de batterie Li- ion comprenant des matériaux pour électrodes permettant à la fois d' éviter les problèmes liés au plaquage de lithium et d' augmenter la résistance à l ' affaiblissement de capacité .
Il a maintenant été découvert qu'un procédé de cyclage particulier d'une batterie Li-ion, présentant un ratio N/P = 1 et comprenant un matériau pour électrode négative à base de graphite, conduisait à l'obtention de performances électrochimiques similaires à celles de batteries Li-ion comprenant ledit même matériau pour électrode négative et présentant un ratio N/P > 1 . L 'immense avantage réside dans le fait que l ' excès de graphite n' est plus nécessaire menant par conséquent à une augmentation de la densité d' énergie de la cellule.
Après un premier cycle d' activation du matériau riche en lithium pour électrode positive à une tension > 4,4 V, les cycles de charge et de décharge suivants se déroulent à des tensions réduites et en utilisant une capacité réduite C, C désignant la capacité de la batterie Li-ion. Ce procédé de cyclage particulier est connu de l ' art antérieur comme le montre le document US 2012/0056590 qui décrit ledit procédé pour des batteries Li-ion comprenant un matériau pour électrode positive riche en lithium et un matériau pour électrode négative pouvant intercaler du lithium.
L 'invention a donc pour obj et une batterie lithium-ion comprenant un matériau pour électrode négative à base de graphite, un matériau pour électrode positive riche en lithium, un séparateur et un électrolyte, la capacité réversible (N) de ladite électrode négative étant égale à la capacité réversible (P) de ladite électrode positive de telle sorte que ladite batterie présente un ratio N/P = 1 , le ratio N/P étant défini par l ' équation ( 1 ) telle que décrite ci-dessus. Dans la suite de la présente demande, il est entendu par « matériau pour électrode positive riche en lithium » tout oxyde lamellaire de formule générale :
xLi2Mn03 . ( l -x)LiM03 où M représente un ou plusieurs éléments de transition.
L 'invention a également pour obj et un procédé de préparation de batteries Li-ion selon l' invention.
Enfin, l' invention a pour objet un procédé de cyclage particulier pour les batteries selon l' invention.
D ' autres avantages et caractéristiques de l' invention apparaîtront plus clairement à l ' examen de la description détaillée et des dessins annexés sur lesquels :
- la figure 1 compare les capacités de décharge spécifiques de cellules de batteries Li-ion présentant différents ratio s N/P en fonction du nombre de cycle de charge et de décharge,
- la figure 2 représente un cliché au microscope électronique à balayage d'un matériau riche en lithium pour électrode positive,
- la figure 3 représente également un cliché au microscope électronique à balayage d'un matériau riche en lithium pour électrode positive,
- la figure 4 représente un cliché au microscope électronique à balayage d'un matériau à base de graphite pour électrode négative.
Dans la description de l' invention, le terme « à base de » est synonyme de « comprenant majoritairement » .
Les batteries Li-ion comprennent généralement une électrode positive, une électrode négative, un séparateur entre les électrodes et un électrolyte comprenant des ions lithiums . Lors d'un cycle de charge d'une batterie Li-ion, les ions lithium se déplacent vers l ' électrode négative en passant au travers d'un séparateur. Lors du cycle de décharge, les mêmes ions se déplacent de l ' électrode négative vers l ' électrode positive en passant à nouveau au travers d'un séparateur.
La batterie Li-ion selon l' invention est conçue de telle sorte que ladite batterie présente un ratio N/P = 1 .
La batterie Li-ion selon l' invention comprend un matériau pour électrode positive riche en lithium. Ledit matériau pour électrode positive riche en lithium comprend un matériau actif qui est généralement un oxyde lithié de métal choisi parmi le nickel, le cobalt et/ou le manganèse et éventuellement un autre métal dopant. Le matériau actif pour électrode positive riche en lithium est de formule Lii +x(MaDb) i -x02, dans laquelle M représente un métal ou plusieurs métaux choisi(s) parmi le nickel, le manganèse et le cobalt, x est compris entre 0,01 et 0,33 , D représente un métal ou plusieurs métaux dopant(s) choisi(s) parmi Na, Zn, Cd, Mg, Ti, Ca, Zr, Sr, Ba, Al ou K, b est compris entre 0 et 0 ,05 et a + b = 1 .
Outre le matériau actif, le matériau pour électrode positive riche en lithium peut également comprendre des fibres de carbone. De préférence, ce sont des fibres de carbone à croissance en phase vapeur (VGCF pour « Vapor Grown Carbon Fibers ») commercialisées par la société Showa Denko . D ' autres types de fibres de carbone appropriés peuvent être des nanotubes de carbone, des nanotubes dopés (éventuellement au graphite), des nano fibres de carbone, des nano fibres dopées (éventuellement au graphite), des nanotubes de carbone mono feuillets ou des nanotubes de carbone multifeuillets. Les méthodes de synthèse relatives à ces matériaux peuvent inclure une décharge par arc, une ablation laser, une torche à plasma et une décomposition chimique en phase vapeur.
Le matériau pour électrode positive riche en lithium peut en outre comprendre un ou plusieurs liants .
De manière préférée, le ou les liants peuvent être choisis parmi les latex de polybutadiène-styrène et les polymères organiques, et de préférence parmi les latex de polybutadiène-styrène, les polyesters, les polyéthers, les dérivés polymère de méthylméthacrylate, les dérivés polymères d' acrylonitrile, la carboxyle méthyle cellulo se et ses dérivés, les polyvinyles acétates ou polyacrylate acétate, les polyfluorure de vinylidène, et leurs mélanges .
La batterie Li-ion selon l' invention comprend un matériau pour électrode négative à base de graphite. Le carbone graphite peut être choisi parmi les carbones graphite synthétiques, et naturels à partir de précurseurs naturels suivis d'une purification et/ou d'un post traitement. D ' autres matériaux actifs à base de carbone peuvent être utilisés comme le carbone pyrolitique, le carbone amorphe, le charbon actif, le coke, le brai de houille et le graphène. Des mélanges de graphite avec l 'un ou plusieurs de ces matériaux sont possibles. Des matériaux possédant une structure noyau-enveloppe peuvent être utilisés quand le noyau comprend du graphite haute capacité et lorsque l ' enveloppe comprend un matériau à base de carbone protégeant le noyau de la dégradation liée au phénomène répété de l' intercalation/désintercalation des ions lithiums .
Le matériau pour électrode négative à base de graphite peut en outre comprendre un ou plusieurs liants comme pour l' électrode positive.
Les liants décrits ci-dessus pour l ' électrode positive peuvent être utilisés pour l ' électrode négative.
La batterie Li-ion selon l' invention comprend également un séparateur localisé entre les électrodes. Il joue le rôle d' isolant électrique. Plusieurs matériaux peuvent être utilisés comme séparateurs . Les séparateurs sont généralement composés de polymères poreux, de préférence de polyéthylène et/ou de po lypropylène.
La batterie Li-ion selon l' invention comprend également un électrolyte, de préférence liquide.
Cet électrolyte comprend généralement un ou plusieurs sels de lithium et un ou plusieurs solvants .
Le ou les sels de lithium comprennent généralement des anions inertes. Des sels de lithium appropriés peuvent être choisis parmi le bis [(trifluorométhyl)sulfonyl]imide de lithium (LiN(CF3 S 02)2) , le trifluorométhane sulfonate de lithium (LiCF3 S03), le bis(oxalato)borate de lithium (LiBOB), le difluoro(oxolato) borate de lithium (LiDFOB), le bis(perfluoroéthylsulfonyl)imide de lithium (LiN(CF3CF2S 02)2), LiC104, LiAsF6, LiPF6, LiBF4, Lil, LiCH3 S03 , LiB(C204)2, LÏRF S O S RF, LiN(RFS 02)2, LiC(RFS02)3 , RF étant un groupement choisi parmi un atome de fluor et un groupement perfluoroalkyle comportant entre un et huit atomes de carbone. Le ou les sels de lithium sont, de préférence, dissous dans un ou plusieurs solvants choisis parmi les solvants polaires aprotiques, par exemple, le carbonate d'éthylène (noté « EC »), le carbonate de propylène, le carbonate de diméthyle, le carbonate de diéthyle (noté « DEC ») et le carbonate de méthyle et d'éthyle.
L'invention a également pour objet un procédé de préparation de batteries Li-ion selon l'invention, comprenant les étapes suivantes :
- fabrication d'une cellule, comprenant les étapes suivantes :
- préparation d'une première électrode par dépôt d'une masse donnée en un matériau pour électrode négative à base de graphite tel que défini ci-avant, sur un collecteur de courant,
- préparation d'une seconde électrode par dépôt d'une masse adaptée, de telle manière que l'équation (1) telle que définie ci-après :
— O zïrev _ L Q *Z rev.spe , .
~Q--r+ev ~ L+xQ r+ev.spe
dans laquelle Q" rev désigne la capacité réversible surfacique de l'électrode négative (mAh/cm2) ;
Q+ rev désigne la capacité réversible surfacique de l'électrode positive (mAh/cm2) ;
L" désigne la masse surfacique de matériau actif pour l'électrode négative (mg/cm ) ;
L désigne la masse surfacique de matériau actif pour l'électrode positive (mg/cm2) ;
Q'rev.spe désigne la capacité réversible spécifique de l'électrode négative (mAh/mg) ;
Q rev.spe désigne la capacité réversible spécifique de l'électrode positive (mAh/mg),
soit respectée pour un ratio N/P = 1, en un matériau pour électrode positive riche en lithium tel que défini ci-avant, sur un collecteur de courant ;
en d'autres termes, connaissant la masse déposée de matériau pour l'électrode négative, et les valeurs de Q'rev.spe, Q rev.spe et L", l' homme du métier est capable de trouver la masse à déposer de matériau pour l ' électrode positive de manière à ce que le ratio N/P soit égal à 1 ;
- empilement de la première électrode, de la seconde électrode telles que préparées ci-dessus, et d'un séparateur tel que précédemment décrit, situé entre les deux électrodes,
- imprégnation du séparateur par un électrolyte tel que précédemment décrit,
- assemblage d'une ou plusieurs cellule(s) telle(s) que précédemment fabriquée(s) .
Il est à noter que les deux étapes de préparation des électrodes par dépôt sont intervertibles.
Dans un mo de de réalisation préféré, un procédé de préparation de batteries Li-ion selon l' invention comprend les étapes suivantes :
- fabrication d'une cellule, comprenant les étapes suivantes :
- préparation d'une première électrode par dépôt d'une masse donnée en un matériau pour électrode négative à base de graphite telle que défini ci-avant, sur un co llecteur de courant
- séchage de ladite première électrode
- densification de ladite première électrode
- préparation d'une seconde électrode par dépôt d'une masse adaptée, de telle manière que l ' équation ( 1 ) soit respectée pour un ratio N/P = 1 , en un matériau pour électrode positive riche en lithium telle que défini ci- avant, sur un collecteur de courant,
- séchage de ladite seconde électrode,
- densification de ladite seconde électrode,
- empilement de la première électrode, de la seconde électrode telles que préparées ci-dessus, et d'un séparateur tel que précédemment décrit, situé entre les deux électrodes, - imprégnation du séparateur par un électrolyte tel que précédemment décrit,
- assemblage d'une ou plusieurs cellule(s) telle(s) que précédemment fabriquée(s) .
II est à noter que les deux étapes de préparation des électrodes sont intervertibles .
L 'invention a également pour obj et un procédé de cyclage particulier d'une batterie Li-ion selon l 'invention comprenant les étapes suivantes :
- un premier cycle d' activation entre une tension supérieure (Tsup) strictement supérieure à 4,40 V, de préférence comprise entre 4,40 V borne exclue et 4,60 V, et une tension inférieure (Tinf) comprise entre 1 ,60 et 2,50 V, de préférence égale à 2 V,
- les cycles de charge et de décharge suivants à des tensions comprises entre une tension Tsup comprise entre 4,30 et 4,43 V, de préférence égale à 4,40 V, et une tension Tlnf comprise entre 1 ,60 et 2,50 V, de préférence égale à 2,30 V ;
les cycles s ' effectuant à une capacité comprise entre C/20 et C, C désignant la capacité de la batterie Li-ion.
Dans un mode de réalisation préféré, le premier cycle d' activation s ' effectue à une capacité de C/ 1 0.
Dans un autre mode de réalisation préféré, les cycles de charge et de décharge suivants s ' effectuent à une capacité de C/2.
Au cours du procédé de cyclage selon l' invention, une tension élevée est utilisée lors du cycle d' activation. Cette « surtension » peut être assimilée à une capacité additionnelle du matériau pour électrode positive riche en lithium. Ledit matériau est utilisé comme un matériau « sacrifié en lithium » lors de cette étape afin de former la SEI (« Solid Electrolyte Interphase ») sur le matériau actif pour électrode négative à base de graphite.
La présente invention est illustrée de manière non-limitative par les exemples suivants .
Exemples Préparation de Γ électrode positive
Un matériau actif pour électrode positive riche en lithium est fourni par la société Umicore et a pour formule Lii i2Mno,5Nio,2Coo, i 02. L ' électrode positive est préparée en mélangeant 86% en poids de matériau actif, 3 % en poids d'un additif carbone Super P®, 3 % en poids de fibres de carbone (VGCF) et 8% en poids de polyfluorure de vinylidène dissous dans du N-méthyl-2-pyrrolidone (NMP) .
Deux types d' électrode sont préparés, une à titre comparatif et une selon l' invention. Les deux électrodes sont fabriquées en déposant respectivement le mélange sur une feuille d' aluminium de 20 μιη d' épaisseur. Les électrodes sont séchées et compressées par calandrage à 80°C de telle sorte qu' elles présentent chacune une porosité de 35 % .
Afin que la densité de matériau pour électrode soit de 5 ,65 mg/cm2, valeur régie par l ' équation ( 1 ), l' épaisseur finale dudit matériau pour électrode pour la batterie Li-ion présentant un ratio N/P = 1 ,26 est de 52 μιη.
Afin que la densité de matériau pour électrode soit de 8 , 15 mg/cm2, valeur régie par l ' équation ( 1 ), l ' épaisseur finale dudit matériau pour électrode pour la batterie Li-ion présentant un ratio N/P = 1 est de 60 μιη.
Les figures 2 et 3 représentent des clichés au microscope électronique à balayage de l ' électrode positive ainsi fabriquée. Préparation de l 'électrode négative
Un matériau actif de graphite est fourni par la société Hitachi (SMGHE2). Deux types d' électrode sont préparés, une à titre comparatif et une selon l' invention, en mélangeant 96% en poids de graphite, 2% en poids de carboxyle méthyle cellulose (CMC) et 2% en poids de latex Styrofan®, c ' est-à-dire un copolymère styrène- butadiène carboxylé.
Le mélange résultant est respectivement déposé sur une feuille de cuivre de 15 μιη d' épaisseur puis séché et compressé par calandrage à 80°C . Les électrodes négatives ainsi fabriquées présentent chacune une porosité de 43 % .
Afin que la densité de matériau pour électrode soit de 4 ,46 mg/cm2, l ' épaisseur finale dudit matériau pour électrode pour la batterie Li-ion présentant un ratio N/P = 1 ,26 est de 41 μιη.
Afin que la densité de matériau pour électrode soit de 5 ,05 mg/cm2, l ' épaisseur finale dudit matériau pour électrode pour la batterie Li-ion présentant un ratio N/P = 1 est de 46 μιη.
La figure 4 représente un cliché au microscope électronique à balayage de l ' électrode positive ainsi fabriquée.
Caractéristiques des électrodes
Les caractéristiques détaillées des électrodes sont présentées dans le tableau 1 ci-dessous :
spécifique à C/10 (mAh/cm )
Tableau 1
En ce qui concerne la batterie Li-ion A comparative, le tableau 1 montre que l'électrode positive est conçue de telle manière qu'une capacité surfacique réversible spécifique de 1,25 mAh/cm2 est mesurée. Une capacité surfacique réversible spécifique de 1,58 mAh/cm2 est mesurée pour l'électrode négative. Ainsi, la batterie A présente un ratio N/P = 1,26.
En ce qui concerne la batterie Li-ion B de l'invention, le tableau 1 montre que l'électrode positive est conçue de telle manière qu'une capacité surfacique réversible spécifique de 1,77 mAh/cm2 est mesurée. Une capacité surfacique réversible spécifique de 1,77 mAh/cm2 est mesurée pour l'électrode négative. Ainsi, la batterie B présente un ratio N/P = 1.
Séparateur et électrolyte
Le séparateur Celgard® 2500 est utilisé afin d'éviter tout court-circuit entre l'électrode positive et l'électrode négative durant les cycles de charge et de décharge. L'aire de ce séparateur est de 16 cm2.
L'électrolyte utilisé est un mélange de carbonate d'éthylène, de méthyléthylcarbonate et de diméthylcarbonate (EC/EMC/DMC) selon un ratio 1/1/1 en volume avec le sel de lithium LiPF6 à 1M. Le séparateur Celgard® 2500 est une membrane microporeuse monocouche d 'une épaisseur de 25 μιη composée de polypropylène.
Performances électrochimiques de cellules de batterie Li-ion La figure 1 représente un graphe comparant les capacités de décharge spécifiques de trois cellules de batteries Li-ion comprenant chacune un matériau pour électrode positive riche en lithium et un matériau pour électrode négative à base de graphite et présentant différents ratios N/P en fonction du nombre de cycle de charge et de décharge. La cellule de la batterie A présente un ratio N/P = 1 ,26. La cellule de la batterie B présente un ratio N/P = 1 , c ' est-à-dire qu ' elle est conçue selon l' invention. La cellule de la batterie C présente un ratio N/P = 1 ,26.
Deux procédés de cyclage différents ont été utilisés. En ce qui concerne la cellule de la batterie A, une tension initiale de 4,6 V a été utilisée lors du cycle d' activation à une capacité C/ 10. Les cycles de charge et de décharge suivants se sont déroulés à des tensions comprises entre 4,6 et 2,3 V à une capacité C/2. En revanche, si la tension initiale de 4,6 V a été utilisée lors du cycle d' activation pour les cellules de la batterie B et de la batterie C à une capacité C/ 1 0, les cycles de charge et de décharge suivants se sont déroulés à des tensions réduites comprises entre 4,4 et 2 ,3 V à une capacité C/2.
Ainsi, si la tension initiale de 4,6 V n' est pas réduite pour les cycles de charge et de décharge suivants, la figure 1 montre clairement que le comportement électrochimique (courbe A) est très instable en ce qui concerne la cellule de la batterie A. Une chute des performances électrochimiques est observée et une capacité de décharge spécifique d' environ 100 mAh/g est mesurée après environ 150 cycles .
La figure 1 montre d' autre part que les performances électrochimiques (respectivement courbes B et C) des cellules de la batterie B et de la batterie C sont similaires après environ 1 80 cycles . En effet, une capacité de décharge spécifique d' environ 150 mAh/g est mesurée pour les 2 cellules. L'analyse de la figure 1 montre donc tout d'abord qu'en utilisant le procédé de cyclage selon l'invention, une amélioration nette des performances électrochimiques est observée. Il résulte en outre de l'analyse de la figure 1 qu'il n'est plus nécessaire de mettre du graphite en excès au sein d'une cellule de batterie Li-ion. Par conséquent, la densité d'énergie de la cellule est augmentée.

Claims

REVENDICATIONS
1 . Batterie lithium-ion comprenant un matériau pour électrode négative à base de graphite, un matériau pour électrode positive riche en lithium, un séparateur et un électrolyte caractérisée en que la capacité réversible (N) de ladite électrode négative est égale à la capacité réversible (P) de ladite électrode positive de telle sorte que ladite batterie présente un ratio N/P = 1 .
2. Batterie selon la revendication 1 , caractérisée en ce que ledit matériau pour électrode positive riche en lithium comprend un matériau actif de formule Lii +x(MaDb) i -x02 , dans laquelle M représente un métal ou plusieurs métaux choisi(s) parmi le nickel, le manganèse et le cobalt, x est compris entre 0 ,0 1 et 0,33 , D représente un métal ou plusieurs métaux dopant(s) choisi(s) parmi Na, Zn, Cd, Mg, Ti, Ca, Zr, Sr, Ba, Al ou K, b est compris entre 0 et 0 ,05 et a + b = 1 .
3. Batterie selon la revendication 1 ou 2, caractérisée en ce que ledit matériau pour électrode positive riche en lithium comprend des fibres de carbone.
4. Batterie selon la revendication 3 , caractérisée en ce que les fibres de carbone sont des fibres de carbone à croissance en phase vapeur (VGCF) .
5. Batterie selon l 'une quelconque des revendications précédentes, caractérisée en ce que ledit matériau pour électrode positive riche en lithium comprend un ou plusieurs liants .
6. Batterie selon la revendication 5 , caractérisée en ce que le ou lesdits liants sont choisis parmi les latex de polybutadiène-styrène et les polymères organiques, et de préférence parmi les latex de polybutadiène-styrène, les polyesters, les polyéthers, les dérivés polymère de méthylméthacrylate, les dérivés polymères d' acrylonitrile, la carboxyle méthyle cellulose et ses dérivés, les polyvinyles acétates ou polyacrylate acétate, les polymères de fluorure de vinylidène, et leurs mélanges .
7. Batterie selon l 'une quelconque des revendications précédentes, caractérisée en ce que ledit matériau pour électrode négative à base de graphite comprend un ou plusieurs liants .
8. Batterie selon l 'une quelconque des revendications précédentes, caractérisée en ce que ledit séparateur est généralement composé de polymères poreux, de préférence de polyéthylène et/ou de polypropylène.
9. Batterie selon l 'une quelconque des revendications précédentes, caractérisée en ce que ledit électrolyte comprend un ou plusieurs sels de lithium.
10. Batterie selon la revendication 9, caractérisée en ce que ledit ou lesdits plusieurs sels de lithium sont choisis parmi le bis [(trifluorométhyl)sulfonyl]imide de lithium (LiN(CF3 S 02)2) , le trifluorométhane sulfonate de lithium (LiCF3 S03), le bis(oxalato)borate de lithium (LiBOB), le difluoro(oxolato) borate de lithium (LiDFOB), le bis(perfluoroéthylsulfonyl)imide de lithium (LiN(CF3CF2S 02)2), LiC104, LiAsF6, LiPF6, LiBF4, Lil, LiCH3 S03 , LiB(C204)2, LÏRF S O S RF, LiN(RFS 02)2, LiC(RFS02)3 , RF étant un groupement choisi parmi un atome de fluor et un groupement perfluoroalkyle comportant entre un et huit atomes de carbone.
1 1 . Batterie selon l 'une quelconque des revendications précédentes, caractérisée en ce que ledit électrolyte comprend un ou plusieurs solvants .
12. Batterie selon la revendication 1 1 , caractérisée en que ledit ou lesdits p lusieurs so lvants sont choisis parmi les so lvants polaires aprotiques, de préférence, le carbonate d' éthylène, le carbonate de propylène, le diméthylcarbonate, le diéthylcarbonate et le méthyléthylcarbonate.
13. Procédé de préparation d'une batterie Li-ion telle que définie à l 'une quelconque des revendications précédentes, caractérisé en ce que ledit procédé comprend les étapes suivantes :
- fabrication d'une cellule, comprenant les étapes suivantes : préparation d'une première électrode par dépôt d'une masse donnée en un matériau pour électrode négative à base de graphite, sur un collecteur de courant, préparation d 'une seconde électrode par dépôt d'une masse adaptée, de telle manière que l ' équation ( 1 ) telle que définie ci-après : dans laquelle Q~ r ev désigne la capacité réversible surfacique de l ' électrode négative (mAh/cm2) ;
Q+ rev désigne la capacité réversible surfacique de l ' électrode positive (mAh/cm2) ;
L" désigne la masse surfacique de matériau actif pour l ' électrode négative (mg/cm2) ;
L+ désigne la masse surfacique de matériau actif pour l ' électrode positive (mg/cm2) ;
Q rev . sp e désigne la capacité réversible spécifique de l ' électrode négative (mAh/mg) ;
Q rev . sp e désigne la capacité réversible spécifique de l ' électrode positive (mAh/mg),
soit respectée pour un ratio N/P = 1 , en un matériau pour électrode positive riche en lithium tel que défini ci-avant, sur un co llecteur de courant, sur un co llecteur de courant,
les deux étapes de préparation desdites première et seconde électrodes étant intervertibles,
- empilement de la première électrode, de la seconde électrode telles que préparées ci-dessus, et d'un séparateur, situé entre les deux électrodes,
- imprégnation du séparateur par un électrolyte,
- assemblage d'une ou plusieurs cellule(s) telle(s) que précédemment fabriquée(s) .
14. Procédé de cyclage d'une batterie Li-ion telle que définie à l 'une quelconque des revendications 1 à 12 , caractérisé en ce que ledit procédé comprend les étapes suivantes :
- un premier cycle d' activation entre une tension Tsup strictement supérieure à 4,40 V, de préférence comprise entre 4,40 V borne exclue et 4,60 V, et une tension Tlnf comprise entre 1 ,60 et 2,50 V, de préférence égale à 2 V,
- les cycles de charge et de décharge suivants à des tensions comprises entre une tension Tsup comprise entre 4,30 et 4,43 V, de préférence égale à 4,40 V, et une tension Tlnf comprise entre 1 ,60 et 2,50 V, de préférence égale à 2,30 V ;
les cycles s ' effectuant à une capacité comprise entre C/20 et C, C désignant la capacité de la batterie Li-ion.
15. Procédé selon la revendication 14, caractérisé en ce que ledit premier cycle d' activation s ' effectue à une capacité de C/ 1 0.
16. Procédé selon la revendication 14 ou 15 , caractérisé en ce que lesdits cycles de charge et de décharge suivants s ' effectuent à une capacité de C/2.
EP15706904.8A 2014-02-11 2015-02-10 Batterie lithium-ion comprenant une cathode riche en lithium et une anode a base de graphite Withdrawn EP3105805A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1451054A FR3017489B1 (fr) 2014-02-11 2014-02-11 Batterie lithium-ion comprenant une cathode riche en lithium et une anode a base de graphite
PCT/FR2015/050313 WO2015121574A1 (fr) 2014-02-11 2015-02-10 Batterie lithium-ion comprenant une cathode riche en lithium et une anode a base de graphite

Publications (1)

Publication Number Publication Date
EP3105805A1 true EP3105805A1 (fr) 2016-12-21

Family

ID=50624782

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15706904.8A Withdrawn EP3105805A1 (fr) 2014-02-11 2015-02-10 Batterie lithium-ion comprenant une cathode riche en lithium et une anode a base de graphite

Country Status (7)

Country Link
US (1) US20160351948A1 (fr)
EP (1) EP3105805A1 (fr)
JP (1) JP6595506B2 (fr)
KR (1) KR20160120736A (fr)
CN (1) CN105993089A (fr)
FR (1) FR3017489B1 (fr)
WO (1) WO2015121574A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10601037B2 (en) 2015-09-23 2020-03-24 Umicore Lithium-rich nickel-manganese-cobalt cathode powders for lithium-ion batteries
CN110007245B (zh) * 2019-03-19 2021-08-06 合肥国轩高科动力能源有限公司 一种三电极检测锂离子电池n/p比设计合理性的方法
CN113594635A (zh) * 2020-04-30 2021-11-02 宁德时代新能源科技股份有限公司 电池模组及其制造方法和设备、电池包及装置
WO2021241077A1 (fr) 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 Électrode positive pour batteries secondaires à électrolyte non aqueux, et batterie secondaire à électrolyte non aqueux
EP4160724A4 (fr) 2020-05-29 2024-07-10 Panasonic Ip Man Co Ltd Électrode positive pour batterie secondaire à électrolyte non aqueux, et batterie secondaire à électrolyte non aqueux
WO2023162709A1 (fr) 2022-02-25 2023-08-31 パナソニックIpマネジメント株式会社 Électrode positive pour batteries secondaires à électrolyte non aqueux et batterie secondaire à électrolyte non aqueux
CN115189036B (zh) * 2022-08-11 2024-08-02 吉林大学 一种高比能锂金属电池制备方法
CN116404265B (zh) * 2023-06-07 2023-09-12 宁德新能源科技有限公司 一种电化学装置和电子装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115504A (ja) * 1995-10-17 1997-05-02 Nikkiso Co Ltd 電池用電極およびその製造方法
US5721067A (en) * 1996-02-22 1998-02-24 Jacobs; James K. Rechargeable lithium battery having improved reversible capacity
JP2000228199A (ja) * 1999-02-09 2000-08-15 Toyota Central Res & Dev Lab Inc 非水電解液二次電池
KR100727201B1 (ko) * 2003-07-31 2007-06-13 닛본 덴끼 가부시끼가이샤 리튬 이온 2차 전지
US7927742B2 (en) 2004-10-29 2011-04-19 Medtronic, Inc. Negative-limited lithium-ion battery
JP5004475B2 (ja) * 2006-01-30 2012-08-22 三洋電機株式会社 非水電解質二次電池
FR2941875B1 (fr) * 2009-02-11 2011-09-23 Commissariat Energie Atomique Procede de preparation d'un melange d'une poudre d'un compose actif d'electrode et d'une poudre d'un compose conducteur electronique, melange ainsi obtenu, electrode, cellule et accumulateur
KR20130108332A (ko) * 2010-09-03 2013-10-02 엔비아 시스템즈 인코포레이티드 리튬 풍부한 캐소드 물질을 가진 리튬 이온 전지의 매우 긴 사이클링
US8928286B2 (en) * 2010-09-03 2015-01-06 Envia Systems, Inc. Very long cycling of lithium ion batteries with lithium rich cathode materials
KR101538903B1 (ko) * 2012-08-02 2015-07-22 닛산 지도우샤 가부시키가이샤 비수계 유기 전해액 이차 전지
CN103000880B (zh) * 2012-11-29 2016-05-18 东莞新能源科技有限公司 正极材料及其制备方法及包含该正极材料的锂离子电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015121574A1 *

Also Published As

Publication number Publication date
KR20160120736A (ko) 2016-10-18
US20160351948A1 (en) 2016-12-01
WO2015121574A1 (fr) 2015-08-20
JP6595506B2 (ja) 2019-10-23
CN105993089A (zh) 2016-10-05
JP2017505527A (ja) 2017-02-16
FR3017489A1 (fr) 2015-08-14
FR3017489B1 (fr) 2016-01-29

Similar Documents

Publication Publication Date Title
US11799085B2 (en) Method of manufacturing negative electrode for lithium secondary battery and lithium secondary battery
EP3105805A1 (fr) Batterie lithium-ion comprenant une cathode riche en lithium et une anode a base de graphite
EP3345234B1 (fr) Procede de formation d&#39;une cellule de batterie li-ion equipee d&#39;une electrode positive comprenant un sel sacrificiel
JP2023520192A (ja) 二次電池
KR20210060191A (ko) 음극 및 이를 포함하는 이차전지
CN113614951B (zh) 制备用于二次电池的负极的方法
CN111684627B (zh) 锂二次电池用负极活性材料和包含其的锂二次电池用负极
KR20180122238A (ko) 이차전지용 양극의 제조방법
US20230318056A1 (en) Method for charging and discharging secondary battery
JP7536331B2 (ja) 二次電池の製造方法
KR20190012840A (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
CN113678284B (zh) 二次电池用正极的制备方法、由此制备的正极以及包含该正极的锂二次电池
CN109845019B (zh) 锂二次电池
JP7451709B2 (ja) 二次電池用正極、その製造方法、およびそれを含むリチウム二次電池
CN115004405B (zh) 制造二次电池的方法
US12015143B2 (en) Method of manufacturing negative electrode for secondary battery
KR20190066867A (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 리튬 이차전지
US20220013766A1 (en) Secondary battery
EP3482442B1 (fr) Cellule de batterie comprenant un electrolyte comprenant un sel metallique
JP7309258B2 (ja) 二次電池の製造方法
US12087934B2 (en) Method of producing negative electrode active material for secondary battery, negative electrode for secondary battery, and lithium secondary battery including the same
FR3023069A1 (fr) Electrolyte pour batterie lithium-ion comprenant une cathode riche en lithium et une anode a base de graphite
KR20240026793A (ko) 리튬 이차전지용 양극의 제조 방법
FR3032560A1 (fr) Electrolyte pour batterie lithium-ion comprenant un liquide ionique particulier
US20240322167A1 (en) Negative electrode and secondary battery including the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160801

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181004

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210930

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S