EP3041631B1 - Chrommetallpulver - Google Patents

Chrommetallpulver Download PDF

Info

Publication number
EP3041631B1
EP3041631B1 EP14789128.7A EP14789128A EP3041631B1 EP 3041631 B1 EP3041631 B1 EP 3041631B1 EP 14789128 A EP14789128 A EP 14789128A EP 3041631 B1 EP3041631 B1 EP 3041631B1
Authority
EP
European Patent Office
Prior art keywords
chromium
metal powder
powder
mpa
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14789128.7A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3041631A2 (de
Inventor
Michael O'sullivan
Lorenz Sigl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plansee SE
Original Assignee
Plansee SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee SE filed Critical Plansee SE
Publication of EP3041631A2 publication Critical patent/EP3041631A2/de
Application granted granted Critical
Publication of EP3041631B1 publication Critical patent/EP3041631B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/06Artificial hot-air or cold-air baths; Steam or gas baths or douches, e.g. sauna or Finnish baths
    • A61H33/063Heaters specifically designed therefor
    • A61H33/065Heaters specifically designed therefor with steam generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals

Definitions

  • the present invention relates to a metal powder having a chromium content of at least 90% by mass and a process for its production.
  • the present invention has therefore set itself the task of providing metal powder having a chromium content of at least 90% by mass, which can be processed well powder metallurgy, in particular by pressing and sintering.
  • a metal powder is to be provided with which complex-shaped and / or thin-walled components can be produced in a simple manner by powder metallurgy.
  • the metal powder should further be produced in a high metallic purity, in particular a metallic purity comparable or better than metal powder, which is obtained by electrolytic route.
  • the object is achieved by metal powder with a chromium content of at least 90% by mass, which is measured by a nanohardness of 0.005 / 5/1/5 EN ISO 14577-1 (2002 edition - Berkovich indenters and Oliver and Pharr analysis methods) of ⁇ 4 GPa.
  • the hardness value refers to a metal powder, which is preferably subjected to no further treatment, such as an annealing.
  • the nanohardness HIT is preferably 0.005 / 5/1/5 ⁇ 3.7 GPa, more preferably ⁇ 3.4 GPa. With very high requirements, for example for very thin-walled components, a nanohardness HIT 0.005 / 5/1/5 of ⁇ 3.1 GPa has proven itself.
  • a nanohardness of 0.005 / 5/1/5 of about 1.4 GPa can be realized.
  • the nanohardness is determined in the pure chromium phase. If there is no pure chromium phase, the nanohardness is determined in the chromium-rich (phase with the highest chromium content) phase.
  • the metal powder according to the invention thus has a significantly lower nanohardness compared with the nanohards of metal powder according to the prior art. Since the powder according to the invention can be produced without a downstream milling process, the specified nanohardness can be achieved even with very fine-grained powder having a BET surface area of preferably ⁇ 0.05 m 2 / g.
  • the information on the BET surface area in the context of this application relates to a BET measurement according to the standard (ISO 9277: 1995, measuring range: 0.01-300 m 2 / g, device: Gemini II 2370, baking temperature: 130 ° C., heating time : 2 hours, adsorptive: nitrogen, volumetric evaluation by five-point determination).
  • the metal powder according to the invention is also characterized by a green strength measured according to ASTM B 312-09 at a compacting pressure of 550 MPa of at least 15 MPa, preferably of at least 20 MPa.
  • a wax was used as pressing additive, namely 0.6% by mass of an amide wax, namely LICOWAX® Micropowder PM (supplier Clariant, product number 107075, CAS No. 00110-30-5 ).
  • the green strength preferably has the following values: at least 8 MPa, preferably at least 13 MPa, at a compression pressure of 450 MPa; at least 6 MPa, preferably at least 11 MPa, at a compression pressure of 300 MPa; at least 4 MPa, preferably at least 6 MPa, at one Compressing pressure of 250 MPa and at least 2 MPa, preferably at least 2.5 MPa, at a pressure of 150 MPa.
  • Green strengths could be achieved at pressures of 450, 300 and 250 MPa of 18.5, 13.0 and 7.5 MPa and above.
  • the metal powder according to the invention can be processed in a simple manner by powder metallurgy, for example by pressing and sintering.
  • the metal powder according to the invention enables the simple and cost-effective production of powder metallurgy components with thin-walled areas, complex shape or relatively unfavorable pressing ratio.
  • the properties with regard to nanohardness and green strength can be achieved if the chromium content is at least 90% by mass and thus the content of other substances of 10% by mass is not exceeded.
  • the other substances are present in an advantageous manner separated from the chromium phase.
  • the other substance can be deposited in metallic or non-metallic form, preferably via a diffusion bond. Such powders are referred to as composite powder. Shares (advantageously ⁇ 5% by mass) of the other substance can also be dissolved in the chromium and form a chromium mixed crystal. Such powders are referred to as alloyed powders.
  • the metal powder then comprises a pure chromium phase and / or a chromium mixed crystal phase.
  • La 2 O 3 (up to a maximum of 5 mass%) or Cu (up to a maximum of 10 mass%) may be mentioned by way of example, in the case of La 2 O 3 La (OH) 3 and in the case of Cu CuO to Cr 2 O. 3 are mixed and fed to the reduction.
  • La 2 O 3 La (OH) 3 and in the case of Cu CuO to Cr 2 O. 3 are mixed and fed to the reduction.
  • other metals or non-metals are possible.
  • the metal powder preferably has both a green strength at a compacting pressure of 550 MPa of at least 7 MPa, preferably at least 10 MPa, more preferably of at least 15 MPa, particularly preferably of at least 20 MPa, and a nano-hardness HIT of 0.005 / 5/1/5 of ⁇ 4 GPa, preferably ⁇ 3.7 GPa, more preferably ⁇ 3.4 GPa, particularly particularly preferably ⁇ 3.1 GPa.
  • the metal powder according to the invention preferably has a sponge-like particle shape / morphology (division of the particle shape / morphology see Powder Metallurgy Science; Randall M. German; MPIF; Princeton, 1994, second edition, page 63 ). This has a favorable effect on the green strength.
  • the metal powder has a BET surface area without a surface-enlarging process of ⁇ 0.05 m 2 / g.
  • the BET surface area is 0,0 0.07 m 2 / g.
  • BET surfaces of 0.25 m 2 / g and above could be achieved.
  • it without a surface-enlarging process, it can also be called "as produced” and means for the person skilled in the art that the metal powder was obtained directly from the process and in particular is no longer subjected to a grinding process.
  • Such a grinding process can be recognized by the morphology of the metal powder, since during the grinding process smooth fracture surfaces are formed which can not be found in unmilled powder.
  • only a deagglomeration is preferably provided.
  • the metal powder according to the invention has a metallic purity, i. a content of chromium based on other metals, of ⁇ 99.0 Ma%, preferably ⁇ 99.5 Ma%, more preferably ⁇ 99.9 Ma%, particularly preferably of ⁇ 99.99 Ma%.
  • Metallic purity here means the purity of the metal powder without consideration of non-metallic constituents such as, for example, O, C, N and H.
  • the oxygen content of metal powder according to the invention is preferably not more than 1500 ⁇ g / g of chromium, more preferably not more than 1000 ⁇ g / g of chromium. In a particularly preferred embodiment, the oxygen content is not more than 500 ⁇ g / g chromium.
  • the achievable carbon content can be set very low and is preferably not more than 150 ⁇ g / g chromium, more preferably not more than 100 ⁇ g / g chromium. In a particularly preferred embodiment, the carbon content is not more than 50 ⁇ g / g chromium.
  • the metal powder is granulated.
  • the granulation can be carried out by conventional methods, preferably by spray or build-up granulation (see also Powder Metallurgy Science; Randall M. German; MPIF; Princeton, 1994, second edition, pages 183-184 ). Under granules is the merger of individual powder particles to understand that are connected to each other, for example by means of a binder or by Sinterhals Struktur.
  • the metal powder has a bulk density of ⁇ 2.0 g / cm 3 .
  • the bulk density is preferably 0.1 to 2 g / cm 3 , more preferably 0.5 to 1.5 g / cm 3 . Since a comparatively high bulk density is achieved for the achievable particle size or BET surface area (preferably ⁇ 0.05 m 2 / g), the powder exhibits good filling behavior during the pressing process.
  • the metal powder preferably has a compact density of ⁇ 80% of the theoretical density at 550 MPa pressing pressure. This makes it possible to produce components without high sintering shrinkage near net shape
  • the metal powder according to the invention can be prepared by reducing at least one compound of the group consisting of Cr oxide and Cr hydroxide, optionally with a mixed solid carbon source, under at least temporary exposure to hydrogen and hydrocarbon.
  • Preferred chromium oxide or chromium hydroxide are Cr (III) compounds in powder form, for example Cr 2 O 3 , CrOOH, Cr (OH) 3 or mixtures of chromium oxides and chromium hydroxides.
  • the preferred chromium source is Cr 2 O 3 .
  • the Cr 2 O 3 used has at least pigment quality.
  • the compound of the group consisting of Cr oxide and Cr-oxide, optionally with a mixed solid carbon source, is heated to a temperature T R of 1100 ° C ⁇ T R ⁇ 1550 ° C and optionally maintained at this temperature. Temperatures ⁇ 1100 ° C or> 1550 ° C lead to deteriorated powder properties, or to a more uneconomical process.
  • the reaction proceeds particularly well for industrial purposes when temperatures T R of about 1200 ° C to 1450 ° C are selected.
  • the skilled person can easily determine the optimum combination of temperature and time for his furnace (continuous furnace, batch furnace, maximum achievable furnace temperature, etc.).
  • the reaction over substantially at least 30%, more preferably at least 50% of the reaction time is maintained substantially constant (isothermal) on T R.
  • the presence of hydrocarbon ensures that powder having the properties according to the invention is formed via a chemical transport process.
  • the total pressure of the reaction is advantageously 0.95 to 2 bar. Pressures above 2 bar adversely affect the economics of the process. Pressures below 0.95 bar have an adverse effect on the resulting hydrocarbon partial pressure, which in turn has a very unfavorable effect on the transport processes via the gas phase, which are of great importance for adjusting the powder properties of the invention (for example hardness, green strength, specific surface area) are. In addition, pressures below 0.95 bar adversely affect the process costs.
  • the hydrocarbon is present as CH 4 .
  • the hydrocarbon partial pressure is 5 to 500 mbar.
  • a hydrocarbon partial pressure ⁇ 5 mbar has an unfavorable effect on the powder properties, in particular the green strength.
  • a hydrocarbon partial pressure> 500 mbar leads to a high C content in the reduced powder.
  • the residual gas atmosphere is preferably hydrogen.
  • the action of hydrogen and hydrocarbon takes place at least in the temperature range 800 ° C to 1050 ° C. In this temperature range, the hydrocarbon partial pressure is preferably from 5 to 500 mbar.
  • the reaction mixture forming from the starting materials is preferably at least 45 minutes, particularly preferably at least 60 minutes. in this temperature range.
  • This time includes both the heating process and any isothermal holding phases in this temperature range.
  • inventive process conditions it is ensured that at temperatures preferably ⁇ T R at least one compound selected from the group consisting of Cr oxide and Cr hydroxide at least partially converts to chromium carbide under the action of hydrogen and hydrocarbon.
  • Preferred chromium carbides are Cr 3 C 2 , Cr 7 C 3 and Cr 23 C 6 .
  • the partial formation of chromium carbide, which occurs via the hydrocarbon partial pressure in turn has a favorable effect on the powder properties.
  • inventive process conditions it is further ensured that the chromium carbide reacts with the Cr oxide / Cr hydroxide present in the reaction mixture and / or admixed to form Cr, this process dominating at T R.
  • the hydrocarbon may be added to the reaction in gaseous form, preferably without admixing a solid carbon source.
  • the at least one compound of the group consisting of Cr oxide and Cr hydroxide is preferably reduced under at least temporary action of an H 2 -CH 4 gas mixture.
  • the action of the H 2 -CH 4 gas mixture is preferably carried out at least temporarily during the heating phase to T R , the influence on the formation of the powder form, in particular in the temperature range 850 to 1000 ° C is very low.
  • T R is below 1200 ° C, switching to the pure hydrogen atmosphere is preferred when T R is reached .
  • the isothermal phase on T R and cooling to room temperature are advantageously carried out in a Wasserstoffatmosphinre. In particular, when cooling, it is advantageous to use hydrogen with a dew point ⁇ -40 ° C to avoid reoxidation.
  • a solid carbon source is admixed with the Cr oxide and / or Cr hydroxide. Preference is given here per mole of oxygen in the chromium compound between 0.75 and 1.25 mol, preferably between 0.90 and 1.05 moles of carbon used. This refers to the amount of carbon available for reaction with the chromium compound. In a particularly preferred embodiment, the ratio of O to C is slightly substoichiometric at about 0.98. It is preferably provided that the solid carbon source is selected from the group of carbon black, activated carbon, graphite, carbon-releasing compounds or mixtures thereof. As an example of a carbon releasing compound, chromium carbides such as Cr 3 C 2 , Cr 7 C 3 and Cr 23 C 6 may be mentioned.
  • the powder mixture is heated to T R in an H 2 -containing atmosphere.
  • the H 2 pressure is preferably adjusted so that at least in the temperature range 800 ° to 1050 ° C, a CH 4 partial pressure of 5 to 500 mbar results.
  • the isothermal phase on T R and cooling to room temperature are again advantageously carried out in a hydrogen atmosphere. During these process phases, the presence of hydrocarbon is not required. Hydrogen prevents reoxidation processes during this process phase and during the cooling phase.
  • a hydrogen atmosphere with a dew point ⁇ -40 ° C. is preferably used.
  • Heating from 1200 ° C to T R and holding on T R was done by adding dry hydrogen with a dew point ⁇ -40 ° C, the pressure being about 1 bar.
  • the furnace cooling was also carried out under H 2 with a dew point ⁇ -40 ° C.
  • a metallic sponge was obtained, which could easily be deagglomerated to a powder.
  • the chromium metal powder thus produced is in FIG. 4 play.
  • the degree of reduction was> 99.0%, the carbon content 80 ⁇ g / g and the oxygen content 1020 ⁇ g / g.
  • An X-ray diffraction analysis provided only peaks for cubic body-centered (BCC) chromium metal.
  • the specific surface area was determined by BET method (according to ISO 9277: 1995, measuring range: 0.01-300 m 2 / g, device: Gemini II 2370, annealing temperature: 130 ° C., heating time: 2 hours, adsorptive: nitrogen, volumetric evaluation via five-point determination) and was 0.14 m 2 / g, the bulk density 1.2 g / cm 3 .
  • the nanohardness HIT 0.005 / 5/1/5 was determined according to EN ISO 14577-1 and was 3 GPa.
  • the green strength was determined according to ASTM B 312-09. As a compression additive, 0.6% by mass of LICOWAX® Micropowder PM (supplier Clariant, product number 107075, CAS No.
  • the green strength was 23.8 MPa, at 450 MPa 18.1 MPa, at 300 MPa 8.5 MPa, at 250 MPa 7.2 MPa and at 150 MPa 3.0 MPa.
  • Pigment grade Cr 2 O 3 (Lanxess Bayoxide CGN-R) with a mean laser diffraction particle size d 50 of 0.9 ⁇ m was well blended with amorphous carbon black (Thermax ultra-pure N908 - Cancarb).
  • the carbon content of the mixture thus prepared was 0.99 mol / mol of O in Cr 2 O 3 . 12500 g of this mixture were in 80 min. to 800 ° C and then in 125 min. heated to 1050 ° C. The heating was carried out under the action of H 2 , wherein the H 2 pressure was adjusted so that in the temperature range 800 ° C to 1050 ° C, the measured mass spectrometry CH 4 partial pressure> 15 mbar scam. The total pressure was 1.1 bar.
  • the green strength was determined according to ASTM B 312-09. As a compression additive, 0.6% by mass of LICOWAX® Micropowder PM (supplier Clariant, product number 107075, CAS No. 00110-30-5 ) used. As pressing pressures 550 MPa, 450 MPa, 350 MPa, 250 MPa and 150 MPa were used.
  • FIG. 6 shows the measured green strength values compared to samples pressed with aluminothermically produced powder (Cr-Std).
  • the powder according to the invention (CP181) shows a green strength which is at least 5 times higher.
  • the powder formulation (with 0.6 Ma% LICOWAX® Micropowder PM Press Additive) was further pressed at various pressures into pill-shaped samples.
  • FIG. 7 For example, the relative compacting densities are shown in terms of compacting pressure as compared to standard chromium metal powder (E-Cr: electrolytically produced, A-Cr: aluminothermically produced) having different particle sizes.
  • the BET specific surface area (ISO 9277: 1995, measuring range: 0.01-300 m 2 / g, apparatus: Gemini II 2370, baking temperature: 130 ° C., heating time: 2 hours, adsorptive: nitrogen, volumetric evaluation over Five-point determination) and the nanohardness HIT 0.005 / 5/1/5 according to EN ISO 14577-1. Table 1 lists these characteristics and compares them with the properties of electrolytically produced chromium powders. Striking is the significantly lower nanohardness of the powder according to the invention. The particle size calculated from the BET surface area was 8.3 ⁇ m.
  • Table 1 Properties of chromium powder according to the invention in comparison with electrolytically produced chromium powder Powder type BET surface area [m 2 / g] O [ ⁇ g / g] C [ ⁇ g / g] Nanohardness [GPa] Chromium powder according to the invention (Example 2) 0.10 1064 114 2.92 Electrolytically produced chromium powder, particle size ⁇ 45 ⁇ m 0.11 736 87 5.32
  • the holding times on T R were 30 min, 60 min, 90 min, 120 min and 180 min. Heating from 1000 ° C to T R and holding on T R was done by supplying dry hydrogen with a dew point ⁇ -40 ° C, the pressure was about 1 bar. The furnace cooling was also carried out under H 2 with a dew point ⁇ -40 ° C. The degree of reduction was determined as set out in the description. How out FIG. 8 it can be seen, an advantageous reduction of> 95% at 1400 ° C, 1450 ° C and 1480 ° C already at a holding time of 30 min. clearly exceeded. At 1350 ° C it takes about 80 min., At 1300 ° C about 160 min. At 1250 ° C and 1150 ° C it takes about 260 min. or 350 min. (extrapolated values). SEM investigations showed that the powders thus produced had a sponge-like morphology combined with a very high BET surface area (see FIG. 9 ) respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
EP14789128.7A 2013-09-02 2014-08-19 Chrommetallpulver Active EP3041631B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATGM283/2013U AT13691U1 (de) 2013-09-02 2013-09-02 Chrommetallpulver
PCT/AT2014/000160 WO2015027256A2 (de) 2013-09-02 2014-08-19 Chrommetallpulver

Publications (2)

Publication Number Publication Date
EP3041631A2 EP3041631A2 (de) 2016-07-13
EP3041631B1 true EP3041631B1 (de) 2019-02-27

Family

ID=50885104

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14789128.7A Active EP3041631B1 (de) 2013-09-02 2014-08-19 Chrommetallpulver

Country Status (10)

Country Link
US (1) US11117188B2 (ja)
EP (1) EP3041631B1 (ja)
JP (1) JP6559134B2 (ja)
KR (1) KR102259464B1 (ja)
CN (1) CN105517736B (ja)
AT (1) AT13691U1 (ja)
CA (1) CA2921068C (ja)
RU (1) RU2662911C2 (ja)
TW (1) TWI636961B (ja)
WO (1) WO2015027256A2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6694817B2 (ja) * 2013-12-20 2020-05-20 プランゼー エスエー 塗装材料
JP6981536B2 (ja) * 2018-03-23 2021-12-15 株式会社村田製作所 鉄合金粒子、及び、鉄合金粒子の製造方法
CN111922350B (zh) * 2020-09-22 2021-01-01 西安斯瑞先进铜合金科技有限公司 一种低盐酸不溶物金属铬粉的制备方法
CN111922351B (zh) * 2020-09-23 2021-01-01 西安斯瑞先进铜合金科技有限公司 一种高纯低氧金属铬粉的制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB512502A (en) 1938-03-18 1939-09-18 George William Johnson Improvements in the manufacture and production of chromium or chromium alloys
SU142431A1 (ru) * 1961-04-03 1961-11-30 Т.Я. Косолапова Способ получени порошка технического хрома
US4148628A (en) * 1977-02-18 1979-04-10 Toyo Soda Manufacturing Co., Ltd. Process of producing metallic chromium
JPS53102813A (en) * 1977-02-21 1978-09-07 Toyo Soda Mfg Co Ltd Preparation of metallic chromium of high purity
JPS5413408A (en) 1977-07-01 1979-01-31 Toyo Soda Mfg Co Ltd Manufacture of high purity metallic chromium
SU1061938A1 (ru) * 1982-04-15 1983-12-23 Институт Металлургии Им.50-Летия Ссср Шихта дл получени порошка хрома
JPS63199832A (ja) 1987-02-13 1988-08-18 Tosoh Corp 高純度金属クロムの製造方法
CN1004637B (zh) 1987-08-05 1989-06-28 北京有色金属研究总院 低氧铬粉的生产方法
EP0452079A1 (en) * 1990-04-12 1991-10-16 Tosoh Corporation High chromium-nickel material and process for producing the same
JP3227715B2 (ja) * 1991-04-15 2001-11-12 東ソー株式会社 金属クロムの製造方法
JPH0681052A (ja) 1992-01-30 1994-03-22 Tosoh Corp 金属クロムの製造方法
GB2255349A (en) 1991-04-15 1992-11-04 Tosoh Corp Process for producing chromium metal
JP2908073B2 (ja) 1991-07-05 1999-06-21 株式会社東芝 真空バルブ用接点合金の製造方法
JP3934686B2 (ja) * 1994-01-31 2007-06-20 東ソー株式会社 高純度金属クロムの製造方法
JP2004510889A (ja) * 1998-08-06 2004-04-08 エラメット マリエッタ インコーポレイテッド クロムの精製方法
DE10002738A1 (de) * 2000-01-22 2001-07-26 Vulkan Strahltechnik Gmbh Herstellungsverfahren für ein kantiges, rostfreies Strahlmittel auf Basis einer Fe-Cr-C-Legierung
AT505699B1 (de) 2007-09-03 2010-10-15 Miba Sinter Austria Gmbh Verfahren zur herstellung eines sintergehärteten bauteils
US20090068055A1 (en) * 2007-09-07 2009-03-12 Bloom Energy Corporation Processing of powders of a refractory metal based alloy for high densification
DE102008005781A1 (de) 2008-01-23 2009-07-30 Tradium Gmbh Phlegmatisierte Metallpulver oder Legierungspulver und Verfahren bzw. Reaktionsgefäß zu deren Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US11117188B2 (en) 2021-09-14
JP2016532010A (ja) 2016-10-13
JP6559134B2 (ja) 2019-08-14
WO2015027256A3 (de) 2015-05-21
TWI636961B (zh) 2018-10-01
EP3041631A2 (de) 2016-07-13
CA2921068C (en) 2021-03-09
RU2662911C2 (ru) 2018-07-31
AT13691U1 (de) 2014-06-15
US20160199910A1 (en) 2016-07-14
RU2016105215A3 (ja) 2018-04-27
CA2921068A1 (en) 2015-03-05
CN105517736A (zh) 2016-04-20
CN105517736B (zh) 2019-08-06
TW201512099A (zh) 2015-04-01
WO2015027256A2 (de) 2015-03-05
KR102259464B1 (ko) 2021-06-02
RU2016105215A (ru) 2017-10-09
KR20160051760A (ko) 2016-05-11

Similar Documents

Publication Publication Date Title
DE60121242T2 (de) Molybdän-Kupfer-Verbundpulver sowie dessen Herstellung und Verarbeitung zu einer Pseudolegierung
EP1079950B1 (de) Sinteraktive metall- und legierungspulver für pulvermetallurgische anwendungen und verfahren zu deren herstellung und deren verwendung
DE68906837T2 (de) Gesinterte werkstuecke und verfahren zu ihrer herstellung.
EP1718777B1 (de) Verfahren zur herstellung einer molybdän-legierung
EP2066821B9 (de) Metallpulver
DE2625214A1 (de) Verfahren zur herstellung von gesinterten formkoerpern
EP3041631B1 (de) Chrommetallpulver
WO2005028692A1 (de) Ods-molybdän-silizium-bor-legierung
DE102006013746A1 (de) Gesinterter verschleißbeständiger Werkstoff, sinterfähige Pulvermischung, Verfahren zur Herstellung des Werkstoffs und dessen Verwendung
DE19950595C1 (de) Verfahren zur Herstellung von Sinterteilen aus einer Aluminiumsintermischung
EP0232772B1 (de) Verfahren zur Herstellung eines pulverförmigen amorphen Materials unter Vornahme eines Mahlprozesses
DE2200670B2 (ja)
DE102014204277B4 (de) VERSCHLEIßFESTE WOLFRAMCARBID-KERAMIKEN UND VERFAHREN ZU IHRER HERSTELLUNG
EP2427284B1 (de) Pulvermetallurgisches verfahren zur herstellung von metallschaum
EP4058224A1 (de) Sphärisches pulver zur fertigung von dreidimensionalen objekten
DE19711642A1 (de) Verfahren zur Herstellung eines Stahl-Matrix-Verbundwerkstoffes sowie Verbundwerkstoff, hergestellt nach einem derartigen Verfahren
DE102006005225B3 (de) Titanwerkstoff und Verfahren zu seiner Herstellung
DE3873724T2 (de) Zusaetze enthaltende wolframschwermetallegierungen mit feinem gefuege.
DE69218109T2 (de) Verdichtete und verfestigte Wirkstoffe aus Aluminium-Legierung
DE3308409C2 (ja)
DE3043321A1 (de) Sinterprodukt aus metall-legierung und dessen herstellung
DE10117657A1 (de) Komplex-Borid-Cermet-Körper, Verfahren zu dessen Herstellung und Verwendung dieses Körpers
EP1047649A1 (de) Verfahren zur herstellung von kompositwerkstoffen und vertreter solcher kompositwerkstoffe
DE102022109070A1 (de) Leichtmetall-Matrixverbundwerkstoff auf Magnesiumbasis und Verfahren zu seiner Herstellung
EP1409407A2 (de) Herstellung von mg2-si und ternärer verbindungen mg2 (si,e); (e=ge, sn, pb sowie übergangsmetalle; kleiner als 10 gew.%) aus mgh2 und silizium sowie von magnesiumsilicidformkörpern mittels puls-plasma-synthese

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160308

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B22F 9/22 20060101AFI20180724BHEP

Ipc: A61H 33/06 20060101ALI20180724BHEP

Ipc: C22C 27/06 20060101ALI20180724BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180914

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1100601

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014010970

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014010970

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190819

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230822

Year of fee payment: 10

Ref country code: AT

Payment date: 20230822

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230821

Year of fee payment: 10

Ref country code: FR

Payment date: 20230825

Year of fee payment: 10

Ref country code: DE

Payment date: 20230821

Year of fee payment: 10