EP2937449B1 - Gasdiffusionselektrode und herstellungsverfahren dafür - Google Patents

Gasdiffusionselektrode und herstellungsverfahren dafür Download PDF

Info

Publication number
EP2937449B1
EP2937449B1 EP12891307.6A EP12891307A EP2937449B1 EP 2937449 B1 EP2937449 B1 EP 2937449B1 EP 12891307 A EP12891307 A EP 12891307A EP 2937449 B1 EP2937449 B1 EP 2937449B1
Authority
EP
European Patent Office
Prior art keywords
gas diffusion
carbon black
diffusion electrode
layer
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12891307.6A
Other languages
English (en)
French (fr)
Other versions
EP2937449A4 (de
EP2937449A1 (de
Inventor
Feng Wang
Yinliang CAO
Jingjun Liu
Zhilin Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Publication of EP2937449A1 publication Critical patent/EP2937449A1/de
Publication of EP2937449A4 publication Critical patent/EP2937449A4/de
Application granted granted Critical
Publication of EP2937449B1 publication Critical patent/EP2937449B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene

Definitions

  • the present invention relates to the field of chemical engineering, particularly to a gas diffusion electrode suitable for the chlor-alkali industry and a preparation method thereof.
  • chlor-alkali industry plays an important role in promoting national economic development. Meanwhile, chlor-alkali industry is an industry with high energy consumption, so how to reduce the energy consumption of chlor-alkali industry to a minimum has always been an issue focused by many countries.
  • reaction equations of the traditional ion-exchange membrane brine electrolytic process with a hydrogen evolution electrode as the cathode are as follows: 2Cl - ⁇ Cl 2 +2e (1.36V) 2H 2 O+2e ⁇ 2OH - +H 2 (-0.83V) 2NaCl+2H 2 O ⁇ Cl 2 +2NaOH+H 2 (2.19V),
  • electrochemical reaction equations of the ion-exchange membrane brine electrolytic process with an oxygen diffusion electrode as the cathode are as follows: 2Cl - ⁇ Cl 2 +2e (1.36V) O 2 +2H 2 O+4e ⁇ 4OH - (0.4V) 2NaCl+H 2 O+1/2O 2 ⁇ Cl 2 +2NaOH (0.96V).
  • theoretic decomposition voltage thereof can be reduced by 1.23 V, the theoretic energy thereof can be saved up to 40%, and the electric energy saved will be 700KWh per ton of alkali, which make the process have very considerable application value.
  • Japanese Patent Publication 2007-327092 discloses a gas diffusion electrode having high resistance of water-pressure but low speed of deterioration, which is prepared using AB-6 carbon black as hydrophobic carbon black, AB-12 carbon black as hydrophilic carbon black, and Ag powder as a catalyst.
  • Japanese Patent Publication 2004-300451 discloses a gas diffusion electrode having stable performance, which is prepared with AB-6 carbon black as hydrophobic carbon black and Ag-plated metal web as a catalyst layer through the steps of dispersing the hydrophobic carbon black and an adhesive, filtering and drying, followed by hot-press molding the Ag-plated metal web, however such electrode is difficult to satisfy the requirement of large-scale industrial production of large electrode.
  • Cide CN101736360A discloses a gas diffusion electrode having a structure that a Ni web plated with Ag as a support is disposed between a gas diffusion layer and a catalyst layer, however such electrode involves problems such as low mechanical strength, being liable to form cracks on the surface of the electrode during the production thereof and difficult to release during the hot pressing process, and thus cannot satisfy the requirement of industrial production.
  • the present invention relates to a gas diffusion electrode comprising a current collector, a gas diffusion layer, a gas catalysis layer coated on the gas diffusion layer, and a liquid guide layer located on the gas catalysis layer; wherein the gas diffusion layer comprises highly-graphitized carbon black and polytetrafluoroethylene (PTFE), and the gas catalysis layer comprises a catalyst, acidified highly-graphitized carbon black and polytetrafluoroethylene; the highly-graphitized carbon black is the carbon black having a peak intensity ratio I D /I G between 0.3 and 1.0 in the Raman spectrum, and the degrees of graphitization in the gas diffusion layer and the gas catalysis layer may be the same or different; the current collector and the liquid guide layer are both silver-plated metal foam having a thickness of
  • the mass ratio of the highly-graphitized carbon black to polytetrafluoroethylene in the gas diffusion layer is (0.01-1): (0.01-0.1).
  • the mass ratio of the catalyst, the acidified highly-graphitized carbon black and polytetrafluoroethylene in the gas catalysis layer is (0.1-1): (0.1-1): (0.1-1).
  • the metal of the silver-plated metal foam is selected from nickel, titanium, tungsten, cobalt, or alloys thereof.
  • the catalyst in the gas catalysis layer is selected from silver powder or Ag/C composite catalyst; preferably, the catalyst has a particle size between 0.01 and 5 ⁇ m.
  • the diffusion electrode is applied as a gas diffusion electrode in chlor-alkali industry.
  • the gas diffusion layer is prepared from raw materials comprising highly-graphitized carbon black, water, Triton, polytetrafluoroethylene emulsion and isopropanol in a mass ratio of (0.01-1): (0.1-1): (0.01-0.1): (0.01-0.1): 1, wherein the aqueous isopropanol solution of Triton is used as a dispersion medium.
  • the gas catalysis layer is prepared from raw materials comprising a catalyst, acidified highly-graphitized carbon black, water, Triton, polytetrafluoroethylene solution and isopropanol in a mass ratio of (0.1-1): (0.1-1): (1-10): (0.1-1): (0.1-1) : 1, wherein the aqueous solution of Triton is used as a dispersion medium.
  • the preparation method of the gas diffusion layer comprises the following steps: (1) dispersing the highly-graphitized carbon black in the aqueous isopropanol solution comprising surfactant Triton, so as to obtain the slurry of the gas diffusion layer; dispersing this slurry by ultrasonic shear for 10 to 200 min; then adding 40 to 80 mass% of polytetrafluoroethylene emulsion, further dispersing by shear for 10 to 150 min; controlling the temperature during the dispersion of the gas diffusion layer slurry between 10 and 100°C, and the powder in the gas diffusion layer slurry having an average particle size between 0.2 and 10 ⁇ m after dispersion; setting the gas diffusion layer slurry for 5 to 100 h after dispersion; and controlling the solid content of the gas diffusion layer slurry between 5 and 40 wt%; and (2) coating the gas diffusion layer slurry evenly on the silver-plated metal foam of the current collector; after coating of the gas
  • the preparation method of the gas catalysis layer comprises the following steps: (1) dispersing the catalyst, the acidified graphitized carbon black in the aqueous isopropanol solution comprising surfactant Triton, so as to obtain the catalysis layer slurry; dispersing this slurry by ultrasonic shear for 10-200 min; then adding 40-80 mass% of polytetrafluoroethylene emulsion, further dispersing by shear for 10-150 min; and controlling the temperature during the dispersion of the catalysis layer slurry between 10-100°C and the powder in the catalysis layer slurry having an average particle size between 0.2-10 ⁇ m after dispersion; and (2) coating the catalysis layer slurry evenly on the gas diffusion layer of the assembly of the gas diffusion layer and the current collector; drying it at 40-120°C for 0.5-1 h after coating of the catalysis layer slurry; after the coating and drying of the catalysis layer
  • the silver-plated metal foam is prepared by plating Ag on the metal foam using electroplating, chemical plating, and replacement plating methods.
  • the catalyst used in the present invention includes Ag powder and Ag/C composite catalyst (the preparation thereof please refer to CN 101745390A ), and the Ag/C composite catalysts mentioned in the context are all those prepared according to patent publication CN 101745390A .
  • the present invention has the following advantageous effects.
  • a gas diffusion layer which has not only good electrical conductivity and gas permeability capability but also excellent resistance to water pressure, can be prepared by the processes of dispersing highly-graphitized carbon black in the aqueous isopropanol solution comprising a certain surfactant using ultrasonic shear and standing, so as to obtain a uniformly dispersed gas diffusion layer slurry; coating the gas diffusion layer slurry evenly on the silver-plated metal foam; and performing cold-pressing after drying the slurry.
  • a pre-molded gas diffusion electrode can be prepared by dispersing the catalyst and the acidified highly-graphitized carbon black in the aqueous isopropanol solution comprising a certain surfactant using ultrasonic shear so as to obtain a uniformly dispersed catalysis layer slurry; coating the catalysis layer slurry evenly on the gas diffusion layer; and performing cold-pressing after drying the slurry.
  • the catalysis layer obtained in this way not only has suitable hydrophilic and hydrophobic capacity which is beneficial to the gas-liquid-solid three-phase reaction, but also has anti-etching capacity and the capacity of preventing the occurrence of side reaction producing hydrogen peroxide, thus facilitating the long-term and stable operation of the electrode.
  • the pre-molded gas diffusion electrode is subjected to high-temperature baking in order to thoroughly remove the residual surfactant in the interior of the electrode, thereby facilitating the uniform of the pore structure during the hot-press molding process.
  • a gas diffusion electrode having a sandwich structure is formed by hot-pressing the silver-plated metal foam on the surface of the catalysis layer during the hot-pressing process, thus not only being beneficial to the progression of the three-phase reaction in the catalysis process, but also being capable of improving the electro-catalysis capacity of the electrode in a basic solution and the mechanical strength of the electrode itself due to the silver-plated metal foam. Therefore, the gas diffusion electrode provided by the present invention has good corrosion resistance and good electrical conductivity, and runs stably in a basic solution; thus it is suitable for the electrolysis reaction in chlor-alkali industry.
  • the highly-graphitized carbon black used in this example is prepared by graphitizing carbon black (Vulcan XC-72) in a high-temperature graphitization furnace at 2700°C for 6-10 h, and a Raman Spectrogram for measuring the graphitization degree thereof is shown in Figure 2 with I D /I G of 0.67.
  • the silver-plated nickel foam is prepared by electroplating, wherein the nickel foam is commercially available from Heze Tianyu Technical Developing Lt. Corp.
  • the acidified highly-graphitized carbon black is prepared by refluxing the graphitized carbon black in nitric acid solution (68 mass%) at 120°C for 6 to 10 h. Specifically,
  • the highly-graphitized carbon black used in this example is prepared by graphitizing carbon black (Vulcan XC-72) at 2600°C for 2-15 h, and has a Raman Spectrogram with I D /I G of 0.7-1.0.
  • the silver-plated nickel foam is prepared by electroplating, wherein the nickel foam is commercially available from Heze Tianyu Technical Developing Lt. Corp.
  • the acidified highly-graphitized carbon black is prepared by refluxing the graphitized carbon black in nitric acid solution (68 mass%) at 140°C for 6 to 10 h. Specifically,
  • the highly-graphitized carbon black used in this example is prepared by graphitizing carbon black (Vulcan XC-72) in a high-temperature graphitization furnace at 2900°C for 2-15 h, and has a Raman Spectrogram with I D /I G of 0.3-0.6.
  • the silver-plated nickel foam is prepared by electroplating, wherein the nickel foam is commercially available from Heze Tianyu Technical Developing Lt. Corp.
  • the acidified highly-graphitized carbon black is prepared by refluxing the graphitized carbon black in nitric acid solution (68 mass%) at 160°C for 6 to 10 h. Specifically,
  • the highly-graphitized carbon black used herein is prepared by graphitizing carbon black (Vulcan XC-72) in a high-temperature graphitization furnace at 2700°C for 6-10 h, and a Raman Spectrogram for measuring the graphitization degree thereof is shown in Figure 2 with I D /I G of 0.67.
  • the silver-plated nickel foam is prepared by electroplating, wherein the nickel foam is commercially available from Heze Tianyu Technical Developing Lt. Corp.
  • the acidified highly-graphitized carbon black is prepared by refluxing the graphitized carbon black in nitric acid solution (68 mass%) at 120°C for 6 to 10 h. Specifically,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Claims (10)

  1. Gasdiffusionselektrode, umfassend einen Stromabnehmer, eine Gasdiffusionsschicht, eine auf der Gasdiffusionsschicht beschichtete Gaskatalyseschicht und eine auf der Gaskatalyseschicht befindliche flüssige Führungsschicht; wobei die Gasdiffusionsschicht hoch graphitierten Ruß und Polytetrafluorethylen umfasst und die Gaskatalyseschicht einen Katalysator, angesäuerten hoch graphitierten Ruß und Polytetrafluorethylen umfasst; der hoch graphitierte Ruß der Ruß mit einem Peak-Intensitätsverhältnis ID/IG zwischen 0,3 und 1,0 im Raman-Spektrum ist, und vorzugsweise wobei die Konzentration der sauerstoffhaltigen Funktionsgruppe auf der Oberfläche des angesäuerten graphitierten Rußes 0,5-2 mmol/g beträgt; die Graphitisierungsgrade in der Gasdiffusionsschicht und der Gaskatalyseschicht gleich oder verschieden sein können; der Stromabnehmer und die flüssige Führungsschicht beide versilberter Metallschaum mit einer Dicke von 0,1-20 µm sind und der versilberte Metallschaum davon gleich oder verschieden sein kann.
  2. Gasdiffusionselektrode nach Anspruch 1, wobei das Massenverhältnis des hoch graphitierten Rußes zu Polytetrafluorethylen in der Gasdiffusionsschicht (0,01-1) : (0,01-0,1) beträgt.
  3. Gasdiffusionselektrode nach Anspruch 1, wobei das Massenverhältnis des Katalysators, des angesäuerten hoch graphitierten Rußes und des Polytetrafluorethylens in der Gaskatalyseschicht (0,1-1): (0,1-1): (0,1-1) beträgt.
  4. Gasdiffusionselektrode nach einem der Ansprüche 1-3, wobei das Metall des versilberten Metallschaums ausgewählt ist aus Nickel, Titan, Wolfram, Cobalt und Legierungen davon.
  5. Gasdiffusionselektrode nach Anspruch 1, wobei der Katalysator in der Gaskatalyseschicht ausgewählt ist aus Silberpulver und Ag/C-Verbundkatalysator; vorzugsweise wobei der Katalysator eine Partikelgröße zwischen 0,01 und 5 µm aufweist.
  6. Gasdiffusionselektrode nach einem der Ansprüche 1-5, wobei die Diffusionselektrode eine in der Chlor-Alkali-Industrie angewandte Gasdiffusionselektrode ist.
  7. Verfahren zum Herstellen der Gasdiffusionselektrode nach Anspruch 6, wobei die Gasdiffusionsschicht aus Rohstoffen hergestellt wird, die Folgendes umfassen: hoch graphitierten Ruß, Wasser, Triton, Polytetrafluorethylenemulsion und Isopropanol in einem Massenverhältnis von (0,01-1): (0,1-1): (0,01-0.1): (0,01-0.1): 1, wobei die wässrige Isopropanollösung aus Triton als ein Dispersionsmittel verwendet wird.
  8. Verfahren zum Herstellen der Gasdiffusionselektrode nach Anspruch 6, wobei die Gaskatalyseschicht aus Rohstoffen hergestellt wird, die Folgendes umfassen: einen Katalysator, angesäuerten hoch graphitierten Ruß, Wasser, Triton, Polytetrafluorethylenlösung und Isopropanol in einem Massenverhältnis von (0,1-1) : (0,1-1) : (1-10) : (0,1-1): (0,1-1) : 1, wobei die wässrige Isopropanollösung aus Triton als ein Dispersionsmittel verwendet wird.
  9. Verfahren zum Herstellen der Gasdiffusionselektrode nach Anspruch 7, wobei das Herstellungsverfahren der Gasdiffusionsschicht die folgenden Schritte umfasst:
    (1) Dispergieren des hoch graphitierten Rußes in der wässrigen Isopropanollösung, umfassend Tensid Triton, um eine Aufschlämmung der Gasdiffusionsschicht zu erhalten; Dispergieren dieser Aufschlämmung durch Ultraschallscherung 10 bis 200 min lang; dann Hinzugeben von 40 bis 80 Ma.-% Polytetrafluorethylenemulsion, ferner Dispergieren durch Scherung 10 bis 150 min lang; Regeln der Temperatur während des Dispergierens der Gasdiffusionsschichtaufschlämmung zwischen 10 und 100 °C und wobei nach dem Dispergieren das Pulver in der Gasdiffusionsschichtaufschlämmung eine durchschnittliche Partikelgröße zwischen 0,2 und 10 µm aufweist; Einstellen der Gasdiffusionsschichtaufschlämmung 5 bis 100 h nach dem Dispergieren; und Steuern des Feststoffgehalts der Gasdiffusionsschichtaufschlämmung zwischen 5 und 40 Gew.-%; und
    (2) Beschichten der Gasdiffusionsschichtaufschlämmung gleichmäßig auf dem versilberten Metallschaum des Stromabnehmers; nach dem Beschichten der Gasdiffusionsschichtaufschlämmung, Trocknen dieser bei 40 bis 120 °C 5-10 h lang; nach dem Beschichten und Trocknen der Gasdiffusionsschichtaufschlämmung, Durchführen einer primären Kaltpressformbehandlung bei einem kalten Druck zwischen 0,1 und 2 MPa, einer Temperatur zwischen -10 und 50 °C und einer Verweilzeit zwischen 10 und 300 s, um eine Anordnung des Stromabnehmers und der Gasdiffusionsschicht zu erhalten.
  10. Verfahren zum Herstellen der Gasdiffusionselektrode nach Anspruch 8, wobei das Herstellungsverfahren der Gaskatalyseschicht die folgenden Schritte umfasst:
    (1) Dispergieren des Katalysators, des angesäuerten graphitierten Rußes in der wässrigen Isopropanollösung, umfassend Tensid Triton, um eine Katalyseschichtaufschlämmung zu erhalten; Dispergieren dieser Aufschlämmung durch Ultraschallscherung 10 bis 200 min lang; dann Hinzugeben von 40 bis 80 Ma.-% Polytetrafluorethylenemulsion, ferner Dispergieren durch Scherung 10-150 min lang; und Regeln der Temperatur während des Dispergierens der Katalyseschichtaufschlämmung auf 10-100 °C und wobei das Pulver in der Katalyseschichtaufschlämmung nach dem Dispergieren eine durchschnittliche Partikelgröße von 0,2-10 µm aufweist; und
    (2) Beschichten der Katalyseschichtaufschlämmung gleichmäßig auf der Gasdiffusionsschicht der Anordnung der Gasdiffusionsschicht und des Stromabnehmers; Trocknen bei 40-120 °C 0,5-1 h lang nach dem Beschichten der Katalyseschichtaufschlämmung; nach dem Beschichten und Trocknen der Katalyseschichtaufschlämmung, Durchführen einer sekundären Kaltpressformbehandlung der Anordnung bei einem kalten Druck zwischen 0,1 und 2 MPa bei einer Temperatur zwischen -10 und 50 °C und einer Verweilzeit zwischen 10 und 300 s, um eine vorgeformte Gasdiffusionselektrode zu erhalten; Brennen der vorgeformten Gasdiffusionselektrode bei hoher Temperatur zwischen 270 und 290 °C 1 bis 20 h lang; Anordnen des versilberten Metallschaums der flüssigen Führungsschicht auf der vorgeformten Gasdiffusionselektrode nach dem Brennen, und Durchführen eines Warmpressformens davon bei einem heißen Druck zwischen 2 und 12 MPa bei einer Warmpresstemperatur zwischen 330 und 450 °C und einer Verweilzeit zwischen 10 und 300 s, dadurch Erhalten der Gasdiffusionselektrode.
EP12891307.6A 2012-12-24 2012-12-24 Gasdiffusionselektrode und herstellungsverfahren dafür Active EP2937449B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/001722 WO2014100912A1 (zh) 2012-12-24 2012-12-24 一种气体扩散电极及其制备方法

Publications (3)

Publication Number Publication Date
EP2937449A1 EP2937449A1 (de) 2015-10-28
EP2937449A4 EP2937449A4 (de) 2016-08-17
EP2937449B1 true EP2937449B1 (de) 2017-07-12

Family

ID=51019611

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12891307.6A Active EP2937449B1 (de) 2012-12-24 2012-12-24 Gasdiffusionselektrode und herstellungsverfahren dafür

Country Status (4)

Country Link
EP (1) EP2937449B1 (de)
JP (1) JP6128709B2 (de)
CN (1) CN104603331B (de)
WO (1) WO2014100912A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106894042B (zh) * 2017-02-28 2018-08-17 天津大学 一种酸处理石墨颗粒电极的制备及应用
JP7076693B2 (ja) * 2017-11-29 2022-05-30 住友電気工業株式会社 金属多孔体、燃料電池及び金属多孔体の製造方法
CN110565112B (zh) * 2019-08-19 2021-10-26 天津大学 一种通过调控亲疏水性改变阴极氧还原活性的方法
CN111058055B (zh) * 2019-12-20 2021-01-15 江苏安凯特科技股份有限公司 一种离子膜电解槽的阴极结构
CN113149142A (zh) * 2020-01-22 2021-07-23 中国科学院大连化学物理研究所 气体扩散电极及其制备方法和应用
CN111733426B (zh) * 2020-07-31 2022-08-30 北京化工大学 一种基于气体扩散电极电化学制备高铁酸盐的方法及装置
CN111893502A (zh) * 2020-07-31 2020-11-06 北京化工大学 一种用非贵金属催化的气体扩散电极电解制备高铁酸盐的方法
CN113371799B (zh) * 2021-06-22 2022-10-04 哈尔滨工业大学 基于单线态氧的电化学消毒方法
CN115050974A (zh) * 2022-07-21 2022-09-13 华东理工大学 气体扩散电极及其制备方法和应用、锌空气电池
CN116334659B (zh) * 2023-04-16 2024-06-21 深圳中科翎碳生物科技有限公司 Sn基气体扩散电极、制备方法、相应电催化装置及应用

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3068641D1 (de) * 1979-02-27 1984-08-30 Asahi Glass Co Ltd Gas diffusion electrode
JP3625520B2 (ja) * 1995-04-13 2005-03-02 ペルメレック電極株式会社 ガス拡散電極
JP3628756B2 (ja) * 1995-04-28 2005-03-16 ペルメレック電極株式会社 ガス拡散電極
JP3002974B2 (ja) * 1998-05-20 2000-01-24 長一 古屋 ガス拡散電極の製造方法
JP2946328B1 (ja) * 1998-08-25 1999-09-06 長一 古屋 食塩電解方法及び電解槽
EP1029946A3 (de) * 1999-02-16 2007-11-14 Nagakazu Furuya Gasdiffusionselektrodenanordnungen und Verfahren zu ihrer Herstellung
EP1076115A1 (de) * 1999-02-25 2001-02-14 Toagosei Co., Ltd. Gasdiffusionselektrode und elektrolytisches bohrlaugenbad
JP4290454B2 (ja) 2003-03-28 2009-07-08 三井化学株式会社 ガス拡散電極の製造方法、電解槽及び電解方法
EP1852180A4 (de) * 2005-02-21 2010-10-13 Nissan Motor Elektrodenkatalysator und herstellungsverfahren dafür
DE102005023615A1 (de) * 2005-05-21 2006-11-23 Bayer Materialscience Ag Verfahren zur Herstellung von Gasdiffusionselektroden
JP4868949B2 (ja) 2006-06-07 2012-02-01 ペルメレック電極株式会社 ガス拡散電極とその製造方法
JP5222056B2 (ja) * 2008-07-29 2013-06-26 三菱重工業株式会社 料金収受機、料金収受方法及びプログラム
CN101736360B (zh) 2009-11-27 2011-06-01 北京化工大学 一种气体扩散电极及其制备方法
CN102652192B (zh) * 2009-12-09 2014-12-24 日清纺控股株式会社 柔性碳纤维非织造布
CN101745390B (zh) 2010-01-29 2011-11-16 北京化工大学 一种用于食盐电解的负载型银碳催化剂及其制备方法
CN101774666B (zh) * 2010-01-29 2011-12-21 北京化工大学 一种2-乙基蒽醌改性气体扩散电极及其制备方法
JP5648785B2 (ja) * 2010-07-29 2015-01-07 日清紡ホールディングス株式会社 燃料電池用電極
CN102517602B (zh) * 2011-12-29 2014-10-29 北京化工大学 一种气体扩散电极的明胶造孔方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2016505716A (ja) 2016-02-25
CN104603331A (zh) 2015-05-06
CN104603331B (zh) 2017-04-05
WO2014100912A1 (zh) 2014-07-03
EP2937449A4 (de) 2016-08-17
EP2937449A1 (de) 2015-10-28
JP6128709B2 (ja) 2017-05-17

Similar Documents

Publication Publication Date Title
EP2937449B1 (de) Gasdiffusionselektrode und herstellungsverfahren dafür
Del Castillo et al. Sn nanoparticles on gas diffusion electrodes: Synthesis, characterization and use for continuous CO2 electroreduction to formate
Phillips et al. Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas
CN109589974B (zh) 一种用于水电解器的低贵金属载量的析氧催化剂
TWI431163B (zh) An oxygen diffusion cathode, an electrolytic cell using the same, a method for producing chlorine gas, and a method for producing sodium hydroxide
CN101736360B (zh) 一种气体扩散电极及其制备方法
GB2508795A (en) Electrolysis electrocatalyst comprising palladium and iridium
CN110565112B (zh) 一种通过调控亲疏水性改变阴极氧还原活性的方法
CN102029151B (zh) 制备Pt/C催化剂的调变多元醇法
CN111326746A (zh) 一种空气电极的制备方法
CN108977828B (zh) 一种膜电极电解臭氧发生器及其制备工艺
CN109994744B (zh) 一种促进硼氢化钠直接氧化的镍钴二元催化剂
JP2015534607A (ja) 電気分解電極触媒
CN113604843B (zh) 一种低负载量Pt/C催化剂氢气扩散阳极及其制备方法和应用
CN115537861A (zh) 一种用于产生过氧化氢的恒速气体扩散电极及其使用方法
CN213570766U (zh) 一种基于铅网的水分解制氢装置
CN108878931A (zh) 一种高温聚合物电解质膜燃料电池
CN106848333A (zh) 一种氧化铈负载三维镍铜合金多孔复合阴极的制备方法
CN115491699A (zh) 一种纳米铜基催化剂及其制备方法以及在二氧化碳和一氧化碳电催化还原中的应用
CN115261926B (zh) Aem电解水金属催化剂及其制备方法、应用
CN111893502A (zh) 一种用非贵金属催化的气体扩散电极电解制备高铁酸盐的方法
CN118291995A (en) CO (carbon monoxide)2Method for preparing phosgene by electrolysis two-step method
Yan et al. Low-cell-voltage electrosynthesis of hydrogen peroxide
CN117328095A (zh) 一种Cr-NiFeOx@NC析氧电催化电极及其制备方法与应用
JP2023078533A (ja) アルカリ水電解用隔膜及びその製造方法並びに膜電極接合体

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20160714

RIC1 Information provided on ipc code assigned before grant

Ipc: C25B 11/03 20060101ALI20160708BHEP

Ipc: C25B 1/46 20060101ALI20160708BHEP

Ipc: C25B 11/08 20060101AFI20160708BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 908404

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012034602

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170712

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 908404

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170712

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171012

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171112

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171013

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012034602

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

26N No opposition filed

Effective date: 20180413

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171224

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171224

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171224

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602012034602

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25B0011080000

Ipc: C25B0011081000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231229

Year of fee payment: 12

Ref country code: DE

Payment date: 20231214

Year of fee payment: 12