CN106848333A - 一种氧化铈负载三维镍铜合金多孔复合阴极的制备方法 - Google Patents

一种氧化铈负载三维镍铜合金多孔复合阴极的制备方法 Download PDF

Info

Publication number
CN106848333A
CN106848333A CN201710096898.0A CN201710096898A CN106848333A CN 106848333 A CN106848333 A CN 106848333A CN 201710096898 A CN201710096898 A CN 201710096898A CN 106848333 A CN106848333 A CN 106848333A
Authority
CN
China
Prior art keywords
dimensional porous
preparation
ceo
alloys
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710096898.0A
Other languages
English (en)
Other versions
CN106848333B (zh
Inventor
喻林萍
乔越
康建刚
王娜娜
喻强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201710096898.0A priority Critical patent/CN106848333B/zh
Publication of CN106848333A publication Critical patent/CN106848333A/zh
Application granted granted Critical
Publication of CN106848333B publication Critical patent/CN106848333B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明提供了一种氧化铈负载多孔镍铜合金阴极的制备方法,其特征包括以下步骤:①将已经氢还原处理过的羰基镍粉、电解铜粉混合,压制成型,烧结得到三维多孔Ni‑Cu合金预基体;②二氧化铈与聚乙烯醇缩丁醛液按一定比例配置形成成膜浆料,用成膜器在三维多孔Ni‑Cu合金预基体表面覆膜,在氮气下干燥,脱膜形成复合阴极烧结预制体;③采用真空烧结炉,设计控温程序升温烧结所得预制体,得到二氧化铈负载三维多孔Ni‑Cu合金复合阴极材料。该方法制得的多孔镍铜基二氧化铈复合阴极强度高,二氧化铈在基体表面附着均匀,电催化活性高,孔径分布均匀,孔径平均大小为500nm左右,孔隙率可达达55%。本发明制备简单,工艺参数容易控制,所得产品综合性能优异。其产品结构和性质非常适用于制作电解水阴极元件和催化分离核心组件。

Description

一种氧化铈负载三维镍铜合金多孔复合阴极的制备方法
技术领域
本发明属于碱性环境电解水制氢领域,涉及一种微孔、高活性位点分布的复合催化析氢阴极及其制备方法,所制备的复合多孔材料不仅适用于电解水制氢阴极,而且可用作直接甲醇燃料电池催化剂。
背景技术
在电解水制氢过程中,电极材料的选择及结构的设计是整个技术的关键。析氢和析氧过电位大约占整个槽电压的三分之一,形稳阳极已大大降低了阳极过电位,鉴于水的理论分解电位及离子膜电位是无法避免的,因而降低槽电压的主要方法就是降低阴极析氢过电位。Pt,Pd等贵金属作为电极虽然具有良好的电催化活性,析氢过电位低,但是由于这些贵金属价格昂贵,难以在工业生产中大量应用。
随着电极材料成分的多元化研究,不少结果都表明,稀土元素或稀土氧化物的引入相较于原单相或二相电极,其电催化析氢活性和稳定性都有明显提高。然而,非稳定供电模式下的电解制氢过程,对阴极材料的电催化稳定性要求更加严格,有陆续的研究报道表明稀土金属氧化物由于稀土元素特殊的电子结构,作为第二相成分以不同形式引入原催化体系,能在不同程度上提高电催化体系的稳定性。复合Ni/CeO2在对丁烷的重整过程中显示出了良好的催化性能,使碳稳定地氧化成CO2,避免积碳的发生。而在电解水制氢催化电极方面,由于CeO2在碱性环境下的耐蚀性,已有报道通过复合电沉积工艺,将CeO2加入到具有催化活性的Ni及其二元和三元合金中,以通过提高对氢气的吸附性能来抑制电极的氧化或溶出,延长电极寿命。
在选用适当合金材料体系的前提下,设计和优化材料的表面形态和表面结构对获得具有优异电催化性能的电极具有重要的意义。去合金化法、复合电沉积法形成多孔电极、或通过用多孔材料作基底来沉积析氢合金等途径是目前常用的提高电极材料比表面积方式。然而,这些工艺对于多孔结构的有效控制及在电极量产化要求方面都受到了一定的限制。
本发明选择稀土氧化物CeO2作为第二相颗粒,通过生坯覆膜及真空烧结方式,将其引入至三维多孔Ni-Cu合金材料表面,制备形成三维复合阴极材料,用于复杂电解模式下的电解水制氢过程,以最大程度地稳定电极材料的电催化活性。在此技术中,可以精确控制CeO2与基体的界面结合形式,以及CeO2在基体表面的活性面积。
发明内容
本发明目的在于提供一种用于碱性环境电解水制氢的电催化阴极及其制备方法,解决目前电催化析氢阴极材料制备价格高,工艺复杂,工业化生产困难及材料结构稳定性不好等缺点。本发明选择稀土氧化物二氧化铈作为第二相颗粒,通过生坯覆膜及真空烧结方式,将二氧化铈引入至三维多孔Ni-Cu合金材料表面,制备形成三维复合阴极材料。所得复合材料结构稳定,二氧化铈颗粒均匀附着于三维多孔Ni-Cu合金表面,形成连续可控的活性位点,能极大提高阴极的电催化活性,且能在较长运行周期内保持稳定的电催化效率,适用于工业化生产。
本发明所包含的技术方案包括以下几个步骤:
1.三维多孔Ni-Cu合金预基体的制备:
将高纯羰基镍粉及超细铜粉按一定比例混合,控制压力压制成型,在指定工艺下烧结,控制最高温度及高温保持时间,高温至800℃,得到三维多孔Ni-Cu合金预备基体;
2.二氧化铈在三维多孔Ni-Cu合金预基体表面覆膜:
二氧化铈与聚乙烯醇缩丁醛液(乙醇溶剂)按一定比例配置形成生膜浆料,用成膜器在三维多孔Ni-Cu合金预基体表面覆膜,在氮气氛下静置干燥,形成复合阴极烧结预制体;
3.真空烧结制备二氧化铈负载三维多孔Ni-Cu合金阴极:
在真空环境下,将复合阴极烧结预制体置于烧结炉中控温烧结,高温至1150℃,得到二氧化铈负载三维多孔Ni-Cu合金阴极。
与现有电沉积法制备复合电催化制氢阴极材料技术相比,本发明采用粉末冶金法,通过压坯成型、覆膜及烧结技术参数的精确控制,制备二氧化铈负载三维多孔Ni-Cu合金阴极材料,二氧化铈颗粒均匀附着于三维多孔Ni-Cu合金表面,形成连续可控的活性位点,能极大提高阴极的电催化活性,此外,稀土氧化物CeO2作为第二相颗粒,能提高对氢气的吸附性,使电极能在较长运行周期内保持稳定的电催化效率。本发明还具有以下优势:1.工艺简易,成本低;2.环境友好,制备过程对环境完全无任何污染;3.制备过程可控,利用了粉末冶金法近净成形的优势,值得工业化推广;4.本电催化体系材料应用范围广泛,如合成甲醇、催化重整等化工领域亦有巨大应用前景。
附图说明
图1为本发明制备的二氧化铈负载三维多孔Ni-Cu合金复合电催化析氢阴极SEM图像。
图2为本发明制备的二氧化铈负载三维多孔Ni-Cu合金复合电催化析氢阴极在6.0mol/L KOH溶液中的阴极极化曲线,与工业纯镍阴极相比。
图 3为本发明制备的二氧化铈负载三维多孔Ni-Cu合金复合电催化析氢阴极在6.0 mol/L KOH溶液中非稳定电压电解计时电位曲线。
具体实施方式
将高纯羰基镍粉(中位径12.3 μm)及超细铜粉(中位径6.5 μm)按质量比2:1混合12hours,以油压机控制压力50 MPa压制成型,压制生坯厚度为8mm,控制最高温度800℃,在500℃,600℃,700℃,800℃分别保温30,60,90,90mins得到三维多孔Ni-Cu合金预备基体。将二氧化铈与聚乙烯醇缩丁醛液(乙醇溶剂)按1:200的质量比配置形成生膜浆料,用成膜器在三维多孔Ni-Cu合金预基体表面覆膜,膜层厚度80μm,在氮气氛下,25℃静置8hours干燥,形成复合阴极烧结预制体;在真空环境下,将复合阴极烧结预制体置于烧结炉中控温烧结,高温至1150℃,在700℃,800℃,900℃,1000℃,1150℃分别保温60,90,60,60,60mins得到二氧化铈负载三维多孔Ni-Cu合金复合阴极,表面形貌如附图1所示,氧化铈颗粒分散嵌于多孔Ni-Cu合金表层骨架上,为电催化析氢过程提供了更多的活性位点。6.0 mol/L KOH溶液中,采用动电位极化曲线测试及计时电位法测试了阴极电催化析氢活性,如附图2所示,在1.0 Acm-2电流密度下,多孔NiCu-CeO2 复合阴极析氢过电位相较于多孔NiCu合金阴极明显降低125 mV。在非稳定电解条件下,多孔NiCu-CeO2 复合阴极抵抗电位波动能力非常强,在长周期运行条件下,析氢电流密度没有明显衰减,如附图3所示,表明多孔NiCu-CeO2 复合阴极具有良好的电催化稳定性。作为应用于碱性环境下电催化析氢过程的阴极,二氧化铈负载三维多孔Ni-Cu合金复合材料具有很大的优势和应用前景。

Claims (8)

1.一种应用于电催化析氢过程的二氧化铈负载三维多孔Ni-Cu合金复合阴极,其特征在于,其基体采用三维多孔Ni-Cu合金,其负载物为二氧化铈,采用粉末冶金的方式,将二氧化铈均匀负载于三维多孔Ni-Cu合金表面,得到该复合阴极。
2.如权利要求1所述的二氧化铈负载三维多孔Ni-Cu合金复合电催化析氢阴极,其特征在于,基体孔径在500nm~10μm。
3.一种二氧化铈负载三维多孔Ni-Cu合金复合电催化析氢阴极的制备方法,其特征在于,包括以下步骤:
(1)三维多孔Ni-Cu合金预基体的制备;
(2)二氧化铈在三维多孔Ni-Cu合金预基体表面覆膜;
(3)真空烧结制备二氧化铈负载三维多孔Ni-Cu合金阴极。
4.根据权利要求3所述的一种二氧化铈负载三维多孔Ni-Cu合金复合电催化析氢阴极的制备方法,其特征在于,所述步骤(1)预基体的制备方法为:将高纯羰基镍粉及超细铜粉按一定比例混合,控制压力压制成型,在指定工艺下烧结,控制最高温度及高温保持时间,高温至800℃,得到三维多孔Ni-Cu合金预备基体。
5.根据权利要求4所述的一种二氧化铈负载三维多孔Ni-Cu合金复合电催化析氢阴极的制备方法步骤(1)中预基体的制备方法,其特征在于,所述羰基镍粉粒度在10~20μm,超细铜粉粒度在3~10μm;元素混合比例为质量比2:1;压制成型压力为50MPa,生坯厚度控制在5~20 mm。
6.根据权利要求4所述的一种二氧化铈负载三维多孔Ni-Cu合金复合电催化析氢阴极的制备方法步骤(1)中预基体的制备方法,其特征在于,烧结最高温度在800℃,500~800℃连续保温,保温时间30~60min。
7.根据权利要求3所述的一种二氧化铈负载三维多孔Ni-Cu合金复合电催化析氢阴极的制备方法,其特征在于,所述步骤(2)中,二氧化铈与聚乙烯醇缩丁醛液(乙醇溶剂)混合浆料,其混合比例为1:200 ;聚乙烯醇缩丁醛液中溶质质量百分数为5%~20%;氮气氛干燥温度为20~30℃。
8.根据权利要求3所述的一种二氧化铈负载三维多孔Ni-Cu合金复合电催化析氢阴极的制备方法,其特征在于,所述步骤(3)中,真空烧结最高温度为1150℃,800~1100℃保温时长控制在60~90min。
CN201710096898.0A 2017-02-22 2017-02-22 一种氧化铈负载三维镍铜合金多孔复合阴极的制备方法 Active CN106848333B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710096898.0A CN106848333B (zh) 2017-02-22 2017-02-22 一种氧化铈负载三维镍铜合金多孔复合阴极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710096898.0A CN106848333B (zh) 2017-02-22 2017-02-22 一种氧化铈负载三维镍铜合金多孔复合阴极的制备方法

Publications (2)

Publication Number Publication Date
CN106848333A true CN106848333A (zh) 2017-06-13
CN106848333B CN106848333B (zh) 2019-07-02

Family

ID=59133164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710096898.0A Active CN106848333B (zh) 2017-02-22 2017-02-22 一种氧化铈负载三维镍铜合金多孔复合阴极的制备方法

Country Status (1)

Country Link
CN (1) CN106848333B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110644025A (zh) * 2019-11-12 2020-01-03 长沙理工大学 一种超薄镍铜合金箔及其制备方法
CN113699547A (zh) * 2021-08-06 2021-11-26 昆明理工大学 一种多孔合金电极的制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100484A (zh) * 1985-04-01 1986-08-13 上海灯泡厂 钨铈电极材料及其制备工艺和用途
JPH01132054A (ja) * 1987-11-18 1989-05-24 Agency Of Ind Science & Technol 溶融炭酸塩型燃料電池用空気極電極材料
EP0584551A1 (en) * 1992-07-27 1994-03-02 NIPPON OIL Co. Ltd. Solid oxide fuel cell and fuel electrode therefor
EP1263067A2 (de) * 2001-05-31 2002-12-04 PLANSEE Aktiengesellschaft Stromsammler für SOFC-Brennstoffzellen
CN1425803A (zh) * 2003-01-14 2003-06-25 石忠宁 一种Fe基氧化铝复合材料铝电解惰性阳极及其制备方法
CN103014751A (zh) * 2012-12-28 2013-04-03 北京化工大学 一种活性阴极及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100484A (zh) * 1985-04-01 1986-08-13 上海灯泡厂 钨铈电极材料及其制备工艺和用途
JPH01132054A (ja) * 1987-11-18 1989-05-24 Agency Of Ind Science & Technol 溶融炭酸塩型燃料電池用空気極電極材料
EP0584551A1 (en) * 1992-07-27 1994-03-02 NIPPON OIL Co. Ltd. Solid oxide fuel cell and fuel electrode therefor
EP1263067A2 (de) * 2001-05-31 2002-12-04 PLANSEE Aktiengesellschaft Stromsammler für SOFC-Brennstoffzellen
CN1425803A (zh) * 2003-01-14 2003-06-25 石忠宁 一种Fe基氧化铝复合材料铝电解惰性阳极及其制备方法
CN103014751A (zh) * 2012-12-28 2013-04-03 北京化工大学 一种活性阴极及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110644025A (zh) * 2019-11-12 2020-01-03 长沙理工大学 一种超薄镍铜合金箔及其制备方法
CN113699547A (zh) * 2021-08-06 2021-11-26 昆明理工大学 一种多孔合金电极的制备方法及应用
CN113699547B (zh) * 2021-08-06 2023-07-21 昆明理工大学 一种多孔合金电极的制备方法及应用

Also Published As

Publication number Publication date
CN106848333B (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
Wang et al. Multidimensional nanostructured membrane electrode assemblies for proton exchange membrane fuel cell applications
CN111074292B (zh) 一种电催化制氢多孔高熵合金电极材料及其制备方法
Ahn et al. Anion exchange membrane water electrolyzer with an ultra-low loading of Pt-decorated Ni electrocatalyst
CN111244470B (zh) 一种纳米复合阴极及其制备和应用
Chen et al. High performance solid oxide electrolysis cell with impregnated electrodes
JP5759687B2 (ja) 水電解セル
WO2006044313A2 (en) Preparation of solid oxide fuel cell electrodes by electrodeposition
CN107858701A (zh) 一种用于固态聚合物水电解器的钛基析氢电极及其制备方法
CN108075144B (zh) 一种燃料电池用核壳结构催化剂及制备和应用
CN109266892B (zh) 电解制氢用高强度长寿命多孔镍基固溶体的制备方法
Lee et al. Bimodally integrated anode functional layer for lower temperature solid oxide fuel cells
Dong et al. Fabrication of tubular NiO/YSZ anode-support of solid oxide fuel cell by gelcasting
CN109888305A (zh) 提高浸渍溶液对固体氧化物燃料电池多孔阴极骨架润湿性的方法
CN100433438C (zh) 阳极支撑的固体氧化物燃料电池的制备方法
CN106816614A (zh) 燃料电池用致密铂单原子层催化的制备及电极和应用
Rajesh et al. Pt particles supported on conducting polymeric nanocones as electro-catalysts for methanol oxidation
CN106848333B (zh) 一种氧化铈负载三维镍铜合金多孔复合阴极的制备方法
CN106898725B (zh) 一种锌/空气电池用锌电极及其制备
CN104701549B (zh) 一种无碳膜电极组件
CN107335431A (zh) 一种嵌入式多孔Pd/C纳米框架的制备方法及其所得材料和应用
TW201027828A (en) A gas diffusion electrode that utilizes a catalyst collector layer and its manufacturing method
TW201205949A (en) A porous metal substrate structure for a solid oxide fuel cell and the production method thereo0f
Pan et al. Paper‐fibres used as a pore‐former for anode substrate of solid oxide fuel cell
CN104934614A (zh) 一种具有择优取向的掺杂氧化铈催化薄膜及其制备和应用
CN103825032B (zh) 一种浸渍法制备具有双层孔结构阳极的固体氧化物燃料电池的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant