EP3059093B1 - Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes - Google Patents

Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes Download PDF

Info

Publication number
EP3059093B1
EP3059093B1 EP16000444.6A EP16000444A EP3059093B1 EP 3059093 B1 EP3059093 B1 EP 3059093B1 EP 16000444 A EP16000444 A EP 16000444A EP 3059093 B1 EP3059093 B1 EP 3059093B1
Authority
EP
European Patent Office
Prior art keywords
facets
security element
element according
pixels
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16000444.6A
Other languages
English (en)
French (fr)
Other versions
EP3059093A1 (de
Inventor
Christian Fuhse
Michael Rahm
Andreas Rauch
Kaule Wittich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient Currency Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43919824&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3059093(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Giesecke and Devrient Currency Technology GmbH filed Critical Giesecke and Devrient Currency Technology GmbH
Publication of EP3059093A1 publication Critical patent/EP3059093A1/de
Application granted granted Critical
Publication of EP3059093B1 publication Critical patent/EP3059093B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/21Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose for multiple purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/23Identity cards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/24Passports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/26Entrance cards; Admission tickets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • B42D2035/20
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs

Definitions

  • the present invention relates to a security element for a security paper, document of value or the like, a document of value with such a security element and a method for producing such a security element.
  • Objects to be protected are often equipped with a security element that allows the authenticity of the object to be checked and at the same time serves as protection against unauthorized reproduction.
  • Objects to be protected are, for example, security papers, ID and value documents (such as banknotes, chip cards, passports, identification cards, ID cards, stocks, attachments, certificates, vouchers, checks, admission tickets, credit cards, health cards, etc.) as well as product security elements such as labels, Seals, packaging, etc.
  • ID and value documents such as banknotes, chip cards, passports, identification cards, ID cards, stocks, attachments, certificates, vouchers, checks, admission tickets, credit cards, health cards, etc.
  • product security elements such as labels, Seals, packaging, etc.
  • a technique that is widespread in the field of security elements and that gives a practically flat film a three-dimensional appearance are various forms of holography.
  • these techniques have some disadvantages for the use of a security feature, in particular on bank notes.
  • the quality of the three-dimensional representation of a hologram depends heavily on the lighting conditions. In particular with diffuse lighting, the representations of holograms are often barely recognizable.
  • holograms have the disadvantage that they are now present in many places in everyday life and therefore their special position as a security feature is disappearing.
  • the invention is based on the object of avoiding the disadvantages of the prior art and, in particular, of providing a security element for a security paper, document of value or the like, in which a good three-dimensional appearance is achieved with an extremely flat design of the security element.
  • an extremely flat security element in which, for example, the maximum height of the facets is not greater than 10 ⁇ m, can be provided, which nevertheless creates a very good three-dimensional impression when viewed. It is therefore possible, by means of a (macroscopically) flat surface area, to simulate a surface that appears to be strongly curved for the viewer.
  • any three-dimensional configurations of the perceptible surface of any shape can be produced in this way. portraits, objects, motifs or other three-dimensional objects can be reproduced.
  • the three-dimensional impression is always related to the actual spatial shape of the surface area.
  • the surface area can be flat or even curved itself. However, a three-dimensional appearance related to this base surface shape is always achieved, so that the surface area is visible to a viewer then does not appear flat or curved in the same way as the surface area itself.
  • the surface area that can be perceived as a protruding and / or recessed surface is understood here in particular to mean that the surface area can be perceived as a continuously curved surface. So the area z. B. be perceived as a surface with an apparent curvature that deviates from the curvature or actual spatial shape of the surface area. With the security element according to the invention can correspondingly, for. B. a curved surface can be imitated by adjusting the corresponding reflection behavior.
  • the surface area is in particular a contiguous surface area.
  • the surface area can, however, also have gaps or even include non-contiguous partial areas. In this way, the surface area can be nested with other security features.
  • the other security features can be, for. B. be a true color hologram, so that a viewer can perceive the true color hologram and the projecting and / or receding surface, which are provided by the surface area according to the invention, together.
  • the orientation of the facets is selected in particular so that the surface area is perceptible to a viewer as a non-planar surface.
  • the majority or all of the pixels of the surface area each have a plurality of the optically effective facets with the same orientation.
  • the optically effective facets can be designed as reflective and / or transmissive facets.
  • the facets can be formed in a surface of the carrier. It is also possible for the facets to be formed both in the upper side and in the lower side of the carrier and to lie opposite one another. In this case, the facets are preferably designed as transmissive facets with a refractive effect, the carrier itself of course also being transparent or at least translucent. The dimensions and orientations of the facets are then selected in particular so that a surface can be perceived by a viewer in such a way that it jumps forward and / or set back in relation to the actual spatial shape of the upper and / or lower side of the carrier.
  • the carrier can be designed as a layer composite.
  • the facets can lie at an interface within the layer composite. So the facets z.
  • the facets can be embodied as embedded facets.
  • optically effective facets are designed in such a way that the pixels have no optically diffractive effect.
  • the dimensions of the optically effective facets can be between 1 ⁇ m and 300 ⁇ m, preferably between 3 ⁇ m and 100 ⁇ m and particularly preferably between 5 ⁇ m and 30 ⁇ m.
  • the dimensions of the pixels are selected such that the area of the pixels is at least one order of magnitude and preferably at least two orders of magnitude smaller than the area of the surface area.
  • the area of the surface area and the area of the pixels are understood here in particular to mean the area when projecting in the direction of the macroscopic surface normal of the surface area onto a plane.
  • the dimensions of the pixels can be selected such that the dimensions of the pixels are at least one order of magnitude and preferably at least two orders of magnitude smaller than the dimensions of the area of the surface area at least in one direction.
  • the maximum dimension of a pixel is preferably between 5 ⁇ m and 5 mm, preferably between 10 ⁇ m and 300 ⁇ m, particularly preferably between 20 ⁇ m and 100 ⁇ m.
  • the pixel shape and / or the pixel size can, but need not, vary within the security element.
  • the grating period of the facets per pixel is preferably between 1 ⁇ m and 300 ⁇ m or between 3 ⁇ m and 300 ⁇ m, preferably between 3 ⁇ m and 100 ⁇ m or between 5 ⁇ m and 100 ⁇ m, particularly preferably between 5 ⁇ m and 30 ⁇ m or between 10 ⁇ m and 30 ⁇ m.
  • the grating period is chosen so that at least per pixel two facets of the same orientation are contained and that diffraction effects are practically no longer important for incident light (e.g. from the wavelength range from 380 nm to 750 nm).
  • the facets can be referred to as achromatic facets or the pixels as achromatic pixels which bring about a directionally achromatic reflection.
  • the security element thus has an achromatic reflectivity with respect to the lattice structure provided by the facets of the pixels.
  • the facets are preferably designed as essentially flat surface pieces.
  • the chosen formulation, according to which the facets are designed as essentially flat surface pieces takes into account the fact that in practice, due to production, it is usually never possible to produce perfectly flat surface pieces.
  • the orientation of the facets is determined in particular by their inclination and / or their azimuth angle.
  • the orientation of the facets can also be determined by other parameters.
  • a reflective or reflection-increasing coating (in particular a metallic or highly refractive coating) can be formed on the facets at least in some areas.
  • the reflective or reflection-increasing coating can be a metallic coating that is vapor-deposited, for example.
  • aluminum, gold, silver, copper, palladium, chromium, nickel and / or tungsten and their alloys can be used as the coating material.
  • the reflective or reflection-increasing coating can be formed by a coating with a material with a high refractive index.
  • the reflective or reflection-increasing coating can in particular be designed as a partially transparent coating.
  • a color-shifting coating is formed on the facets at least in some areas.
  • the color-shifting coating can in particular be designed as a thin-layer system or thin-film interference coating.
  • a layer sequence of metal layer - dielectric layer - metal layer or a layer sequence of three dielectric layers, the refractive index of the middle layer being lower than the refractive index of the two other layers can be implemented.
  • ZnS, SiO 2 , TiO 2 , MgF 2 for example, can be used as the dielectric material.
  • the color-shifting coating can also be designed as an interference filter, a thin, semitransparent metal layer with selective transmission through plasma resonance effects, nanoparticles, etc.
  • the color-shifting layer can in particular also be implemented as a liquid crystal layer, a diffractive relief structure or a sub-wavelength grating.
  • a thin-film system with a structure of reflector, dielectric, absorber (formed on the facets in this order) is also possible.
  • the thin film system plus facet can be designed not only, as already described, as a facet / reflector / dielectric / absorber, but also as a facet / absorber / dielectric / reflector. The order depends in particular on the side from which the security element is to be viewed. Color shift effects visible on both sides are also possible, if the thin film system plus facet is designed, for example, as an absorber / dielectric / absorber / facet or an absorber / dielectric / reflector / dielectric / absorber / facet.
  • the color-shifting coating can be designed not only as a thin-film system, but also as a liquid-crystal layer (in particular made of cholesteric liquid-crystalline material).
  • a scattering coating or surface treatment of the facets can be provided.
  • Such a coating or treatment can scatter according to Lambert's cosine law or there can be a scattered reflection with a directional distribution that deviates from Lambert's cosine law. In particular, scattering with a pronounced preferred direction is of interest here.
  • the embossing surface of the embossing tool When the facets are produced by an embossing process, the embossing surface of the embossing tool, with which the shape of the facets can be embossed in the carrier or in a layer of the carrier, can additionally be provided with a microstructure in order to produce certain effects.
  • the embossing surface of the embossing tool can be provided with a rough surface so that facets with scattered reflection arise in the end product.
  • At least two facets can preferably be provided per pixel. It can also be three, four, five or more facets.
  • the number of facets per pixel can in particular be selected so that a maximum predetermined Facet height is not exceeded.
  • the maximum facet height can be, for example, 20 ⁇ m or 10 ⁇ m.
  • the grating period of the facets can be selected to be the same for all pixels. However, it is also possible that individual or several of the pixels have different grating periods. It is also possible that the grating period varies within a pixel and is therefore not constant. Furthermore, phase information can also be impressed in the grating period, which is used to encode further information.
  • a verification mask with lattice structures can be provided which have the same periods and azimuth angles as the facets in the security element according to the invention. In a partial area of the verification mask, the grids can have the same phase parameter as the security element to be verified and a certain phase difference in other areas. When the verification mask is placed over the security element, the different areas will then appear differently light or dark due to the moiré effect.
  • the verification mask can be provided on the same object to be protected as the security element according to the invention.
  • the surface area can be designed in such a way that it can be perceived by a viewer as an imaginary surface. This is to be understood here in particular as meaning that the security element according to the invention exhibits a reflection behavior that cannot be produced with a real macroscopically curved surface.
  • the imaginary surface can be perceived as a rotating mirror, which z. B. rotates by 90 °.
  • Such an imaginary surface and in particular such a rotating mirror is very easy to grasp and verify for a viewer.
  • any real curved reflecting or transmitting surface can be modified into an imaginary surface by means of the surface area of the security element according to the invention.
  • This can e.g. B. can be realized in that the azimuth angles of all facets are changed, for example rotated by a certain angle.
  • interesting effects can be achieved with this. If, for example, one rotates all azimuth angles by 45 ° to the right, the surface area for an observer, if he is illuminated directly from above, is a curved surface that is apparently illuminated from the top right. If you turn all azimuth angles by 90 °, the light reflections move in a direction that is perpendicular to the direction that an observer would expect. This unnatural reflection behavior then also makes it no longer possible for a viewer, for example, to decide whether the curved perceptible surface is to the front or to the rear (in relation to the surface area).
  • diffraction effects can be suppressed in a targeted manner by means of an aperiodic grating or the introduction of random phase parameters.
  • the orientations of the facets that is to say to change them slightly compared to the optimal shape for the surface to be reproduced
  • the surface area not only appears to be jumping forwards and / or backwards in relation to its actual spatial shape, but it can also be given a texture that is precisely positioned in register.
  • the carrier can have a further surface area, which is preferably nested with the one surface area and in particular is designed as a further security feature.
  • Such training can, for. B. be referred to as nesting or as a multi-channel image.
  • the further surface area can be divided into a plurality of pixels, each comprising at least one optically effective facet, in the same way as the one surface area, the plurality of pixels preferably each having a plurality of the optically effective facets with the same orientation per pixel and the facets are oriented in such a way that a viewer can perceive the further surface area as a surface that is curved or protruding and / or receding in relation to its actual spatial shape. This allows z. B. two different three-dimensional representations can be realized.
  • the one surface area z. B. with additional register-accurate color or grayscale information (combination for example with true color hologram or halftone image, for example on the basis of sub-wavelength gratings) are superimposed.
  • phase information can be hidden or stored as a further security feature in the arrangement of the facets.
  • At least one facet can have a light-scattering microstructure on its surface.
  • several or all of the facets can also have such a light-scattering microstructure on the facet surface.
  • the light-scattering microstructure can be designed as a coating.
  • the facets can also be embedded in a colored material in order to create an additional color effect or to simulate a colored object.
  • the orientations of several facets can be changed in relation to the orientations for generating the protruding and / or recessed surface so that the protruding and / or recessed surface is still perceptible, but with a surface that appears matt.
  • the protruding and / or recessed surface can also be presented with a matt surface appearance.
  • the invention also comprises a method for producing a security element for security papers, documents of value or the like, according to claims 17 and 18.
  • the production method according to the invention can in particular be developed in such a way that the security element according to the invention and the developments of the security element according to the invention can be produced.
  • the production method can further include the step of calculating the pixels on the basis of a surface to be adjusted.
  • the facets (their dimensions and their orientations) are calculated for all pixels.
  • the height modulation of the surface area can then be carried out on the basis of this data.
  • the step of coating the facets can also be provided.
  • the facets can be provided with a reflective or reflection-increasing coating.
  • the reflective or reflection-increasing coating can be a complete mirror coating or also a partially transparent mirror coating.
  • Known microstructuring processes such as, for example, embossing processes, can be used to produce the height-modulated surface of the carrier.
  • suitable structures in resist materials can be exposed, possibly refined, shaped and used for the production of embossing tools.
  • Known processes can be used for embossing in thermoplastic films or in films coated with radiation-curing lacquers.
  • the carrier can have multiple layers that successively applied and optionally structured and / or can be composed of several parts.
  • the security element can in particular be designed as a security thread, tear thread, security tape, security strip, patch or label for application to a security paper, document of value or the like.
  • the security element can span transparent or at least translucent areas or recesses.
  • security paper is understood here in particular as the not yet fit for circulation preliminary stage to a document of value which, in addition to the security element according to the invention, can also have, for example, further authenticity features (such as luminescent substances provided in the volume).
  • Documents of value are understood here on the one hand to be documents produced from security papers.
  • value documents can also be other documents and objects that can be provided with the security element according to the invention so that the value documents have authenticity features that cannot be copied, whereby an authenticity check is possible and at the same time undesired copying is prevented.
  • an embossing tool is provided with an embossing surface with which the shape of the facets of a security element according to the invention (including its developments) can be embossed in the carrier or in a layer of the carrier.
  • the embossing surface preferably has the inverted shape of the surface contour to be embossed, this inverted shape advantageously being produced by the formation of corresponding depressions.
  • the security element according to the invention can be used as a master for exposing volume holograms or for purely decorative purposes.
  • a photosensitive layer in which the volume hologram is to be formed can be brought into contact with the front side of the master and thus with the front side of the security element directly or with the interposition of a transparent optical medium.
  • the procedure can be the same or similar to that in the DE 101006 016139 A1 described procedure for generating a volume hologram.
  • the basic procedure is, for example, in sections Nos. 70 to 79 on pages 7 and 8 of the cited publication in connection with Figures 1a, 1b, 2a and 2b described.
  • the security element 1 according to the invention is integrated in a bank note 2 in such a way that the security element 1 differs from the one shown in FIG Figure 1
  • the front side of the banknote 2 shown is visible.
  • the security element 1 is designed as a reflective security element 1 with a rectangular outer contour, the area 3 delimited by the rectangular outer contour being divided into a plurality of reflective pixels 4, of which a small part is enlarged into Figure 2 are shown as a top view.
  • the pixels 4 are square here and have an edge length in the range from 10 to several 100 ⁇ m.
  • the edge length is preferably not greater than 300 ⁇ m. In particular, it can be in the range between 20 and 100 ⁇ m.
  • the edge length of the pixels 4 is selected in particular such that the area of each pixel 4 is at least one order of magnitude, preferably two orders of magnitude smaller than the area 3.
  • the majority of the pixels 4 each have a plurality of reflective facets 5 of the same orientation, the facets 5 being the optically effective surfaces of a reflective sawtooth grid.
  • FIG. 3 the sectional view along the line 6 for six adjacent pixels 4 1 , 4 2 , 43, 44, 4 5 and 4 6 is shown, the illustration in FIG Figure 3 and also in the other figures is partly not true to scale for better illustration. Furthermore, in order to simplify the illustration in FIGS. 1 to 3 and also in FIG Figure 4 the reflective coating on the facets 5 is not shown.
  • the sawtooth grid of the pixels 4 is formed here in a surface 7 of a carrier 8, the surface 7 structured in this way preferably having a reflective coating (in Figure 3 not shown) is coated.
  • the carrier 8 can be, for example, a radiation-curing plastic (UV resin) which is applied to a carrier film (not shown) (for example a PET film).
  • UV resin radiation-curing plastic
  • the pixels 4 1 , 4 2 , 4 4 , 4 5 and 4 6 each have three facets 5, the orientation of which is the same per pixel 4 1 , 4 2 , 4 4 , 4 5 and 4 6.
  • the sawtooth grids and thus also the facets 5 of these pixels are the same except for their different inclinations ⁇ 1 , ⁇ 4 (to simplify the illustration, only the inclination angles ⁇ 1 and ⁇ 4 of one facet 5 of the pixels 4 1 and 4 4 are shown ).
  • the pixel 4 3 here has only a single facet 5.
  • the facets 5 of the pixels 4 1 - 4 6 are strip-shaped mirror surfaces that are aligned parallel to one another.
  • the orientation of the facets 5 is selected in such a way that a viewer can perceive the surface 3 as a projecting and / or receding surface compared to its actual (macroscopic) spatial shape, which here is the shape of a flat surface.
  • a viewer takes the in Figure 3 Surface 9 shown in section is true when looking at the facets 5. This is achieved by choosing the orientations of the facets 5, which reflect the incident light L1 as if it were on a surface according to the direction indicated by line 9 in FIG Figure 3 indicated three-dimensional shape falls, as is shown schematically by the incident light L2.
  • the reflection generated by the facets 5 of a pixel 4 corresponds to the mean reflection of the area of the surface 9 converted or adjusted by the corresponding pixel 4.
  • a height profile that appears three-dimensional is thus simulated by an arrangement of reflective sawtooth structures (facets 5 per pixel 4), which imitate the reflection behavior of the height profile, screened here.
  • Any three-dimensionally perceptible motifs can thus be generated with the surface 3, such as a person, parts of a person, a number or other objects.
  • the azimuth angle ⁇ In addition to the slope ⁇ of the individual facets 5, the azimuth angle ⁇ must also be adapted to the following surface.
  • the azimuth angle ⁇ is relative to the direction according to arrow P1 ( Figure 2 ) 0 °.
  • the azimuth angle ⁇ is approximately 170 °, for example.
  • the sawtooth grid of pixel 4 7 is in Figure 4 shown schematically in three-dimensional representation.
  • the reflective sawtooth structures can be written into a photoresist, for example by means of gray-scale lithography, then developed, galvanically molded, embossed in UV lacquer (carrier) and mirrored.
  • the mirroring can be implemented, for example, by means of an applied metal layer (for example vapor-deposited).
  • an aluminum layer with a thickness of 50 nm, for example, is applied.
  • other metals such as silver, copper, chromium, iron, etc. or alloys thereof can also be used.
  • high-index coatings can also be applied, for example ZnS or TiO 2 .
  • the vapor deposition can be applied over the entire surface. However, it is also possible to carry out a coating only in areas or in the form of a grid, so that the security element 1 is partially transparent or translucent.
  • the period A of the facets 5 is the same for all pixels 4 in the simplest case. However, it is also possible to vary the period A of the facets 5 per pixel 4. For example, the pixel 4 7 has a smaller period A than the pixels 4 1 - 4 6 (FIG. 2). In particular, the period A of the facets 5 can be chosen randomly for each pixel. By varying the choice of the period ⁇ of the sawtooth grating for the facets 5, any visibility of a diffraction image going back to the sawtooth grating can be minimized.
  • a fixed period A is provided within a pixel 4. In principle, however, it is also possible to vary the period A within a pixel 4, so that aperiodic sawtooth grids are present per pixel 4.
  • the period A of the facets 5 is on the one hand to avoid undesirable diffraction effects and to minimize the necessary film thickness (thickness of the carrier 8), on the other hand, preferably between 3 ⁇ m and 300 ⁇ m.
  • the distance is between 5 ⁇ m and 100 ⁇ m, a distance between 10 ⁇ m and 30 ⁇ m being particularly preferably selected.
  • the pixels 4 are square. However, it is also possible to design the pixels 4 to be rectangular. Other pixel shapes can also be used, such as a parallelogram or hexagonal pixel shape.
  • the pixels 4 preferably have dimensions that are on the one hand larger than the distance between the facets 5 and on the other hand are so small that the individual pixels 4 do not attract the naked eye. The size range resulting from these requirements is between about 10 and a few 100 ⁇ m.
  • a phase parameter p i can also optionally be introduced for each pixel 4.
  • Ai is the amplitude of the sawtooth grid, ⁇ i the azimuth angle and Ai the grid period. "mod” stands for the modulo operation and returns the positive remainder in the case of division.
  • the amplitude factor Ai results from the slope of the adjusted surface profile 9.
  • the sawtooth grids or the facets 5 of different pixels 4 can be shifted relative to one another. Random values or other values varying per pixel 4 can be used for the parameters p i. As a result, any diffraction pattern of the sawtooth grid (the facets 5 per pixel 4) or the grid grid of the pixels 4 that may still be visible can be eliminated, which can otherwise cause undesirable color effects. Furthermore, due to the varied phase parameters p i, there are also no particular directions in which the sawtooth grids of adjacent pixels 4 fit one another particularly well or particularly poorly, which prevents visible anisotropy.
  • the azimuth angle ⁇ and the gradients ⁇ of the facets 5 per pixel 4 can be selected such that they do not correspond as closely as possible to the reproduced surface 9, but rather deviate from it somewhat.
  • a (preferably random) component can be added for each pixel 4 to the optimal value for the adjustment of the surface 9 in accordance with a suitable distribution.
  • different interesting effects can be achieved in this way.
  • With very fine pixels 4 around 20 ⁇ m), the otherwise glossy surface appears increasingly matt as the noise increases. Larger pixels (around 50 ⁇ m) give an appearance comparable to that of a metallic coating.
  • the individual pixels 4 are resolved by the naked eye. They then appear like rough but smooth sections that light up brightly from different viewing angles.
  • the strength of the noise can be selected differently for different pixels 4, which means that the curved surface appears on different ones Places can appear differently smooth or matt. In this way, for example, the effect can be generated that the viewer perceives the surface 3 as a smooth projecting and / or recessed surface that has a matt lettering or texture.
  • the thin-film system can for example have a first, a second and a third dielectric layer which are formed on top of one another, the first and third layers having a higher refractive index than the second layer. Due to the different inclinations of the facets 5, different colors can be perceived by a viewer without having to rotate the security element 1.
  • the perceptible surface thus has a certain color spectrum.
  • the security element 1 can in particular be designed as a multi-channel image that has different sub-areas nested in one another, at least one of the sub-areas being designed in the manner according to the invention, so that this sub-area can be perceived by the viewer as a spatial sub-area.
  • the other partial areas can also be formed in the manner described by means of pixels 4 with at least one facet 5.
  • the other partial areas can, but do not have to, be perceptible as areas projecting and / or receding in relation to the actual spatial shape.
  • the nesting can be designed, for example, in the manner of a chessboard or also of strips. Interesting effects can be achieved by nesting several partial areas.
  • the adjustment of a spherical surface is nested with the representation of a number, this can be done in such a way that for the viewer the impression is created that the number is inside a glass ball with a semi-reflective surface.
  • the security element 1 can additionally provide with color information.
  • color can be printed on the facets 5 (either transparent or thin) or provided below an at least partially transparent or translucent sawtooth structure.
  • a motif represented by means of the pixels 4 can be colored in this way. If, for example, a portrait is being recreated, the layer of paint can provide the color of the face.
  • a combination with a subwavelength grating is also possible.
  • the interlaced display of the same motif using both techniques is advantageous, in which the three-dimensional effect of the sawtooth structures is combined with the color information of the subwavelength gratings.
  • the surface 9 reproduced with the pixels 4 can in particular be a so-called imaginary surface. This is understood here to mean the formation of a reflection or transmission behavior that cannot be produced with a real curved reflecting or transmitting surface.
  • the slope and azimuth of the facets 5 correspond to the gradient of the height function. Cases can now be constructed in which the slope and azimuth of the facets 5 merge practically continuously into one another, but no height function can be found with which the above integral disappears. In this case, we are talking about the adjustment of an imaginary surface.
  • this rotating mirror simulates a surface where you walk continuously uphill along a circle, but at the end arrive back at the same height at which you started. Such a real surface obviously cannot exist.
  • the surface is designed as a reflective surface.
  • the same effects of the three-dimensional effect can essentially also be achieved in transmission if the sawtooth structures or the pixels 4 with the facets 5 (including the carrier 8) are at least partially transparent.
  • the sawtooth structures are preferably located between two layers with different refractive indices. In this case, the security element 1 then appears to the observer like a glass body with a curved surface.
  • the advantageous configurations described can also be used for the transmissive design of the security element 1.
  • the rotating mirror of an imaginary surface can rotate the image when looking through it.
  • the security against forgery of the security element 1 according to the invention can be increased by further features which are only visible with aids and which can also be referred to as hidden features.
  • phase parameters of the individual pixels 4 can be encoded in the phase parameters of the individual pixels 4.
  • a verification mask can be produced with lattice structures that have the same periods and azimuth angles as the security element 1 according to the invention.
  • the lattices of the verification mask can have the same phase parameters as the security element to be verified, and a certain phase difference in other areas . These different areas will appear differently light or dark due to moiré effects when the security element 1 and the verification mask are placed on top of one another.
  • the verification mask can also be provided in the bank note 2 or the other element provided with the security element 1.
  • the pixels 4 can also have other outlines. These outlines can then be recognized with a magnifying glass or a microscope.
  • any other desired structure can also be embossed or inscribed in a small portion of the pixels 4 without this being noticed by the naked eye.
  • these pixels are not part of the area 3, so that the area 3 is interlaced with the differently designed pixels.
  • These other formed pixels can be, for example, every 100th pixel in comparison to the pixels 4 of the area 3.
  • a micro-font or a logo can be incorporated into these pixels, for example 10 ⁇ m letters in a 40 ⁇ m pixel.
  • the facets in the surface 7 of the carrier 8 are formed in such a way that the deepest points or the minimum height values of all facets 5 ( Figure 3 ) lie in one plane.
  • FIG. 13 is a sectional view in the same manner as in FIG Figure 3 however, a mirror surface 10 is drawn in for the pixel 4 4, which mirrors the surface 9 in the region of the pixel 4 4.
  • a pixel size of, for example, 20 ⁇ m to 100 ⁇ m
  • such a mirror surface 10 would lead to undesirably large heights d being present.
  • the corresponding mirror surface 10 would protrude from the xy plane by 20 ⁇ m to 100 ⁇ m.
  • maximum heights d of 10 ⁇ m are preferred.
  • the mirror surface 10 is therefore still subjected to a modulo d operation, so that the in Figure 7 Facets 5 drawn are formed, the normal vectors n of the facets 5 corresponding to the normal vector n of the mirror surface 10.
  • the surface 9 to be readjusted can be present, for example, as a set of x, y values, each with an associated height h in the z direction (3D bitmap).
  • a defined square or 60 ° grid ( Figures 8, 9 ) being constructed. The grid points are connected in such a way that there is an area coverage in the xy plane with triangular tiles, as shown in Figures 8 and 9 is shown schematically.
  • the h values are taken from the 3D bitmap at the three corner points of each tile. The smallest of these h-values is subtracted from the h-values of the three corner points of the tiles. With these new h values at the corner points, a sawtooth surface is built up from inclined triangles (triangular plane pieces). The plane pieces protruding too far from the x-y plane are replaced by the facets 5. The surface description for the facets 5 is thus obtained and the security element 1 according to the invention can be produced.
  • the facets 5 or their orientations are obtained from tangential planes of the surface 9 to be simulated. These can be determined from the mathematical derivation of the function f (x, y, z).
  • the azimuth angle ⁇ of the tangential plane is arctan (n y / n x ) and the slope angle ⁇ of the tangential plane is arccos n z .
  • the surface f (x, y, z) can be arbitrarily curved and (xo, yo, zo) is the point on the surface for which the calculation is currently being carried out. The calculation is carried out one after the other for all the points selected for the sawtooth structure.
  • Regions are cut out from the inclined planes with the normal vectors calculated in this way, which are to be attached to the selected points in the xy plane, so that at neighboring xy points Overlapping of the associated elements can be avoided.
  • the inclined plane pieces that protrude too far out of the xy plane are divided into smaller facets 5, as in connection with Figure 7 has been described.
  • the surface to be readjusted can be described by triangular patches, the flat triangular pieces being spanned between selected points which lie within and on the edge of the surface to be readjusted.
  • the surface can be projected into the xy plane and the individual triangles can be tilted according to their normal vector.
  • the inclined plane pieces form the facets and if they protrude too far from the xy plane, as in connection with Figure 7 has been described, divided into smaller facets 5.
  • the surface to be adjusted is given by triangular patches, you can also proceed as follows.
  • the entire surface to be reproduced is subjected at once (or parts of each surface) to a Fresnel construction modulo d (or modulo di). Since the surface to be simulated consists of plane pieces, triangles that are filled with the facets 5 are automatically created on the xy plane.
  • the construction of the facets can also be carried out as follows.
  • suitable x-y points are selected and they are connected in such a way that the x-y plane is covered with polygon tiles.
  • the normal vector is determined from the surface 9 to be reproduced above a randomly selected point (e.g. a corner point) in each tile.
  • a Fresnel mirror (pixel 4 with several facets 5) corresponding to the normal vector is now attached to each tile.
  • Square tiles or pixels 4 are preferably used. In principle, however, any (irregular) tiling is possible.
  • the tiles can be contiguous (which is preferred for greater efficiency) or there can be joints between the tiles (for example, with circular tiles).
  • the inventive determination of the facets 5 including their orientations can be carried out in two fundamentally different ways.
  • the x-y plane can thus be divided into pixels 4 (or tiles) and the normal vector for the reflective flat surface is determined for each pixel 4, which is then converted into several facets 5 with the same orientation.
  • tiling is therefore initially determined in the x-y plane.
  • the tiling can be created in any way you like. However, it is also possible for the tiling to consist of nothing but equal squares with side length a, where a is preferably in the range from 10 to 100 ⁇ m.
  • the tiling can, however, also consist of different shaped tiles that fit together exactly or in which joints occur.
  • the tiles can be shaped differently and contain coding or hidden information. In particular, the tiles can be adapted to the projection of the surface to be reproduced in the x-y plane.
  • a reference point can then be defined in any way in each tile.
  • the normal vectors in the points of the surface to be simulated, which are perpendicular to the reference points in the tiles, are assigned to the corresponding tiles. If several normal vectors are assigned to the reference point in the surface to be readjusted above the reference point (e.g. at an edge or corner where several surface pieces butt against each other), one can determine an averaged normal vector from these normal vectors.
  • a subdivision is defined in each tile in the x-y plane. This subdivision can be any.
  • the azimuth angle ⁇ and the slope angle ⁇ are then calculated from the normal vector.
  • the offset can be arbitrary in any area of the subdivision. However, it is also possible to apply the offset in such a way that the mean values of the facets 5 are all at the same level or that the maximum values of all the facets 5 are at the same level.
  • inclined plane pieces with the normal vector assigned to the tile are then applied computationally as facets 5, taking into account the offset system.
  • the surface shape calculated in this way is then formed in the surface 7 of the carrier 8.
  • each tile in the xy plane it is not only possible to define any subdivision in each tile in the xy plane.
  • the grid lines can be at any distance from one another.
  • grid lines cannot be provided exactly parallel to one another in order to avoid interference, for example.
  • the grid lines are parallel to one another, but have different distances.
  • the different distances between the grid lines can include a coding.
  • the grid lines of all facets 5 in each pixel 4 have the same spacing. The distance can be in the range from 1 ⁇ m to 20 ⁇ m.
  • the grid lines can also have the same spacing within each tile or within each pixel 4, but vary per pixel 4.
  • the azimuth angle ⁇ and the slope angle ⁇ are then in turn determined from the normal vector.
  • the sawtooth grid defined by grid lines, azimuth angle and angle of inclination is attached to the associated tile by calculation, taking into account the offset system.
  • the plane pieces i are each given by three corner points x 1i , y 1i , z 1i ; x 2i , y 2i , z 2i; x 3i , y 3i , Z 3i .
  • the sawtooth surface whose structure thickness in the areas i is smaller than di, results from z modulo di, where z is calculated from the above formula and where the x and y values in the calculation are each within the range given by x 1i , y 1i ; x 2i , y 2i ; x 3i , y 3i given triangle lie in the xy-plane.
  • d i ⁇ tan ⁇ i
  • ⁇ i is the pitch angle of the through x 1i, y 1i , z 1i ; x 2i , y 2i , z 2i ; X 3i , y 3i , z 3i given triangle.
  • the plane pieces i are each given by three corner points x 1i, y 1i , z 1i ; x 2i , y 2i , z 2i ; x 3i , y 3i , z 3i .
  • the following formula B represents a sawtooth surface which simulates the three-dimensional impression of the surface 9 to be readjusted given by the formula
  • a z y - y 1 , i ⁇ x 2 , i - x 1 , i z 2 , i - z 1 , i x 3 , i - x 1 , i z 3 , i - z 1 , i - x - x 1 , i ⁇ y 2 , i - y 1 , i z 2 , i - z 1 , i y 3 , i - y 1 , i z 3 , i - z 1 , i - z 1 , i x 2 , i - x 1 , i y 2 , i - y 1 , i z 3 , i - z 1 , i -
  • the sawtooth surface according to formula B differs from the surface to be adjusted according to formula A in that the minimum value z 1i in area i is subtracted from the value z.
  • the sawtooth surface according to formula B consists of inclined triangles attached to the xy plane.
  • a maximum thickness di is specified for the structure depth, it is possible that the maximum thickness for the sawtooth surface according to formula B is exceeded.
  • the formation of the individual facets with the same normal vector according to z modulo d i helps, where z is calculated from the above formula B and the x and y values in the calculation are each within the range given by x 1i , y 1i ; x 2i , y 2i ; x 3i , y 3i given triangle lie in the xy-plane.
  • the angle ⁇ i is the slope angle of the through x 1i , y 1i , z 1i ; x 2i , y 2i , z 2i ; x 3i , y 3i , z 3i given triangle.
  • This sawtooth grid imitates the original surface 9 to be reproduced, including its three-dimensional impression.
  • This sawtooth grid is flatter than a sawtooth grid created using the same procedure without subdividing the pixels 4 into several facets 5 according to the invention.
  • FIG 10 a top view of three pixels 4 of the area 3 according to a further embodiment is shown, the pixels 4 being irregular (solid lines) with irregular subdivisions or facets 5 (dashed lines).
  • the pixel edges and the subdivisions are straight lines here, but they can also be curved.
  • FIG 11 the corresponding cross-sectional view is shown, the normal vectors of the facets 5 being shown schematically.
  • the normal vectors of all facets 5 are the same per pixel 4, while they differ from pixel 4 to pixel 4.
  • the normal vectors lie obliquely in space and generally not in the plane of the drawing, as in Figure 11 is shown for simplicity.
  • FIG. 11 is a top view with the same division of the pixels 4 as shown in FIG. 11, but the division (facets 5) per pixel 4 being different.
  • the grating period A of the facets 5 in each pixel 4 is constant, but different from pixel 4 to pixel 4.
  • Figure 13 shows the corresponding cross-sectional view.
  • the normal vectors can be determined as follows. One chooses discrete points on the contour lines 15 (in Figure 16 a schematic top view is shown) and connects these points in such a way that a triangular tiling is created. The calculation of the normal vector for the triangles is carried out as already described.
  • the normal vector was always calculated relative to the xy plane.
  • the security element can be provided on a bottle label (for example on the bottle neck) in such a way that the following surface can then be perceived spatially undistorted by a viewer.
  • the security element according to the invention is then applied as a bottle label to the bottle neck (with the cylindrical curvature), the following surface 9 can then be perceived undistorted in a three-dimensional manner.
  • the security element 1 according to the invention can be designed not only as a reflective security element 1, but also as a transmissive security element 1, as has already been mentioned.
  • the facets 5 are not mirrored and the carrier 8 consists of a transparent or at least translucent material, with the view taking place in transparency.
  • a user should perceive the reproduced surface 9 as if a reflective security element 1 according to the invention that is illuminated from the front is present.
  • the facets 5 calculated for a reflective security element 1 are replaced by data for microprisms 16, the corresponding angles in the case of reflection ( Figure 19 ) and for transmissive prisms 16 in Figures 20 and 21 are shown.
  • Figure 20 shows the incidence on the inclined facets 5
  • Figure 21 shows the incidence on the smooth side, which is preferred because of the possible larger angles of incidence of light.
  • the azimuth angle of the reflective facet 5 is referred to as ⁇ s and the slope angle of the facet 5 is referred to as ⁇ s .
  • the refractive index of the microprism 16 is n
  • a reflective surface 9 to be adjusted with a hill 20 and a depression 21 is shown schematically.
  • the negative focal length -f of the reflective hill 20 is r / 2 and the positive focal length f of the reflective trough 21 is r / 2.
  • a lens 22 is shown schematically, which has a transparent concave section 23 and a transparent convex section 24.
  • the concave section 23 simulates the reflecting hill 20, the negative focal length -f of the concave section 23 being 2r.
  • the lens 22 according to Figure 23 can be replaced by the sawtooth arrangement according to FIG.
  • Figures 20 to 23 show schematically the beam path for incident light L. From these beam paths it can be seen that the lens 22 in transmission adjusts the surface 9 as desired.
  • the transparent sawtooth structure shown corresponds essentially to a cast of a corresponding reflective sawtooth structure for the adjustment of the surface 9 according to FIG Figure 25 .
  • the following surface appears much flatter when viewed through (with a refractive index of 1.5) than when viewed in reflection.
  • the height of the sawtooth structure is therefore preferably increased or the number of facets 5 per pixel 4 is increased.
  • both sides of a transparent or at least translucent carrier 8 with a sawtooth structure which has the multiplicity of microprisms 16, as shown in FIG Figures 28 and 29 is indicated.
  • the sawtooth structures 25, 26 are mirror-symmetrical on both sides.
  • the two sawtooth structures 25, 27 are not designed to be mirror-symmetrical.
  • the sawtooth structure 25, 27 is composed of a prismatic surface 28 with a pitch angle ⁇ p and an auxiliary prism 29 with a pitch angle ⁇ h attached below it, as in FIG Figure 30 is shown schematically.
  • ⁇ p + ⁇ h is the effective total prism angle.
  • the ones in the Figures 1 to 30 can also be embedded in transparent material or provided with a protective layer.
  • Embedding takes place in particular to protect the micro-optical elements from contamination and abrasion and to prevent unauthorized readjustment by embossing the surface structure.
  • Figure 33b shows schematically the adjustment of the reflective arrangement of FIG Figure 32a by a transmitting prism arrangement with exposed prisms 16, as already z. B. at the Figures 19-27 discussed.
  • Figure 33b shows schematically a possible re-creation of the reflective arrangement of FIG Figure 32a by embedded prisms 16, the refractive indices of prism material and embedding material 40 having to differ.
  • Scattering facets can be used to reproduce scattering objects (e.g. marble figure, plaster model), here is an example (see Figure 34 ):
  • the following structure is implemented on a film 41 as a carrier material:
  • the embossed facets 5, which simulate the object surface, are located on the back of the film.
  • the facets 5 have dimensions of, for example, 10 ⁇ m to 20 ⁇ m.
  • a lacquer 42 pigmented with titanium oxide is applied to the facets 5, so that the facets 5 are filled with this scattering material.
  • the viewing side is indicated by the arrow P2.
  • a matt reflective object can be reproduced in the following way (see Figure 35 ):
  • the following structure is implemented on a film 41 as a carrier material:
  • the embossed facets 5, which simulate the object surface, are located on the rear side of the film.
  • the facets 5 have dimensions of, for example, 10 ⁇ m to 20 ⁇ m.
  • the embossed layer is provided with a semitransparent mirror coating 43 and a lacquer 42 pigmented with titanium oxide (particle size approx. 1 ⁇ m) is applied to it, so that the facets are filled with this scattering material.
  • the item being traced appears matt-glossy.
  • the viewing side is indicated by the arrow P2.
  • the security element 1 according to the invention can be used as a security thread 19 ( Figure 1 ) be trained. Furthermore, the security element 1 can not only be formed, as described, on a carrier film from which it can be transferred to the value document in a known manner. It is also possible to form the security element 1 directly on the value document. Direct printing with subsequent embossing of the security element on a polymer substrate can thus be carried out in order to form a security element according to the invention, for example in the case of plastic banknotes.
  • the security element according to the invention can be formed in the most varied of substrates.
  • a paper with synthetic fibers ie paper with a proportion of x polymeric material in the range of 0 ⁇ x ⁇ 100% by weight
  • a plastic film e.g. B. a film made of polyethylene (PE), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polypropylene (PP) or polyamide (PA), or a multilayer composite, in particular a composite of several different films (composite composite) or a paper-film composite (film / paper / film or paper / film / Paper), wherein the security element can be provided in or on or between each of the layers of such a multilayer composite.
  • PE polyethylene
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PA polyamide
  • a multilayer composite in particular a composite of several different films (composite composite) or a paper-film composite (film /
  • an embossing tool 30 is shown schematically, with which the facets 5 in the carrier 8 according to FIG Figure 5 can be embossed.
  • the embossing tool 30 has an embossing surface 31 in which the inverted shape of the surface structure to be embossed is formed.
  • embossing tool can also be made available in the same way for the other described embodiments.

Description

  • Die vorliegende Erfindung betrifft ein Sicherheitselement für ein Sicherheitspapier, Wertdokument oder dergleichen, ein Wertdokument mit einem solchen Sicherheitselement sowie ein Verfahren zum Herstellen eines solchen Sicherheitselementes.
  • Zu schützende Gegenstände werden häufig mit einem Sicherheitselement ausgestattet, das die Überprüfung der Echtheit des Gegenstandes erlaubt und zugleich als Schutz vor unerlaubter Reproduktion dient.
  • Zu schützende Gegenstände sind beispielsweise Sicherheitspapiere, Ausweis- und Wertdokumente (wie z.B. Banknoten, Chipkarten, Pässe, Identifikationskarten, Ausweiskarten, Aktien, Anlagen, Urkunden, Gutscheine, Schecks, Eintrittskarten, Kreditkarten, Gesundheitskarten, etc.) sowie Produktsicherungselemente, wie z.B. Etiketten, Siegel, Verpackungen, etc.
  • Eine gerade im Bereich von Sicherheitselementen weit verbreitete Technik, die einer praktisch ebenen Folie eine dreidimensionale Erscheinung gibt, sind diverse Formen der Holographie. Für die Anwendung eines Sicherheitsmerkmals, insbesondere auf Banknoten, haben diese Techniken jedoch einige Nachteile. Zum einen hängt die Qualität der dreidimensionalen Darstellung eines Hologramms stark von den Beleuchtungsverhältnissen ab. Insbesondere bei diffuser Beleuchtung sind die Darstellungen von Hologrammen oft kaum zu erkennen. Weiterhin haben Hologramme den Nachteil, dass sie im Alltag inzwischen an vielen Stellen präsent sind und daher ihre besondere Stellung als Sicherheitsmerkmal schwindet.
  • Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, die Nachteile des Standes der Technik zu vermeiden und insbesondere, ein Sicherheitselement für ein Sicherheitspapier, Wertdokument oder dergleichen bereitzustellen, bei dem eine gute dreidimensionale Erscheinung bei einer äußerst flachen Ausbildung des Sicherheitselementes erzielt wird.
  • Erfindungsgemäß wird die Aufgabe gelöst durch ein Sicherheitselement gemäß den Ansprüchen 1 bis 15.
  • Damit kann ein äußerst flaches Sicherheitselement, bei dem z.B. die maximale Höhe der Facetten nicht größer als 10 µm ist, bereitgestellt werden, das dennoch einen sehr guten dreidimensionalen Eindruck bei Betrachtung erzeugt. Es ist daher möglich, mittels eines (makroskopisch) ebenen Flächenbereichs eine stark gewölbt erscheinende Fläche für den Betrachter nachzustellen. Grundsätzlich lassen sich in dieser Art und Weise beliebig geformte dreidimensionale Ausbildungen der wahrnehmbaren Fläche erzeugen. So können Portraits, Gegenstände, Motive oder sonstige dreidimensional erscheinende Objekte nachgestellt werden. Der dreidimensionale Eindruck wird dabei stets auf die tatsächliche Raumform des Flächenbereiches bezogen. So kann der Flächenbereich flach oder auch selbst gekrümmt ausgebildet sein. Es wird jedoch stets eine auf diese Grundflächenform bezogene dreidimensionale Erscheinung erreicht, so dass für einen Betrachter der Flächenbereich dann nicht eben oder in der gleichen Art und Weise gekrümmt erscheint wie der Flächenbereich selbst.
  • Unter den als vor- und/oder zurückspringende Fläche wahrnehmbaren Flächenbereich wird hier insbesondere verstanden, dass der Flächenbereich als kontinuierlich gewölbte Fläche wahrnehmbar ist. So kann der Flächenbereich z. B. als Fläche mit einer scheinbaren Wölbung, die von der Krümmung oder tatsächlichen Raumform des Flächenbereiches abweicht, wahrgenommen werden. Mit dem erfindungsgemäßen Sicherheitselement kann entsprechend z. B. eine gewölbte Oberfläche durch Nachstellung des entsprechenden Reflexionsverhaltens imitiert werden.
  • Der Flächenbereich ist insbesondere ein zusammenhängender Flächenbereich. Der Flächenbereich kann jedoch auch Lücken aufweisen oder sogar nicht zusammenhängende Teilbereiche umfassen. In dieser Art und Weise kann der Flächenbereich mit anderen Sicherheitsmerkmalen verschachtelt sein. Bei den anderen Sicherheitsmerkmalen kann es sich z. B. um ein Echtfarbenhologramm handeln, so dass ein Betrachter das Echtfarbenhologramm und die vor- und/oder zurückspringende Fläche, die durch den erfindungsgemäßen Flächenbereich bereitgestellt werden, zusammen wahrnehmen kann.
  • Die Orientierung der Facetten ist insbesondere so gewählt, dass für einen Betrachter der Flächenbereich als nicht ebene Fläche wahrnehmbar ist.
  • Ferner ist es möglich, dass die Mehrzahl oder alle Pixel des Flächenbereiches jeweils mehrere der optisch wirksamen Facetten mit gleicher Orientierung aufweisen.
  • Die optisch wirksamen Facetten können als reflektive und/oder transmissive Facetten ausgebildet sein.
  • Die Facetten können in einer Oberfläche des Trägers ausgebildet sein. Ferner ist es möglich, dass die Facetten sowohl in der Ober- als auch in der Unterseite des Trägers ausgebildet sind und sich einander gegenüberliegen. In diesem Fall sind die Facetten bevorzugt als transmissive Facetten mit brechender Wirkung ausgebildet, wobei natürlich der Träger selbst auch transparent oder zumindest transluzent ist. Die Abmessungen und Orientierungen der Facetten sind dann insbesondere so gewählt, dass für einen Betrachter eine Fläche so wahrnehmbar ist, dass sie gegenüber der tatsächlichen Raumform der Ober- und/oder Unterseite des Trägers vor- und/oder zurückspringt.
  • Der Träger kann als Schichtverbund ausgebildet sein. In diesem Fall können die Facetten an einer Grenzfläche innerhalb des Schichtverbundes liegen. So können die Facetten z. B. in einen auf einer Trägerfolie befindlichen Prägelack geprägt, anschließend metallisiert und in einer weiteren Lackschicht (z. B. Schutzlack oder Klebelack) eingebettet sein.
  • Insbesondere können bei dem erfindungsgemäßen Sicherheitselement die Facetten als eingebettete Facetten ausgebildet sein.
  • Insbesondere sind die optisch wirksamen Facetten so ausgebildet, dass die Pixel keine optisch diffraktive Wirkung aufweisen.
  • Die Abmessungen der optisch wirksamen Facetten können zwischen 1 µm und 300 µm, bevorzugt zwischen 3 µm und 100 µm und besonders bevorzugt zwischen 5 µm und 30 µm liegen. Insbesondere liegt bevorzugt ein im Wesentlichen strahlenoptisches Reflexionsverhalten bzw. eine im Wesentlichen strahlenoptische Brechungswirkung vor.
  • Die Abmessungen der Pixel sind so gewählt, dass die Fläche der Pixel um zumindest eine Größenordnung und bevorzugt um zumindest zwei Größenordnungen kleiner ist als die Fläche des Flächenbereiches. Unter der Fläche des Flächenbereiches sowie der Fläche der Pixel wird hier insbesondere jeweils die Fläche bei Projektion in Richtung der makroskopischen Flächennormalen des Flächenbereiches auf eine Ebene verstanden.
  • Insbesondere können die Abmessungen der Pixel so gewählt sein, dass die Abmessungen der Pixel zumindest in einer Richtung um zumindest eine Größenordnung und bevorzugt um zumindest zwei Größenordnungen kleiner sind als die Abmessungen der Fläche des Flächenbereiches.
  • Die maximale Ausdehnung eines Pixels liegt vorzugsweise zwischen 5 µm und 5 mm, bevorzugt zwischen 10 µm und 300 µm, besonders bevorzugt zwischen 20µm und 100 µm. Die Pixelform und/oder die Pixelgröße kann, muss aber nicht, innerhalb des Sicherheitselementes variieren.
  • Die Gitterperiode der Facetten pro Pixel (die Facetten können ein periodisches oder aperiodisches Gitter, z. B. ein Sägezahngitter, bilden) liegt vorzugsweise zwischen 1 µm und 300 µm oder zwischen 3 µm und 300 µm, bevorzugt zwischen 3 µm und 100 µm oder zwischen 5 µm und 100 µm, besonders bevorzugt zwischen 5 µm und 30 µm oder zwischen 10 µm und 30 µm. Die Gitterperiode wird insbesondere so gewählt, dass pro Pixel zumindest zwei Facetten gleicher Orientierung enthalten sind und dass Beugungseffekte praktisch keine Rolle mehr spielen für einfallendes Licht (z.B. aus dem Wellenlängenbereich von 380 nm bis 750 nm). Da keine bzw. keine praktisch relevanten Beugungseffekte auftreten, können die Facetten als achromatische Facetten bzw. die Pixel als achromatische Pixel bezeichnet werden, die eine gerichtet achromatische Reflexion bewirken. Das Sicherheitselement weist somit bezüglich der durch die Facetten der Pixel vorhandenen Gitterstruktur eine achromatische Reflektivität auf.
  • Die Facetten sind bevorzugt als im Wesentlichen ebene Flächenstücke ausgebildet. Die gewählte Formulierung, nach der die Facetten als im Wesentlichen ebene Flächenstücke ausgebildet sind, trägt dabei der Tatsache Rechnung, dass sich in der Praxis herstellungsbedingt in der Regel nie perfekt ebene Flächenstücke herstellen lassen.
  • Die Orientierung der Facetten wird insbesondere durch ihre Neigung und/oder ihren Azimut-Winkel bestimmt. Natürlich kann die Orientierung der Facetten auch durch andere Parameter bestimmt sein. Insbesondere handelt es sich dabei um zwei zueinander orthogonale Parameter, wie z. B. die zwei Komponenten des Normalenvektors der jeweiligen Facette.
  • Auf den Facetten kann zumindest bereichsweise eine reflektierende oder reflexionserhöhende Beschichtung (insbesondere eine metallische oder hochbrechende Beschichtung) ausgebildet sein. Die reflektierende oder reflexionserhöhende Beschichtung kann eine metallische Beschichtung sein, die beispielsweise aufgedampft ist. Als Beschichtungsmaterial kann insbesondere Aluminium, Gold, Silber, Kupfer, Palladium, Chrom, Nickel und/oder Wolfram sowie deren Legierungen verwendet werden. Alternativ kann die reflektierende oder reflexionserhöhende Beschichtung durch eine Beschichtung mit einem Material mit hohem Brechungsindex gebildet werden.
  • Die reflektierende oder reflexionserhöhende Beschichtung kann insbesondere als teildurchlässige Beschichtung ausgebildet sein.
  • Auf den Facetten ist zumindest bereichsweise eine farbkippende Beschichtung ausgebildet. Die farbkippende Beschichtung kann insbesondere als Dünnschichtsystem bzw. Dünnfilm-Interferenzbeschichtung ausgebildet sein. Dabei kann z.B. eine Schichtfolge Metallschicht - dielektrische Schicht - Metallschicht oder eine Schichtfolge aus drei dielektrischen Schichten, wobei die Brechzahl der mittleren Schicht geringer ist als die Brechzahl der beiden anderen Schichten, verwirklicht werden. Als dielektrisches Material kann z.B. ZnS, SiO2, TiO2, MgF2 verwendet werden.
  • Die farbkippende Beschichtung kann auch als Interferenzfilter, dünne semitransparente Metallschicht mit selektiver Transmission durch Plasmaresonanzeffekte, Nanopartikel, etc. ausgebildet sein. Die farbkippende Schicht kann insbesondere auch als Flüssigkristallschicht, diffraktive Reliefstruktur oder Sub-Wellenlängengitter realisiert sein. Auch ein Dünnfilmsystem mit einem Aufbau Reflektor, Dielektrikum, Absorber (in dieser Reihenfolge auf den Facetten ausgebildet) ist möglich.
  • Das Dünnfilmsystem plus Facette kann nicht nur, wie bereits beschrieben, als Facette/Reflektor/Dielektrikum/Absorber ausgebildet sein, sondern auch als Facette/Absorber/Dielektrikum/ Reflektor. Die Reihenfolge hängt insbesondere davon ab, von welcher Seite das Sicherheitselement betrachtet werden soll. Ferner sind auch beidseitig sichtbare Farbkippeffekte möglich, wenn das Dünnfilmsystem plus Facette beispielsweise als Absorber/Dielektrikum/ Absorber/ Facette oder Absorber/ Dielektrikum/ Reflektor/ Dielektrikum/Absorber/Facette ausgebildet ist.
  • Die farbkippende Beschichtung kann nicht nur als Dünnfilmsystem, sondern auch als Flüssigkristallschicht (insbesondere aus cholesterischem flüssigkristallinem Material) ausgebildet sein.
  • Soll ein diffus streuender Gegenstand nachgestellt werden, kann eine streuende Beschichtung oder Oberflächenbehandlung der Facetten vorgesehen werden. Eine solche Beschichtung oder Behandlung kann nach dem Lambert'sehen Cosinus-Gesetz streuen oder es kann eine Streureflexion mit einer vom Lambert'sehen Cosinus-Gesetz abweichenden Richtungsverteilung vorliegen. Insbesondere ist hier Streuung mit ausgeprägter Vorzugsrichtung interessant.
  • Bei der Herstellung der Facetten über einen Prägevorgang kann die Prägefläche des Prägewerkzeugs, mit der die Form der Facetten in den Träger bzw. in eine Schicht des Trägers geprägt werden kann, zusätzlich mit einer Mikrostruktur versehen sein, um bestimmte Effekte zu erzeugen. Beispielsweise kann die Prägefläche des Prägewerkzeugs mit einer rauen Oberfläche versehen sein, so dass beim Endprodukt Facetten mit Streureflexion entstehen.
  • Bei dem erfindungsgemäßen Sicherheitselement können pro Pixel bevorzugt zumindest zwei Facetten vorgesehen sein. Es können auch drei, vier, fünf oder mehr Facetten sein.
  • Bei dem erfindungsgemäßen Sicherheitselement kann die Anzahl der Facetten pro Pixel insbesondere so gewählt sein, dass eine maximale vorgegebene Facettenhöhe nicht überschritten wird. Die maximale Facettenhöhe kann beispielsweise 20 µm oder auch 10 µm betragen.
  • Ferner kann bei dem erfindungsgemäßen Sicherheitselement die Gitterperiode der Facetten für alle Pixel gleich gewählt sein. Es ist jedoch auch möglich, dass einzelne oder mehrere der Pixel unterschiedliche Gitterperioden aufweisen. Ferner ist es möglich, dass die Gitterperiode innerhalb eines Pixels variiert und somit nicht konstant ist. Des Weiteren kann in die Gitterperiode noch eine Phaseninformation eingeprägt sein, die zur Codierung weiterer Informationen dient. Insbesondere kann eine Verifikationsmaske mit Gitterstrukturen bereitgestellt werden, die die gleichen Perioden und Azimut-Winkel aufweisen wie die Facetten bei dem erfindungsgemäßen Sicherheitselement. In einem Teilbereich der Verifikationsmaske können die Gitter den gleichen Phasenparameter aufweisen wie das zu verifizierende Sicherheitselement und in anderen Bereichen eine bestimmte Phasendifferenz. Wenn die Verifikationsmaske über das Sicherheitselement gelegt wird, werden die verschiedenen Bereiche aufgrund des Moire-Effekts dann unterschiedlich hell oder dunkel erscheinen. Insbesondere kann die Verifikationsmaske auf dem gleichen zu schützenden Gegenstand vorgesehen sein wie das erfindungsgemäße Sicherheitselement.
  • Bei dem erfindungsgemäßen Sicherheitselement kann der Flächenbereich so ausgebildet sein, dass er für einen Betrachter als imaginäre Fläche wahrnehmbar ist. Darunter soll hier insbesondere verstanden werden, dass das erfindungsgemäße Sicherheitselement ein Reflexionsverhalten zeigt, das mit einer realen makroskopisch gewölbten Oberfläche nicht erzeugt werden kann. Insbesondere kann die imaginäre Fläche als Drehspiegel wahrnehmbar sein, der das sichtbare Spiegelbild z. B. um 90° dreht.
  • Eine solche imaginäre Fläche und insbesondere ein solcher Drehspiegel ist für einen Betrachter sehr leicht erfassbar und zu verifizieren.
  • Im Prinzip kann jede reale gewölbte reflektierende bzw. transmittierende Oberfläche mittels des Flächenbereichs des erfindungsgemäßen Sicherheitselementes in eine imaginäre Fläche abgewandelt werden. Dies kann z. B. dadurch realisiert werden, dass die Azimutwinkel aller Facetten verändert werden, beispielsweise um einen bestimmten Winkel verdreht werden. Damit lassen sich interessante Effekte erzielen. Dreht man beispielsweise alle Azimutwinkel um 45° nach rechts, so ist der Flächenbereich für einen Betrachter, wenn er direkt von oben beleuchtet wird, eine gewölbte Fläche, die scheinbar von rechts oben beleuchtet wird. Verdreht man alle Azimutwinkel um 90°, so bewegen sich die Lichtreflexe beim Kippen in eine Richtung, die senkrecht auf der Richtung steht, die ein Betrachter erwarten würde. Dieses unnatürliche Reflexionsverhalten macht es einem Betrachter dann beispielsweise auch nicht mehr möglich, zu entscheiden, ob die gewölbt wahrnehmbare Fläche nach vorne oder nach hinten (bezogen auf den Flächenbereich) vorliegt.
  • Ferner können durch ein aperiodisches Gitter oder die Einführung zufälliger Phasenparameter gezielt Beugungseffekte unterdrückt werden.
  • Auch ist es möglich, die Orientierungen der Facetten zu "verrauschen" (also geringfügig gegenüber der optimalen Form für die nachzustellende Fläche zu ändern), um beispielsweise matt erscheinende Oberflächen nachzustellen. Damit scheint der Flächenbereich nicht nur vor- und/oder zurückspringend gegenüber seiner tatsächlichen Raumform, sondern ihm kann auch noch eine registergenaue positionierte Textur verliehen werden.
  • Des Weiteren kann der Träger neben dem Flächenbereich einen weiteren Flächenbereich aufweisen, der bevorzugt mit dem einen Flächenbereich verschachtelt und insbesondere als weiteres Sicherheitsmerkmal ausgebildet ist. Eine solche Ausbildung kann z. B. als Verschachtelung oder als Mehrkanalbild bezeichnet werden. Der weitere Flächenbereich kann in gleicher Weise wie der eine Flächenbereich in eine Vielzahl von Pixeln, die jeweils zumindest eine optisch wirksame Facette umfassen, aufgeteilt sein, wobei bevorzugt die Mehrzahl der Pixel jeweils mehrere der optisch wirksamen Facetten mit gleicher Orientierung pro Pixel aufweisen und die Facetten so orientiert sind, dass für einen Betrachter der weitere Flächenbereich als gegenüber seiner tatsächlichen Raumform gewölbte bzw. vor- und/ oder zurückspringende Fläche wahrnehmbar ist. Dadurch können z. B. zwei verschiedene dreidimensionale Darstellungen realisiert werden.
  • Mittels der Verschachtelung kann der eine Flächenbereich z. B. mit zusätzlicher registergenauer Farb- oder Graustufeninformation (Kombination beispielsweise mit Echtfarbenhologramm oder Halbtonbild z. B. auf Basis von sub-Wellenlängengittern) überlagert werden.
  • Des Weiteren kann in der Anordnung der Facetten eine Phaseninformation als weiteres Sicherheitsmerkmal versteckt bzw. hinterlegt werden.
  • Bei dem erfindungsgemäßen Sicherheitselement kann zumindest eine Facette an ihrer Oberfläche eine lichtstreuende Mikrostruktur aufweisen. Natürlich können auch mehrere oder auch alle Facetten eine solche lichtstreuende Mikrostruktur an der Facettenoberfläche aufweisen.
  • Beispielsweise kann die lichtstreuende Mikrostruktur als Beschichtung ausgebildet sein. Insbesondere ist es möglich, die Facetten einzubetten und als Einbettmaterial ein solches zu verwenden, mit dem die gewünschte lichtstreuende Mikrostruktur realisiert werden kann.
  • Mit einer solchen Ausbildung können mit dem erfindungsgemäßen Sicherheitselement streuende Objekte, wie z. B. eine Marmorfigur, ein Gipsmodell, etc. nachgestellt werden.
  • Natürlich können die Facetten auch in einem farbigen Material eingebettet werden, um zusätzlich noch einen Farbeffekt zu realisieren bzw. einen farbigen Gegenstand nachzustellen.
  • Bei dem erfindungsgemäßen Sicherheitselement können die Orientierungen mehrerer Facetten gegenüber den Orientierungen zur Erzeugung der vor- und/oder zurückspringenden Fläche so geändert sein, dass die vor- und/oder zurückspringende Fläche zwar noch wahrnehmbar ist, aber mit matt erscheinender Oberfläche. Somit kann die vor- und/oder zurückspringende Fläche auch mit einer matten Oberflächenerscheinung dargeboten werden.
  • Die Erfindung umfasst auch ein Verfahren zum Herstellen eines Sicherheitselementes für Sicherheitspapiere, Wertdokumente oder dergleichen, gemäß den Ansprüchen 17 und 18.
  • Das erfindungsgemäße Herstellungsverfahren kann insbesondere so weitergebildet werden, dass das erfindungsgemäße Sicherheitselement sowie die Weiterbildungen des erfindungsgemäßen Sicherheitselementes hergestellt werden können.
  • Das Herstellungsverfahren kann ferner den Schritt des Berechnens der Pixel ausgehend von einer nachzustellenden Oberfläche enthalten. Bei diesem Berechnungsschritt werden für alle Pixel die Facetten (deren Abmessungen sowie deren Orientierungen) berechnet. Anhand dieser Daten kann dann die Höhenmodulation des Flächenbereiches durchgeführt werden.
  • Bei dem erfindungsgemäßen Herstellungsverfahren kann ferner der Schritt des Beschichtens der Facetten vorgesehen sein. Die Facetten können mit einer reflektierenden oder reflexionserhöhenden Beschichtung versehen werden. Die reflektierende oder reflexionserhöhende Beschichtung kann eine vollständige Verspiegelung oder auch eine teiltransparente Verspiegelung sein.
  • Zur Erzeugung der höhenmodulierten Oberfläche des Trägers können bekannte Mikrostrukturierungsverfahren verwendet werden, wie z.B. Prägeverfahren. So können beispielsweise auch mit aus der Halbleiterfertigung bekannten Verfahren (Photolithographie, Elektronenstrahllithographie, Laserstrahllithographie, etc.) geeignete Strukturen in Resistmaterialien belichtet, eventuell veredelt, abgeformt und zur Fertigung von Prägewerkzeugen verwendet werden. Es können bekannte Verfahren zur Prägung in thermoplastischen Folien oder in mit strahlungshärtenden Lacken beschichtete Folien eingesetzt werden. Der Träger kann mehrere Schichten aufweisen, die sukzessive aufgebracht und gegebenenfalls strukturiert werden und/oder kann aus mehreren Teilen zusammengesetzt werden.
  • Das Sicherheitselement kann insbesondere als Sicherheitsfaden, Aufreißfaden, Sicherheitsband, Sicherheitsstreifen, Patch oder als Etikett zum Aufbringen auf ein Sicherheitspapier, Wertdokument oder dergleichen ausgebildet sein. Insbesondere kann das Sicherheitselement transparente oder zumindest transluzente Bereiche oder Ausnehmungen überspannen.
  • Unter dem Begriff Sicherheitspapier wird hier insbesondere die noch nicht umlauffähige Vorstufe zu einem Wertdokument verstanden, die neben dem erfindungsgemäßen Sicherheitselement beispielsweise auch weitere Echtheitsmerkmale (wie z.B. im Volumen vorgesehene Lumineszenzstoffe) aufweisen kann. Unter Wertdokumenten werden hier einerseits aus Sicherheitspapieren hergestellte Dokumente verstanden. Andererseits können Wertdokumente auch sonstige Dokumente und Gegenstände sein, die mit dem erfindungsgemäßen Sicherheitselement versehen werden können, damit die Wertdokumente nicht kopierbare Echtheitsmerkmale aufweisen, wodurch eine Echtheitsprüfung möglich ist und zugleich unerwünschtes Kopieren verhindert wird.
  • Es wird ferner bereitgestellt ein Prägewerkzeug mit einer Prägefläche, mit der die Form der Facetten eines erfindungsgemäßen Sicherheitselementes (einschließlich seiner Weiterbildungen) in den Träger bzw. in eine Schicht des Trägers geprägt werden kann.
  • Die Prägefläche weist bevorzugt die invertierte Form der zu prägenden Oberflächenkontur auf, wobei diese invertierte Form mit Vorteil durch die Ausbildung von entsprechenden Vertiefungen erzeugt ist.
  • Ferner kann das erfindungsgemäße Sicherheitselement als Master zur Belichtung von Volumenhologrammen oder zu rein dekorativen Zwecken benutzt werden.
  • Um das Volumenhologramm zu belichten, kann eine fotosensitive Schicht, in der das Volumenhologramm ausgebildet werden soll, unmittelbar oder unter Zwischenschaltung eines transparenten optischen Mediums in Kontakt mit der Vorderseite des Masters und somit mit der Vorderseite des Sicherheitselementes gebracht werden.
  • Dann werden die fotosensitive Schicht und der Master mit einem kohärenten Lichtstrahl belichtet, wodurch das Volumenhologramm in die fotosensitive Schicht geschrieben wird. Das Vorgehen kann gleich oder ähnlich zu dem in der DE 101006 016139 A1 beschriebenen Vorgehen zur Erzeugung eines Volumenhologramms sein. Das grundsätzliche Vorgehen ist beispielsweise in den Abschnitten Nr. 70 bis 79 auf Seiten 7 und 8 der genannten Druckschrift in Verbindung mit Figuren 1a, 1b, 2a und 2b beschrieben. Hiermit wird der gesamte Inhalt der DE 10 2006 016139 A1 in Bezug auf die Herstellung von Volumenhologrammen in die vorliegende Anmeldung aufgenommen.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in den angegebenen Kombinationen, sondern auch in anderen Kombinationen oder in Alleinstellung einsetzbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Nachfolgend wird die Erfindung beispielshalber anhand der beigefügten Zeichnungen, die auch erfindungswesentliche Merkmale offenbaren, noch näher erläutert. Zur besseren Anschaulichkeit wird in den Figuren auf eine maßstabs- und proportionsgetreue Darstellung verzichtet. Es zeigen:
  • Figur 1
    eine Draufsicht einer Banknote mit einem erfindungsgemäßen Sicherheitselement 1;
    Figur 2
    eine vergrößerte Draufsicht eines Teils der Fläche 3 des Sicherheitselementes 1;
    Figur 3
    eine Querschnittsansicht entlang der Linie 6 in Figur 2;
    Figur 4
    eine schematische perspektivische Darstellung des Pixels 47 von Figur 2;
    Figur 5
    eine Schnittansicht einer weiteren Ausführungsform einiger Facetten des Sicherheitselementes 1;
    Figur 6
    eine Schnittansicht einer weiteren Ausführungsform einiger Facetten des Sicherheitselementes 1;
    Figur 7
    eine Schnittansicht zur Erläuterung der Berechnung der Facetten;
    Figur 8
    eine Draufsicht zur Erläuterung eines Quadratrasters zur Berechnung der Pixel;
    Figur 9
    eine Draufsicht zur Erläuterung eines 60°-Rasters zur Berechnung der Pixel;
    Figur 10
    eine Draufsicht auf drei Pixel 4 der Fläche 3;
    Figur 11
    eine Querschnittsansicht der Darstellung von Figur 10;
    Figur 12
    eine Draufsicht auf drei Pixel 4 der Fläche 3;
    Figur 13
    eine Querschnittsansicht der Draufsicht von Figur 12;
    Figur 14
    eine Draufsicht auf drei Pixel 4 der Fläche 3;
    Figur 15
    eine Schnittansicht der Draufsicht von Figur 14;
    Figur 16
    eine Draufsicht zur Erläuterung der Berechnung der Pixel gemäß einer weiteren Ausführungsform;
    Figur 17
    eine Schnittansicht der Anordnung der Facetten der Pixel auf einer zylindrischen Grundfläche;
    Figur 18
    eine Schnittansicht zur Erläuterung der Herstellung der Pixel für die Anwendung gemäß Figur 17;
    Figuren 19 - 21
    Darstellungen zur Erläuterung der Winkel bei reflektiven und transmissiven Facetten;
    Figur 22
    eine Schnittansicht einer nachzustellenden reflektiven Oberfläche;
    Figur 23
    eine Schnittansicht einer die Oberfläche gemäß Figur 22 nachstellenden Linse 22;
    Figur 24
    eine Schnittansicht der transmissiven Facetten für die Nachbildung der Linse gemäß Figur 23;
    Figur 25
    eine Schnittansicht einer nachzustellenden reflektiven Oberfläche;
    Figur 26
    eine Schnittansicht einer die Oberfläche gemäß Figur 25 nachstellenden Linse 22;
    Figur 27
    eine Schnittansicht der entsprechenden transmissiven Facetten zur Nachbildung der Linse gemäß Figur 24;
    Figur 28
    eine Schnittansicht einer Ausführungsform, bei der auf beiden Seiten des Trägers 8 transmissive Facetten ausgebildet sind;
    Figur 29
    eine Schnittansicht gemäß einer weiteren Ausführungsform, bei der auf beiden Seiten des Trägers 8 transmissive Facetten ausgebildet sind;
    Figur 30
    eine Darstellung zur Erläuterung der Winkel bei der Ausführungsform, bei der auf beiden Seiten des Trägers 8 transmissive Facetten ausgebildet sind;
    Figur 31
    eine schematische Schnittansicht eines Prägewerkzeuges zur Herstellung des erfindungsgemäßen Sicherheitselementes gemäß Figur 5.
    Fig. 32a -32 c
    Darstellungen zur Erläuterung eingebetteter Facetten, wobei die Facetten als reflektive Facetten ausgebildet sind;
    Fig. 33a + 33b
    Darstellungen zur Erläuterung eingebetteter Facetten, wobei die Facetten als transmissive Facetten ausgebildet sind;
    Figur 34
    eine Darstellung zur Erläuterung eingebetteter streuender Facetten, und
    Figur 35
    eine Darstellung zur Erläuterung eingebetteter matt glänzender Facetten.
  • Bei der in Figur 1 gezeigten Ausführungsform ist das erfindungsgemäße Sicherheitselement 1 so in einer Banknote 2 integriert, dass das Sicherheitselement 1 von der in Figur 1 gezeigten Vorderseite der Banknote 2 sichtbar ist.
  • Das Sicherheitselement 1 ist als reflektives Sicherheitselement 1 mit rechteckiger Außenkontur ausgebildet, wobei die durch die rechteckige Außenkontur begrenzte Fläche 3 in eine Vielzahl von reflektiven Pixeln 4 aufgeteilt ist, von denen ein geringer Teil vergrößert in Figur 2 als Draufsicht dargestellt sind.
  • Die Pixel 4 sind hier quadratisch und weisen eine Kantenlänge im Bereich von 10 bis mehrere 100 µm auf. Bevorzugt ist die Kantenlänge nicht größer als 300 µm. Insbesondere kann sie im Bereich zwischen 20 und 100 µm liegen.
  • Die Kantenlänge der Pixel 4 ist insbesondere so gewählt, dass die Fläche jedes Pixels 4 um zumindest eine Größenordnung, bevorzugt um zwei Größenordnungen kleiner ist als die Fläche 3.
  • Die Mehrzahl der Pixel 4 weisen jeweils mehrere reflektive Facetten 5 gleicher Orientierung auf, wobei die Facetten 5 die optisch wirksamen Flächen eines reflektiven Sägezahngitters sind.
  • In Figur 3 ist die Schnittansicht entlang der Linie 6 für sechs benachbarte Pixel 41, 42, 43, 44, 45 und 46 dargestellt, wobei die Darstellung in Figur 3 sowie auch in den anderen Figuren teilweise zur besseren Darstellbarkeit nicht maßstabsgetreu ist. Ferner ist zur Vereinfachung der Darstellung in den Figuren 1 bis 3 sowie auch in Figur 4 die reflektierende Beschichtung auf den Facetten 5 nicht eingezeichnet.
  • Das Sägezahngitter der Pixel 4 ist hier in einer Oberfläche 7 eines Trägers 8 ausgebildet, wobei die so strukturierte Oberfläche 7 bevorzugt mit einer reflektierenden Beschichtung (in Figur 3 nicht gezeigt) beschichtet ist. Bei dem Träger 8 kann es sich beispielsweise um einen strahlungshärtenden Kunststoff (UV-Harz) handeln, der auf einer nicht gezeigten Trägerfolie (beispielsweise eine PET-Folie) aufgebracht ist.
  • Wie Figur 3 zu entnehmen ist, weisen die Pixel 41, 42, 44, 45 und 46 jeweils drei Facetten 5 auf, deren Orientierung pro Pixel 41, 42, 44, 45 und 46 jeweils gleich ist. Die Sägezahngitter und somit auch die Facetten 5 dieser Pixel sind hier bis auf ihre unterschiedliche Neigung σ1, σ4 gleich (zur Vereinfachung der Darstellung sind nur die Neigungswinkel σ1 und σ4 von jeweils einer Facette 5 der Pixel 41 und 44 eingezeichnet). Das Pixel 43 weist hier nur eine einzige Facette 5 auf.
  • In Draufsicht gesehen (Figur 2) sind die Facetten 5 der Pixel 41 - 46 streifenförmige Spiegelflächen, die zueinander parallel ausgerichtet sind. Die Orientierung der Facetten 5 ist dabei so gewählt, dass für einen Betrachter die Fläche 3 als gegenüber ihrer tatsächlichen (makroskopischen) Raumform, die hier die Form einer ebenen Fläche ist, vor- und/oder zurückspringende Fläche wahrnehmbar ist. Hier nimmt ein Betrachter die in Figur 3 im Schnitt dargestellte Oberfläche 9 wahr, wenn er auf die Facetten 5 blickt. Dies wird durch Wahl der Orientierungen der Facetten 5 erreicht, die das einfallende Licht L1 so reflektieren, als ob es auf eine Fläche gemäß der durch Linie 9 in Figur 3 angedeuteten Raumform fällt, wie durch das einfallende Licht L2 schematisch dargestellt ist. Die durch die Facetten 5 eines Pixels 4 erzeugte Reflexion entspricht der mittleren Reflexion des durch das entsprechende Pixel 4 umgesetzten bzw. nachgestellten Bereiches der Oberfläche 9.
  • Bei dem erfindungsgemäßen Sicherheitselement 1 wird somit ein dreidimensional erscheinendes Höhenprofil durch eine hier gerasterte Anordnung reflektiver Sägezahnstrukturen (Facetten 5 pro Pixel 4), die das Reflexionsverhalten des Höhenprofils imitieren, nachgestellt. Mit der Fläche 3 können somit beliebige dreidimensional wahrnehmbare Motive erzeugt werden, wie z.B. eine Person, Teile einer Person, eine Zahl oder sonstige Gegenstände.
  • Neben der Steigung σ der einzelnen Facetten 5 ist auch der Azimut-Winkel α der nachgestellten Oberfläche anzupassen. Für die Pixel 41 - 46 beträgt der Azimut-Winkel α relativ zur Richtung gemäß Pfeil P1 (Figur 2) 0°. Für das Pixel 47 beträgt der Azimut-Winkel α beispielsweise ca. 170°. Das Sägezahngitter des Pixels 47 ist in Figur 4 schematisch in dreidimensionaler Darstellung gezeigt.
  • Zur Herstellung des Sicherheitselementes 1 können die reflektiven Sägezahnstrukturen beispielsweise mittels Graustufenlithographie in einen Fotolack geschrieben, anschließend entwickelt, galvanisch abgeformt, in UV-Lack (Träger) geprägt und verspiegelt werden. Die Verspiegelung kann beispielsweise mittels einer aufgebrachten Metallschicht (beispielsweise aufgedampft) verwirklicht werden. Typischerweise wird eine Aluminiumschicht mit einer Stärke von z.B. 50 nm aufgebracht. Natürlich können auch andere Metalle, wie z.B. Silber, Kupfer, Chrom, Eisen, etc. oder Legierungen davon verwendet werden. Auch können alternativ zu Metallen hochbrechende Beschichtungen aufgebracht werden, beispielsweise ZnS oder TiO2. Die Bedampfung kann vollflächig sein. Es ist jedoch auch möglich, eine nur bereichsweise bzw. rasterförmige Beschichtung durchzuführen, so dass das Sicherheitselement 1 teilweise transparent bzw. transluzent ist.
  • Die Periode A der Facetten 5 ist im einfachsten Fall für alle Pixel 4 gleich. Es ist jedoch auch möglich, die Periode A der Facetten 5 pro Pixel 4 zu variieren. So weist z.B. das Pixel 47 eine kleinere Periode A auf als die Pixel 41 - 46 (Figur 2). Insbesondere kann die Periode A der Facetten 5 für jedes Pixel zufällig gewählt werden. Durch eine Variation der Wahl der Periode Λ der Sägezahngitter für die Facetten 5 kann eine eventuell vorhandene Sichtbarkeit eines auf die Sägezahngitter zurückgehenden Beugungsbildes minimiert werden.
  • Innerhalb eines Pixels 4 ist eine feste Periode A vorgesehen. Grundsätzlich ist es jedoch auch möglich, die Periode A innerhalb eines Pixels 4 zu variieren, so dass aperiodische Sägezahngitter pro Pixel 4 vorliegen.
  • Die Periode A der Facetten 5 liegt zur Vermeidung unerwünschter Beugungseffekte einerseits und zur Minimierung der nötigen Foliendicke (Dicke des Trägers 8) andererseits bevorzugt zwischen 3 µm und 300 µm. Insbesondere liegt der Abstand zwischen 5 µm und 100 µm, wobei besonders bevorzugt ein Abstand zwischen 10 µm und 30 µm gewählt ist.
  • Bei dem hier beschriebenen Ausführungsbeispiel sind die Pixel 4 quadratisch. Es ist jedoch auch möglich, die Pixel 4 rechteckförmig auszubilden. Auch können andere Pixelformen benutzt werden, wie z.B. eine parallelogrammförmige oder hexagonale Pixelform. Die Pixel 4 weisen dabei bevorzugt Abmessungen auf, die einerseits größer sind als der Abstand der Facetten 5 und andererseits so klein sind, dass die einzelnen Pixel 4 dem unbewaffneten Auge nicht störend auffallen. Der sich aus diesen Anforderungen ergebende Größenbereich liegt zwischen etwa 10 und einigen 100 µm.
  • Steigungen σ und Azimut-Winkel α der Facetten 5 innerhalb eines Pixels 4 ergeben sich dann aus der Steigung des nachgestellten Höhenprofils 9.
  • Neben der Steigung σ und dem Azimut-Winkel α kann weiterhin für jedes Pixel 4 optional ein Phasenparameter pi eingeführt werden. Das Oberflächenrelief des Sicherheitselementes 1 kann dann im i-ten Pixel 4i durch folgende Höhenfunktion hi (x,y) beschrieben werden: h i x y = A i x sinα i + y cosα i + p i mod Λ i
    Figure imgb0001
  • Dabei sind Ai die Amplitude des Sägezahngitters, αi der Azimut-Winkel und Ai die Gitterperiode. "mod" steht für die Modulo-Operation und liefert den positiven Rest bei Division. Der Amplitudenfaktor Ai ergibt sich aus der Steigung des nachgestellten Oberflächenprofils 9.
  • Durch Veränderung des Phasenparameters pi lassen sich die Sägezahngitter bzw. die Facetten 5 unterschiedlicher Pixel 4 relativ zueinander verschieben. Für die Parameter pi können zufällige Werte oder sonstige pro Pixel 4 variierende Werte benutzt werden. Dadurch kann ein eventuell noch sichtbares Beugungsmuster des Sägezahngitters (der Facetten 5 pro Pixel 4) oder des Rastergitters der Pixel 4 beseitigt werden, was ansonsten unerwünschte Farbeffekte verursachen kann. Ferner gibt es aufgrund der variierten Phasenparameter pi auch keine ausgezeichneten Richtungen, in denen die Sägezahngitter benachbarter Pixel 4 besonders gut oder besonders schlecht aneinander passen, was einer sichtbaren Anisotropie vorbeugt.
  • Bei dem erfindungsgemäßen Sicherheitselement 1 können der Azimut-Winkel α sowie die Steigungen σ der Facetten 5 pro Pixel 4 so gewählt werden, dass sie nicht möglichst gut der nachgestellten Oberfläche 9 entsprechen, sondern davon etwas abweichen. Dazu kann für jedes Pixel 4 auf den optimalen Wert zur Nachstellung der Oberfläche 9 entsprechend einer geeigneten Verteilung eine (bevorzugt zufällige) Komponente dazu addiert werden. Je nach Größe des Pixels 4 und Stärke des Rauschens (Standardabweichung der Verteilung) können so unterschiedliche interessante Effekte erzielt werden. Bei sehr feinen Pixeln 4 (um 20 µm) erscheint die sonst glänzende Oberfläche mit zunehmendem Rauschen zunehmend matt. Bei größeren Pixeln (um 50 µm) erhält man ein mit einer Metallic-Lackierung vergleichbares Aussehen. Bei sehr großen Pixeln (mehrere 100 µm) werden die einzelnen Pixel 4 vom unbewaffneten Auge aufgelöst. Sie erscheinen dann wie grobe aber glatte Abschnitte, die unter verschiedenen Betrachtungswinkeln hell aufleuchten.
  • Die Stärke des Rauschens kann für verschiedene Pixel 4 unterschiedlich gewählt werden, wodurch die gewölbt erscheinende Oberfläche an verschiedenen Stellen unterschiedlich glatt oder matt wirken kann. So kann beispielsweise der Effekt erzeugt werden, dass der Betrachter die Fläche 3 als glatte vor- und/oder zurückspringende Fläche wahrnimmt, die eine matte Beschriftung oder Textur aufweist.
  • Ferner ist es möglich, auf den Facetten 5 eine farbkippende Beschichtung, insbesondere ein Dünnfilmsystem, aufzubringen. Das Dünnfilmsystem kann beispielsweise eine erste, eine zweite und eine dritte dielektrische Schicht aufweisen, die aufeinander ausgebildet sind, wobei die erste und dritte Schicht eine höhere Brechzahl aufweisen als die zweite Schicht. Aufgrund der unterschiedlichen Neigungen der Facetten 5 sind für einen Betrachter unterschiedliche Farben wahrnehmbar, ohne das Sicherheitselement 1 drehen zu müssen. Die wahrnehmbare Fläche weist somit ein gewisses Farbspektrum auf.
  • Das Sicherheitselement 1 kann insbesondere als Mehrkanalbild ausgebildet sein, das verschiedene, ineinander verschachtelte Teilflächen aufweist, wobei zumindest eine der Teilflächen in erfindungsgemäßer Art und Weise ausgebildet ist, so dass diese Teilfläche für den Betrachter als räumliche Teilfläche wahrnehmbar ist. Natürlich können auch die anderen Teilflächen in der beschriebenen Art und Weise mittels Pixel 4 mit zumindest einer Facette 5 ausgebildet sein. Auch die anderen Teilflächen können, müssen aber nicht, als gegenüber der tatsächlichen Raumform vor- und/oder zurückspringende Fläche wahrnehmbar sein. Die Verschachtelung kann beispielsweise schachbrettartig oder auch streifenartig ausgebildet sein. Durch die Verschachtelung mehrerer Teilflächen lassen sich interessante Effekte erzielen. Wenn z.B. die Nachstellung einer Kugeloberfläche mit der Darstellung einer Zahl verschachtelt wird, kann dies so durchgeführt werden, dass für den Betrachter der Eindruck entsteht, die Zahl befände sich im Inneren einer Glaskugel mit halbspiegelnder Oberfläche.
  • Neben der bereits beschriebenen Verwendung von farbkippenden Beschichtungen ist es ferner möglich, das erfindungsgemäße Sicherheitselement 1 zusätzlich mit Farbinformationen zu versehen. So kann z.B. Farbe auf die Facetten 5 gedruckt werden (entweder transparent oder dünn) oder unterhalb einer zumindest teilweise transparenten bzw. transluzenten Sägezahnstruktur vorgesehen werden. Beispielsweise kann dadurch eine Einfärbung eines mittels der Pixel 4 dargestellten Motivs durchgeführt werden. Wenn z.B. ein Portrait nachgestellt wird, kann die Farbschicht die Gesichtsfarbe liefern.
  • Auch eine Kombination mit einem Echtfarbenhologramm oder Kinegramm, insbesondere die Verschachtelung mit einem Echtfarbenhologramm, das eine farbige Darstellung der mit den Pixeln 4 nachgestellten Oberfläche 9 zeigt, ist möglich. Damit erscheint das an sich achromatisch dreidimensionale Bild eines Objektes unter bestimmten Winkeln farbig.
  • Ferner ist eine Kombination mit einem Subwellenlängengitter möglich. Insbesondere die verschachtelte Darstellung des gleichen Motivs durch beide Techniken ist vorteilhaft, bei der die dreidimensionale Wirkung der Sägezahnstrukturen mit der Farbinformation der Subwellenlängengitter kombiniert wird.
  • Bei der mit den Pixeln 4 nachgestellten Oberfläche 9 kann es sich insbesondere um eine sogenannte imaginäre Fläche handeln. Darunter wird hier die Ausbildung eines Reflexions- bzw. Transmissionsverhaltens verstanden, das mit einer realen gewölbten reflektierenden bzw. transmittierenden Oberfläche nicht erzeugt werden kann.
  • Zur weiteren Erläuterung des Begriffs der imaginären Fläche wird nachfolgend ein mathematisches Kriterium zur Abgrenzung von realen Flächen eingeführt und am Beispiel eines Drehspiegels erläutert.
  • Bei der Nachstellung einer realen gewölbten Oberfläche ist diese durch eine Höhenfunktion h(x,y) beschreibbar. Dabei kann man hier davon ausgehen, dass die Funktion h(x,y) differenzierbar ist (nicht differenzierbare Funktionen ließen sich durch differenzierbare Funktionen approximieren, die beim Beobachter letztendlich den gleichen Effekt hervorrufen würden). Integriert man nun den Gradienten von h(x,y) entlang einer beliebig geschlossenen Kurve C so verschwindet das Integral: C h x y ds = 0
    Figure imgb0002
  • Bildlich gesprochen bedeutet dies, dass man entlang eines geschlossenen Weges die gleichen Höhenunterschiede hoch wie runter läuft und am Ende wieder auf der gleichen Höhe ankommt. Die Summe der auf diesem Weg überwundenen Höhendifferenzen muss also Null sein.
  • Im erfindungsgemäßen Sicherheitselement 1 entsprechen Steigung und Azimut der Facetten 5 dem Gradienten der Höhenfunktion. Dabei lassen sich nun Fälle konstruieren, bei denen Steigung und Azimut der Facetten 5 zwar praktisch kontinuierlich ineinander übergehen, sich aber keine Höhenfunktion finden lässt, mit der obiges Integral verschwindet. In diesem Fall soll von der Nachstellung einer imaginären Fläche die Rede sein.
  • Eine spezielle Ausführung ist z.B. ein Drehspiegel. Dazu betrachtet man zunächst die Nachstellung eines realen konvexen Spiegels mit parabolischem Profil. Die Höhenfunktion ist gegeben durch h x y = c x 2 + y 2
    Figure imgb0003
  • Wobei c > 0 eine Konstante ist und die Krümmung des Spiegels bestimmt. In einem solchen Spiegel kann der Betrachter ein aufrechtstehendes verkleinertes Spiegelbild von sich sehen. Die Parameter der Sägezahnstrukturen sind dann gegeben durch α x y = arctan x y
    Figure imgb0004
    und A x y = 2 c x 2 + y 2
    Figure imgb0005
  • Addiert man auf den Azimut-Winkel α nun einen konstanten Winkel δ, so wird das Spiegelbild um eben diesen Winkel gedreht. Sofern es sich bei δ nicht um ganzzahlige Vielfache von 180° handelt, entsteht so eine imaginäre Oberfläche. Wählt man beispielsweise δ = 90°, so wird das Spiegelbild um 90° gedreht und man erhält ein Spiegelbild, das mit einer glatten gewölbten realen Oberfläche nicht zu erzielen ist. Setzt man den Gradienten von h gleich mit der Steigung der Sägezahnstrukturen, so kann man nun geschlossene Kurven finden, bei denen obiges Integral nicht verschwindet. Beispielsweise ergibt eine Kurve K entlang eines Kreises um den Mittelpunkt mit Radius R > 0 K h x y ds = K 2 c ds = 4 πcR 0
    Figure imgb0006
  • Bildlich gesprochen stellt dieser Drehspiegel also eine Oberfläche nach, bei der man entlang eines Kreises kontinuierlich bergauf läuft, am Ende aber wieder auf der gleichen Höhe ankommt, auf der man gestartet ist. Eine solche reale Oberfläche kann es offensichtlich nicht geben.
  • Bei den bisher beschriebenen Sicherheitselementen 1 wurde davon ausgegangen, dass die Fläche als reflektive Fläche ausgebildet ist. Die gleichen Effekte der dreidimensionalen Wirkung lassen sich im Wesentlichen jedoch auch in Transmission erzielen, wenn die Sägezahnstrukturen bzw. die Pixel 4 mit den Facetten 5 (einschließlich des Trägers 8) zumindest teilweise transparent sind. Bevorzugt liegen die Sägezahnstrukturen zwischen zwei Schichten mit unterschiedlichen Brechungsindizes. In diesem Falle erscheint das Sicherheitselement 1 dem Betrachter dann wie ein Glaskörper mit gewölbter Oberfläche.
  • Die beschriebenen vorteilhaften Ausgestaltungen lassen sich auch für die transmissive Ausbildung des Sicherheitselementes 1 anwenden. So kann beispielsweise der Drehspiegel einer imaginären Fläche in Durchsicht das Bild drehen.
  • Die transmissive Ausbildung des Sicherheitselements wird nachfolgend noch detaillierter in Verbindung mit den Figuren 19 bis 29 beschrieben.
  • Die Fälschungssicherheit des erfindungsgemäßen Sicherheitselementes 1 kann durch weitere, nur mit Hilfsmittel sichtbare Merkmale, die auch als versteckte Merkmale bezeichnet werden können, erhöht werden.
  • So können z.B. in den Phasenparametern der einzelnen Pixel 4 zusätzliche Informationen kodiert werden. Insbesondere kann eine Verifikationsmaske mit Gitterstrukturen hergestellt werden, die die gleichen Perioden und Azimut-Winkel aufweisen wie das erfindungsgemäße Sicherheitselement 1. In einem Teilbereich der Fläche können die Gitter der Verifikationsmaske den gleichen Phasenparameter aufweisen wie das zu verifizierende Sicherheitselement, in anderen Bereichen eine bestimmte Phasendifferenz. Diese verschiedenen Bereiche werden durch Moiré-Effekte dann unterschiedlich hell oder dunkel erscheinen, wenn das Sicherheitselement 1 und die Verifikationsmaske übereinander gelegt werden.
  • Insbesondere kann die Verifikationsmaske auch in der Banknote 2 oder dem sonstigen, mit dem Sicherheitselement 1 versehenen Element vorgesehen sein.
  • Die Pixel 4 können neben den beschriebenen Umrissformen auch andere Umrisse haben. Mit einer Lupe bzw. einem Mikroskop können diese Umrisse dann erkannt werden.
  • Ferner kann in einem kleinen Anteil der Pixel 4 statt der entsprechenden Sägezähne bzw. Facetten 5 auch eine beliebige andere Struktur eingeprägt oder eingeschrieben werden, ohne dass dies dem unbewaffneten Auge auffällt. In diesem Fall sind diese Pixel nicht Bestandteil der Fläche 3, so dass eine Verschachtelung der Fläche 3 mit den anders ausgebildeten Pixeln vorliegt. Diese anderen ausgebildeten Pixeln können beispielsweise jedes 100. Pixel im Vergleich zu den Pixeln 4 der Fläche 3 sein. Man kann in diese Pixel eine Mikroschrift oder ein Logo einbringen, beispielsweise 10 µm große Buchstaben in einem 40 µm großen Pixel.
  • Bei den bisher beschriebenen Ausführungsbeispielen sind die Facetten in der Oberfläche 7 des Trägers 8 so gebildet, dass die tiefsten Punkte bzw. die minimalen Höhenwerte aller Facetten 5 (Figur 3) in einer Ebene liegen. Es ist jedoch auch möglich, die Facetten 5 so zu bilden, dass die Mittelwerte der Höhen aller Facetten 5 auf gleicher Höhe liegen, wie in Figur 5 schematisch dargestellt ist. Ferner ist es möglich, die Facetten 5 so auszubilden, dass die Spitzenwerte bzw. die maximalen Höhenwerte aller Facetten 5 der Pixel 4 auf gleicher Höhe liegen, wie in Figur 6 schematisch angedeutet ist.
  • In Figur 7 ist eine Schnittdarstellung in gleicher Weise wie in Figur 3 gezeigt, wobei jedoch für das Pixel 44 eine Spiegelfläche 10 eingezeichnet ist, die im Bereich des Pixels 44 die Oberfläche 9 nachstellt. Bei einer Pixelgröße von beispielsweise 20 µm bis 100 µm würde ein solches Spiegelfläche 10 dazu führen, dass unerwünscht große Höhen d vorliegen würden. Bei einer Spiegelneigung von 45° würde die entsprechende Spiegelfläche 10 um 20 µm bis 100 µm aus der x-y-Ebene herausragen. Es sind jedoch bevorzugt maximale Höhen d von 10 µm gewünscht. Daher wird die Spiegelfläche 10 noch einer Modulo d Operation unterworfen, so dass die in Figur 7 gezeichneten Facetten 5 gebildet werden, wobei die Normalenvektoren n der Facetten 5 dem Normalenvektor n der Spiegelfläche 10 entsprechen.
  • Die nachzustellende Oberfläche 9 kann beispielsweise als Menge von x,y-Werten mit jeweils zugeordneter Höhe h in z-Richtung (3D-Bitmap) vorliegen. Über ein solches 3D-Bitmap kann in der x-y-Ebene ein definiertes Quadrat- oder 60°-Raster (Figuren 8, 9) aufgebaut werden. Die Rasterpunkte verbindet man so, dass sich eine Flächendeckung in der x-y-Ebene mit Dreieckskacheln ergibt, wie dies in Figuren 8 und 9 schematisch dargestellt ist.
  • An den drei Eckpunkten einer jeden Kachel entnimmt man die h-Werte aus dem 3D-Bitmap. Den kleinsten dieser h-Werte zieht man von den h-Werten der drei Eckpunkte der Kacheln ab. Mit diesen neuen h-Werten an den Eckpunkten wird eine Sägezahnfläche aus schrägstehenden Dreiecken (dreieckige Ebenenstücke) aufgebaut. Die zu weit aus der x-y-Ebene herausragenden Ebenenstücke werden durch die Facetten 5 ersetzt. Damit hat man die Flächenbeschreibung für die Facetten 5 und kann das erfindungsgemäße Sicherheitselement 1 herstellen.
  • Die nachzustellende Oberfläche 9 kann durch eine mathematische Formel f (x,y,z) = h (x,y) - z = 0 gegeben sein. Die Facetten 5 bzw. deren Orientierungen erhält man aus Tangentialebenen der nachzustellenden Oberfläche 9. Diese lassen sich aus der mathematischen Ableitung der Funktion f (x,y,z) ermitteln. Die in einem Punkt x0, yo angebrachte Facette 5 wird beschrieben durch den Normalenvektor: n = n x n y n z = f x x 0 y 0 z 0 f y x 0 y 0 z 0 f z x 0 y 0 z 0 / f x x 0 y 0 z 0 2 + f y x 0 y 0 z 0 2 + f z x 0 y 0 z 0 2
    Figure imgb0007
  • Der Azimut-Winkel α der Tangentialebene ist arctan (ny/nx) und der Steigungswinkel σ der Tangentialebene ist arccos nz. Die Fläche f (x,y,z) = kann beliebig gekrümmt sein und (xo,yo,zo) ist der Punkt auf der Fläche, für den die Berechnung gerade durchgeführt wird. Die Berechung wird nacheinander für alle für die Sägezahnstruktur ausgewählten Punkte durchgeführt.
  • Aus den schrägliegenden Ebenen mit den so berechneten Normalenvektoren, die an den ausgewählten Punkten in der x-y-Ebene anzubringen sind, werden jeweils Bereiche ausgeschnitten, so dass bei benachbarten x-y-Punkten Überlappungen der zugehörigen Elemente vermieden werden. Die schrägliegenden Ebenenstücke, die zu weit aus der x-y-Ebene herausragen, werden in kleinere Facetten 5 unterteilt, wie in Verbindung mit Figur 7 beschrieben wurde.
  • Die nachzustellende Oberfläche kann durch Dreiecks-Flächenstücke beschrieben sein, wobei die ebenen Dreiecksstücke zwischen ausgewählten Punkten aufgespannt sind, die innerhalb und am Rand der nachzustellenden Oberfläche liegen. Die Dreiecke können als Ebenenstücke durch folgende mathematische Funktion f (x,y,z) beschrieben werden f x y z = x x 1 y y 1 z z 1 x 2 x 1 y 2 y 1 z 2 z 1 x 3 x 1 y 3 y 1 z 3 z 1 = 0 ,
    Figure imgb0008
    dabei sind xi, yi, zi die Dreiecks-Eckpunkte.
  • In diesem Fall kann die Fläche in die x-y-Ebene projiziert und die einzelnen Dreiecke gemäß ihrem Normalenvektor schräg gestellt werden. Die schrägliegenden Ebenenstücke bilden die Facetten und werden, falls sie zu weit aus der x-y-Ebene herausragen, wie in Verbindung mit Figur 7 beschrieben wurde, in kleinere Facetten 5 unterteilt.
  • Wenn die nachzustellende Oberfläche durch Dreiecks-Flächenstücke gegeben ist, kann man auch folgendermaßen vorgehen. Man unterwirft die gesamte nachzustellende Oberfläche auf einmal (bzw. Teilstücke jeder Oberfläche) einer Fresnel-Konstruktion Modulo d (bzw. Modulo di). Da die nachzustellende Oberfläche aus Ebenenstücken besteht, entstehen an der x-y-Ebene automatisch Dreiecke, die mit den Facetten 5 gefüllt sind.
  • Die Konstruktion der Facetten kann auch wie folgt durchgeführt werden. In der x-y-Ebene, über der die nachzustellende Oberfläche 9 definiert ist, wählt man geeignete x-y-Punkte und verbindet sie so, dass sich eine Flächendeckung der x-y-Ebene mit Polygonkacheln ergibt. Über einem beliebig gewählten Punkt (z.B. einem Eckpunkt) in einer jeden Kachel bestimmt man den Normalenvektor aus der darüber liegenden, nachzustellenden Oberfläche 9. In jeder Kachel wird nun ein dem Normalenvektor entsprechender Fresnel-Spiegel (Pixel 4 mit mehreren Facetten 5) angebracht.
  • Vorzugsweise werden quadratische Kacheln bzw. Pixel 4 angewandt. Es sind aber beliebige (unregelmäßige) Kachelungen prinzipiell möglich. Die Kacheln können aneinander anschließen (was wegen der größeren Effizienz bevorzugt wird) oder es können Fugen zwischen den Kacheln sein (beispielsweise bei kreisförmigen Kacheln).
  • Der Steigungswinkel σ der Ebene lässt sich wie folgt darstellen σ = arccos n z = arccos f z f x 2 + f y 2 + f z 2
    Figure imgb0009
  • Der Azimut-Winkel α der Steigung lässt sich wie folgt darstellen α = arctan n y / n x = arctan f y f x ,
    Figure imgb0010
    wobei α = 0° bis 180° für ny > 0 und α = 180° bis 360° für ny < 0.
  • Das erfindungsgemäße Bestimmen der Facetten 5 einschließlich ihrer Orientierungen kann auf zwei grundsätzlich verschiedene Arten durchgeführt werden. So kann die x-y-Ebene in Pixel 4 (bzw. Kacheln) unterteilt werden und für jedes Pixel 4 wird der Normalenvektor für die reflektierende ebene Fläche bestimmt, die dann in mehrere Facetten 5 gleicher Orientierung umgesetzt wird. Alternativ ist es möglich, die nachzustellende Oberfläche 9 durch Ebenenstücke anzunähern, falls sie nicht schon durch Ebenenstücke gegeben ist, und dann die Ebenenstücke in die einzelnen Facetten 5 zu unterteilen.
  • Bei der ersten Vorgehensweise wird somit zunächst eine Kachelung in der x-y-Ebene bestimmt. Die Kachelung kann völlig beliebig angelegt werden. Es ist jedoch auch möglich, dass die Kachelung aus lauter gleichen Quadraten mit der Seitenlänge a besteht, wobei a bevorzugt im Bereich von 10 bis 100 µm liegt. Die Kachelung kann jedoch auch aus unterschiedlichen geformten Kacheln bestehen, die genau aneinander passen oder bei denen Fugen auftreten. Die Kacheln können unterschiedlich geformt sein und eine Codierung oder eine verborgene Information enthalten. Insbesondere können die Kacheln an die Projektion der nachzustellenden Oberfläche in die x-y-Ebene angepasst sein.
  • Man definiert dann in beliebiger Weise einen Bezugspunkt in jeder Kachel. Die Normalenvektoren in den Punkten der nachzustellenden Oberfläche, die senkrecht über den Bezugspunkten in den Kacheln liegen, ordnet man den entsprechenden Kacheln zu. Falls in der über dem Bezugspunkt liegenden nachzustellenden Oberfläche mehrere Normalenvektoren dem Bezugspunkt zugeordnet sind (z.B. an einer Kante oder Ecke, wo mehrere Flächenstücke aneinander stoßen), kann man aus diesen Normalenvektoren einen gemittelten Normalenvektor bestimmen.
  • Man definiert eine Unterteilung in jeder Kachel in der x-y-Ebene. Diese Unterteilung kann beliebig sein. Aus dem Normalenvektor wird dann der Azimut-Winkel α und der Steigungswinkel σ berechnet. Optional kann man noch ein Offset-System definieren, das jeder Facette 5 einen Offset (Höhenwert) zuweist. Der Offset kann in jedem Bereich der Unterteilung beliebig sein. Es ist jedoch auch möglich, den Offset so anzulegen, dass die Mittelwerte der Facetten 5 alle auf gleicher Höhe liegen oder dass die Maximalwerte aller Facetten 5 auf gleicher Höhe liegen.
  • In den Unterteilungen in den zugeordneten Kacheln werden dann als Facetten 5 schräggestellte Ebenenstücke mit dem der Kachel zugeordneten Normalenvektor unter Berücksichtigung des Offset-Systems rechnerisch angebracht. Die so berechnete Oberflächenform wird dann in der Oberfläche 7 des Trägers 8 ausgebildet.
  • Man kann jedoch nicht nur eine beliebige Unterteilung in jeder Kachel in der x-y-Ebene definieren. So kann man beispielsweise auch Gitterlinien definieren, die ungefähr oder genau senkrecht zur Projektion des Normalenvektors in die x-y-Ebene liegen. Die Gitterlinien können beliebige Abstände zueinander haben. Es ist jedoch auch möglich, dass die Abstände der Gitterlinien einem bestimmten Schema folgen. So können beispielsweise Gitterlinien nicht genau parallel zueinander vorgesehen werden, um beispielsweise Interferenz zu vermeiden. Es ist jedoch auch möglich, dass die Gitterlinien parallel zueinander sind, aber unterschiedliche Abstände aufweisen. Die unterschiedlichen Abstände der Gitterlinien können eine Codierung beinhalten. Ferner ist es möglich, dass die Gitterlinien aller Facetten 5 in jedem Pixel 4 gleiche Abstände aufweisen. Der Abstand kann im Bereich von 1 µm bis 20 µm liegen.
  • Die Gitterlinien können auch innerhalb jeder Kachel bzw. innerhalb jedes Pixels 4 gleiche Abstände aufweisen, aber pro Pixel 4 variieren. Der Gitterlinienabstand Ai und der Steigungswinkel σi der zugehörigen Facette 5 bestimmen die Strukturdicke di = Λi · tan σi, wobei di bevorzugt 1 bis 10 µm beträgt.
  • Die Facetten 5 können auch alle die gleiche Höhe d besitzen. Dann ist die Gitterkonstante bereichsweise durch den Steigungswinkel σi der zugehörigen Facette i bestimmt: Λi = d/tan σi.
  • Aus dem Normalenvektor wird dann wiederum der Azimut-Winkel α und der Steigungswinkel σ bestimmt. Das durch Gitterlinien, Azimut-Winkel und Steigungswinkel definierte Sägezahngitter wird in der zugehörigen Kachel unter Berücksichtigung des Offset-Systems rechnerisch angebracht.
  • Man kann auch von einer nachzustellenden Oberfläche 9 ausgehen, welche aus Ebenenstücken i aufgebaut ist (bzw. welche so bearbeitet wird, dass sie sich aus Ebenenstücken i aufbaut), wobei die Strukturtiefe der nachzustellenden Oberfläche und die Abmessungen der Ebenenstücke um einiges größer sind als di.
  • Beispielsweise sind die Ebenenstücke i jeweils gegeben durch drei Eckepunkte x1i, y1i, z1i; x2i, y2i, z2i; x3i, y3i, Z3i.
  • Das Relief aus Ebenenstücken wird dargestellt durch z = f (x,y), wobei x x 1 , i y 2 , i y 1 , i z 2 , i z 1 , i y 3 , i y 1 , i z 3 , i z 1 , i y y 1 , i x 2 , i x 1 , i z 2 , i z 1 , i x 3 , i x 1 , i z 3 , i z 1 , i + z z 1 , i x 2 , i x 1 , i y 2 , i y 1 , i x 3 , i x 1 , i y 3 , i y 1 , i = 0
    Figure imgb0011
  • Daraus ergibt sich aufgelöst nach z z = z 1 , i + y y 1 , i x 2 , i x 1 , i z 2 , i z 1 , i x 3 , i x 1 , i z 3 , i z 1 , i x x 1 , i y 2 , i y 1 , i z 2 , i z 1 , i y 3 , i y 1 , i z 3 , i z 1 , i x 2 , i x 1 , i y 2 , i y 1 , i x 3 , i x 1 , i y 3 , i y 1 , i
    Figure imgb0012
  • Die gesuchte Sägezahnfläche, deren Strukturdicke in den Bereichen i kleiner als di ist, ergibt sich aus z Modulo di, wobei z aus der obigen Formel berechnet wird und wobei die x- und y-Werte bei der Berechnung jeweils innerhalb des durch x1i, y1i; x2i, y2i; x3i, y3i gegebenen Dreiecks in der x-y-Ebene liegen.
  • Die so berechnete Sägezahnfläche setzt sich automatisch zusammen aus den Facetten 5. Dabei ergeben sich als Gitterkonstanten Ai in den Bereichen i Λ i = d i / tan σ i
    Figure imgb0013
  • Falls eine überall gleiche Gitterkonstante Λ gewünscht ist, sind folgende di einzusetzen d i = Λ tan σ i
    Figure imgb0014
    wobei σi der Steigungswinkel des durch x1i, y1i, z1i; x2i, y2i, z2i; X3i, y3i, z3i gegebenen Dreiecks ist.
  • Folgende alternative Vorgehensweise ist möglich. In der nachfolgenden Formel A wird eine über der x-y-Ebene liegende, nachzustellende Oberfläche 9 durch Dreiecks-Ebenenstücke beschrieben z = z 1 , i + y y 1 , i x 2 , i x 1 , i z 2 , i z 1 , i x 3 , i x 1 , i z 3 , i z 1 , i x x 1 , i y 2 , i y 1 , i z 2 , i z 1 , i y 3 , i y 1 , i z 3 , i z 1 , i x 2 , i x 1 , i y 2 , i y 1 , i x 3 , i x 1 , i y 3 , i y 1 , i
    Figure imgb0015
  • Die Ebenenstücke i sind jeweils gegeben durch drei Eckpunkte x1i, y1i, z1i; x2i, y2i, z2i; x3i, y3i, z3i.
  • Die Eckpunkte werden so nummeriert, dass z1i der kleinste Wert unter den drei Werten z1i, z2i, z3i ist (z1i = min (z1i, z2i, z3i)).
  • Die nachfolgende Formel B stellt eine Sägezahnfläche dar, die den dreidimensionalen Eindruck der durch die Formel A gegebenen, nachzustellenden Oberfläche 9 nachstellt z = y y 1 , i x 2 , i x 1 , i z 2 , i z 1 , i x 3 , i x 1 , i z 3 , i z 1 , i x x 1 , i y 2 , i y 1 , i z 2 , i z 1 , i y 3 , i y 1 , i z 3 , i z 1 , i x 2 , i x 1 , i y 2 , i y 1 , i x 3 , i x 1 , i y 3 , i y 1 , i
    Figure imgb0016
  • Wie man sieht, unterscheidet sich die Sägezahnfläche gemäß Formel B von der nachzustellenden Fläche gemäß Formel A dadurch, dass vom Wert z jeweils der Minimalwert z1i im Bereich i abgezogen ist. Die Sägezahnfläche gemäß Formel B besteht aus an der x-y-Ebene angebrachten, schräggestellten Dreiecken.
  • Wenn eine Maximaldicke di für die Strukturtiefe vorgegeben ist, kann es sein, dass die Maximaldicke bei der Sägezahnfläche gemäß Formel B überschritten wird. Dagegen hilft die Ausbildung der einzelnen Facetten mit gleichem Normalenvektor gemäß z Modulo di, wobei z aus der obigen Formel B berechnet wird und die x- und y-Werte bei der Berechnung jeweils innerhalb des durch x1i, y1i; x2i, y2i; x3i, y3i gegebenen Dreiecks in der x-y-Ebene liegen.
  • Die so berechnete Sägezahnfläche setzt sich zusammen aus den Dreiecksbereichen, die mit den Facetten 5 gefüllt sind, wobei die Gitterkonstanten A in den Bereichen i sich ergeben zu Λi = di/tan σi. Der Winkel σi ist der Steigungswinkel des durch x1i, y1i, z1i; x2i, y2i, z2i; x3i, y3i, z3i gegebenen Dreiecks.
  • Die hier gezeigten Vorgehensweisen für nachzustellende Oberflächen, die durch Dreiecke beschrieben werden und die erfindungsgemäß in Pixel 4 mit mehreren Facetten 5 umgewandelt werden, ist beispielhaft zu verstehen. Allgemein wird bei nachzustellenden Oberflächen, die durch Ebenenstücke beschrieben werden, erfindungsgemäß folgendermaßen vorgegangen. Die Ebenenstücke werden in Teilstücke unterteilt. Bei den Unterteilungen wird ein Wert (beispielsweise der Minimalwert von z im Teilstück) abgezogen. Man erhält damit erfindungsgemäß ein Sägezahngitter, das flacher ist als die nachzustellende Oberfläche 9 und das bereichsweise in den Teilstücken jeweils gleiche Normalenvektoren aufweist.
  • Dieses Sägezahngitter imitiert die ursprüngliche, nachzustellende Oberfläche 9 einschließlich ihres dreidimensionalen Eindrucks. Dieses Sägezahngitter ist flacher als ein mit gleicher Vorgehensweise erstelltes Sägezahngitter ohne erfindungsgemäße Unterteilung der Pixel 4 in mehrere Facetten 5.
  • In Figur 10 ist eine Draufsicht auf drei Pixel 4 der Fläche 3 gemäß einer weiteren Ausführungsform gezeigt, wobei die Pixel 4 unregelmäßig (durchgezogene Linien) mit unregelmäßiger Unterteilung bzw. Facetten 5 (gestrichelte Linien) ausgebildet sind. Die Pixelränder und die Unterteilungen sind hier gerade Linien, sie können aber auch gekrümmt sein.
  • In Figur 11 ist die entsprechende Querschnittsansicht gezeigt, wobei die Normalenvektoren der Facetten 5 schematisch eingezeichnet sind. Pro Pixel 4 sind die Normalenvektoren aller Facetten 5 gleich, während sie sich von Pixel 4 zu Pixel 4 zu unterscheiden. Die Normalenvektoren liegen schräg im Raum und im allgemeinen nicht in der Zeichenebene, wie in Figur 11 zur Vereinfachung dargestellt ist.
  • In Figur 12 ist eine Draufsicht mit gleicher Aufteilung der Pixel 4 wie in Figur 11 gezeigt, wobei jedoch die Unterteilung (Facetten 5) pro Pixel 4 unterschiedlich ist. Bei dem gezeigten Ausführungsbeispiel ist die Gitterperiode A der Facetten 5 in jedem Pixel 4 konstant, aber von Pixel 4 zu Pixel 4 verschieden.
  • Figur 13 zeigt die entsprechende Querschnittsansicht.
  • In Figur 14 ist eine weitere Abwandlung gezeigt, wobei die Pixelform die gleiche ist wie in Figur 10. Jedoch ist die Unterteilung pro Pixel 4 codiert. Jeder zweite Gitterlinienabstand ist doppelt so groß wie der vorhergehende Gitterlinienabstand. In Figur 15 ist die entsprechende Querschnittsansicht dargestellt.
  • Falls die nachzustellende Oberfläche als Höhenlinienbild gegeben ist, kann man die Normalenvektoren wie folgt bestimmen. Man wählt diskrete Punkte auf den Höhenlinien 15 (in Figur 16 ist eine schematische Draufsicht gezeigt) und verbindet diese Punkte so, dass eine Dreieckskachelung entsteht. Die Berechnung des Normalenvektors bei den Dreiecken erfolgt so, wie bereits beschrieben wurde.
  • Bei den bisherigen Ausführungsformen wurde stets der Normalenvektor relativ zur x-y-Ebene berechnet. Es ist jedoch auch möglich, den Normalenvektor in Bezug auf eine gekrümmte Grundfläche zu berechnen, wie z.B. eine Zylinderfläche. In diesem Fall kann das Sicherheitselement auf einem Flaschenetikett (beispielsweise am Flaschenhals) so vorgesehen werden, dass dann die nachgestellte Oberfläche unverzerrt von einem Betrachter räumlich wahrgenommen werden kann. Dazu muss lediglich der Normalenvektor n bezogen auf die Zylinderfläche in den Normalenvektor ntrans bezogen auf eine Ebene umgerechnet werden, so dass die oben beschriebenen Herstellungsverfahren eingesetzt werden können. Wenn das erfindungsgemäße Sicherheitselement dann als Flaschenetikett an dem Flaschenhals (mit der zylinderförmigen Krümmung) aufgebracht ist, kann die nachgestellte Oberfläche 9 dann in dreidimensionaler Weise unverzerrt wahrgenommen werden. Die durchzuführende Umrechnung ergibt sich aus den nachfolgenden Formeln x = r sin Φ , Φ = arcsin x / r
    Figure imgb0017
    x trans = 2 π r Φ / 360 , Φ = 360 x trans / 2 πr
    Figure imgb0018
  • Der Normalenvektor ntrans an der Stelle (xtrans,y) lässt sich wie folgt berechnen. n trans = cos ϕ 0 sin ϕ 0 1 0 sin ϕ 0 cos ϕ n
    Figure imgb0019
    wobei n = Normalenvektor über (x,y).
  • Das erfindungsgemäße Sicherheitselement 1 kann nicht nur als reflektives Sicherheitselement 1 ausgebildet sein, sondern auch als transmissives Sicherheitselement 1, wie bereits erwähnt wurde. In diesem Fall werden die Facetten 5 nicht verspiegelt und besteht der Träger 8 aus einem transparenten oder zumindest transluzentem Material, wobei die Betrachtung in Durchsicht erfolgt. Bei einer Beleuchtung von hinten soll ein Benutzer die nachgestellte Oberfläche 9 so wahrnehmen, als ob ein von vorne beleuchtetes erfindungsgemäßes reflektives Sicherheitselement 1 vorliegt.
  • Die für ein reflektives Sicherheitselement 1 berechneten Facetten 5 werden durch Daten für Mikroprismen 16 ersetzt, wobei die entsprechenden Winkel bei Reflexion (Figur 19) und für transmissive Prismen 16 in Figuren 20 und 21 dargestellt sind. Figur 20 zeigt den Einfall auf die geneigten Facetten 5, wohingegen Figur 21 den Einfall auf die glatte Seite zeigt, der bevorzugt ist, aufgrund der möglichen größeren Lichteinfallswinkel.
  • Der Azimut-Winkel der reflektiven Facette 5 wird als αs und der Steigungswinkel der Facette 5 wird als σs bezeichnet. Die Brechzahl des Mikroprismas 16 beträgt n, der Azimut-Winkel des Mikroprismas 16 beträgt αp = 180° + αs. Der Steigungswinkel des Mikroprismas 16 gemäß Figur 20 beträgt sin (σp + 2σs) = n sin σp, wobei für kleine Winkel 2 σs = (n -1) σp sowie 4 σs = σp (für n = 1,5) gilt.
  • Der Steigungswinkel des Mikroprismas 16 nach Figur 21 beträgt sin (2 σs) = n sin β; sin (σp) = n sin (σp - β), wobei für kleine Winkel 4 σs = σP (für n = 1,5) gilt.
  • Die Komponenten des Normalenvektors sind bei bekanntem α und σ: n z = cos σ , n y / n x = sin α / cos α , n x 2 + n y 2 + n z 2 = 1
    Figure imgb0020
    n x = cos α 1 cos 2 σ , n y = sin α 1 cos 2 σ
    Figure imgb0021
  • In Figur 22 ist schematisch eine nachzustellende reflektive Oberfläche 9 mit einem Hügel 20 und einer Mulde 21 gezeigt. Die negative Brennweite -f des spiegelnden Hügels 20 beträgt r/2 und die positive Brennweite f der spiegelnden Mulde 21 beträgt r/2.
  • In Figur 23 ist schematisch eine Linse 22 gezeigt, die einen transparenten konkaven Abschnitt 23 sowie einen transparenten konvexen Abschnitt 24 aufweist. Der konkave Abschnitt 23 simuliert den spiegelnden Hügel 20, wobei die negative Brennweite -f des konkaven Abschnittes 23 2r beträgt. Der transparente konvexe Abschnitt 24 simuliert die spiegelnde Mulde 21 und weist eine positive Brennweite f = 2r auf.
  • Die Linse 22 gemäß Figur 23 kann durch die Sägezahnordnung gemäß Figur 24 ersetzt werden.
  • Die Pfeile in Figuren 20 bis 23 zeigen schematisch den Strahlenverlauf für einfallendes Licht L. Aus diesen Strahlenverläufen ist ersichtlich, dass die Linse 22 in Transmission die Oberfläche 9 wunschgemäß nachstellt.
  • In den Figuren 25 bis 27 wird ein Beispiel gezeigt, bei dem die Sägezahnseite auf der Lichteinfallsseite liegt. Ansonsten entspricht die Darstellung von Figur 25 der Darstellung von Figur 22, entspricht die Darstellung von Figur 26 der Darstellung in Figur 23 und entspricht die Darstellung von Figur 27 der Darstellung in Figur 24.
  • Zur Berechnung der transmissiven Sägezahnstrukturen können die oben beschriebenen Verfahren verwendet werden.
  • Die in Figur 27 gezeigte transparente Sägezahnstruktur entspricht im wesentlichen einem Abguss einer entsprechenden reflektiven Sägezahnstruktur zur Nachstellung der Oberfläche 9 gemäß Figur 25. Dabei erscheint jedoch die nachgestellte Oberfläche in Durchsicht (bei Brechzahl von 1,5) wesentlich flacher als in Reflexion. Daher wird bevorzugt die Höhe der Sägezahnstruktur erhöht bzw. die Anzahl der Facetten 5 pro Pixel 4 erhöht.
  • Natürlich ist es auch möglich, die beschriebenen Sägezahnstrukturen mit einer semitransparenten Verspiegelung zu versehen. In diesem Fall erscheint die nachgestellte Oberfläche 9 in der Regel in Reflexion tiefer strukturiert als in Durchsicht.
  • Ferner ist es möglich, beide Seiten eines transparenten oder zumindest transluzenten Trägers 8 mit einer Sägezahnstruktur, die die Vielzahl von Mikroprismen 16 aufweist, zu versehen, wie dies in Figuren 28 und 29 angedeutet ist. Bei Figur 28 sind die Sägezahnstrukturen 25, 26 auf beiden Seiten spiegelsymmetrisch. Bei Figur 29 sind die beiden Sägezahnstrukturen 25, 27 nicht spiegelsymmetrisch ausgebildet.
  • Zur Berechnung einer Sägezahnstruktur 25 und 27 gemäß Figuren 28 und 29 kann man davon ausgehen, dass die Sägezahnstruktur 25, 27 aus einer prismatischen Oberfläche 28 mit Steigungswinkel σp und darunter angesetztem Hilfsprisma 29 mit Steigungswinkel σh zusammengesetzt ist, wie in Figur 30 schematisch dargestellt ist. Somit ist σp + σh der wirksame Gesamt-Prismenwinkel.
  • Wenn der nachzuahmende Relief-Steigungswinkel mit bezeichnet σs wird, gilt folgendes, da die Winkelsumme im Dreieck 180° ist: 90 ° β 1 + 90 ° β 2 + σ p + σ h = 180 °
    Figure imgb0022
    σ p + σ h = β 1 + β 2 ,
    Figure imgb0023
  • Aufgrund des Brechungsgesetzes sin σ p = n sin β 1 , sin 2 σ s + σ h = n sin β 2
    Figure imgb0024
    ergibt sich für: σ p arcsin sin σ p / n = arcsin sin 2 σ s + σ h / n σ h
    Figure imgb0025
  • Somit kann ausgehend vom nachzuahmenden Relief-Steigungswinkel σs bei z. B. vorgegebenem Hilfsprisma-Steigungswinkel σh leicht der gesuchte Steigungswinkel σp der prismatischen Oberfläche 28 berechnet werden.
  • Man beachte, dass bei den aufgeführten Berechnungen für die Nachahmung eines Spiegelreliefs durch Prismen von einer senkrechten Betrachtung ausgegangen wurde. Bei gekippter Betrachtung können sich Verzerrungen ergeben und bei Betrachtung in weißem Licht können sich farbige Ränder beim dargestellten Motiv ergeben, da der in die Berechnung eingehende Brechungsindex n wellenlängenabhängig ist.
  • Die in den Figuren 1 bis 30 dargestellten reflektiven oder refraktiven Sicherheitselemente können auch in transparentes Material eingebettet bzw. mit einer Schutzschicht versehen werden.
  • Eine Einbettung erfolgt insbesondere, um die mikrooptischen Elemente vor Verschmutzung und Abrieb zu schützen und um eine unbefugte Nachstellung durch Abprägen der Oberflächenstruktur zu verhindern.
  • Beispiel: Eingebettete Spiegel
  • Beim Einbetten bzw. Anbringen einer Schutzschicht ändern sich die Eigenschaften der mikrooptischen Schicht mit den Facetten 5. In Figuren 32a-c ist dieses Verhalten illustriert für eingebettete Spiegel (die Facetten 5 sind als Spiegel ausgebildet), wobei Figur 32a die Anordnung vor der Einbettung zeigt.
  • Bei Einbettung der Spiegel in eine durchsichtige Schicht 40 ändert sich die Richtung, in der ein Spiegelbild erscheint, wie Figur 32b zeigt. Soll nun bei einem durch eingebettete Mikrospiegel 5 nachgestelltem Relief die ursprüngliche Reflexionswirkung erzielt werden, ist dies beim Neigungswinkel der Mikrospiegel zu berücksichtigen, siehe Figur 32c.
  • Beispiel: Eingebettete Prismen
  • Bei eingebetteten Prismen 16 ist ein Brechzahlunterschied zwischen Prismenmaterial und Einbettungsmaterial 40 erforderlich und bei der Berechnung der Lichtstrahlablenkung zu berücksichtigen.
  • Figur 33b zeigt schematisch die Nachstellung der reflektierenden Anordnung von Figur 32a durch eine transmittierende Prismenanordnung mit offenliegenden Prismen 16, wie bereits z. B. bei den Figuren 19-27 diskutiert.
  • Figur 33b zeigt schematisch eine mögliche Nachstellung der reflektierenden Anordnung von Figur 32a durch eingebettete Prismen 16, wobei sich die Brechungsindizes von Prismenmaterial und Einbettungsmaterial 40 unterscheiden müssen.
  • Beispiel: Eingebettete streuende Facetten
  • In den beiden vorhergehenden Beispielen wurde die Nachstellung spiegelnder Objekte demonstriert. Zur Nachstellung streuender Objekte (z.B. Marmorfigur, Gips-Modell) können streuende Facetten eingesetzt werden, hierzu ein Beispiel (siehe Figur 34):
    Auf einer Folie 41 als Trägermaterial wird folgender Aufbau realisiert: Die geprägten Facetten 5, die die Objektoberfläche nachstellen, befinden sich auf der Folienrückseite. Die Facetten 5 haben Abmessungen von beispielsweise 10 µm bis 20 µm. An den Facetten 5 wird ein mit Titanoxid (Partikelgrösse ca. 1 µm) pigmentierter Lack 42 aufgebracht, so dass die Facetten 5 mit diesem streuenden Material gefüllt werden. Die Betrachtungsseite ist durch den Pfeil P2 angedeutet.
  • Beispiel: Eingebettete matt glänzende Facetten
  • In folgender Weise kann ein matt spiegelndes Objekt nachgestellt werden (siehe Figur 35):
    Auf einer Folie 41 als Trägermaterial wird folgender Aufbau realisiert: Die geprägten Facetten 5, die die Objektoberfläche nachstellen, befinden sich auf der Folienrückseite. Die Facetten 5 haben Abmessungen von beispielsweise 10 µm bis 20 µm. Die Prägeschicht wird mit einer semitransparenten Verspiegelung 43 versehen und darauf ein mit Titanoxid (Partikelgrösse ca. 1 µm) pigmentierter Lack 42 aufgebracht, so dass die Facetten mit diesem streuenden Material gefüllt werden. Bei Betrachtung von der Betrachtungsseite erscheint der nachgestellte Gegenstand matt-glänzend. Die Betrachtungsseite ist durch den Pfeil P2 angedeutet.
  • Farbige Facetten:
  • Zur Nachstellung farbiger Gegenstände kann die Einbettung der Facetten in den Figuren 32b, 32c, 33b, 34 bzw. 35 mit eingefärbtem Material (auch bereichsweise unterschiedlich eingefärbtem Material) erfolgen.
  • Das erfindungsgemäße Sicherheitselement 1 kann als Sicherheitsfaden 19 (Figur 1) ausgebildet sein. Ferner kann das Sicherheitselement 1 nicht nur, wie beschrieben, auf einer Trägerfolie ausgebildet werden, von der es in bekannter Weise auf das Wertdokument übertragen werden kann. Es ist auch möglich, das Sicherheitselement 1 direkt auf dem Wertdokument auszubilden. So kann ein direkter Druck mit anschließender Prägung des Sicherheitselementes auf ein Polymersubstrat durchgeführt werden, um beispielsweise bei Kunststoffbanknoten ein erfindungsgemäßes Sicherheitselement auszubilden. Das erfindungsgemäße Sicherheitselement kann in verschiedensten Substraten ausgebildet werden. Insbesondere kann es in oder auf einem Papiersubstrat, einem Papier mit Synthesefasern, d.h. Papier mit einem Anteil x polymeren Materials im Bereich von 0 < x < 100 Gew.-%, einer Kunststofffolie, z. B. einer Folie aus Polyethylen (PE), Polyethylenterephthalat (PET), Polybutylenterephthalat (PBT), Polyethylennaphthalat (PEN), Polypropylen (PP) oder Polyamid (PA), oder einem mehrschichtigem Verbund, insbesondere einem Verbund mehrerer unterschiedlicher Folien (Kompositverbund) oder einem Papier-Folien-Verbund (Folie/Papier/Folie oder Papier/Folie/Papier), wobei das Sicherheitselement in oder auf oder zwischen jeder der Schichten eines solchen mehrschichtigen Verbunds vorgesehen werden kann, ausgebildet werden.
  • In Figur 31 ist schematisch ein Prägewerkzeug 30 gezeigt, mit dem die Facetten 5 in den Träger 8 gemäß Figur 5 geprägt werden können. Dazu weist das Prägewerkzeug 30 eine Prägefläche 31 auf, in der die invertierte Form der zu prägenden Oberflächenstruktur ausgebildet ist.
  • Natürlich kann nicht nur für die Ausführungsform gemäß Figur 5 ein entsprechendes Prägewerkzeug bereitgestellt werden. Auch für die anderen beschriebenen Ausführungsformen kann in gleicher Art ein Prägewerkzeug, zur Verfügung gestellt werden.
  • Bezugszeichenliste
  • 1
    Sicherheitselement
    2
    Banknote
    3
    Fläche
    4
    Pixel
    5
    Facetten
    6
    Linie
    7
    Oberfläche
    8
    Träger
    9
    nachgestellte Oberfläche
    10
    Spiegelfläche
    15
    Höhenlinie
    16
    Mikroprisma
    19
    Sicherheitsfaden
    20
    Hügel
    21
    Mulde
    22
    Linse
    23
    konkaver Abschnitt
    24
    konvexer Abschnitt
    25
    Sägezahnstruktur
    26
    Sägezahnstruktur
    27
    Sägezahnstruktur
    28
    prismatische Oberfläche
    29
    Hilfsprisma
    30
    Prägewerkzeug
    31
    Prägefläche
    40
    durchsichtige Schicht
    41
    Folie
    42
    pigmentierter Lack
    43
    semitransparente Verspiegelung
    L
    einfallendes Licht
    L1
    einfallendes Licht
    L2
    einfallendes Licht
    P1
    Pfeil
    P2
    Pfeil

Claims (18)

  1. Sicherheitselement für ein Sicherheitspapier, Wertdokument oder dergleichen, mit
    einem Träger, der einen Flächenbereich aufweist, der in eine Vielzahl von Pixeln, die jeweils zumindest eine optisch wirksame Facette (5) umfassen, aufgeteilt ist,
    wobei die Facetten so orientiert sind, dass für einen Betrachter der Flächenbereich als gegenüber seiner tatsächlichen Raumform vor- und/ oder zurückspringende Fläche wahrnehmbar ist, und wobei auf den Facetten zumindest bereichsweise eine farbkippende Beschichtung ausgebildet ist, wobei die orientierten Facetten einfallendes Licht so reflektieren, als ob es auf eine umgesetzte oder nachgestellte Oberfläche fällt, wobei die durch die Facetten des Pixels erzeugte Reflexion der mittleren Reflexion des durch das entsprechende Pixel umgesetzten oder nachgestellten Bereiches der Oberfläche entspricht.
  2. Sicherheitselement nach Anspruch 1, bei dem die Orientierung der Facetten so gewählt ist, dass für einen Betrachter der Flächenbereich als nicht ebene Fläche wahrnehmbar ist.
  3. Sicherheitselement nach Anspruch 1 oder 2, bei dem die farbkippende Beschichtung als Sub-Wellenlängengitter oder diffraktive Reliefstruktur realisiert ist.
  4. Sicherheitselement nach einem der obigen Ansprüche, bei dem die optisch wirksamen Facetten als reflektive Facetten ausgebildet sind.
  5. Sicherheitselement nach einem der obigen Ansprüche, bei dem die optisch wirksamen Facetten als transmissive Facetten mit brechender Wirkung ausgebildet sind.
  6. Sicherheitselement nach einem der obigen Ansprüche, bei dem die optisch wirksamen Facetten so ausgebildet sind, dass die Pixel keine optisch diffraktive Wirkung aufweisen.
  7. Sicherheitselement nach einem der obigen Ansprüche, bei dem die maximale Höhe der optisch wirksamen Facetten nicht größer als 10 µm ist.
  8. Sicherheitselement nach einem der obigen Ansprüche, bei dem die Fläche jedes Pixels um zumindest eine Größenordnung kleiner ist als die Fläche des Flächenbereiches.
  9. Sicherheitselement nach einem der obigen Ansprüche, bei dem die Facetten in einer Oberfläche des Trägers ausgebildet sind.
  10. Sicherheitselement nach einem der Ansprüche 1 bis 8, bei dem die Facetten als eingebettete Facetten ausgebildet sind.
  11. Sicherheitselement nach einem der obigen Ansprüche, bei dem die Orientierung der Facetten durch ihre Neigung und/oder ihren Azimut-Winkel bestimmt ist.
  12. Sicherheitselement nach einem der obigen Ansprüche, bei dem auf den Facetten zumindest bereichsweise eine reflektierende oder reflexionserhöhende Beschichtung, insbesondere durch eine Beschichtung mit einem Material mit hohem Brechungsindex ausgebildet ist.
  13. Sicherheitselement nach einem der obigen Ansprüche, bei dem die maximale Ausdehnung eines Pixels zwischen 5 µm und 5 mm, bevorzugt zwischen 10 µm und 300 µm, besonders bevorzugt zwischen 20µm und 100 µm liegt.
  14. Sicherheitselement nach einem der obigen Ansprüche, bei dem der Flächenbereich für einen Betrachter als imaginäre Fläche wahrnehmbar ist, deren Reflexions- bzw. Transmissionsverhalten mit einer realen gewölbten reflektierenden bzw. transmittierenden Oberfläche nicht erzeugt werden kann, wobei der Flächenbereich insbesondere als Drehspiegel wahrnehmbar ist.
  15. Sicherheitselement nach einem der obigen Ansprüche, bei dem die Orientierungen mehrerer Facetten gegenüber den Orientierungen zur Erzeugung der vor- und/oder zurückspringenden Fläche so geändert sind, dass die vor- und/oder zurückspringende Fläche zwar noch wahrnehmbar ist, aber mit matt erscheinender Oberfläche.
  16. Wertdokument mit einem Sicherheitselement nach einem der obigen Ansprüche.
  17. Herstellungsverfahren eines Sicherheitselementes für Sicherheitspapiere, Wertdokumente oder dergleichen, bei dem
    die Oberfläche eines Trägers in einem Flächenbereich so höhenmoduliert wird, dass der Flächenbereich in eine Vielzahl von jeweils zumindest eine optisch wirksame Facette aufweisenden Pixeln aufgeteilt wird,
    wobei die Facetten so orientiert sind, dass für einen Betrachter des hergestellten Sicherheitselementes der Flächenbereich als gegenüber seiner tatsächlichen Raumform vor- und/oder zurückspringende Fläche wahrnehmbar ist, und wobei auf den Facetten zumindest bereichsweise eine farbkippende Beschichtung ausgebildet wird, wobei die orientierten Facetten einfallendes Licht so reflektieren, als ob es auf eine umgesetzte oder nachgestellte Oberfläche fällt, wobei die durch die Facetten des Pixels erzeugte Reflexion der mittleren Reflexion des durch das entsprechende Pixel umgesetzten oder nachgestellten Bereiches der Oberfläche entspricht.
  18. Herstellungsverfahren nach Anspruch 17, bei dem die Oberfläche des Trägers in dem Flächenbereich in Ebenenstücke einteilt wird und die durch die Ebenenstücke gegebene Oberfläche insgesamt einer Fresnel-Konstruktion Modulo d unterworfen wird.
EP16000444.6A 2009-12-04 2010-12-03 Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes Active EP3059093B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009056934A DE102009056934A1 (de) 2009-12-04 2009-12-04 Sicherheitselement, Wertdokument mit einem solchen Sicherheitselement sowie Herstellungsverfahren eines Sicherheitselementes
PCT/EP2010/007368 WO2011066990A2 (de) 2009-12-04 2010-12-03 Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes
EP10790829.5A EP2507069B1 (de) 2009-12-04 2010-12-03 Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP10790829.5A Division-Into EP2507069B1 (de) 2009-12-04 2010-12-03 Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes
EP10790829.5A Division EP2507069B1 (de) 2009-12-04 2010-12-03 Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes

Publications (2)

Publication Number Publication Date
EP3059093A1 EP3059093A1 (de) 2016-08-24
EP3059093B1 true EP3059093B1 (de) 2021-03-31

Family

ID=43919824

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10790829.5A Active EP2507069B1 (de) 2009-12-04 2010-12-03 Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes
EP16000444.6A Active EP3059093B1 (de) 2009-12-04 2010-12-03 Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10790829.5A Active EP2507069B1 (de) 2009-12-04 2010-12-03 Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes

Country Status (9)

Country Link
US (2) US9827802B2 (de)
EP (2) EP2507069B1 (de)
CN (1) CN102905909B (de)
AU (1) AU2010327031C1 (de)
BR (1) BR112012013451B1 (de)
CA (1) CA2780934C (de)
DE (1) DE102009056934A1 (de)
RU (1) RU2573346C2 (de)
WO (1) WO2011066990A2 (de)

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010047250A1 (de) 2009-12-04 2011-06-09 Giesecke & Devrient Gmbh Sicherheitselement, Wertdokument mit einem solchen Sicherheitselement sowie Herstellungsverfahren eines Sicherheitselementes
DE102009056934A1 (de) 2009-12-04 2011-06-09 Giesecke & Devrient Gmbh Sicherheitselement, Wertdokument mit einem solchen Sicherheitselement sowie Herstellungsverfahren eines Sicherheitselementes
FR2953965B1 (fr) 2009-12-14 2011-11-25 Arjowiggins Security Element de securite comportant une structure optique
DE102010012495A1 (de) 2010-03-24 2011-09-29 Giesecke & Devrient Gmbh Sicherheitselement und Herstellungsverfahren dafür
FR2959830B1 (fr) 2010-05-07 2013-05-17 Hologram Ind Composant optique d'authentification et procede de fabrication dudit composant
DE102010019766A1 (de) 2010-05-07 2011-11-10 Giesecke & Devrient Gmbh Verfahren zur Erzeugung einer Mikrostruktur auf einem Träger
DE102010048262A1 (de) 2010-10-12 2012-04-12 Giesecke & Devrient Gmbh Darstellungselement
DE102010049600A1 (de) 2010-10-26 2012-01-19 Giesecke & Devrient Gmbh Sicherheitselement mit optisch variablem Flächenmuster
FR2979734B1 (fr) 2011-09-02 2014-05-23 Arjowiggins Security Structure de securite comportant une structure optique reflechissante, et procede associe.
DE102011112554A1 (de) * 2011-09-06 2013-03-07 Giesecke & Devrient Gmbh Verfahren zur Herstellung eines Sicherheitspapiers und Mikrolinsenfaden
DE102012006623A1 (de) 2012-03-30 2013-10-02 Giesecke & Devrient Gmbh Verfahren zum Herstellen eines Datenträgers und daraus erhältlicher Datenträger
DE102012020257A1 (de) 2012-10-16 2014-04-17 Giesecke & Devrient Gmbh Optisch variables Flächenmuster
FR3000112B1 (fr) 2012-12-20 2015-03-06 Arjowiggins Security Structure de securite.
DE102012025266A1 (de) 2012-12-21 2014-06-26 Giesecke & Devrient Gmbh Sicherheitselement mit Linsenrasterbild
DE102013002137A1 (de) 2013-02-07 2014-08-07 Giesecke & Devrient Gmbh Optisch variables Flächenmuster
WO2014186837A1 (en) * 2013-05-21 2014-11-27 Innovia Security Pty Ltd Optical device including vertical pixels
CN103605854B (zh) * 2013-11-26 2016-12-07 上海宏盾防伪材料有限公司 一种有关激光刻蚀的矢量全息几何曲线的制作方法
DE102013021358A1 (de) 2013-12-16 2015-06-18 Giesecke & Devrient Gmbh Sicherheitselement für Sicherheitspapiere
DE102014014079A1 (de) * 2014-09-23 2016-03-24 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement mit reflektivem Flächenbereich
DE102014014082A1 (de) * 2014-09-23 2016-03-24 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement mit reflektivem Flächenbereich
CN104385800B (zh) * 2014-10-16 2017-10-24 中钞特种防伪科技有限公司 光学防伪元件及光学防伪产品
EP3210069A4 (de) * 2014-10-24 2018-05-30 Wavefront Technology, Inc. Optische produkte, vorlagen zur herstellung optischer produkte und verfahren zur herstellung von vorlagen und optischen produkte
JP6677165B2 (ja) * 2014-11-10 2020-04-08 凸版印刷株式会社 偽造防止用の光学素子
DE102014019088A1 (de) * 2014-12-18 2016-06-23 Giesecke & Devrient Gmbh Optisch variables Durchsichtssicherheitselement
DE102015100280A1 (de) 2015-01-09 2016-07-14 Ovd Kinegram Ag Verfahren zur Herstellung von Sicherheitselementen sowie Sicherheitselemente
CN108323187B (zh) * 2015-04-13 2024-03-08 瑞尔D斯帕克有限责任公司 广角成像定向背光源
DE102015005969A1 (de) * 2015-05-08 2016-11-10 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement
KR102630381B1 (ko) 2015-07-13 2024-01-29 웨이브프론트 테크놀로지, 인코퍼레이티드 광학 제품, 광학 제품을 제작하기 위한 마스터, 그리고 마스터 및 광학 제품을 제조하기 위한 방법
DE102015016713A1 (de) * 2015-12-22 2017-06-22 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement mit reflektivem Flächenbereich
EP3415964B1 (de) 2016-02-09 2021-10-13 Toppan Printing Co., Ltd. Optisches element und informationsaufzeichnungsmedium für fälschungsschutz
DE102016002451A1 (de) * 2016-02-29 2017-08-31 Giesecke & Devrient Gmbh Prägeplatte, Herstellungsverfahren und geprägtes Sicherheitselement
JP6822469B2 (ja) * 2016-03-30 2021-01-27 凸版印刷株式会社 偽造防止用光学素子及び情報媒体
CA3015684A1 (en) 2016-04-22 2017-10-26 Wavefront Technology, Inc. Optical switch devices
DE102016007064A1 (de) * 2016-06-08 2017-12-14 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement, Wertdokumentsubstrat, mit demselben ausgestattetes Wertdokument und Herstellungsverfahren
WO2018021320A1 (ja) * 2016-07-25 2018-02-01 凸版印刷株式会社 表示体
CN106313934B (zh) * 2016-09-29 2017-04-26 滕泽其 用于防伪的安全元件及其制造方法和安全票证
EP3546988A4 (de) * 2016-11-28 2020-11-04 Toppan Printing Co., Ltd. Anzeigekörper, verfahren zur echtheitsbestimmung dafür und drucksache
DE102016015393A1 (de) * 2016-12-22 2018-06-28 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit reflektivem Flächenbereich
JP2018114696A (ja) * 2017-01-19 2018-07-26 凸版印刷株式会社 表示体
DE102017004065A1 (de) 2017-04-27 2018-10-31 Giesecke+Devrient Currency Technology Gmbh Verfahren zur Herstellung eines Sicherheitselements
DE102017004585A1 (de) 2017-05-12 2018-11-15 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Mikroreflektoren
DE102017004586A1 (de) * 2017-05-12 2018-11-15 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Mikrospiegelanordnung zur Erzeugung eines optisch variablen Effekts und Herstellverfahren für das Sicherheitselement
DE102017005050A1 (de) * 2017-05-26 2018-11-29 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit reflektivem Flächenbereich
DE102017006421A1 (de) * 2017-07-07 2019-01-10 Giesecke+Devrient Currency Technology Gmbh Optisch variable Sicherheitsanordnung
DE102017006513A1 (de) * 2017-07-10 2019-01-10 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit optisch variabler 2-dimensionaler Prägestruktur
DE102017006507A1 (de) * 2017-07-10 2019-01-10 Giesecke+Devrient Currency Technology Gmbh Strukturelement
DE102017009226A1 (de) * 2017-10-04 2019-04-04 Giesecke+Devrient Currency Technology Gmbh Optisch variables Durchsichtssicherheitselement und Datenträger
US10838218B2 (en) 2017-10-05 2020-11-17 Wavefront Technology, Inc. Optical structures providing dichroic effects
CN111132852A (zh) 2017-10-20 2020-05-08 伟福夫特科技公司 光学切换装置
CN111615648A (zh) 2018-01-17 2020-09-01 纳米科技安全有限公司 微结构上图案化的纳米结构
GB2572746B (en) * 2018-03-22 2021-10-27 De La Rue Int Ltd Security elements and method of manufacture thereof
GB2572745B (en) * 2018-03-22 2021-06-09 De La Rue Int Ltd Security elements and methods of manufacture thereof
GB2572550B (en) * 2018-03-28 2020-07-22 De La Rue Int Ltd Optical device and method of manufacture thereof
DE102018003603A1 (de) 2018-05-03 2019-11-07 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement, Datenträger und Verwendung
US10618340B2 (en) * 2018-05-16 2020-04-14 Viavi Solutions Inc. Security feature based on a single axis alignment of mirrors in a structured surface that forms a micro mirror array
DE102018004062A1 (de) 2018-05-18 2019-11-21 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Mikroreflektoren
DE102018004089A1 (de) * 2018-05-18 2019-11-21 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit bereichsweise metallisiertem Flächenbereich, Herstellungsverfahren und Prägewerkzeug
DE102018004052A1 (de) * 2018-05-18 2019-11-21 Giesecke+Devrient Currency Technology Gmbh Optisch variables Sicherheitselement mit reflektivem Flächenbereich
DE102018004088A1 (de) 2018-05-18 2019-11-21 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Mikroreflektoren
KR20200002627A (ko) * 2018-06-29 2020-01-08 스미또모 가가꾸 가부시키가이샤 막의 제조 방법, 유기 el 소자의 제조 방법 및 막 제조용 잉크 조성물 세트
CN110936750A (zh) * 2018-09-21 2020-03-31 中钞特种防伪科技有限公司 光学防伪元件及防伪产品
WO2020078664A1 (de) * 2018-09-24 2020-04-23 Ovd Kinegram Ag Optisch variables element, sicherheitsdokument, verfahren zur herstellung eines optisch variablen elements, verfahren zur herstellung eines sicherheitsdokuments
DE102018008041A1 (de) 2018-10-11 2020-04-16 Giesecke+Devrient Currency Technology Gmbh Ziffernblatt für eine Uhr
DE102018008146A1 (de) * 2018-10-15 2020-04-16 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Mikroreflektoren zur perspektivischen Darstellung eines Motivs
DE102018010078A1 (de) * 2018-12-20 2020-06-25 Giesecke+Devrient Currency Technology Gmbh Optisch variables Sicherheitselement
DE102019000785A1 (de) * 2019-02-04 2020-08-06 Giesecke+Devrient Currency Technology Gmbh Gitterstrukturbild zur Darstellung eines mehrfarbigen Beugungsbilds
AU2020218988A1 (en) * 2019-02-07 2021-08-12 Toppan Printing Co., Ltd. Optical structure and artifact reduction method
WO2020205053A1 (en) 2019-04-04 2020-10-08 Wavefront Technology, Inc. Optical structures providing dichroic effects
AU2020257828A1 (en) 2019-04-19 2021-10-14 Wavefront Technology, Inc. Optical switch devices
DE102020000030A1 (de) * 2020-01-03 2021-07-08 Giesecke+Devrient Currency Technology Gmbh Optisch variables Sicherheitselement
CN111267535A (zh) * 2020-01-20 2020-06-12 烟台博源科技材料股份有限公司 一种新型磨砂效果包装材料的制备方法
DE102020000389A1 (de) * 2020-01-22 2021-07-22 Giesecke+Devrient Currency Technology Gmbh Darstellungselement für Lichtfleckenbild
FR3107004A1 (fr) * 2020-02-12 2021-08-13 Ccl Secure Pty Dispositif a effet optique
GB2594474B (en) * 2020-04-28 2022-05-11 Koenig & Bauer Banknote Solutions Sa Methods for designing and producing a security feature
DE102020004423A1 (de) 2020-07-22 2022-01-27 Giesecke+Devrient Currency Technology Gmbh Sicherheitsmerkmal mit kippungsabhängiger Motivdarstellung
WO2022077012A1 (en) * 2020-10-07 2022-04-14 Wavefront Technology, Inc. Optical products, masters for fabricating optical products, and methods for manufacturing masters and optical products
DE102021002335A1 (de) 2021-05-03 2022-12-01 Giesecke+Devrient Currency Technology Gmbh Optisch variables sicherheitselement und wertdokument mit dem optisch variablen sicherheitselement
DE102021004910A1 (de) 2021-09-29 2023-03-30 Giesecke+Devrient Currency Technology Gmbh Darstellungselement mit einem oberhalb und unterhalb des Substrats schwebenden Bild
DE102022002470A1 (de) 2022-07-06 2024-01-11 Giesecke+Devrient Currency Technology Gmbh Optisch variables Flächenmuster, Wertdokument mit optisch variablem Flächenmuster und Verfahren zur Herstellung eines optisch variablen Flächenmusters
DE102022002840A1 (de) 2022-08-04 2024-02-15 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement für ein Wertdokument mit lumineszierendem Sicherheitsmerkmal und Verfahren zu dessen Herstellung
DE102022002839A1 (de) 2022-08-04 2024-02-15 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement für ein Wertdokument mit optisch variablem Primärflächenmuster und verstecktem Sekundärflächenmuster und Verfahren zu dessen Herstellung
DE102022003230A1 (de) 2022-09-02 2024-03-07 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit farberzeugenden Nanostrukturen und Herstellverfahren dafür
DE102022003402A1 (de) 2022-09-15 2024-03-21 Giesecke+Devrient Currency Technology Gmbh Optisches Sicherheitselement mit Effektbereichen

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012843A (en) 1973-04-25 1977-03-22 Hitachi, Ltd. Concave diffraction grating and a manufacturing method thereof
US4184700A (en) 1975-11-17 1980-01-22 Lgz Landis & Gyr Zug Ag Documents embossed with optical markings representing genuineness information
CH594936A5 (de) 1975-11-17 1978-01-31 Landis & Gyr Ag
US4892385A (en) 1981-02-19 1990-01-09 General Electric Company Sheet-material authenticated item with reflective-diffractive authenticating device
JPS57208514A (en) 1981-06-19 1982-12-21 Toshiba Corp Manufacture of diffraction grating
US4484797A (en) 1981-07-20 1984-11-27 Rca Corporation Diffractive subtractive color filter responsive to angle of incidence of polychromatic illuminating light
JPS5912403A (ja) 1982-07-12 1984-01-23 Matsushita Electric Ind Co Ltd 局所的グレ−テイング作製方法
CH659433A5 (de) 1982-10-04 1987-01-30 Landis & Gyr Ag Dokument mit einem beugungsoptischen sicherheitselement.
SE436023B (sv) 1983-03-31 1984-11-05 Tetra Pak Int Roterbar vinda for ingrepp i register med en biglinjeforsedd materialbana roterbar vinda for ingrepp i register med en biglinjeforsedd materialbana
JPS608802A (ja) 1983-06-29 1985-01-17 Agency Of Ind Science & Technol ブレ−ズド格子の製造方法
NZ218573A (en) 1985-12-23 1989-11-28 Optical Coating Laboratory Inc Optically variable inks containing flakes
EP0330738B1 (de) 1988-03-03 1991-11-13 Landis &amp; Gyr Betriebs AG Dokument
WO1989008166A1 (en) * 1988-03-04 1989-09-08 GAO GESELLSCHAFT FÜR AUTOMATION UND ORGANISATION m Security element in the form of a thread or a ribbon for insertion in security documents, and process for producing it
US4838648A (en) 1988-05-03 1989-06-13 Optical Coating Laboratory, Inc. Thin film structure having magnetic and color shifting properties
DE58906429D1 (de) 1988-09-30 1994-01-27 Landis & Gyr Business Support Beugungselement.
EP0375833B1 (de) 1988-12-12 1993-02-10 Landis &amp; Gyr Technology Innovation AG Optisch variables Flächenmuster
DE68925484T2 (de) 1988-12-19 1996-06-27 Australia Reserve Bank Diffraktionsgitter
US5105306A (en) 1989-01-18 1992-04-14 Ohala John J Visual effect created by an array of reflective facets with controlled slopes
CA2065309C (en) 1989-09-04 2001-11-20 Robert Arthur Lee Diffraction grating and method of manufacture
US5428479A (en) 1989-09-04 1995-06-27 Commonwealth Scientific And Industrial Research Organisation Diffraction grating and method of manufacture
ATE105784T1 (de) 1989-12-01 1994-06-15 Landis & Gyr Business Support Anordnung zur verbesserung der fälschungssicherheit eines wertdokumentes.
CA2060057C (en) 1991-01-29 1997-12-16 Susumu Takahashi Display having diffraction grating pattern
WO1993018419A1 (en) 1992-03-12 1993-09-16 Commonwealth Scientific And Industrial Research Organisation Security diffraction grating with special optical effects
EP0704066B1 (de) 1993-05-25 2001-10-17 Commonwealth Scientific And Industrial Research Organisation Diffraktionsvorrichtung mit mehreren abbildungen
US6088161A (en) 1993-08-06 2000-07-11 The Commonwealth Of Australia Commonwealth Scientific And Industrial Research Organization Diffractive device having a surface relief structure which generates two or more diffraction images and includes a series of tracks
DE69427308T2 (de) 1993-08-06 2001-09-06 Commw Scient Ind Res Org Diffraktive Vorrichtung
US5770120A (en) 1994-12-09 1998-06-23 Olympus Optical Co., Ltd. Method of manufacturing die and optical element performed by using the die
DE19506880A1 (de) 1995-02-17 1996-08-22 Hertz Inst Heinrich Verfahren zur Herstellung von optischen Übergitterstrukturen mittels Elektronenstrahllithographie
PL177897B1 (pl) 1995-10-31 2000-01-31 Remigiusz Gajda Element optycznie zmienny oraz sposób zapisu elementu optycznie zmiennego i urządzenie do zapisu elementu optycznie zmiennego
WO1997019821A1 (en) 1995-11-28 1997-06-05 Landis & Gyr Technology Innovation Ag Optically variable surface pattern
CN1193299A (zh) 1996-02-29 1998-09-16 厄纳斯特·祝 含有可写的透明全息图的仿伪文件
GB9617314D0 (en) 1996-08-17 1996-09-25 Fryco Ltd Optical images
GB9623214D0 (en) 1996-11-07 1997-01-08 Fryco Ltd Optical images
AUPO384796A0 (en) 1996-11-26 1996-12-19 Commonwealth Scientific And Industrial Research Organisation Colour image diffractive device
GB9710818D0 (en) * 1997-05-27 1997-07-23 Applied Holographics Optically variable devices
AU738289B2 (en) 1997-12-09 2001-09-13 Commonwealth Scientific And Industrial Research Organisation A diffractive device with three-dimensional effects
GB9813205D0 (en) 1998-06-18 1998-08-19 Rue De Int Ltd Methods of providing images on substrates
EP1123215A1 (de) 1998-09-08 2001-08-16 Commonwealth Scientific And Industrial Research Organisation Dreidimensionale mikrostruktur
US6987590B2 (en) 2003-09-18 2006-01-17 Jds Uniphase Corporation Patterned reflective optical structures
US7517578B2 (en) 2002-07-15 2009-04-14 Jds Uniphase Corporation Method and apparatus for orienting magnetic flakes
DE50112830D1 (de) 2000-04-15 2007-09-20 Ovd Kinegram Ag Flächenmuster
EP1303795B1 (de) 2000-07-18 2006-08-30 Optaglio Limited Achromatisches beugungselement
AUPR483301A0 (en) 2001-05-08 2001-05-31 Commonwealth Scientific And Industrial Research Organisation An optical device and methods of manufacture
DE10129939B4 (de) 2001-06-20 2006-06-22 Ovd Kinegram Ag Optisch variables Flächenmuster
DE10146508C2 (de) * 2001-09-21 2003-07-24 Ovd Kinegram Ag Zug Etikett mit einem diffraktiven Strichcode und Leseanordnung für solche Etiketten
US7106516B2 (en) 2002-02-04 2006-09-12 Applied Films Gmbh & Co. Kg Material with spectrally selective reflection
DE10206357A1 (de) * 2002-02-14 2003-08-28 Giesecke & Devrient Gmbh Sicherheitselement und Sicherheitsdokument mit einem solchen Sicherheitselement
DE10214330A1 (de) 2002-03-28 2003-10-16 Giesecke & Devrient Gmbh Sicherheitselement und Verfahren zu seiner Herstellung
DE10221491A1 (de) * 2002-05-14 2003-12-04 Kurz Leonhard Fa Optisch variables Flächenmuster
DE10243863A1 (de) 2002-08-13 2004-02-26 Giesecke & Devrient Gmbh Datenträger mit einem optisch variablen Element
DE10254500B4 (de) 2002-11-22 2006-03-16 Ovd Kinegram Ag Optisch variables Element und dessen Verwendung
DE10318157A1 (de) * 2003-04-17 2004-11-11 Leonhard Kurz Gmbh & Co. Kg Folie und optisches Sicherungselement
DE10328759B4 (de) * 2003-06-25 2006-11-30 Ovd Kinegram Ag Optisches Sicherheitselement und System zur Visualisierung von versteckten Informationen
DE10349000A1 (de) * 2003-10-17 2005-05-19 Giesecke & Devrient Gmbh Sicherheitselement mit Farbkippeffekt
DE10351129B4 (de) 2003-11-03 2008-12-24 Ovd Kinegram Ag Diffraktives Sicherheitselement mit einem Halbtonbild
DE10361130A1 (de) 2003-12-22 2005-07-28 Giesecke & Devrient Gmbh Sicherheitselement mit Beugungsstruktur und Verfahren zu seiner Herstellung
EP1580020A1 (de) 2004-03-24 2005-09-28 Kba-Giori S.A. Stichtiefdruckplatte
DE102004017094A1 (de) * 2004-04-07 2005-11-03 Leonhard Kurz Gmbh & Co. Kg Verfahren zur Herstellung eines Kraftfahrzeug-Nummernschildes sowie ein Kraftfahrzeug-Nummernschild
CZ2004869A3 (cs) 2004-08-06 2006-03-15 Optaglio S. R .O. Zpusob vytvorení trojrozmerného obrazu, difraktivní prvek a zpusob jeho vytvorení
BRPI0515003A (pt) 2004-08-12 2008-07-01 Giesecke & Devrient Gmbh elemento de segurança contendo um substrato
EP1658992A1 (de) 2004-11-23 2006-05-24 European Central Bank Verfahren zur Erzeugung von Tastsicherheitsmerkmalen auf Sicherheitsdokumente
DE102005028162A1 (de) 2005-02-18 2006-12-28 Giesecke & Devrient Gmbh Sicherheitselement und Verfahren zu seiner Herstellung
GB0504959D0 (en) 2005-03-10 2005-04-20 Rue International De La Ltd Security device based on customised microprism film
EP2660070A1 (de) 2005-05-18 2013-11-06 Visual Physics, LLC Bilddarstellung und mikrooptisches Sicherheitssystem
DE102005025095A1 (de) 2005-06-01 2006-12-07 Giesecke & Devrient Gmbh Datenträger und Verfahren zu seiner Herstellung
DE102005027380B4 (de) 2005-06-14 2009-04-30 Ovd Kinegram Ag Sicherheitsdokument
DE102005061749A1 (de) * 2005-12-21 2007-07-05 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement und Verfahren zu seiner Herstellung
DE102005062132A1 (de) 2005-12-23 2007-07-05 Giesecke & Devrient Gmbh Sicherheitselement
DE102006016139A1 (de) 2006-04-06 2007-10-18 Ovd Kinegram Ag Mehrschichtkörper mit Volumen-Hologramm
US8488242B2 (en) 2006-06-20 2013-07-16 Opsec Security Group, Inc. Optically variable device with diffraction-based micro-optics, method of creating the same, and article employing the same
JP4967569B2 (ja) 2006-09-27 2012-07-04 凸版印刷株式会社 偽造防止媒体および偽造防止ステッカー
DE102006050047A1 (de) * 2006-10-24 2008-04-30 Giesecke & Devrient Gmbh Durchsichtssicherheitselement mit Mikrostrukturen
DE102007039996B4 (de) 2007-02-07 2020-09-24 Leonhard Kurz Stiftung & Co. Kg Sicherheitselement für ein Sicherheitsdokument und Verfahren zu seiner Herstellung
DE102007005884B4 (de) 2007-02-07 2022-02-03 Leonhard Kurz Stiftung & Co. Kg Sicherheitsdokument
DE102007029203A1 (de) 2007-06-25 2009-01-08 Giesecke & Devrient Gmbh Sicherheitselement
DE102007029204A1 (de) 2007-06-25 2009-01-08 Giesecke & Devrient Gmbh Sicherheitselement
DE102007063275A1 (de) * 2007-12-27 2009-07-02 Giesecke & Devrient Gmbh Sicherheitsmerkmal für hohe Kippwinkel
DE102008008685A1 (de) * 2008-02-12 2009-08-13 Giesecke & Devrient Gmbh Sicherheitselement und Verfahren zu seiner Herstellung
DE102008013167A1 (de) 2008-03-07 2009-09-10 Giesecke & Devrient Gmbh Sicherheitselement und Verfahren zu seiner Herstellung
DE102008046128B4 (de) 2008-09-05 2024-03-07 Giesecke+Devrient Currency Technology Gmbh Optisch variables Sicherheitselement mit Mattbereich
DE102009056934A1 (de) 2009-12-04 2011-06-09 Giesecke & Devrient Gmbh Sicherheitselement, Wertdokument mit einem solchen Sicherheitselement sowie Herstellungsverfahren eines Sicherheitselementes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2507069B1 (de) 2018-08-22
AU2010327031B2 (en) 2014-07-17
CN102905909A (zh) 2013-01-30
US20130093172A1 (en) 2013-04-18
WO2011066990A2 (de) 2011-06-09
CA2780934A1 (en) 2011-06-09
WO2011066990A3 (de) 2011-07-28
US20180001690A1 (en) 2018-01-04
RU2573346C2 (ru) 2016-01-20
EP2507069A2 (de) 2012-10-10
CA2780934C (en) 2019-08-06
US10525758B2 (en) 2020-01-07
EP3059093A1 (de) 2016-08-24
CN102905909B (zh) 2015-03-04
US9827802B2 (en) 2017-11-28
BR112012013451A2 (pt) 2018-10-09
DE102009056934A1 (de) 2011-06-09
AU2010327031C1 (en) 2015-11-12
AU2010327031A1 (en) 2012-06-21
RU2012127687A (ru) 2014-01-20
BR112012013451B1 (pt) 2019-12-17

Similar Documents

Publication Publication Date Title
EP3059093B1 (de) Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes
EP2507068B1 (de) Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes
EP3339048B1 (de) Sicherheitselement mit reflektivem flächenbereich
EP2864130B1 (de) Dekorelement sowie sicherheitsdokument mit einem dekorelement
DE102011014114B3 (de) Mehrschichtkörper und Verfahren zur Herstellung eines Mehrschichtkörpers
DE102007023560B4 (de) Mehrschichtkörper
EP2633344B1 (de) Optisch variables flächenmuster
WO2009024265A1 (de) Gitterbild
EP3291997B1 (de) Optisch variables sicherheitselement
DE102010025775A1 (de) Sicherheitselement sowie Wertdokument mit einem solchen Sicherheitselement
EP2853411B1 (de) Sicherheitselement mit Linsenrasterbild
DE102010049600A1 (de) Sicherheitselement mit optisch variablem Flächenmuster
EP3750717B1 (de) Verfahren zur herstellung eines sicherheitselements sowie ein sicherheitselement
DE10126342C1 (de) Optisches Element und Verfahren zu dessen Herstellung
WO2012055537A2 (de) Optisch variables flächenmuster
EP2335100A1 (de) Gitterbild mit achromatischen gitterfeldern
EP3000614B1 (de) Optisch variables sicherheitselement mit reflektivem flächenbereich
WO2018172528A2 (de) Sicherheitselement und verfahren zur herstellung eines sicherheitselements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2507069

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170224

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181221

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTG Intention to grant announced

Effective date: 20200917

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20201104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2507069

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1376504

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016883

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210802

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016883

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010016883

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230103

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101203

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221230

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 14

Ref country code: BG

Payment date: 20231220

Year of fee payment: 14

Ref country code: AT

Payment date: 20231214

Year of fee payment: 14