EP2892670A2 - Procédé d'obtention d'un corps pour fonderie à partir d'un mélange granulaire comprenant une résine polycondensée modifée et un capteur de formaldéhyde - Google Patents

Procédé d'obtention d'un corps pour fonderie à partir d'un mélange granulaire comprenant une résine polycondensée modifée et un capteur de formaldéhyde

Info

Publication number
EP2892670A2
EP2892670A2 EP13774731.7A EP13774731A EP2892670A2 EP 2892670 A2 EP2892670 A2 EP 2892670A2 EP 13774731 A EP13774731 A EP 13774731A EP 2892670 A2 EP2892670 A2 EP 2892670A2
Authority
EP
European Patent Office
Prior art keywords
resin
formaldehyde
group
mixture
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13774731.7A
Other languages
German (de)
English (en)
Other versions
EP2892670B1 (fr
Inventor
Stéphane SARRAZIN
Manuel Vargas
Tung-Fai Lo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huttenes-Albertus France Sarl
Original Assignee
Huttenes-Albertus France Sarl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huttenes-Albertus France Sarl filed Critical Huttenes-Albertus France Sarl
Priority to PL13774731T priority Critical patent/PL2892670T3/pl
Publication of EP2892670A2 publication Critical patent/EP2892670A2/fr
Application granted granted Critical
Publication of EP2892670B1 publication Critical patent/EP2892670B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2246Condensation polymers of aldehydes and ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening
    • B22C9/123Gas-hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Definitions

  • the present invention relates to a process for obtaining a foundry body from a granular mixture comprising a modified polycondensed resin, and a formaldehyde sensor, and the foundry body obtained by said method.
  • hot box type industrial processes use resins.
  • the resins are intimately mixed with the substance or substances to be agglomerated, or spread on the surface to be bonded, in association with a hardening agent whose function is most often to render the solid reaction medium in situ.
  • granular or fibrous filler such as, for example, mineral or synthetic sands, glass micro-beads, ceramic micro-beads and fibers which are most often ligno-lined. cellulose.
  • the substance to be agglomerated is generally fluid, most often viscous.
  • the substance to be agglomerated is then brought into contact with or in a forming tool, and then heated, the heat being generally provided by the heating of the forming tool (or forming tooling).
  • body is meant according to the invention a material object occupying a portion of space and having particular properties.
  • the body according to the invention is most often in a solid continuous medium, that is to say of clean form and substantially invariable volume.
  • a fluid body is generally a body constituting a deformable continuous medium.
  • thermoset resins hot and in acidic medium, by polymerization.
  • molds and cores are generally solid bodies, which can be manufactured by a "hot box” type process from a granular charge.
  • the corresponding mold or core is destroyed by burning the resin in contact with the metal. This involves producing a set of molds or kernels per piece produced.
  • the resins content calculated as dry extract, are extremely low, most often in a range of 0.3 to 3% by weight by weight. relative to the mass of the granular charge to be agglomerated.
  • the chemical nature of the combustion gases is important, both for the quality of cast metal parts and for the health of workers.
  • the production of molds and cores must be done at high speeds of up to a few thousand pieces per day.
  • the forming tools or core boxes are metallic because the heating temperatures to obtain rapid polymerization of the resins are high, generally greater than 150 ° C and up to 380 ° C. This involves significant tooling costs and especially dimensional accuracy problems of molds and cores, related to the expansion of tools under the effect of heat.
  • respiratory nuisances for people working in this environment have been deemed inadmissible.
  • the French patent application FR 2948307 relates to a method for producing a body comprising a conventional polycondensed resin, preferably a urea-formaldehyde resin, and a free formaldehyde sensor, which is preferably carbohydrazide.
  • US patent application 2007/0149644 discloses the use of tannin extract in a foundry mixture comprising an aggregate and a binder of tannin extract and furfuryl alcohol.
  • This binder does not necessarily contain resin, because the two components of the binder react together at a temperature above 40 ° C.
  • this invention can not be implemented in industry because furfuryl alcohol is a compound now classified as carcinogenic.
  • the foundry mix of this document apparently does not generate free formaldehyde or phenol free. Thus, according to the text of this document, no formaldehyde sensor seems necessary in this context.
  • Patent application WO 2004/058843 discloses a resin-based composition
  • a resin-based composition comprising tannin, an amine compound, an aldehyde and a stabilizer.
  • the compound containing amino groups may be urea or an oligomer derived from the urea-formaldehyde condensation.
  • the stabilizer is preferably an amino-based heterocyclic compound.
  • a method for preparing this composition as well as the use of this composition for producing a mixture comprising particles, for the purpose of creating particle boards, including wood particles.
  • the compositions of this document do not include a formaldehyde sensor, since it is explained that the free formaldehyde from the resin will react with the tannin during the formation of the composition. In fact, the presence of free formaldehyde is proven and is problematic.
  • the present invention relates to a method for producing a body, preferably a casting mold and / or core, said method comprising at least the following successive steps:
  • At least 90%, preferably from 96 to 99%, by weight of grains said grains being mainly composed of at least one mineral oxide, and at least 80% of said grains having a size of 10 to 3000 ⁇ , b- from 0.3 to 3%, preferably from 0.6 to 1.5%, by weight of at least one polycondensed resin with formaldehyde and / or its derivatives, the percentage being calculated as solids content of resin,
  • d- from 0.003 to 1%, preferably from 0.01 to 0.15%, by weight of at least one formaldehyde-sensing compound, and
  • an e-component in the mixture at a content of 0.003% to 1.5%, preferably from 0.15% to 1%, by weight relative to the total weight of the mixture, at least one resin selected from the group consisting of tannins, natural polyphenols, and lignins,
  • the polycondensed resin with formaldehyde and / or its derivatives (component b-) is modified by the presence of aromatic and / or polyaromatic groups in the mixture.
  • the polycondensed resin with formaldehyde and / or its derivatives (component b-) is preferably a furanic resin, an aminoplast, a phenoplast or a copolymer of at least two of these three compounds.
  • the formaldehyde sensor (component d-) is generally, according to the invention, a compound of the family of hydrazides, preferably chosen from the group formed by mono and dihydrazides, the said sensor being even more preferably the dihydrazide of the acid. adipic acid, succinic acid dihydrazide, or carbohydrazide. In a particularly preferred manner, the formaldehyde sensor is carbohydrazide.
  • the resin selected from the group consisting of tannins, natural polyphenols, and lignins (component e-) is preferably a tannin type resin, even more preferably a condensed tannin type resin.
  • the component e) is a resin by itself, and is generally added to the component b) premix (such a diluent if the two components are liquid). Its presence modifies the behavior of the polycondensed resin (component b), which is a "modified" resin during its implementation) in the mixture during the implementation of the process according to the invention.
  • the component f), which is water may be previously incorporated, in whole or in part, at least one of the other components.
  • the blowing step makes it possible to implement at least partially at least one chemical reaction which ensures the at least partial hardening of said mixture.
  • the process according to the invention makes it particularly possible, in the case of the use of the body thus obtained for cast iron casting, to reduce the production of formaldehyde during the reaction, to reduce the nitrogen content generated. in the formed body, to enrich the formed body in carbon and to improve the thermal resistance during the process.
  • the granular mixture may comprise any other additive known to those skilled in the art.
  • the granular mixture may comprise any additive, liquid or powder, known to those skilled in the art to promote the physico-chemical behavior of the mixture during its processing and its subsequent use.
  • the grains of the granular mixture according to the invention are generally natural or synthetic.
  • the grains are grains of inorganic oxide (s), most often natural siliceous sandy mixtures whose grains are composed mainly of silicon oxide and whose particle size AFS (acronym for "American Foundry Society”). Can range from 30 to 140.
  • the water is generally provided in the granular mixture mainly as a solvent of components b) to d), optionally e), of the granular mixture.
  • the curing agent is generally incorporated at a very low level in the granular mixture, its dispersion is improved if it is previously diluted in aqueous solution. It is the same for the formaldehyde sensor and the component e), if it is provided in powder form.
  • the granular mixture according to the invention is generally in the form of at least one fluid aggregate.
  • the surface of the forming tool with which the granular mixture is in contact generally represents the "negative" of the part to be formed in the body manufactured according to the invention.
  • the step of blowing a flow of hot gas is generally such that the temperature and the flow rate of said flow are adjusted to cause the elevation of the temperature at the heart of the granular mixture, substantially above the ambient temperature (which is about 20 ° C) and preferably above 45 ° C.
  • the process according to the invention by the presence in the granular mixture of at least one formaldehyde sensor and a modified polycondensed resin, advantageously makes it possible to significantly improve the thermal properties of the granular mixture and to limit the emission of formaldehyde free when performing formed bodies.
  • the presence of a modified polycondensed resin makes it possible to significantly improve the thermal properties and to reduce the nitrogen content of the bodies formed.
  • the method according to the invention is such that, in addition, the forming tool is heated to a temperature in the range of 40 ° C to 180 ° C, preferably 50 ° C to 150 ° C. This is generally done in the contacting step, and at the latest during the blowing step.
  • the heat provided by the hot gas is supplemented by the heat of heating of the forming tool, so as to optimize, in a preferred version of the invention, the heating of the granular mixture.
  • the gas is preferably selected from the group consisting of air, a neutral gas and a gas involved in the acidification of the reaction medium.
  • the term "neutral gas” means a gas which does not participate in the reaction, for example chosen from dinitrogen and the so-called noble gases such as helium, neon and argon.
  • gas involved in the acidification of the reaction medium is meant according to the invention a gas for decreasing in situ the pH of the medium such as carbon dioxide or sulfur dioxide.
  • the method also comprises an additional step during which a flow of at least one gas is circulated within the at least partially hardened granular mixture at a temperature within a range of 5 ° C to 45 ° C, for a time in a range of 1 to 300 seconds, the gas being preferably selected from the group consisting of air, nitrogen and carbon dioxide. This step is most often carried out before the optional step of removing the body from the forming tool.
  • the gas is usually not previously heated, and therefore substantially at room temperature, or possibly cooled.
  • formaldehyde by blocking the polymerization reaction of the modified polycondensed resin by cooling the body after partial curing.
  • this flow of gas advantageously makes it possible to wash with a flow of air, of nitrogen or of carbon dioxide, the free formaldehyde which may be residual.
  • polycondensed resin or polycondensed resin with formaldehyde and / or its derivatives a composition of at least one resin having undergone a chemical reaction between a first element selected from urea and its derivatives, melamine, benzoguanamine, glycoluril, phenol and / or its derivatives, and furfuryl alcohol and / or its derivatives, and a second element selected from formaldehyde and / or its derivatives, wherein preferably the chain growth generally causes at each stage the release of a molecule of water.
  • This polycondensed resin is generally a thermosetting polymer, such as a furan resin or an aminoplast or a phenoplast or a copolymer of these compounds, preferably an aminoplast or a phenoplast or an aminoplast-phenoplast copolymer.
  • the aminoplasts are obtained by polycondensation of the first comonomer which is formaldehyde and the second comonomer carrying amino groups NH 2 -. They are usually divided into two families compounds, namely urea-formaldehyde (or urea-formaldehyde) (UF) and melamine-formaldehyde (or melamine-formaldehyde) resins (MF).
  • urea-formaldehyde or urea-formaldehyde
  • MF melamine-formaldehyde
  • Phenoplasts or phenol-formaldehyde resins are obtained by polycondensation between a first comonomer that is formaldehyde and a second comonomer that is phenol.
  • phenolic resins There are two types of phenolic resins: novolacs, prepared by acid catalysis, and the resols, obtained by basic catalysis.
  • the best known phenoplast is bakelite ® (or polyoxybenzylmethylene glycol anhydride), which is the oldest industrial synthetic polymer material.
  • the furanic resin is obtained by polycondensation of the first comonomer furfuryl alcohol and the second comonomer is formaldehyde.
  • the component (s) of the polycondensed resin may remain free in excess in the polycondensed resin, or may have been added thereto after the polycondensation.
  • the polycondensed resin with formaldehyde and / or its derivatives is generally such that it thermosets in acidic medium.
  • Such a polycondensed resin is generally commercially available.
  • the polycondensed resin may, according to the invention, be modified by the presence during its synthesis of a compound comprising at least one phenolic and / or polyphenolic unit, at a content of 1 to 30% by weight, preferably from 5 to 20% by weight, relative to the total weight of the modified polycondensate resin. It is therefore not the polycondensed resin described in the French patent application FR 2948307. In fact, it comprises groups which are derived from the precursor groups which are the phenolic and / or polyphenolic units, preferably present in a compound such as vanillin and phloroglucinol. This compound is generally mixed with the resin prior to its synthesis and the derived groups "hang" on the resin during its synthesis.
  • the polycondensed resin may thus have been premixed with a compound, most often synthetic, such as vanillin or phloroglucinol.
  • a component e) according to the invention ie the resin selected from the group formed by tannins, natural polyphenols, and lignins, is optional.
  • the phenolic and / or polyphenolic unit may be of natural or synthetic origin.
  • the resin is thus in the form of a formophenolic copolymer.
  • the polycondensed resin with formaldehyde and / or its derivatives according to the invention may also optionally contain at least one additive chosen from solvents, diluents, stabilizers and solid particle fillers, which are usually used and known to those skilled in the art to obtain a particular effect.
  • said polycondensed resin may contain at least one silane, which generally makes it possible to bridge, and thus optimize, the bond between the resin and the grains.
  • the resin selected from the group consisting of tannins, natural polyphenols, and lignins is a natural polymer rich in aromatic rings (i.e. having at least two aromatic rings). In reality, this resin contains at least one aromatic nucleus per monomer unit of the polymer, thus a plurality of aromatic nuclei.
  • This resin is chosen according to the invention from the group formed by tannins, which are generally of natural origin, preferably condensed and / or modified to make them soluble in water, such as extracts from the Quebracho tree, natural polyphenols, such as those extracted from araucaria angustifolia (Paranâ € TM s pine) or pinus palustris (swamp pine), and lignins, modified or not.
  • the resin selected from the group formed by tannins, natural polyphenols, and lignins is most often renewable.
  • renewable resin means, according to the invention, either a natural resin whose stock can be reconstituted over a short period on a human scale, or a synthetic resin whose main synthetic starting materials are renewable components; in theory renewal must be done at least as fast as consumption.
  • the resin selected from the group consisting of tannins, natural polyphenols, and lignins is a tannin-type resin, and even more preferably it is a condensed tannin-type resin.
  • the tannin type resin is usually a natural phenolic substance. It is usually a secondary metabolite of superior plant that is found practically in all parts of plants (bark, roots, leaves, stems, etc.).
  • the tannins are polyphenol natural resins either monosaccharide type polyols and galloyl units or derivatives thereof, linked to flavonoids or triterpenoids, or oligomers or flavanol polymers.
  • the tannins used according to the invention are polyflavonoids, for example of the tannin type of the Quebracho tree.
  • Lignins are polymers based on one or more monolignols, such as paracoumaryl alcohol, coniferyl alcohol and sinapyl alcohol.
  • the lignins may, for example, be modified to lignosulphonates by reactions with bisulphites.
  • the resin selected from the group consisting of tannins, natural polyphenols, and lignins may also be a thermoplastic resin, for example, an extract of araucaria angustifolia (Paranâ € TM s pine) or pinus palustris (swamp pine).
  • the resin selected from the group consisting of tannins, natural polyphenols, and lignins can be composed of long-chain aliphatic phenols such as cashew nut shell extract.
  • the resin selected from the group formed by tannins, natural polyphenols, and lignins can be a commercial compound such as the following commercial products: Respine RLP from the company POLYTRADE (natural aromatic resin from araucaria angustifolia); VINSOL ® from HERCULES (consisting of approximately 57% polyphenols, 28% rosin and 15% terpenoid); QSF (alcohol-soluble part of tannins de Quebracho), FINTAN 737B (modified condensed tannin from Schinopsis lorentzii or Quebracho Colorado powder) and FINTAN 737C (stabilized condensed tannin from Schinopsis lorentzii or Quebracho Colorado in 45% solution) from INDUNOR; and CARDANOL (long-chain aliphatic phenols from cashew shells) from SAI CHEMICALS.
  • Respine RLP from the company POLYTRADE (natural aromatic resin from araucaria angustifolia); VINSOL ® from HERCU
  • the curing agent is generally selected from the group consisting of the following compounds:
  • salts such as ammonium salts, in particular persulfates, nitrates, bisulphates, sulphates and chlorides;
  • acid-generating salts by reaction with an aldehyde, such as hydroxylamine salts, especially sulphates, hydrochlorides, phosphates, sulphonates and hydroxylamine nitrates;
  • an aldehyde such as hydroxylamine salts, especially sulphates, hydrochlorides, phosphates, sulphonates and hydroxylamine nitrates;
  • sublimable acids in particular oxalic acid and benzoic acid
  • organic acids compatible with the process with regard to their reactivity and toxicity, such as lactic acid and citric acid.
  • the curing agent is more generally such that it renders the reaction medium of the acid mixture, either by its own acidity, or by its ability to release acid during the polymerization process.
  • the curing agent is selected from the group consisting of hydroxylamine salts, and even more preferably, the curing agent is hydroxylamine sulfate.
  • the hydroxylamine salts advantageously release an acid in the presence of formaldehyde.
  • the curing agent is a hydroxylamine salt
  • the free formaldehyde available combines primarily with this hydroxylamine salt to release an acid, and that the formaldehyde sensor does not inhibit or little acid formation by said salt during the curing reaction.
  • hydroxylamine salt significantly and advantageously improves the process according to the invention, by accelerating the hardening kinetics and by increasing the acidity of the reaction medium as the thermosetting reaction releases formaldehyde.
  • the production of the granular mixture according to the first step of the process of the invention is generally carried out in a manner known to those skilled in the art.
  • those skilled in the art first introduce the granular part or parts into a mixer and then proceed to the introduction of liquid parts, the mixing time being a function of the material and preferably from 15 s to 5 min.
  • the invention particularly relates to a method of manufacturing a casting piece of metal, or metal alloy, molded, which comprises casting a metal, or metal alloy, liquid in at least one mold and / or core, characterized in that said mold is a body obtained by the process according to the invention as described above.
  • such a method is such that the metal, or metal alloy, is selected from the group formed by aluminum, the ferrous alloys selected from the group consisting of steels and cast irons, non-ferrous metals, non-alloys ferrous, and, more preferably, the metal or metal alloy is selected from the group formed by the fonts.
  • the invention also relates to any molded metal part obtained by a manufacturing method as described above.
  • the invention further relates to any mechanical assembly comprising at least one such piece.
  • FIG. 1 represents curves A, B, C, D and E of P (in percentage) as a function of time t (in minutes) for five different resins described in the examples, that is to say that each curve represents the percentage of passing as a function of time for the resin concerned. This makes it possible to evaluate the thermal resistance.
  • a premix was made comprising mainly the polycondensed resin (component b) and optionally a resin selected from the group consisting of tannins, natural polyphenols, and lignins (component e)), and a second premix a was performed comprising the curing agent (component c)) and optionally a formaldehyde sensor compound (component d)). Water was generally present in these two premixes. Then, the granular mixture was made by mixing the siliceous sand, the first premix and the second premix. This granular mixture was carried out in a vibratory bowl mixer with a mixing time of 60 seconds.
  • the granular mixture was then blown into a box equipped with a heating system and a supply of hot air (at 100-120 ° C) at a pressure of 1.5 bar (0.15 MPa), for a period of 60 seconds, containing two test pieces of standardized mechanical characteristics of square section 5 cm 2 , on a ROPER machine.
  • Curing was performed according to the data indicated for each granular mixture.
  • the measurement of formaldehyde during mixing was carried out using the DRAGER model Accuro pump equipment equipped with DRAGER "formaldehyde” dosing tubes (0.2 / a). The range of measurements is 0.2 to 5 ppm. The measurements were made above the vibrating bowl of the mixer.
  • the formaldehyde removal measurement was carried out using the DRAGER model Accuro pump equipment fitted with DRAGER "formaldehyde" dosing tubes (0.2 / a or 2 / a), depending on the concentration to be measured in a 10 liter chamber in which circulated a flow of nitrogen of 0.5 L / min.
  • a test tube was placed in the enclosure as soon as it came out of the box.
  • the flexural strengths were measured both hot and cold after a cooking time of 15 seconds, 30 seconds, 60 seconds and 120 seconds in a can.
  • the detection at the end of dislocation (or extraction) of a content of formaldehyde (free) more than 20 times lower than the conventional hot box process is considered to make the shaped body suitable for industrial use.
  • the dry extract expressed in% by weight is the residue produced after heating one gram of product at 135 ° C. for one hour.
  • test pieces obtained are solid formed bodies that can be assimilated to nuclei.
  • the rate of disintegration of the granular body at 450 ° C was measured under the following conditions:
  • Molded bodies of parallelepipedal shape of square section 5 cm 2 were made. The molded bodies were then left for 24 hours at rest.
  • the cubes were placed separately in crucibles closed by a lid.
  • the crucibles were spotted.
  • the crucibles were then placed in a muffle furnace regulated at 450 ° C, a timer having been triggered when the oven was closed.
  • the crucibles were removed from the oven at regular intervals (for example 5-
  • the pass-through portion was recovered, weighed and the resulting mass converted to percent.
  • Resin Urea-formaldehyde resin, commercial product Cleantech 11 R26, synthesized in an acidic medium with a formaldehyde / urea molar ratio of 2.37 (used at 2.0% relative to sand)
  • Catalyst Cleantech 14D38 commercial product from Hiittenes Albertus France containing 3% hydroxylamine sulfate, 15% carbohydrazide and 82% water (used at 0.4% relative to sand)
  • Hot air temperature 100-120 ° C
  • Hot bending resistance at the box outlet at 30, 60 and 120 seconds respectively: 18, 32 and 55 daN / cm 2
  • the hot and cold bending resistances are sufficient to allow, respectively, the manipulation of the formed bodies and the casting of the metal.
  • Formaldehyde with mixing less than 0.2 ppm (not detectable)
  • Formaldehyde emissions at mixing and disbudding are extremely low (at debugging approximately 600 times lower than the hot box process represented by Example 3).
  • the thermal resistance expressed by this percentage, is incompatible with the casting of cast iron casting parts.
  • Resin Resin urea-melamine / formalin referenced FUM274 synthesized with a formaldehyde / urea molar ratio of 2.95 and a formaldehyde / melamine molar ratio of 3.45 (used at 2% relative to sand)
  • Catalyst referenced UFAC 12/268 containing (20%) hydroxylamine sulfate and (80%) water (used at 0.4% relative to sand)
  • Hot air temperature 100-120 ° C
  • Hot bending resistance at the box outlet at 30, 60 and 120 seconds respectively: 17, 24 and 44 daN / cm 2
  • the hot and cold bending resistances are sufficient to allow, respectively, the manipulation of the formed bodies and the casting of the metal.
  • the thermal resistance is sufficient for the casting of cast iron casting parts.
  • Resin Urea-phenol / formaldehyde resin, commercial product Resital 12B62 from Hiittenes Albertus France.
  • This resin is characteristic of the "hot box” process, and was used at 2% compared to sand.
  • Catalyst Commercial product Harter AT3B from Hiittenes Albertus France (50% magnesium lignosulfonate solution), urea and ammonium nitrate.
  • This catalyst was used at 0.5% with respect to the sand.
  • This resin is characteristic of the "hot box” process used in cast iron foundries.
  • Hot bending resistance at the box outlet at 30, 60 and 120 seconds respectively: 34, 51 and 61 daN / cm 2
  • the hot and cold bending resistances are sufficient to allow, respectively, the manipulation of the formed bodies and the casting of the metal.
  • Formaldehyde emissions during mixing and disintegration are incompatible with changes in hygiene and safety standards.
  • Urea-formaldehyde resin comprising vanillin, which has been synthesized in an acidic medium with a formaldehyde / urea mole ratio of 2.37, and to which vanillin has been added in a molar ratio of urea to vanillin of 4, 5.
  • the vanillin content with respect to the resin is 11.3% by weight.
  • This resin was used at 2% relative to sand.
  • Catalyst consisting of 1.4% hydroxylamine in 50% solution, 1.7% p-toluenesulfonic acid in 65% solution, 15.1% carbohydrazide, 2.2% hydroxylamine sulfate and 79.7% water.
  • This catalyst was used at 0.4% relative to sand. Box temperature: 120 ° C
  • Hot air temperature 100-120 ° C
  • Hot bending resistance at the box outlet at 30, 60 and 120 seconds respectively: 15, 30 and 45 daN / cm 2
  • the hot and cold bending resistances are sufficient to allow, respectively, the manipulation of the bodies formed and the casting of the metal.
  • Formaldehyde with mixing less than 0.2 ppm (not detectable)
  • Formaldehyde in the process of deboning comparative value 2.5
  • Formaldehyde emissions during mixing and disbudding are low (at debugging approximately 50 times lower than the hot box process represented by Example 3).
  • the thermal resistance expressed by this percentage, is considered sufficient for the casting of cast iron casting parts.
  • Urea-melamine / formaldehyde resin which was synthesized with a formaldehyde / urea molar ratio of 2.95 and to which melamine was added in a formaldehyde / melamine molar ratio of 3.45 then in which was added 3% modified tannin Fintan 737B, commercial product of the company Indunor (modified condensed tannin from Schinopsis lorentzii or Quebracho Colorado powder).
  • This resin was used at 2.2% relative to the sand.
  • Catalyst Catalyst containing 14% hydroxylamine sulfate, 20% carbohydrazide and 66% water.
  • This catalyst was used at 0.3% relative to sand. Temperature box: 130 ° C
  • Hot air temperature 100-120 ° C
  • Hot bending resistance at the box outlet at 30, 60 and 120 seconds respectively: 15, 24 and 42 daN / cm 2
  • the hot and cold bending resistances are sufficient to allow, respectively, the manipulation of the bodies formed and the casting of the metal.
  • Formaldehyde with mixing less than 0.2 ppm (not detectable)
  • Formaldehyde in the process of deboning comparative value 2.5
  • Formaldehyde emissions during mixing and disbudding are low (at debugging approximately 50 times lower than the hot box process represented by Example 3).
  • the thermal resistance expressed by this percentage, is considered sufficient for the casting of cast iron casting parts.
  • Tannin-modified urea / formaldehyde resin which was synthesized with a formaldehyde / urea molar ratio of 2.37, and in which 25% of modified tannin Fintan 737C, a commercial product of Indunor (stabilized condensed tannin derived from Schinopsis lorentzii or Quebracho Colorado in 45% solution).
  • This resin was used at 2% relative to sand.
  • Catalyst Catalyst containing 14% hydroxylamine sulfate, 20% carbohydrazide and 66% water. This catalyst was used at 0.3% relative to sand.
  • Hot air temperature 100-120 ° C
  • Hot bending resistance at the box outlet at 15, 30 and 60 seconds respectively: 6, 13 and 21 daN / cm 2
  • the hot and cold bending resistances are sufficient to allow, respectively, the manipulation of the bodies formed and the casting of the metal.
  • Formaldehyde with mixing less than 0.2 ppm (not detectable)
  • Formaldehyde in the process of deboning comparative value 2.5
  • Formaldehyde emissions during mixing and disbudding are low (at debugging approximately 50 times lower than the hot box process represented by Example 3).
  • the thermal resistance expressed by this percentage is considered sufficient for the casting of cast iron casting parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mold Materials And Core Materials (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Procédé pour la réalisation d'un corps pour fonderie comprenant la préparation d'un mélange granulaire comprenant une résine polycondensée avec du formaldéhyde modifiée, incorporant éventuellement un aromatique ou polyaromatique lors de sa synthèse, un agent durcisseur, un composé capteur de formaldéhyde, de l'eau et éventuellement au moins une résine choisie dans le groupe formé par les tanins, les polyphénols naturels, et les lignines, la mise en contact dudit mélange granulaire avec une surface d'un outil de formage, et l'insufflage dans le mélange granulaire d'un flux de gaz à 50°C à 380°C, pendant 1 à 300 secondes, pour assurer au moins partiellement un durcissement dudit mélange. Procédé de fabrication d'une pièce de fonderie en métal, ou alliage métallique, moulé, qui comprend une coulée de métal dans au moins un corps (moule et/ou noyau) ainsi réalisé; et pièce de fonderie ainsi fabriquée.

Description

Procédé d'obtention d'un corps pour fonderie à partir d'un mélange granulaire comprenant une résine polycondensée modifiée et un capteur de formaldéhyde
La présente invention concerne un procédé d'obtention d'un corps pour fonderie à partir d'un mélange granulaire comprenant une résine polycondensée modifiée, et un capteur de formaldéhyde, ainsi que le corps pour fonderie obtenu par ledit procédé.
Les procédés de formage à chaud de substances granulaires ou fibreuses sont des procédés industriels conduisant à la fabrication de corps le plus souvent solides. Parmi ceux-ci, les procédés industriels de type « hot box » (ou boîte chaude) utilisent des résines. En général, les résines sont mélangées intimement avec la ou les substances à agglomérer, ou étalées sur la surface à coller, en association avec un agent durcisseur dont la fonction est le plus souvent de rendre le milieu réactionnel solide in situ.
Les substances à former ou agglomérer, généralement solides, comportent le plus souvent au moins une charge granulaire ou fibreuse tels que par exemple des sables minéraux ou synthétiques, des micro billes de verre, des micro billes de céramique et des fibres le plus souvent ligno-cellulosiques.
Après l'incorporation de la résine et d'un éventuel agent durcisseur, et éventuellement d'au moins un autre additif, la substance à agglomérer est généralement fluide, le plus souvent visqueuse. La substance à agglomérer est alors mise en contact avec ou dans un outil de formage, puis chauffée, la chaleur étant généralement apportée par le chauffage de l'outillage de formage (ou outillage de mise en forme).
La chaleur initie le durcissement des résines par polymérisation, puis le corps solide ainsi formé est généralement retiré de l'outil de formage pour son utilisation ultérieure. Par « corps », on entend selon l'invention un objet matériel occupant une portion d'espace et présentant des propriétés particulières. Le corps selon l'invention consiste le plus souvent en milieu continu solide, c'est-à- dire de forme propre et de volume sensiblement invariable. Par opposition, un corps fluide est généralement un corps constituant un milieu continu déformable.
Un des procédés industriels est dit de type « hot box » et utilise des résines condensées avec du formaldéhyde. Ces résines thermodurcissent à chaud et en milieu acide, par polymérisation.
Dans le domaine de la fonderie, les moules et noyaux sont des corps généralement solides, qui peuvent être fabriqués par un procédé de type « hot box » à partir d'une charge granulaire. A la coulée de chaque pièce métallique dans ou en contact avec le moule ou le noyau, le moule ou noyau correspondant est détruit par combustion de la résine au contact du métal. Cela implique la production d'un jeu de moule ou noyau par pièce produite. Pour favoriser cette destruction, à cadence industrielle, et limiter les nuisances des gaz de combustion, les taux de résines, calculés en extrait sec, sont extrêmement bas, le plus souvent compris dans une fourchette de 0,3 à 3%, en poids par rapport à la masse de la charge granulaire à agglomérer. De plus, la nature chimique des gaz de combustion a son importance, tant pour la qualité des pièces de métal coulées, que pour la santé des travailleurs.
Enfin, dans certains domaines d'industrie, tel que celui de l'industrie automobile de série, la production de moules et de noyaux doit se faire à des cadences élevées pouvant aller jusqu'à quelques milliers de pièces par jour. Dans ce cas, les outillages de formage ou boîtes à noyaux sont métalliques car les températures de chauffage pour obtenir une polymérisation rapide des résines sont élevées, généralement supérieure à 150°C et pouvant aller jusqu'à 380°C. Cela implique des coûts importants d'outillages et surtout des problèmes de précision dimensionnelle des moules et des noyaux, liés à la dilatation des outillages sous l'effet de la chaleur. D'autre part, les nuisances respiratoires pour les personnes travaillant dans ce milieu ont été jugées inadmissibles.
C'est pourquoi les procédés de type « hot box » ont été abandonnés il y a une quarantaine d'années par l'industrie, au profit de procédés de type « cold box » (ou boîte froide). Ces procédés de type « cold box » proposaient l'utilisation de liants alternatifs, à froid, générant à cette époque peu de nuisances, en termes d'hygiène et de sécurité, et surtout compatibles avec une cadence de fabrication industrielle élevée.
Cependant, à l'heure actuelle, ces liants alternatifs de type « cold box » posent eux aussi problème dans les procédés industriels, car ils sont devenus incompatibles avec des normes plus sévères en termes d'hygiène, de sécurité et d'environnement.
Dans ce contexte, la demande de brevet français FR 2948307, publiée en janvier 201 1 , décrit un procédé amélioré de type « hot box », permettant de résoudre les problèmes présentés par les procédés de type « hot box » de l'art antérieur, et palliant les insuffisances des procédés de type « cold box », tout particulièrement dans l'industrie de la fonderie.
Ainsi, la demande de brevet français FR 2948307 concerne un procédé pour la réalisation d'un corps comprenant une résine polycondensée usuelle, de préférence une résine urée-formol, et un capteur de formaldéhyde libre, qui est de préférence le carbohydrazide.
Cependant, cette amélioration revendiquée dans la demande de brevet français FR 2948307 se révèle en pratique utilisable dans l'industrie uniquement en fonderie d'aluminium. En effet, elle s'est révélée ne convenir au stade industriel que pour la coulée de pièces en aluminium (i.e. à environ 800°C). Sa tenue thermique ne convient pas pour la coulée de pièces en un alliage métallique tel que la fonte, dont la température de fusion est notablement plus élevée (environ 1300°C). De plus, le taux d'azote généré par la résine urée-formol utilisée dans ce cadre, s'est révélé trop important pour la fabrication industrielle d'une pièce en fonte.
D'autre part, la demande de brevet US 2007/0149644 décrit l'utilisation d'extrait de tanin, dans un mélange pour fonderie comprenant un agrégat et un liant formé d'extrait de tanin et d'alcool furfurylique. Ce liant ne contient pas obligatoirement de résine, car les deux composants du liant réagissent ensemble à température supérieure à 40°C. Cependant, cette invention ne peut pas être mise en œuvre dans l'industrie car l'alcool furfurylique est un composé à présent classé cancérigène. En outre, le mélange pour fonderie de ce document ne génère apparemment pas de formaldéhyde libre ni de phénol libre. Ainsi, selon le texte de ce document, aucun capteur de formaldéhyde ne semble nécessaire dans ce contexte. En réalité, la présence de formaldéhyde libre est avérée et pose problème, et, surtout, la réactivité très faible lors de la mise en œuvre de ce procédé, qui oblige à procéder à un chauffage à température élevée et/ou à utiliser un catalyseur puissant, le rend incompatible avec une utilisation industrielle en grande série.
La demande de brevet WO 2004/058843 décrit une composition à base de résine comprenant du tanin, un composé d'amine, un aldéhyde et un stabilisant. Le composé contenant des groupements amino peut être l'urée ou un oligomère issu de la condensation urée-formaldéhyde. Le stabilisant est de préférence un composé hétérocyclique à base amino. Il est aussi décrit une méthode pour préparer cette composition, ainsi que l'utilisation de cette composition pour la réalisation d'un mélange comprenant des particules, dans le but de créer des panneaux de particules, notamment des particules de bois. Cependant, les compositions de ce document ne comprennent pas de capteur de formaldéhyde, puisqu'il est explicité que le formaldéhyde libre issu de la résine va réagir avec le tanin pendant la formation de la composition. En réalité, la présence de formaldéhyde libre est avérée et pose problème.
C'est dans le contexte développé ci-dessus, que la demanderesse a découvert un procédé amélioré du procédé de la demande de brevet FR 2 948 307 précédemment décrit. Ce procédé amélioré pallie les insuffisances de tous les procédés de l'état de la technique, tout particulièrement dans l'industrie de la fonderie notamment de fonte.
La présente invention concerne un procédé pour la réalisation d'un corps, de préférence d'un moule et/ou noyau de pièce de fonderie, ledit procédé comprenant au moins les étapes successives suivantes :
- la préparation d'un mélange granulaire, comprenant :
a- au moins 90%, de préférence de 96 à 99%, en poids de grains, lesdits grains étant principalement composés d'au moins un oxyde minéral, et au moins 80% desdits grains ayant une taille de 10 à 3000 μητι, b- de 0,3 à 3%, de préférence de 0,6 à 1 ,5%, en poids d'au moins une résine polycondensée avec du formaldéhyde et/ou ses dérivés, le pourcentage étant calculé en extrait sec de résine,
c- de 0,001 à 3%, de préférence de 0,005 à 1 %, en poids d'au moins un agent durcisseur, le pourcentage étant calculé en extrait sec d'agent durcisseur,
d- de 0,003 à 1 %, de préférence de 0,01 à 0,15%, en poids d'au moins un composé capteur de formaldéhyde, et
f- de 0,2 à 3%, de préférence de 0,7 à 2%, en poids d'eau;
- la mise en contact dudit mélange granulaire avec au moins une surface d'un outil de formage, et
- l'insufflage dans le mélange granulaire d'au moins un flux de gaz à une température de 50°C à 380°C, pour une durée comprise de 1 à 300 secondes, pour assurer au moins partiellement le durcissement dudit mélange.
- de 0,003% à 1 ,5%, de préférence de 0,15% à 1 %, en poids d'au moins une résine choisie dans le groupe formé par les tanins, les polyphénols naturels, et les lignines ;
Ledit procédé étant caractérisé en ce que la résine polycondensée (composant b-) dudit mélange est modifiée :
• Soit par la présence d'un composant e- dans le mélange, à une teneur de 0,003% à 1 ,5%, de préférence de 0,15% à 1 %, en poids par rapport au poids total du mélange, d'au moins une résine choisie dans le groupe formé par les tanins, les polyphénols naturels, et les lignines,
• Soit par la présence lors de sa synthèse d'un composé comprenant au moins une unité phénolique et/ou polyphénolique, à une teneur de 1 à 30 % en poids par rapport au poids total de la résine polycondensée.
Il est ainsi possible selon l'invention de modifier la résine par l'une et/ou l'autre des deux possibilités décrites ci-dessus : présence d'un composant e- et/ou présence d'un composé comprenant au moins une unité phénolique et/ou polyphénolique lors de la synthèse de la résine. Il faut au minimum que l'une des deux possibilités soit présente, mais les deux possibilités peuvent être présentes (simultanément).
Ainsi, selon l'invention, la résine polycondensée avec du formaldéhyde et/ou ses dérivés (composant b-) est modifiée par la présence de groupes aromatiques et/ou polyaromatiques dans le mélange.
La résine polycondensée avec du formaldéhyde et/ou ses dérivés (composant b-) est de préférence une résine furanique, un aminoplaste, un phénoplaste ou un copolymère d'au moins deux de ces trois composés.
Le capteur de formaldéhyde (composant d-) est généralement selon l'invention un composé de la famille des hydrazides, de préférence choisi dans le groupe formé par les mono et dihydrazides, ledit capteur étant de façon encore plus préférée le dihydrazide de l'acide adipique, le dihydrazide de l'acide succinique, ou le carbohydrazide. De façon particulièrement préférée, le capteur de formaldéhyde est le carbohydrazide.
La résine choisie dans le groupe formé par les tanins, les polyphénols naturels, et les lignines (composant e-) est de préférence une résine de type tanin, de façon encore plus préférée d'une résine de type tanin condensé.
Dans le cas, le composant e) est une résine par lui-même, et est généralement ajouté au composant b) en prémélange (tel un diluant si les deux composants sont liquides). Sa présence modifie le comportement de la résine polycondensée (composant b), qui est donc une résine « modifiée » lors de sa mise en œuvre) dans le mélange lors de la mise en œuvre du procédé selon l'invention.
Selon l'invention, il est possible d'ajouter les composants b), c) d) et f), et éventuellement e), au composant a) de façon séparée (i.e. chaque composant b), c) d) et f), et éventuellement e), est ajouté un à un au composant a), ou par au moins un prémélange. Ainsi, il est possible d'effectuer un prémélange des composants b) et e) ; ou bien b), e) et f) ; ou bien c) et e) ; ou bien c), e) et f) ; ou bien d) et e) ; ou bien d), e) et f) ; ou bien b) et f) ; ou bien b), c) et f) ; ou bien b) c) d) et f) ; puis de mélanger ce prémélange avec au moins le composant a). En outre, le composant f), qui est de l'eau, peut être préalablement incorporé, tout ou partie, à au moins un des autres composants. L'étape d'insufflage permet de mettre en œuvre au moins partiellement au moins une réaction chimique qui assure le durcissement au moins partiel dudit mélange.
Ainsi qu'il est connu de l'homme du métier, ces étapes sont généralement suivies d'un retrait du corps sensiblement solide de l'outillage de formage.
De façon particulièrement avantageuse, le procédé selon l'invention permet particulièrement, dans le cas de l'utilisation du corps ainsi obtenu pour fonderie de pièce en fonte, de diminuer la production de formaldéhyde durant la réaction, de diminuer le taux d'azote généré dans le corps formé, d'enrichir en carbone le corps formé et d'améliorer la tenue thermique lors du procédé.
Bien entendu, le mélange granulaire peut comporter tout autre additif connu de l'homme du métier. En particulier le mélange granulaire peut comporter tout additif, liquide ou pulvérulent, connu de l'homme du métier pour favoriser le comportement physico-chimique du mélange lors de sa transformation et son utilisation ultérieure.
Les grains du mélange granulaire selon l'invention sont généralement naturels ou synthétiques. De préférence, les grains sont des grains d'oxyde(s) minéral(aux), le plus souvent des mélanges sableux siliceux naturels dont les grains sont composés principalement d'oxyde de silicium et dont la granulométrie AFS (acronyme de « American Foundry Society ») peut aller de 30 à 140.
L'eau est généralement apportée dans le mélange granulaire principalement comme solvant des composants b) à d), éventuellement e), du mélange granulaire.
En effet, dans la mesure où l'agent durcisseur est généralement incorporé à un taux très faible dans le mélange granulaire, sa dispersion est améliorée s'il est préalablement dilué en solution aqueuse. Il en est de même pour le capteur de formaldéhyde et pour le composant e) éventuel, si celui-ci est fourni sous forme de poudre.
Le mélange granulaire selon l'invention est généralement sous forme d'au moins un agrégat fluide. La surface de l'outil de formage avec laquelle est en contact le mélange granulaire représente généralement le « négatif » de la pièce à former dans le corps fabriqué selon l'invention.
L'étape d'insufflage d'un flux de gaz chaud est généralement telle que la température et le débit dudit flux sont ajustés pour provoquer l'élévation de la température au cœur du mélange granulaire, substantiellement au-dessus de la température ambiante (qui est d'environ 20°C) et de préférence au-dessus de 45°C.
Le procédé selon l'invention, par la présence dans le mélange granulaire d'au moins un capteur de formaldéhyde et d'une résine polycondensée modifiée, permet avantageusement d'améliorer significativement les propriétés thermiques du mélange granulaire et de limiter l'émission de formaldéhyde libre lors de la réalisation des corps formés. En outre, la présence d'une résine polycondensée modifiée permet d'améliorer significativement les propriétés thermiques, et de diminuer le taux d'azote, des corps formés. Ces caractéristiques rendent l'utilisation du corps ainsi obtenu particulièrement avantageuse pour la coulée de pièces en fonte et en particulier adaptable à la fonderie en grande série.
De préférence, le procédé selon l'invention est tel que, en outre, l'outil de formage est chauffé à une température comprise dans une fourchette de 40°C à 180°C, de préférence de 50°C à 150°C. Cela est généralement réalisé dès l'étape de mise en contact, et au plus tard lors de l'étape d'insufflage.
Ainsi, la chaleur apportée par le gaz chaud est complétée par la chaleur de chauffage de l'outillage de formage, de façon à optimiser, dans une version préférée de l'invention, le chauffage du mélange granulaire.
Le gaz est de préférence choisi dans le groupe formé par l'air, un gaz neutre et un gaz participant à l'acidification du milieu réactionnel.
Par « gaz neutre », on entend selon l'invention un gaz ne participant pas à la réaction par exemple choisi parmi le diazote et les gaz dits nobles tels que l'hélium, le néon, et l'argon. Par « gaz participant à l'acidification du milieu réactionnel », on entend selon l'invention un gaz permettant de diminuer in situ le pH du milieu comme le dioxyde de carbone ou le dioxyde de soufre. Dans un mode de réalisation préféré de l'invention, le procédé comporte en outre une étape supplémentaire au cours de laquelle on fait circuler au sein du mélange granulaire au moins partiellement durci un flux d'au moins un gaz à température comprise dans une fourchette de 5°C à 45°C, pendant une durée comprise dans une fourchette de 1 à 300 secondes, le gaz étant de préférence choisi dans le groupe formé par l'air, le diazote et le dioxyde de carbone. Cette étape est le plus souvent réalisée avant l'étape éventuelle de retrait du corps de l'outil de formage. Le gaz est le plus souvent non chauffé au préalable, et donc sensiblement à température ambiante, voire éventuellement refroidi.
En effet, comme les nuisances du formaldéhyde peuvent s'exercer postérieurement à la fabrication du corps, durant son stockage ou sa manipulation ultérieure, il s'avère très utile et avantageux dans le cadre de l'invention de compléter l'action du capteur de formaldéhyde en bloquant la réaction de polymérisation de la résine polycondensée modifiée, par refroidissement du corps après son durcissement partiel. De plus ce flux de gaz permet avantageusement de laver par un flux d'air, de diazote ou de dioxyde de carbone, le formaldéhyde libre éventuellement résiduel.
On entend par résine polycondensée ou résine polycondensée avec du formaldéhyde et/ou ses dérivés, une composition d'au moins une résine ayant subi une réaction chimique entre un premier élément choisi parmi l'urée et ses dérivés, la mélamine, la benzoguanamine, le glycolurile, le phénol et/ou ses dérivés, et l'alcool furfurylique et/ou ses dérivés, et un second élément choisi parmi le formaldéhyde et/ou ses dérivés, dans laquelle de préférence la croissance de chaîne provoque généralement à chaque étape la libération d'une molécule d'eau.
Cette résine polycondensée est généralement un polymère thermodurcissable, tel qu'une résine furanique ou un aminoplaste ou un phénoplaste ou un copolymère de ces composés, de préférence un aminoplaste ou un phénoplaste ou un copolymère aminoplaste-phénoplaste.
Les aminoplastes sont obtenus par polycondensation du premier comonomère qu'est le formaldéhyde et du second comonomère portant des groupements amino NH2-. Ils sont généralement divisés en deux familles principales de composés, à savoir les résines urée-formaldéhyde (ou urée- formol) (sigle UF) et mélamine-formaldéhyde (ou mélamine-formol) (sigle MF).
Les phénoplastes ou résines phénol-formaldéhyde (sigle PF) sont obtenus par polycondensation entre un premier comonomère qu'est le formaldéhyde et un second comonomère qu'est le phénol. On distingue deux types de résines phénoplastes : les novolaques, préparées par catalyse acide, et les résols, obtenus par catalyse basique. Le phénoplaste le plus connu est la bakélite® (ou anhydrure de polyoxybenzylmethylèneglycol), qui est le plus ancien matériau polymère synthétique industriel.
La résine furanique est obtenue par polycondensation du premier comonomère qu'est l'alcool furfurylique et du second comonomère qu'est le formaldéhyde.
Le ou les composants de la résine polycondensée peu(ven)t rester libre en excès dans la résine polycondensée, ou encore y avoir été ajouté(s) après la polycondensation.
La résine polycondensée avec du formaldéhyde et/ou ses dérivés est généralement telle qu'elle thermodurcit en milieu acide. Une telle résine polycondensée est généralement disponible commercialement.
La résine polycondensée peut, selon l'invention, être modifiée par la présence lors de sa synthèse d'un composé comprenant au moins une unité phénolique et/ou polyphénolique, à une teneur de 1 à 30 % en poids, de préférence de 5 à 20% en poids, par rapport au poids total de la résine polycondensée modifiée. Ce n'est donc pas la résine polycondensée décrite dans la demande de brevet français FR 2948307. En effet, elle comprend des groupes qui sont dérivés des groupes précurseurs que sont les unités phénoliques et/ou polyphénoliques, de préférence présentes dans un composé tel que la vanilline et le phloroglucinol. Ce composé est généralement mélangé à la résine avant sa synthèse et les groupes dérivés s'« accrochent » à la résine pendant sa synthèse.
La résine polycondensée peut ainsi avoir été prémélangée avec un composé, le plus souvent synthétique, tel que la vanilline ou le phloroglucinol. Dans ce cas, la présence dans le mélange granulaire utilisé dans le procédé selon l'invention d'un composant e) selon l'invention, i.e. la résine choisie dans le groupe formé par les tanins, les polyphénols naturels, et les lignines, est optionnelle.
L'unité phénolique et/ou polyphénolique peut être d'origine naturelle ou synthétique. La résine est ainsi sous forme d'un copolymère formophénolique. Dans le cadre de ce mode de réalisation, il est particulièrement préféré que l'unité phénolique et/ou polyphénolique soit présente dans un composé choisi dans le groupe formé par la vanilline (4-hydroxy-3-méthoxybenzaldéhyde) et le phloroglucinol (benzène-1 ,3,5-triol).
La résine polycondensée avec du formaldéhyde et/ou ses dérivés selon l'invention peut en outre contenir éventuellement au moins un additif choisi parmi les solvants, les diluants, les stabilisants et les charges de particules solides, utilisé(e)(s) habituellement et connu(e)(s) de l'homme du métier pour obtenir un effet particulier. Ainsi ladite résine polycondensée peut contenir au moins un silane, qui permet généralement de ponter, et donc d'optimiser, la liaison entre la résine et les grains.
La résine choisie dans le groupe formé par les tanins, les polyphénols naturels, et les lignines, est un polymère naturel riche en noyaux aromatiques (i.e. comportant au moins deux noyaux aromatiques). En réalité, cette résine contient au moins un noyau aromatique par unité monomère du polymère, donc une pluralité de noyaux aromatiques. Cette résine est choisie selon l'invention dans le groupe formé par les tanins, qui sont généralement d'origine naturelle, de préférence condensés et/ou modifiés pour les rendre solubles dans l'eau, tels que les extraits de l'arbre Quebracho, les polyphénols naturels, tels que ceux extrait de araucaria angustifolia (pin du Paranâ) ou de pinus palustris (pin des marais), et les lignines, modifiées ou non.
La résine choisie dans le groupe formé par les tanins, les polyphénols naturels, et les lignines, est le plus souvent renouvelable. Par résine renouvelable, on entend selon l'invention soit une résine naturelle dont le stock peut se reconstituer sur une période courte à l'échelle humaine, soit une résine synthétique dont les principaux matériaux de départ de synthèse sont des composants renouvelables ; en théorie le renouvellement doit être effectué au moins aussi vite que la consommation.
Dans un mode de réalisation préféré, la résine choisie dans le groupe formé par les tanins, les polyphénols naturels, et les lignines, est une résine de type tanin, et de façon encore plus préférée c'est une résine de type tanin condensé.
La résine de type tanin est usuellement une substance naturelle phénolique. C'est généralement un métabolite secondaire de plante supérieure que l'on trouve pratiquement dans toutes les parties des végétaux (écorce, racines, feuilles, tiges, etc). Les tanins sont des résines naturelles polyphénoliques soit de polyols de type monosaccharide et d'unités galloyles ou leurs dérivés, liés à des flavonoïdes ou des triterpénoïdes, soit des oligomères ou des polymères de flavanols. De préférence les tanins utilisés selon l'invention sont des polyflavonoïdes, par exemple de type tanin de l'arbre Quebracho.
Les lignines sont des polymères basés sur un ou plusieurs monolignols, comme l'alcool paracoumarylique, l'alcool coniférylique et l'alcool sinapylique. Les lignines peuvent par exemple être modifiées en lignosulfonates par réactions avec des bisulfites.
La résine choisie dans le groupe formé par les tanins, les polyphénols naturels, et les lignines, peut aussi être une résine thermoplastique, par exemple, un extrait de araucaria angustifolia (pin du Paranâ) ou de pinus palustris (pin des marais).
La résine choisie dans le groupe formé par les tanins, les polyphénols naturels, et les lignines, peut être composée de phénols à longue chaîne aliphatique comme un extrait de coquilles de noix de cajou.
Ainsi, la résine choisie dans le groupe formé par les tanins, les polyphénols naturels, et les lignines, peut être un composé commercial tel que les produits commerciaux suivants: Respine RLP de la société POLYTRADE (résine aromatique naturelle issue de araucaria angustifolia) ; VINSOL® de la société HERCULES (composé d'environ 57% de polyphénols, 28% de colophanes et 15% de terpenoïdes) ; QSF (partie soluble à l'alcool des tanins de Quebracho), FINTAN 737B (tanin condensé modifié issu du Schinopsis lorentzii ou Quebracho Colorado en poudre) et FINTAN 737C (tanin condensé stabilisé issu du Schinopsis lorentzii ou Quebracho Colorado en solution à 45%) de la société INDUNOR ; et CARDANOL (phénols à longue chaîne aliphatique issus de coquilles de noix de cajou) de la société SAI CHEMICALS.
L'agent durcisseur est généralement choisi dans le groupe formé par les composés suivants :
- les sels naturellement acides, tels que les sels d'ammonium, notamment les persulfates, les nitrates, les bisulfates, les sulfates et les chlorures ;
- les sels générant un acide par réaction avec un aldéhyde, tels que les sels d'hydroxylamine, notamment les sulfates, les chlorhydrates, les phosphates, les sulfonates et les nitrates d'hydroxylamine ;
- les acides sublimables, notamment l'acide oxalique et l'acide benzoïque ; et, éventuellement,
- les acides organiques compatibles avec le procédé au regard de leur réactivité et de leur toxicité, comme par exemple l'acide lactique et l'acide citrique.
L'agent durcisseur est plus généralement tel qu'il rend le milieu réactionnel du mélange acide, soit par son acidité propre, soit par sa capacité à libérer de l'acide au cours du processus de polymérisation.
De façon particulièrement préférée, l'agent durcisseur est choisi dans le groupe formé par les sels d'hydroxylamine, et de façon encore plus préférée, l'agent durcisseur est le sulfate d'hydroxylamine. Les sels d'hydroxylamine libèrent avantageusement un acide en présence de formaldéhyde.
Dans le cas préféré où l'agent durcisseur est un sel d'hydroxylamine, il apparaît de façon surprenante selon l'invention que le formaldéhyde libre disponible se combine prioritairement avec ce sel d'hydroxylamine pour libérer un acide, et que le capteur de formaldéhyde n'inhibe pas ou peu la formation d'acide par ledit sel au cours de la réaction de durcissement.
En outre, la demanderesse a constaté que l'utilisation de sel d'hydroxylamine améliore significativement et avantageusement le procédé selon l'invention, en accélérant la cinétique de durcissement et en augmentant l'acidité du milieu réactionnel au fur et à mesure que la réaction de thermodurcissement libère du formaldéhyde.
De plus, l'ajout du capteur de formaldéhyde améliore sensiblement les caractéristiques mécaniques des corps formés.
L'homme du métier est à même de choisir les résines b) et e), ainsi que l'agent durcisseur, qui conviennent au cas qui le concerne, en particulier en prenant en compte la réactivité du système de liant, c'est-à-dire des résine(s) et agent(s) durcisseur(s) incorporés dans le mélange granulaire.
La réalisation du mélange granulaire selon la première étape du procédé de l'invention s'effectue généralement de façon connue de l'homme du métier. Ainsi, de façon classique, en présence de matériel de malaxage usuel, l'homme du métier introduit d'abord la ou les parties granulaires dans un mélangeur et procède ensuite à l'introduction de parties liquides, le temps de mélange étant fonction du matériel, et de préférence de 15 s à 5 min.
L'invention concerne tout particulièrement un procédé de fabrication d'une pièce de fonderie en métal, ou alliage métallique, moulé, qui comprend la coulée d'un métal, ou alliage métallique, liquide dans au moins un moule et/ou noyau, caractérisé en ce que ledit moule est un corps obtenu par le procédé selon l'invention tel que décrit précédemment.
De préférence, un tel procédé est tel que le métal, ou alliage métallique, est choisi dans le groupe formé par l'aluminium, les alliages ferreux choisi dans le groupe formé par les aciers et les fontes, les métaux non ferreux, les alliages non ferreux, et, de façon plus préférée, le métal ou alliage métallique est choisi dans le groupe formé par les fontes.
L'invention concerne aussi toute pièce métallique moulée obtenue par un procédé de fabrication tel que décrit précédemment. L'invention concerne, en outre, tout ensemble mécanique comportant au moins une telle pièce.
L'invention est illustrée par la Figure 1 ci-jointe, qui est commentée dans les exemples ci-après. La Figure 1 représente des courbes A, B, C, D et E de passant P (en pourcentage) en fonction du temps t (en minutes) pour cinq résines différentes décrites dans les exemples, c'est-à-dire que chaque courbe représente le pourcentage de passant en fonction du temps pour la résine concernée. Cela permet d'en évaluer la tenue thermique.
L'invention sera mieux comprise à la lumière des exemples suivants qui illustrent l'invention à titre non limitatif.
Exemples
Les exemples suivants ont été réalisés en mélangeant à chaque fois 4 kg de sable siliceux SIFRACO LA 32 aux autres composants dans les proportions indiquées pour chaque mélange granulaire.
Pour chaque exemple, un prémélange a été réalisé comprenant principalement la résine polycondensée (composant b)) et éventuellement une résine choisie dans le groupe formé par les tanins, les polyphénols naturels, et les lignines (composant e)), et un second prémélange a été réalisé comprenant l'agent durcisseur (composant c)) et éventuellement un composé capteur de formaldéhyde (composant d)). De l'eau était généralement présente dans ces deux prémélanges. Ensuite, le mélange granulaire était effectué par malaxage du sable siliceux, du premier prémélange et du second prémélange. Ce mélange granulaire a été effectué dans un malaxeur à bol vibrant avec un temps de mélange de 60 secondes. Le mélange granulaire a ensuite été insufflé dans une boîte munie d'un système de chauffage et d'une amenée d'air chaud (à 100-120°C), sous une pression de 1 ,5 bar (0,15 MPa), pendant une durée de 60 secondes, contenant deux éprouvettes de mesure de caractéristiques mécaniques normalisées de section carrée 5 cm2, sur une machine ROPER.
Le durcissement s'est effectué selon les données indiquées pour chaque mélange granulaire.
La mesure du formaldéhyde au malaxage a été effectuée par l'appareillage Pompe DRAGER modèle Accuro munie des tubes de dosage DRAGER « formaldéhyde » (0,2/a). La gamme de mesures est de 0,2 à 5 ppm. Les mesures ont été effectuées au-dessus du bol vibrant du malaxeur.
La mesure du formaldéhyde au déboîtage a été effectuée par l'appareillage Pompe DRAGER modèle Accuro munie des tubes de dosage DRAGER « formaldéhyde » (0,2/a ou 2/a), selon la concentration à mesurer dans une enceinte de 10 litres dans laquelle circulait un flux d'azote de 0,5 L/min. Une éprouvette était placée dans l'enceinte dès sa sortie de boîte. Le tube de dosage était utilisé pour mesurer le formaldéhyde dans l'air de l'enceinte durant 180 secondes. Les résultats sont donnés tels quels pour le tube 0,2/a (n = 20 coups de pompe), et sont multipliés par 4 pour le tube 2/a (n = 5 coups de pompe).
Tous les taux d'incorporation sont des pourcentages en poids.
Les mesures de flexion ont été effectuées selon les recommandations techniques n°481 et 487 de décembre 1999 du B.N.I.F. édités et disponibles auprès du Centre Technique des Industries de la Fonderie situé à Sèvres en France. Les résultats sont exprimés en daN/cm2.
On considère que des résistances à la flexion d'environ 10 daN/cm2 à chaud dès la sortie de la boîte sont suffisantes pour permettre la manipulation des corps formés, et que des résistances d'environ 30 daN/cm2 à froid, soit une heure après la sortie de la boîte, sont souvent satisfaisantes pour permettre la coulée du métal.
Les résistances à la flexion ont été mesurées aussi bien à chaud qu'à froid, après un temps de cuisson de 15 secondes, de 30 secondes, de 60 secondes et de 120 secondes en boîte.
La détection en fin de déboîtage (ou extraction) d'une teneur en formaldéhyde (libre) de plus de 20 fois inférieure au procédé boîte chaude classique est considérée comme rendant le corps formé propre à une utilisation industrielle.
L'extrait sec exprimé en % poids est le résiduel produit après chauffage d'un gramme de produit à 135°C pendant une heure.
Les éprouvettes obtenues sont des corps formés solides que l'on peut assimiler à des noyaux. La vitesse de désintégration du corps granulaire à 450°C a été mesurée dans les conditions suivantes :
Des corps moulés de forme parallélépipédique de section carrée 5 cm2 ont été confectionnés. Les corps moulés ont ensuite été laissés 24 heures au repos.
On a ensuite confectionné, dans ces corps moulés, des cubes ajustés à 23,5 g (± 0,5 g) par cube, en omettant d'utiliser les extrémités des corps moulés.
Les cubes ont été placés séparément dans des creusets fermés par un couvercle. Les creusets ont été repérés.
Les creusets ont ensuite été placés dans un four à moufle régulé à 450°C, un chronomètre ayant été déclenché à la fermeture du four.
Les creusets ont été sortis du four à intervalles réguliers (par exemple 5-
10-20-30-40 minutes ...) puis laissés à refroidir jusqu'à température ambiante.
Le contenu de chaque creuset a ensuite été placé sur un tamis de maille
1 mm, et soumis à la vibration d'un tamiseur de laboratoire de marque
Retsch et de modèle VS1000 pendant 30 secondes.
La partie passante a été récupérée, pesée et la masse obtenue a été transformée en pourcentage.
Cette mesure, qui est représentative de la tenue à chaud de la résine polycondensée, est donnée sur la courbe ci-jointe (Figure 1 ) qui illustre la part P (en pourcentage) de corps formé passant à travers le tamis en fonction du temps t (en minutes), de maintien dans le four pour cinq différentes résines exemplifiées. Les courbes respectives de ces cinq résines sont les courbes A, B, C, D et E présentes sur le diagramme de la Figure 1 qui montre la tenue thermique de cinq des résines exemplifiées.
On estime qu'un pourcentage de corps formé passant à travers le tamis, dans ces conditions d'essais, inférieur à 50%, au bout de vingt minutes, permet la coulée de pièces en fonte. Exemple 1 (comparatif)
Résine : Résine urée-formol, produit commercial Cleantech 1 1 R26, synthétisée en milieu acide avec un rapport molaire formaldéhyde/urée de 2,37 (utilisée à 2,0% par rapport au sable)
Catalyseur : Produit commercial Cleantech 14D38 de la société Hiittenes Albertus France contenant 3% de sulfate d'hydroxylamine, 15% de carbohydrazide et 82% d'eau (utilisé à 0,4% par rapport au sable)
Température Boîte : 130°C
Température d'air chaud : 100-120°C
Résistance flexion à chaud en sortie de boîte : respectivement à 30, 60 et 120 secondes : 18, 32 et 55 daN/cm2
Résistance flexion à froid, respectivement à 30, 60 et 120 secondes : 72, 80 et 72 daN/cm2
Les résistances à la flexion à chaud et à froid sont suffisantes pour permettre, respectivement, la manipulation des corps formés et la coulée du métal.
Formaldéhyde au malaxage : inférieur à 0,2 ppm (non détectable)
Formaldéhyde au déboîtage : valeur comparative 0,2
Les émissions de formaldéhyde au malaxage et au déboîtage sont extrêmement faibles (au déboîtage environ 600 fois plus faibles que le procédé boîte chaude représenté par l'exemple 3).
% passant (P) à 20 minutes : 79% (voir Courbe A de la Figure 1 )
La tenue thermique, exprimée par ce pourcentage, est incompatible avec la coulée de pièces de fonderie en fonte.
Exemple 2 (comparatif)
Résine : Résine urée-mélamine/formol référencée FUM274 synthétisée avec un rapport molaire formaldéhyde/urée de 2,95 et un rapport molaire formaldéhyde/mélamine de 3,45 (utilisée à 2% par rapport au sable)
Catalyseur : référencé UFAC 12/268 contenant (20%) de sulfate d'hydroxylamine et (80%) d'eau (utilisé à 0,4% par rapport au sable)
Température Boîte : 120°C
Température d'air chaud : 100-120°C
Résistance flexion à chaud en sortie de boîte : respectivement à 30, 60 et 120 secondes : 17, 24 et 44 daN/cm2
Résistance flexion à froid, respectivement à 30, 60 et 120 secondes : 72, 70 et 53 daN/cm2
Formaldéhyde au malaxage : 1 ppm
Les résistances à la flexion à chaud et à froid sont suffisantes pour permettre, respectivement, la manipulation des corps formés et la coulée du métal.
Formaldéhyde au déboîtage : valeur comparative 80
Les émissions de formaldéhyde au malaxage et au déboîtage sont élevées et posent problème.
% passant (P) à 20 minutes : 37% (voir courbe C de la Figure 1 )
La tenue thermique, exprimée par ce pourcentage, est suffisante pour la coulée de pièces de fonderie en fonte.
Exemple 3 (comparatif)
Résine : Résine urée-phénol/formol, produit commercial Résital 12B62 de la société Hiittenes Albertus France.
Cette résine est caractéristique du procédé « boîte chaude », et a été utilisée à 2% par rapport au sable.
Catalyseur : Produit commercial Harter AT3B de la société Hiittenes Albertus France (lignosulfonate de magnésium en solution à 50%), d'urée et de nitrate d'ammonium.
Ce catalyseur a été utilisé à 0,5% par rapport au sable.
Cette résine est caractéristique du procédé « boîte chaude » utilisé en fonderie de fonte.
Température Boîte : 220°C
Résistance flexion à chaud en sortie de boîte : respectivement à 30, 60 et 120 secondes : 34, 51 et 61 daN/cm2
Résistance flexion à froid, respectivement à 30, 60 et 120 secondes : 70, 70 et 59 daN/cm2
Les résistances à la flexion à chaud et à froid sont suffisantes pour permettre, respectivement, la manipulation des corps formés et la coulée du métal.
Formaldéhyde au malaxage : 1 ppm
Formaldéhyde au déboîtage : valeur comparative 120
Les émissions de formaldéhyde au malaxage et au déboîtage sont incompatibles avec l'évolution des normes hygiène et sécurité.
Exemple 4 (selon l'invention)
Résine : Résine urée-formol comportant de la vanilline, qui a été synthétisée en milieu acide avec un rapport molaire formaldéhyde/urée de 2,37, et à laquelle il a été ajouté de la vanilline dans un rapport molaire urée/vanilline de 4,5.
Le taux de vanilline par rapport à la résine est de 1 1 ,3% en poids.
Cette résine a été utilisée à 2% par rapport au sable.
Catalyseur : Catalyseur constitué de 1 ,4% d'hydroxylamine en solution à 50%, de 1 ,7% d'acide p-toluène sulfonique en solution à 65%, de 15,1 % de carbohydrazide, de 2,2% de sulfate d'hydroxylamine et de 79,7% d'eau.
Ce catalyseur a été utilisé à 0,4% par rapport au sable. Température Boîte : 120°C
Température d'air chaud : 100-120°C
Résistance flexion à chaud en sortie de boîte : respectivement à 30, 60 et 120 secondes : 15, 30 et 45 daN/cm2
Résistance flexion à froid, respectivement à 30, 60 et 120 secondes : 55, 60 et 65 daN/cm2
Les résistances à la flexion à chaud et à froid sont suffisantes pour permettre, respectivement, la manipulation des corps formés et la coulée du métal.
Formaldéhyde au malaxage : inférieur à 0,2 ppm (non détectable)
Formaldéhyde au déboîtage : valeur comparative 2,5
Les émissions de formaldéhyde au malaxage et au déboîtage sont faibles (au déboîtage environ 50 fois plus faibles que le procédé boîte chaude représenté par l'exemple 3).
% passant (P) à 20 minutes : 43% (voir Courbe B de la Figure 1 )
La tenue thermique, exprimée par ce pourcentage, est considérée comme suffisante pour la coulée de pièces de fonderie en fonte.
Exemple 5 (selon l'invention)
Résine : Résine urée-mélamine/formol , qui a été synthétisée avec un rapport molaire formaldéhyde/urée de 2,95 et à laquelle on a ajouté de la mélamine dans un rapport molaire formaldéhyde/mélamine de 3,45 puis dans laquelle on a ajouté 3% de tanin modifié Fintan 737B, produit commercial de la société Indunor (tanin condensé modifié issu du Schinopsis lorentzii ou Quebracho Colorado en poudre).
Cette résine a été utilisée à 2,2% par rapport au sable.
Catalyseur : Catalyseur contenant 14% de sulfate d'hydroxylamine, 20% de carbohydrazide et 66% d'eau.
Ce catalyseur a été utilisé à 0,3% par rapport au sable. Température Boîte : 130°C
Température d'air chaud : 100-120°C
Résistance flexion à chaud en sortie de boîte : respectivement à 30, 60 et 120 secondes : 15, 24 et 42 daN/cm2
Résistance flexion à froid, respectivement à 30, 60 et 120 secondes : 75, 84 et 95 daN/cm2
Les résistances à la flexion à chaud et à froid sont suffisantes pour permettre, respectivement, la manipulation des corps formés et la coulée du métal.
Formaldéhyde au malaxage : inférieur à 0,2 ppm (non détectable)
Formaldéhyde au déboîtage : valeur comparative 2,5
Les émissions de formaldéhyde au malaxage et au déboîtage sont faibles (au déboîtage environ 50 fois plus faibles que le procédé boîte chaude représenté par l'exemple 3).
% passant (P) à 20 minutes : 40% (voir Courbe D de la Figure 1 )
La tenue thermique, exprimée par ce pourcentage, est considérée comme suffisante pour la coulée de pièces de fonderie en fonte.
Exemple 6 (selon l'invention)
Résine : Résine urée/formol modifiée tanin, qui a été synthétisée avec un rapport molaire formaldéhyde/urée de 2,37, et dans laquelle on a ajouté 25% de tanin modifié Fintan 737C, produit commercial de la société Indunor (tanin condensé stabilisé issu du Schinopsis lorentzii ou Quebracho Colorado en solution à 45%).
Cette résine a été utilisée à 2% par rapport au sable.
Catalyseur : Catalyseur contenant 14% de sulfate d'hydroxylamine, 20% de carbohydrazide et 66% d'eau. Ce catalyseur a été utilisé à 0,3% par rapport au sable.
Température Boîte : 130°C
Température d'air chaud : 100-120°C
Résistance flexion à chaud en sortie de boîte : respectivement à 15, 30 et 60 secondes : 6, 13 et 21 daN/cm2
Résistance flexion à froid, respectivement à 15, 30 et 60 secondes : 31 , 40 et 45 daN/cm2
Les résistances à la flexion à chaud et à froid sont suffisantes pour permettre, respectivement, la manipulation des corps formés et la coulée du métal.
Formaldéhyde au malaxage : inférieur à 0,2 ppm (non détectable)
Formaldéhyde au déboîtage : valeur comparative 2,5
Les émissions de formaldéhyde au malaxage et au déboîtage sont faibles (au déboîtage environ 50 fois plus faibles que le procédé boîte chaude représenté par l'exemple 3).
% passant (P) à 20 minutes : 50% (voir Courbe E sur la Figure 1 )
La tenue thermique exprimée par ce pourcentage est considérée comme suffisante pour la coulée de pièces de fonderie en fonte.

Claims

REVENDICATIONS
1 . Procédé pour la réalisation d'un corps pour fonderie, de préférence d'un moule et/ou noyau de pièce de fonderie, ledit procédé comprenant au moins les étapes successives suivantes:
- la préparation d'un mélange granulaire, comprenant, en % poids par rapport au poids total du mélange:
a- au moins 90%, de préférence de 96 à 99%, en poids de grains, lesdits grains étant principalement composés d'au moins un oxyde minéral, et au moins 80% desdits grains ayant une taille de 10 à 3000 μητι,
b- de 0,3 à 3%, de préférence de 0,6 à 1 ,5%, en poids d'au moins une résine polycondensée avec du formaldéhyde et/ou ses dérivés, le pourcentage étant calculé en extrait sec de résine,
c- de 0,001 à 3%, de préférence de 0,005 à 1 %, en poids d'au moins un agent durcisseur, le pourcentage étant calculé en extrait sec d'agent durcisseur,
d- de 0,003 à 1 %, de préférence de 0,01 à 0,15%, en poids d'au moins un composé capteur de formaldéhyde, et
f- de 0,2 à 3%, de préférence de 0,7 à 2%, en poids d'eau;
- la mise en contact dudit mélange granulaire avec au moins une surface d'un outil de formage, et
- l'insufflage dans le mélange granulaire d'au moins un flux de gaz à une température de 50°C à 380°C, pour une durée comprise de 1 à 300 secondes, pour assurer au moins partiellement le durcissement dudit mélange ;
Ledit procédé étant caractérisé en ce que la résine polycondensée
(composant b-) dudit mélange est modifiée :
• Soit par la présence d'un composant e- dans le mélange, à une teneur de 0,003% à 1 ,5%, de préférence de 0,15% à 1 %, en poids par rapport au poids total du mélange, d'au moins une résine choisie dans le groupe formé par les tanins, les polyphénols naturels, et les lignines, • Soit par la présence lors de sa synthèse d'un composé comprenant au moins une unité phénolique et/ou polyphénolique, à une teneur de 1 à 30 % en poids par rapport au poids total de la résine polycondensée.
2. Procédé selon la revendication 1 , tel que le capteur de formaldéhyde (composant d-) est un composé de la famille des hydrazides, de préférence choisi dans le groupe formé par les mono et dihydrazides, de façon encore plus préférée le dihydrazide de l'acide adipique, le dihydrazide de l'acide succinique, ou le carbohydrazide, de façon particulièrement préférée le carbohydrazide.
3. Procédé selon l'une quelconque des revendications 1 ou 2, tel que la résine choisie dans le groupe formé par les tanins, les polyphénols naturels, et les lignines (composant e)) est une résine de type tanin, de façon préférée une résine de type tanin condensé.
4. Procédé selon l'une quelconque des revendications 1 à 3, tel que l'outil de formage est chauffé à une température comprise dans une fourchette de 40°C à 180°C, de préférence de 50°C à 150°C.
5. Procédé selon l'une quelconque des revendications 1 à 4, tel que ledit gaz est choisi dans le groupe formé par l'air, un gaz neutre et un gaz participant à l'acidification du milieu réactionnel.
6. Procédé selon l'une quelconque des revendications 1 à 5, comportant une étape supplémentaire au cours de laquelle on fait circuler au sein du mélange granulaire au moins partiellement durci un flux d'au moins un gaz à température comprise dans une fourchette de 5°C à 45°C, pendant une durée comprise dans une fourchette de 1 à 300 secondes, le gaz étant de préférence choisi dans le groupe formé par l'air, le diazote et le dioxyde de carbone.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel la résine polycondensée avec du formaldéhyde et/ou ses dérivés est une composition d'au moins une résine ayant subi une réaction chimique entre un premier élément choisi parmi l'urée et ses dérivés, la mélamine, la benzoguanamine, le glycolurile, le phénol et/ou ses dérivés, et l'alcool furfurylique et/ou ses dérivés, et un second élément choisi parmi le formaldéhyde et/ou ses dérivés.
8. Procédé selon l'une quelconque des revendications 1 à 7, tel que l'unité phénolique et/ou polyphénolique est présente dans un composé choisi dans le groupe formé par la vanilline (4-hydroxy-3- méthoxybenzaldéhyde) et le phloroglucinol (benzène-1 ,3,5-triol).
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel la résine choisie dans le groupe formé par les tanins, les polyphénols naturels, et les lignines, est choisie dans le groupe formé par les tanins, de préférence condensés et/ou modifiés pour les rendre solubles dans l'eau, tels que les extraits de l'arbre Quebracho, les polyphénols , tels que par exemple ceux extrait de araucaria angustifolia (pin du Paranâ) ou du pinus palustris (pin des marais), et les lignines, modifiées ou non.
10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel l'agent durcisseur est choisi dans le groupe formé par les composés suivants :
- les sels naturellement acides, tels que les sels d'ammonium, notamment les persulfates, les nitrates, les bisulfates, les sulfates et les chlorures ;
- les sels générant un acide par réaction avec un aldéhyde, tels que les sels d'hydroxylamine notamment les sulfates, les chlorhydrates, les phosphates, les sulfonates et les nitrates d'hydroxylamine ;
- les acides sublimables, notamment l'acide oxalique et l'acide benzoïque ; et, éventuellement,
- les acides organiques compatibles avec le procédé au regard de leur réactivité et de leur toxicité, comme par exemple l'acide lactique et l'acide citrique ;
l'agent durcisseur étant de préférence choisi dans le groupe formé par les sels d'hydroxylamine, et de façon encore plus préférée l'agent durcisseur est le sulfate d'hydroxylamine.
1 1 . Procédé de fabrication d'une pièce de fonderie en métal, ou alliage métallique, moulé, qui comprend le coulée d'un métal, ou alliage métallique, liquide dans au moins un moule et/ou noyau, caractérisé en ce que ledit moule et/ou noyau est un corps solide obtenu par le procédé selon l'une des revendications 1 à 10.
12. Procédé selon la revendication 1 1 tel que ledit métal, ou 5 alliage métallique, est choisi dans le groupe formé par l'aluminium, les alliages ferreux choisi dans le groupe formé par les aciers et les fontes, les métaux non ferreux, les alliages non ferreux, et de façon préférée, ledit métal ou alliage métallique est choisi dans le groupe formé par les fontes.
13. Pièce métallique moulée obtenue par un procédé de î o fabrication selon l'une des revendications 1 1 ou 12.
EP13774731.7A 2012-09-10 2013-09-10 Procédé d'obtention d'un corps pour fonderie à partir d'un mélange granulaire comprenant une résine polycondensée modifée et un capteur de formaldéhyde Not-in-force EP2892670B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL13774731T PL2892670T3 (pl) 2012-09-10 2013-09-10 Sposób otrzymywania wyrobu dla odlewnictwa z mieszaniny granulowanej obejmującej modyfikowaną żywicę polikondensowaną i łapacz formaldehydu

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1258481A FR2995234B1 (fr) 2012-09-10 2012-09-10 Procede d'obtention d'un corps pour fonderie a partir d'un melange granulaire comprenant une resine polycondensee contenant des motifs aromatiques et un capteur de formaldehyde
PCT/FR2013/052077 WO2014037681A2 (fr) 2012-09-10 2013-09-10 Procédé d'obtention d'un corps pour fonderie à partir d'un mélange granulaire comprenant une résine polycondensée modifée et un capteur de formaldéhyde

Publications (2)

Publication Number Publication Date
EP2892670A2 true EP2892670A2 (fr) 2015-07-15
EP2892670B1 EP2892670B1 (fr) 2016-09-07

Family

ID=47356078

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13774731.7A Not-in-force EP2892670B1 (fr) 2012-09-10 2013-09-10 Procédé d'obtention d'un corps pour fonderie à partir d'un mélange granulaire comprenant une résine polycondensée modifée et un capteur de formaldéhyde

Country Status (9)

Country Link
US (1) US10137494B2 (fr)
EP (1) EP2892670B1 (fr)
CN (1) CN104619437B (fr)
BR (1) BR112015004908B1 (fr)
EA (1) EA028270B1 (fr)
FR (1) FR2995234B1 (fr)
MX (1) MX347364B (fr)
PL (1) PL2892670T3 (fr)
WO (1) WO2014037681A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3283541B1 (fr) * 2015-04-14 2023-06-07 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Composition de résine phénolique pour une utilisation dans le procédé boîte froide de polyurethane et/ou le procédé durcissant à froid et systèmes de liant à deux composants correspondants, applications et procédé
JP6895804B2 (ja) * 2017-05-29 2021-06-30 花王株式会社 鋳型造型用硬化剤組成物
DE102018118291A1 (de) * 2018-07-27 2020-01-30 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Schlichtezusammensetzung zur Reduzierung von Formaldehyd-Emissionen
CN112142938A (zh) * 2019-06-28 2020-12-29 江苏华岗材料科技发展有限公司 一种节能环保呋喃树脂铸造粘合剂的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6478652A (en) * 1987-09-21 1989-03-24 Hitachi Chemical Co Ltd Resin bonder for shell mold
AU2002953568A0 (en) * 2002-12-24 2003-01-16 Borden Chemical Australia Pty Ltd Novel chemical composition, method of making same, and products made therefrom
US7211137B2 (en) 2004-10-15 2007-05-01 Ashland Licensing And Intellectual Property Llc Binder composition comprising condensed tannin and furfuryl alcohol and its uses
CN101607297B (zh) * 2009-07-22 2010-12-08 福州大学 铸造用改性酚醛树脂粘结剂的制备方法
FR2948307B1 (fr) 2009-07-24 2014-07-25 Huettenes Albertus France Procede d'obtention d'un corps forme a partir d'un melange granulaire
EP2517807B1 (fr) * 2009-12-25 2018-06-20 Kao Corporation Composition de liant pour la formation de moules autodurcissants
JP5684038B2 (ja) 2011-04-28 2015-03-11 スター精密株式会社 プリンタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014037681A2 *

Also Published As

Publication number Publication date
EA028270B1 (ru) 2017-10-31
BR112015004908A2 (pt) 2017-07-04
US20150217365A1 (en) 2015-08-06
BR112015004908B1 (pt) 2019-05-14
WO2014037681A2 (fr) 2014-03-13
MX347364B (es) 2017-04-25
PL2892670T3 (pl) 2017-04-28
FR2995234B1 (fr) 2014-12-19
EA201590537A1 (ru) 2015-06-30
CN104619437A (zh) 2015-05-13
CN104619437B (zh) 2017-03-08
FR2995234A1 (fr) 2014-03-14
US10137494B2 (en) 2018-11-27
WO2014037681A3 (fr) 2014-11-13
EP2892670B1 (fr) 2016-09-07
MX2015003016A (es) 2015-11-06

Similar Documents

Publication Publication Date Title
EP2892670B1 (fr) Procédé d'obtention d'un corps pour fonderie à partir d'un mélange granulaire comprenant une résine polycondensée modifée et un capteur de formaldéhyde
US7919179B2 (en) Resin-coated sand for multilayer mold
KR102480125B1 (ko) 3차원 층상 성형체의 제조 방법
JP6037182B2 (ja) ケイ酸エステル改質フェノール/ホルムアルデヒドノボラック及びそれらの樹脂被覆基質の製造のための使用
WO1996005925A1 (fr) Composition de liaison pour la production de moules et procede de production de moules
EA038564B1 (ru) Аминокислотосодержащая смесь формовочных материалов для изготовления формованных изделий для литейной промышленности
EP2456582B1 (fr) Procédé d'obtention d'un corps formé à partir d'un mélange granulaire
JP2009537328A5 (ja) ヘキサのないシェル砂
US8133933B2 (en) Binder compositions compatible with thermally reclaiming refractory particulate material from molds used in foundry applications
JP5595539B2 (ja) シェル砂における臭気の除去の方法
JP2004154804A (ja) 鋳型用レジンコーテッドサンド及び鋳型の製造方法
US4478269A (en) Furan Resin coated aggregate
JP2007326122A (ja) 鋳型造型用粘結剤組成物とその製造方法、鋳型造型用砂組成物および鋳型の製造方法
JP2009119505A (ja) 鋳型造型用粘結剤組成物とその製造方法、鋳型造型用砂組成物および鋳型の製造方法
FR2492289A1 (fr) Composition de liant et procede de fabrication de moules et noyaux de fonderie
JPS60145237A (ja) 鋳物砂用粘結組成物
JPH0491844A (ja) 鋳物用レジンコーテッドサンド
JPS60121037A (ja) 鋳型用粘結組成物
JPS5874710A (ja) 固形レゾ−ル型フエノ−ル樹脂の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150326

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013011212

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B22C0001220000

Ipc: B22C0001020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160408

RIC1 Information provided on ipc code assigned before grant

Ipc: B22C 1/02 20060101AFI20160331BHEP

Ipc: B22D 21/04 20060101ALI20160331BHEP

Ipc: C22C 38/00 20060101ALI20160331BHEP

Ipc: C22C 21/00 20060101ALI20160331BHEP

Ipc: B22C 1/22 20060101ALI20160331BHEP

Ipc: B22C 9/12 20060101ALI20160331BHEP

Ipc: C22C 37/00 20060101ALI20160331BHEP

Ipc: B22C 9/02 20060101ALI20160331BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 826376

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013011212

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 826376

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161208

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170107

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013011212

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160910

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

26N No opposition filed

Effective date: 20170608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160910

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20170823

Year of fee payment: 5

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602013011212

Country of ref document: DE

Representative=s name: EISENFUEHR SPEISER PATENTANWAELTE RECHTSANWAEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602013011212

Country of ref document: DE

Owner name: HUETTENES-ALBERTUS CHEMISCHE WERKE GESELLSCHAF, DE

Free format text: FORMER OWNER: HUTTENES ALBERTUS FRANCE, BRENOUILLE, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181004

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180910

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190920

Year of fee payment: 7

Ref country code: TR

Payment date: 20190905

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20190708

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013011212

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200910

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210812

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930