CN113699547B - 一种多孔合金电极的制备方法及应用 - Google Patents

一种多孔合金电极的制备方法及应用 Download PDF

Info

Publication number
CN113699547B
CN113699547B CN202110900008.3A CN202110900008A CN113699547B CN 113699547 B CN113699547 B CN 113699547B CN 202110900008 A CN202110900008 A CN 202110900008A CN 113699547 B CN113699547 B CN 113699547B
Authority
CN
China
Prior art keywords
electrode
powder
porous
alloy
alloy electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110900008.3A
Other languages
English (en)
Other versions
CN113699547A (zh
Inventor
瞿广飞
季炜
潘科衡
汤慧敏
李应丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202110900008.3A priority Critical patent/CN113699547B/zh
Publication of CN113699547A publication Critical patent/CN113699547A/zh
Application granted granted Critical
Publication of CN113699547B publication Critical patent/CN113699547B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C3/00Removing material from alloys to produce alloys of different constitution separation of the constituents of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明公开了一种多孔合金电极的制备方法,该多孔合金电极是采用脱合金化法制得Ni‑Cu‑La‑P多孔合金电极,采用滴涂法将纳米γ‑Fe2O3负载到多孔合金电极上,再通过电沉积法在电极表面负载光催化剂制得,将所制得多孔合金电极应用在光照条件下处理含微塑料的有机废水且降低析氢过电位中,不仅可明显降低电解水阴极析氢过电位,还能去除水中微塑料、有机污染物,且去除率为90%以上,本发明制备工艺简单,易操作,电极使用方便,适于工业化生产和市场推广应用。

Description

一种多孔合金电极的制备方法及应用
技术领域
本发明属于电解水制氢技术领域,具体涉及一种多孔合金电极的制备方法及其在在光照条件下处理含微塑料的有机废水且降低析氢过电位中的应用。
背景技术
热力学上水电解的理论电压为1.23V,但是现实情况下由于阴极析氢过电位过大等因素,导致实际电解水电压大于理论电压,为实现大规模电解水制氢的关键就是降低电解能耗、减小析氢过电位。
为减小析氢过电位,通常通过筛选优良电极材料和增大电极表面积两种方式。贵金属Pt被广泛应用于析氢材料,但贵金属含量少,成本高。对于筛选性能优良的电极材料通常是筛选出价格便宜、析氢过电位小的材料。过渡金属Ni、Fe等金属及其金属合金具有优良的导电性能,同时具有较小的析氢过电位,常用的有镍系合金、铁系合金。同时有研究发现,在合金中添加一些稀土金属能有效改善电极材料的结构和电流分布状况,能够很好的降低析氢过电位。对于增大电极表面积,可通过不同的制备方法制备多孔电极,常用的制备电极的方法有电沉积法、模板法、脱合金化法等,其中脱合金化法因制备过程简单且易制备多孔电极而应用广泛。
纤维微塑料在大量的研究中都被证明是水环境中的主要微塑料污染物,这些纤维微塑料除了来自丢弃在水环境中的鱼线、渔网的破损和降解(次生微塑料)之外,更多来自合成纤维织物在洗护过程中细小纤维的脱落(初生微塑料),然而,纤维微塑料在各种环境下更易发生破碎,导致大量次生微塑料的释放,使微塑料污染进一步加剧。
微塑料污染严重威胁全球生态安全,但是现有技术无法有效应对微塑料危机,急需一种高效低能耗技术对其进行降解。分布广泛的微塑料广泛分布在水体中,在电解水析氢过程中参与反应,使其产生大量的副反应影响析氢效率,增加析氢能耗。为保证氢气质量、减少析氢过程中产生的过多的能耗,减少析氢过电位的同时保证水源质量成为研究重点。
发明内容
针对现有技术的不足,本发明提供了一种多孔合金电极的制备方法,本发明方法采用脱合金化法制备Ni-Cu-La-P多孔合金电极,采用滴涂法将纳米γ-Fe2O3负载到多孔合金电极上,再通过电沉积法在电极表面负载光催化剂,使电极材料不仅能极大减小析氢过电位,提高产氢能力,还能在电催化刺激下使光催化剂具有高强活性,从而降解电解液中难降解的有机物,脱合金化法旨在制备出具有高空隙度的电极材料,选择Ni、Cu金属参杂稀土金属La作为电极主体,Ni过渡金属及Cu具有中等的吸附、脱附氢气的能力和较低的析氢过电位,通过P粉对电极中电流进行调节,改善电流活性位点分布,加入稀土金属La可进一步调节电极电流流向,电子密度,进一步降低析氢过电位。通过电沉积法将光催化剂负载在电极表面,通过控制循环圈数可以调整光催化剂在电极表面地厚度,其中纳米γ-Fe2O3催化剂在电流作用下失去电子易形成Fe2+,协同光催化产生的•OH、•O2等自由基激活芬顿反应,极大增强电极的降解能力,同时,选择光催化剂在光照条件下能激发电子转移,成为激发态,便可有效调整电子在电极表面地转移,且具有一定的光催化氧化还原能力,能去除水中微塑料、有机污染物。
本发明方法具体操作如下
(1)将质量百分比50%-80%Al粉、7.5%-25%Ni粉、5%-15% Cu粉、2%-4%P粉、0.5%-1%La粉加入真空球磨罐内,在N2气氛下球磨混料100-120min;
所述Ni粉的粒径<20μm,Al粉的粒径<20μm,La粉的粒径<10μm,Cu粉的粒径<20μm,P粉粒径<10μm;
真空球磨罐中球料质量比为4-6:1,转数为80-200r/min,每运行15-45min,间隙10-15min;
(2)将混合物料放入模具中,在10-20MPa下压制成型得到粗胚,将粗胚置于刚玉坩埚中,然后置于真空高频感应熔炼炉中熔炼,在Ar气氛、850-900℃下保温2-8h,将熔炼后的合金取出冷却后,切割分成小块,打磨表面氧化层备用;
(3)将切割后的合金小块放入真空甩带机中,制得宽度为2-5mm,厚度为20-50μm的Ni-Cu-La-P-Al合金条带;
(4)将合金条带置于质量浓度20%-45%的NaOH溶液中,在40-80℃下进行脱Al处理12-48h,获得多孔Ni-Cu-La-P合金条带,合金条带用去离子水和乙醇洗涤至中性,干燥后;
(5)先采用滴涂法将纳米γ-Fe2O3负载到多孔合金电极上,再采用电沉积法在多孔合金电极上表面沉积BiOX、MnO2、ZnO、SnO2、ZrO2、CdS中的一种,其中X为卤素,制得多孔合金电极。
本发明另一目的是将上述方法制得的多孔合金电极应用在在光照条件下处理含微塑料的有机废水且降低析氢过电位中。
本发明的优点和技术效果:
1、本发明电极材料使用脱合金化法制备,具有高表面积,能提供更多的反应位点,使用Ni-Cu-La-P合金作为主体,过渡金属Ni具有较低的析氢过电位,P通过调节电流分布,使活性位点分布均匀,使电解水产氢需要更低的电压;
2、本发明使用稀土金属La的加入有利于调节材料结构,减少电极腐蚀,提高电极稳定性,同时增大电流密度,减小析氢过电位;
3、本发明在Ni-Cu-La-P多孔电极表面负载纳米γ-Fe2O3后再采用电沉积法在多孔合金电极上表面负载光催化剂修饰电极,可降低氢脆现象,增加电极强度,减少电极腐蚀,延长电极使用寿命;γ-Fe2O3能在阴极间接激发芬顿反应,与光催化剂配合后,通过光照能激发光催化剂光催化活性,能促进电子转移,降解水中微塑料、有机污染物。
4、本发明制备工艺简单,易操作,电极使用方便,适于工业化生产和市场推广应用。
具体实施方式
下面通过具体实施案例对本发明进行进一步详细描述,但本发明保护范围不仅限于以下实施例。
实施例1:本实施例多孔合金电极的制备方法如下:
(1)将质量百分比75%Al粉、12.5%Ni粉、10% Cu粉、2%P粉、0.5%La粉的比例将上述粉末加入真空球磨罐内,通入N2,将球磨罐放进球磨机中,球料质量比为5:1,转数为100r/min,每运行30min,间隙10min,总时长120min;
(2)采用等静压机进行压制,将混合物料放入直径15mm模具中,在20MPa下压制20min成型得到直径15mm的粗胚,将粗胚置于刚玉坩埚中,然后置于真空高频感应熔炼炉中熔炼,在Ar气氛、900℃下保温3h,将熔炼后的合金取出冷却后,线切割成1cm3的小正方体块状,打磨表面氧化层;
(3)将小方块放入石英管中并置于真空甩带机中,加热熔化金属,在石英管上方通入0.12-0.15MPa氩气,使呈液态的合金由石英管末端喷出至25r/s的铜辊上,合金溶液与铜辊接触并被甩出发生快速凝固,形成Ni-Cu-La-P-Al合金条带;
(4)将合金条带置于质量浓度25%的NaOH溶液中,在65℃下进行脱Al处理32h,获得多孔Ni-Cu-La-P合金条带,合金条带用去离子水和乙醇洗涤至中性,60℃干燥6h后;
(5)先采用滴涂法将纳米γ-Fe2O3负载到多孔合金电极上,具体是将Fe(NO3)3∙9H2O溶于乙二醇制成2mmol/L的Fe(NO3)3溶液,然后将Fe(NO3)3溶液均匀滴涂到多孔Ni-Cu-La-P合金条带表面,然后在80℃真空干燥箱中烘干,重复上述涂滴过程5次后,在马弗炉中以1℃/min升温速度升温至500℃处理3 h,得到负载纳米γ-Fe2O3的多孔Ni-Cu-La-P电极;
(6)使用三电极体系,将制得的负载纳米γ-Fe2O3的多孔Ni-Cu-La-P薄片作为工作电极,铂电极为辅助电极,饱和甘汞电极为参比电极,电解质溶液为8mmol/LMnSO4+0.1mol/LH2SO4溶液,采用循环伏安法在多孔Ni-Cu-La-P合金电极上电沉积MnO2颗粒,扫描范围为-1-1.6V,扫描速率10mV/s,扫描圈数为40圈;用去离子水除去电极表面多余的杂质,在80℃干燥4h,然后再300℃下烧结3h,制得γ-Fe2O3/MnO2修饰得多孔Ni-Cu-La-P合金电极;
所制的多孔电极片宽2-5mm,厚30μm,比表面积126m3/g,孔径尺寸为100-300nm;在室温下,将制备γ-Fe2O3/MnO2修饰得多孔Ni-Cu-La-P合金电极作为工作电极进行电化学测试,结果表明,在电流密度为150mA/cm3时,析氢起始电位为-1.44V,析氢过电位为70mV;将本实施例电极用于含微塑料的甲基橙废水的处理,其中微塑料PVC含量为0.5mg/L,粒径小于5mm,有机物的初始含量1mg/L,将制备的多孔电极作为阴极,不锈钢电极做阳极,施加1.3V电压,在此电压作用下阴极开始产氢,同时在电极上方施加345nm荧光灯,产生紫外辐射,在此条件下处理10h后,经检测有机废水中甲基橙浓度为0.04mg/L,降解率达到96%,PVC含量仅0.04mg/L,降解率达到92%,且电极工作10h后,性能依旧稳定,说明电极材料具有较强的稳定性。
实施例2:本实施例多孔合金电极的制备方法如下:
(1)将质量百分比55%Al粉、25%Ni粉、15% Cu粉、4%P粉、1%La粉的比例将上述粉末加入真空球磨罐内,通入N2,将球磨罐放进球磨机中,球料质量比为4:1,转数为150r/min,每运行20min,间隙15min,总时长110min;
(2)采用等静压机进行压制,将混合物料放入直径15mm模具中,在15MPa下压制30min成型得到直径15mm的粗胚,将粗胚置于刚玉坩埚中,然后置于真空高频感应熔炼炉中熔炼,在Ar气氛、900℃下保温4h,将熔炼后的合金取出冷却后,线切割成1cm3的小正方体块状,打磨表面氧化层;
(3)将小方块放入石英管中并置于真空甩带机中,加热熔化金属,在石英管上方通入0.12-0.15MPa氩气,使呈液态的合金由石英管末端喷出至25r/s的铜辊上,合金溶液与铜辊接触并被甩出发生快速凝固,形成Ni-Cu-La-P-Al合金条带;
(4)将合金条带置于质量浓度35%的NaOH溶液中,在45℃下进行脱Al处理40h,获得多孔Ni-Cu-La-P合金条带,合金条带用去离子水和乙醇洗涤至中性,65℃干燥5h后;
(5)先采用滴涂法将纳米γ-Fe2O3负载到多孔合金电极上,具体是将Fe(NO3)3∙9H2O溶于乙二醇制成2.5mmol/L的Fe(NO3)3溶液,然后将Fe(NO3)3溶液均匀滴涂到多孔Ni-Cu-La-P合金条带表面,然后在80℃真空干燥箱中烘干,重复上述涂滴过程5次后,在马弗炉中以1℃/min升温速度升温至500℃处理3 h,得到负载纳米γ-Fe2O3的多孔Ni-Cu-La-P电极;
(6)使用三电极体系,将制得的负载纳米γ-Fe2O3的多孔Ni-Cu-La-P薄片作为工作电极,铂电极为辅助电极,饱和甘汞电极为参比电极,电解质溶液为7.5mmol/LMnSO4+0.1mol/LH2SO4溶液,采用循环伏安法在多孔Ni-Cu-La-P合金电极上电沉积SnO2颗粒,扫描范围为-1.5-1.0V,扫描速率10mV/s,扫描圈数为40圈;用去离子水除去电极表面多余的杂质,在80℃干燥5h,然后再300℃下烧结3h,制得γ-Fe2O3/SnO2修饰得多孔Ni-Cu-La-P合金电极;
所制的多孔电极片宽2-5mm,厚35μm,比表面积85m3/g,孔径尺寸为100-300nm;在室温下,将制备γ-Fe2O3/SnO2修饰得多孔Ni-Cu-La-P合金电极作为工作电极进行电化学测试,结果表明,在电流密度为150mA/cm3时,析氢起始电位为-1.48V,析氢过电位为90mV;将本实施例电极用于含微塑料的卡马西平废水的处理,其中微塑料PC含量为0.5mg/L,粒径小于5mm,有机物的初始含量1mg/L,将制备的多孔电极作为阴极,不锈钢电极做阳极,施加1.32V电压,在此电压作用下阴极开始产氢,同时在电极上方施加290nm荧光灯,产生紫外辐射,在此条件下处理10h后,经检测有机废水中卡马西平浓度为0.02mg/L,降解率达到98%,PC含量仅0.02mg/L,降解率达到96%,且电极工作10h后,性能依旧稳定,说明电极材料具有较强的稳定性。
实施例3:本实施例多孔合金电极的制备方法如下:
(1)将质量百分比75%Al粉、7.5%Ni粉、13.7% Cu粉、3%P粉、0.8%La粉的比例将上述粉末加入真空球磨罐内,通入N2,将球磨罐放进球磨机中,球料质量比为6:1,转数为100r/min,每运行30min,间隙12min,总时长100min;
(2)采用等静压机进行压制,将混合物料放入直径15mm模具中,在18MPa下压制25min成型得到直径15mm的粗胚,将粗胚置于刚玉坩埚中,然后置于真空高频感应熔炼炉中熔炼,在Ar气氛、900℃下保温4h,将熔炼后的合金取出冷却后,线切割成1cm3的小正方体块状,打磨表面氧化层;
(3)将小方块放入石英管中并置于真空甩带机中,加热熔化金属,在石英管上方通入0.12-0.15MPa氩气,使呈液态的合金由石英管末端喷出至25r/s的铜辊上,合金溶液与铜辊接触并被甩出发生快速凝固,形成Ni-Cu-La-P-Al合金条带;
(4)将合金条带置于质量浓度40%的NaOH溶液中,在65℃下进行脱Al处理12h,获得多孔Ni-Cu-La-P合金条带,合金条带用去离子水和乙醇洗涤至中性,65℃干燥5h后;
(5)先采用滴涂法将纳米γ-Fe2O3负载到多孔合金电极上,具体是将Fe(NO3)3∙9H2O溶于乙二醇制成3mmol/L的Fe(NO3)3溶液,然后将Fe(NO3)3溶液均匀滴涂到多孔Ni-Cu-La-P合金条带表面,然后在80℃真空干燥箱中烘干,重复上述涂滴过程5次后,在马弗炉中以1℃/min升温速度升温至500℃处理3h,得到负载纳米γ-Fe2O3的多孔Ni-Cu-La-P电极;
(6)使用三电极体系,将制得的负载纳米γ-Fe2O3的多孔Ni-Cu-La-P薄片作为工作电极,铂电极为辅助电极,饱和甘汞电极为参比电极,电解质溶液为7mmol/LMnSO4+0.1mol/LH2SO4溶液,采用循环伏安法在多孔Ni-Cu-La-P合金电极上电沉积ZnO2颗粒,扫描范围为-0.9-1.1V,扫描速率10mV/s,扫描圈数为60圈;用去离子水除去电极表面多余的杂质,在80℃干燥5h,然后再300℃下烧结3h,制得γ-Fe2O3/ZnO2修饰得多孔Ni-Cu-La-P合金电极;
所制的多孔电极片宽2-5mm,厚30μm,比表面积114m3/g,孔径尺寸为100-300nm;在室温下,将制备γ-Fe2O3/ZnO2修饰得多孔Ni-Cu-La-P合金电极作为工作电极进行电化学测试,结果表明,在电流密度为150mA/cm3时,析氢起始电位为-1.47V,析氢过电位为100mV;将本实施例电极用于含微塑料的苯酚废水的处理,其中微塑料PMMA含量为0.5mg/L,粒径小于5mm,有机物的初始含量1mg/L,将制备的多孔电极作为阴极,不锈钢电极做阳极,施加1.33V电压,在此电压作用下阴极开始产氢,同时在电极上方施加310nm荧光灯,产生紫外辐射,在此条件下处理10h后,经检测有机废水中苯酚浓度为0.04mg/L,降解率达到96%,PMMA含量仅0.03mg/L,降解率达到94%,且电极工作10h后,性能依旧稳定,说明电极材料具有较强的稳定性。

Claims (4)

1.一种多孔合金电极的制备方法,其特征在于,步骤如下:
(1)将质量百分比55%-80%Al粉、7.5%-25%Ni粉、5%-15% Cu粉、2%-4%P粉、0.5%-1%La粉加入真空球磨罐内,在N2气氛下球磨混料100-120min;
(2)将混合物料放入模具中,在10-20MPa下压制成型得到粗胚,将粗胚置于刚玉坩埚中,然后置于真空高频感应熔炼炉中熔炼,在Ar气氛、850-900℃下保温2-8h,将熔炼后的合金取出冷却后,切割分成小块,打磨表面氧化层备用;
(3)将切割后的合金小块放入真空甩带机中,制得宽度为2-5mm,厚度为20-50μm的Ni-Cu-La-P-Al合金条带;
(4)将合金条带置于质量浓度20%-45%的NaOH溶液中,在40-80℃下进行脱Al处理12-48h,获得多孔Ni-Cu-La-P合金条带,合金条带用去离子水和乙醇洗涤至中性,干燥后;
(5)先采用滴涂法将纳米γ-Fe2O3负载到多孔合金电极上,再采用电沉积法在多孔合金电极上表面负载BiOX、MnO2、ZnO、SnO2、ZrO2、CdS中的一种,其中X为卤素,制得多孔合金电极。
2.根据权利要求1所述的多孔合金电极的制备方法,其特征在于:Ni粉的粒径<20μm,Al粉的粒径<20μm,La粉的粒径<10μm,Cu粉的粒径<20μm,P粉粒径<10μm。
3.根据权利要求1所述的多孔合金电极的制备方法,其特征在于:真空球磨罐中球料质量比为4-6:1,转数为80-200r/min,每运行15-45min,间隙10-15min。
4.权利要求1-3任一项所述的多孔合金电极的制备方法制得的多孔合金电极在光照条件下处理含微塑料的有机废水且降低析氢过电位中的应用。
CN202110900008.3A 2021-08-06 2021-08-06 一种多孔合金电极的制备方法及应用 Active CN113699547B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110900008.3A CN113699547B (zh) 2021-08-06 2021-08-06 一种多孔合金电极的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110900008.3A CN113699547B (zh) 2021-08-06 2021-08-06 一种多孔合金电极的制备方法及应用

Publications (2)

Publication Number Publication Date
CN113699547A CN113699547A (zh) 2021-11-26
CN113699547B true CN113699547B (zh) 2023-07-21

Family

ID=78651859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110900008.3A Active CN113699547B (zh) 2021-08-06 2021-08-06 一种多孔合金电极的制备方法及应用

Country Status (1)

Country Link
CN (1) CN113699547B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745778A (zh) * 2011-04-20 2012-10-24 同济大学 一种二氧化锡-三氧化二铁纳米管复合电极及其制备方法
CN106222694A (zh) * 2016-08-25 2016-12-14 山东清大银光金属海绵新材料有限责任公司 海绵结构合金负载三元氧化物层析氢电极材料的制备方法
CN106848333A (zh) * 2017-02-22 2017-06-13 长沙理工大学 一种氧化铈负载三维镍铜合金多孔复合阴极的制备方法
CN109012668A (zh) * 2018-08-17 2018-12-18 西安交通大学 CeO2骨架负载过渡金属氧化物和贵金属复合材料的制备方法
CN110706939A (zh) * 2019-09-06 2020-01-17 暨南大学 一种纳米多孔镍合金/二氧化锰电极材料及其制备方法与应用
CN111825241A (zh) * 2020-07-16 2020-10-27 哈尔滨工业大学(深圳) 一种基于微纳米马达材料的污染物的治理方法及处理装置
CN112064058A (zh) * 2020-08-05 2020-12-11 北京航空航天大学 用作析氢催化电极的纳米多孔Al-Ni-M-RE-R非晶合金及其制备方法
CN115561293A (zh) * 2022-10-20 2023-01-03 安徽大学 一种氧化锌修饰纳米多孔金及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745778A (zh) * 2011-04-20 2012-10-24 同济大学 一种二氧化锡-三氧化二铁纳米管复合电极及其制备方法
CN106222694A (zh) * 2016-08-25 2016-12-14 山东清大银光金属海绵新材料有限责任公司 海绵结构合金负载三元氧化物层析氢电极材料的制备方法
CN106848333A (zh) * 2017-02-22 2017-06-13 长沙理工大学 一种氧化铈负载三维镍铜合金多孔复合阴极的制备方法
CN109012668A (zh) * 2018-08-17 2018-12-18 西安交通大学 CeO2骨架负载过渡金属氧化物和贵金属复合材料的制备方法
CN110706939A (zh) * 2019-09-06 2020-01-17 暨南大学 一种纳米多孔镍合金/二氧化锰电极材料及其制备方法与应用
CN111825241A (zh) * 2020-07-16 2020-10-27 哈尔滨工业大学(深圳) 一种基于微纳米马达材料的污染物的治理方法及处理装置
CN112064058A (zh) * 2020-08-05 2020-12-11 北京航空航天大学 用作析氢催化电极的纳米多孔Al-Ni-M-RE-R非晶合金及其制备方法
CN115561293A (zh) * 2022-10-20 2023-01-03 安徽大学 一种氧化锌修饰纳米多孔金及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
新型纳米多孔铜/二氧化锰复合电极材料的制备及其比电容特性;刘江云;周君;刘丽;秦春玲;赵维民;;河北工业大学学报(第04期);第75-80页 *
脱合金制备的多孔TiO_2表面负载CdS纳米颗粒;张萌;崔振铎;朱胜利;杨贤金;;中国科技论文(第02期);第78-81页 *

Also Published As

Publication number Publication date
CN113699547A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
CN104894595B (zh) 一种高催化活性的非晶金属氧化物析氢电极及其制备方法
CN104759272B (zh) 一种膜电极低压电解式臭氧发生器的膜电极及其阳极和阳极的制作方法
CN110272100B (zh) Ti4O7涂层的陶瓷微滤膜电极的制备方法
CN108017120A (zh) 一种采用新型阳极电催化氧化处理苯酚有机废水的方法
Wendt et al. Materials research and development of electrocatalysts for alkaline water electrolysis
CN111206259B (zh) 一种高效稳定产过氧化氢的新型炭黑空气扩散阴极片的制备方法
CN112520818B (zh) 一种用于废水中硝态氮还原的金属电极的制备方法及应用
CN115852390A (zh) 一种FeCoNiBPt高熵非晶合金电解水催化材料及其制法
CN102092821A (zh) 高性能活性碳纤维在电絮凝法处理工业废水中的应用方法
CN105200421B (zh) 一种激光微细熔覆制备析氢电极储氢层的方法
CN106746054A (zh) 一种三维电解处理电镀制版废水的方法
CN114763587B (zh) 自支撑元素共掺杂镍基高熵合金电解水材料及其制备方法
CN104261518A (zh) 一种锰炭催化内电解填料及其制备方法与应用
CN108774737B (zh) 一种泡沫金属基铅合金复合阳极材料的制备方法
CN110980890A (zh) 用于降解罗丹明b的钛基二氧化铅电极及其制备方法和应用
CN113699547B (zh) 一种多孔合金电极的制备方法及应用
CN112723494A (zh) 电活化过硫酸盐促进难降解有机物与氮元素同步去除的水处理技术
CN116555801A (zh) 一种用于碱性水电解的电极结构及其制备方法
CN115874216A (zh) 一种用于析氯反应的铂基非晶合金多孔催化剂及其制备方法
CN110923737A (zh) 一种纳米多孔产氢催化剂及其制备方法
CN108690919A (zh) 一种纳米冶金法制备碳纳米管和/或石墨烯增强铅基复合阳极的方法
CN111943327B (zh) 用于酸性废水处理的具有RuO2-IrO2中间层的电极材料及制备方法
CN113481530A (zh) 一种不锈钢基催化剂及其制备方法与应用
CN111606395A (zh) 聚噻吩修饰金属铋掺杂的二氧化铅电极制备方法及其应用
CN115787011B (zh) 电解水制氢用钛集电器表面制备铂涂层的电镀液及电镀方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant