EP2881492B1 - Verfahren zur Aufkohlung eines Tiefziehartikels oder eines Stanzbiegeartikels aus austenitischem nichtrostendem Edelstahl - Google Patents

Verfahren zur Aufkohlung eines Tiefziehartikels oder eines Stanzbiegeartikels aus austenitischem nichtrostendem Edelstahl Download PDF

Info

Publication number
EP2881492B1
EP2881492B1 EP13196076.7A EP13196076A EP2881492B1 EP 2881492 B1 EP2881492 B1 EP 2881492B1 EP 13196076 A EP13196076 A EP 13196076A EP 2881492 B1 EP2881492 B1 EP 2881492B1
Authority
EP
European Patent Office
Prior art keywords
gas
gas mixture
article
process step
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13196076.7A
Other languages
English (en)
French (fr)
Other versions
EP2881492A1 (de
Inventor
Cord-Hinrich Bremer
Rolf Lange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubert Stueken & Co KG GmbH
Original Assignee
Hubert Stueken & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubert Stueken & Co KG GmbH filed Critical Hubert Stueken & Co KG GmbH
Priority to PL13196076T priority Critical patent/PL2881492T3/pl
Priority to EP13196076.7A priority patent/EP2881492B1/de
Priority to US14/557,574 priority patent/US9738962B2/en
Priority to CN201410737053.1A priority patent/CN104451534B/zh
Publication of EP2881492A1 publication Critical patent/EP2881492A1/de
Application granted granted Critical
Publication of EP2881492B1 publication Critical patent/EP2881492B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated

Definitions

  • the invention relates to a method for carburizing a thermoformed article or a stamped and bent article made of austenitic stainless steel with a wall thickness which is at least partially suitable for such articles.
  • customary low wall thicknesses are below 2000 ⁇ m.
  • Such stainless steel articles are made of very thin sheets by tensile or compression bending and sometimes take on very filigree structures.
  • articles with varying or constant wall thickness can be produced, whereby they then have a wall thickness of less than 2000 ⁇ m, at least in regions or as a whole.
  • filigree articles are used in a variety of fields of technology such. used as bearing covers in gearboxes, valve seats in ABS systems or as sample carriers for hazardous substances in high-precision measurements where they are exposed to extreme mechanical, thermal and chemical stresses.
  • the demand for high hardness corrosion resistant materials is therefore correspondingly high.
  • the US 6,461,448 shows a method for carburizing a steel article, wherein said steel article is treated in a Schmelzalkalibad.
  • Such an aggressive type of treatment leads to filigree articles in the context of the invention due to the small wall thickness sometimes severe corrosion phenomena, which has a highly inhomogeneous edge layer result.
  • liquid treatments in filigree articles due to incomplete surface wetting lead to unsatisfactory results.
  • the EP 0 678 589 B1 discloses in this context a method of carburizing an austenitic metal.
  • the metal is exposed to a fluorine-containing gas.
  • Fluorine-containing gases are highly corrosive due to their reactivity and, as a result, aggressively affect the surface of the metal. While the resulting removal of surface is even desirable for articles with high wall thickness due to a corresponding material wealth, it can not be compensated for thin-walled thermoforming and stamping bending articles and leads to the irreversible destruction of the article.
  • the gases used there due to their high toxicity, their high corrosiveness and their highly environmentally hazardous properties enormous demands on the reactor to be used, storage and work safety.
  • the EP 1 553 204 A1 discloses a method of edge hardening an austenitic steel part.
  • the method is characterized in that the steel part is heated in a first process step to a temperature between 200 ° C and 500 ° C for a time between 10 minutes and 3 hours.
  • the heating takes place in an atmosphere consisting of between 0.5 to 20% by volume of a halogen gas or a halide gas and the balance of nitrogen, hydrogen or an inert gas to activate the steel surface.
  • the surface of the steel part is nitrocarburized in a second process step. This is done within a temperature range of 430 ° C to 600 ° C for 20 minutes or more within a mixed atmosphere comprising ammonia for nitrification and carbon monoxide and / or methane for carburizing.
  • D3 discloses a method for carburizing a steel part.
  • the steel part is heated in a first process step to a temperature between 500 ° F and 600 ° F in a halogenated hydrogen atmosphere, preferably HCL or HF.
  • a halogenated hydrogen atmosphere preferably HCL or HF.
  • the activation with strong bases the coating with iron or a treatment in the cyanide melt bath can be used for the activation.
  • the thus activated steel part is then initially heated to a temperature of 1125 ° C.
  • Said initial carburizing temperature is cooled to 925 ° F in the course of the carburizing process.
  • hydrocarbon gases such as methane, ethane and propane, oxygen-containing gases such as carbon monoxide and carbon dioxide or mixtures of these gases such as synthesis gases can be used as the carburizing gas.
  • the EP 1 193 413 A1 discloses a method for carburizing an austenitic steel roller bearing.
  • said roller bearing is activated at a temperature between 200 ° C and 400 ° C a fluorine-containing gas, preferably NF3 in the nitrogen.
  • the activated rolling bearing is treated at a temperature between 460 ° C and 520 ° C with a carburizing gas.
  • Said carburizing gas may consist of either RX gas or a gas containing an unsaturated hydrocarbon, preferably acetylene or ethylene.
  • the EP 0 497 409 A2 discloses a method of edge hardening an austenitic steel part.
  • the steel part is either at a temperature between 250 ° C and 400 ° C in a fluoride-containing gas atmosphere or at a temperature between 100 ° C. and heated at 250 ° C in a fluorine-containing atmosphere.
  • the steel part activated in the first step would be heated in a second process step to a temperature of 530 ° C and treated in an atmosphere consisting of nitrogen and hydrogen over a period of 30 minutes.
  • the activated steel part is then nitrocarborated in an ammonia-containing gas mixture at a temperature of 480 ° C to 700 ° C over a period of three to five hours.
  • the ammonia-containing atmosphere may be formed in particular of ammonia and RX gas or ammonia, carbon dioxide and RX gas.
  • thermoforming and stamping bending articles With the invention, a method with mild conditions is proposed in an advantageous manner, which are tailored to the specifics of thin-walled thermoforming and stamping bending articles.
  • the article is introduced into an oven for carrying out the method. It has been shown that in particular oxygen and water residues interfere with the surface hardening. To exclude these disturbing factors, the article is heated to a temperature which is above the boiling point of water. Preference is given here to a temperature of 110 ° C to 140 ° C, more preferably 120 ° C.
  • the oxygen-containing atmosphere in the furnace is replaced in accordance with the invention by a first gas mixture.
  • the furnace therefore advantageously has gas inlets and gas outlets.
  • the furnace may be provided to flood the furnace with an inert gas before the introduction of the first gas mixture.
  • the oxygen displacement is accelerated in an advantageous manner and a potentially existing hazard potential, resulting from the contact of the oxygen-containing normal atmosphere with the first gas mixture is lowered.
  • the inert gas it is preferable to use known chemically unreactive gases such as, in particular, nitrogen or argon.
  • Stainless steels include, among others, chromium as an alloying constituent. Upon contact with atmospheric oxygen, a passivating and corrosion-resistant chromium (III) oxide layer is formed on the surface of the material.
  • the first gas mixture has reducing properties in order to avoid further oxidation of the chromium.
  • this gas mixture already initiated the depassivation of the surface.
  • the first gas mixture consists of H2 and N2. It has been found that this gas mixture, in particular in conjunction with the mild temperature of the first process step, exerts a particularly mild and advantageous effect on the chromium oxide layer without adversely affecting the morphology of the surface of the filigree articles.
  • the oxygen concentration is measured continuously or at intervals by means of a sensor.
  • a control unit connected to the sensor checks the actual value here continuously or at intervals with a freely selectable desired value and releases the furnace in the case of an identity between the actual and desired value for a second method step.
  • the inventive method is thereby greatly simplified in an advantageous manner and minimizes in this way possible user-side sources of error.
  • a second method step in which the article is heated to the target temperature, the second temperature, for the carburization.
  • the second temperature is chosen so that it is well below the recrystallization temperature of strongly cold-worked iron alloys (680 ° C). A possible change in the morphology of the surface is thereby effectively prevented, whereby the formation of a homogeneous surface layer is promoted.
  • the second temperature is 450 ° C to 550 ° C and preferably 500 ° C.
  • the heating phase serves in particular the careful and complete depassivation of the chromium oxide layer.
  • the heating rate in a certain temperature range between 0.5 and 1 ° C / min, more preferably between 0.5 and 0.7 ° C / min and more preferably 0.5 ° C / min.
  • the temperature range in which this low heating rate is selected is preferably 420 ° C to 550 ° C, more preferably 450 ° C to 500 ° C, and most preferably 480 ° C to 500 ° C.
  • the first gas mixture is replaced by a second gas mixture in the second method step. It has been found that mild depassivation of the thin-walled deep-drawn parts takes place during the heating phase to the second temperature by a gas mixture consisting of H 2 , N 2 and a carbon-containing gas from an unsaturated hydrocarbon.
  • a gas mixture consisting of H 2 , N 2 and a carbon-containing gas from an unsaturated hydrocarbon.
  • the low heating rate may preferably be a particularly slow and therefore mild and easy to control Depassivation of the chromium oxide layer can be achieved.
  • the article is treated with additives which selectively or completely dissolve the passive layer.
  • additives which selectively or completely dissolve the passive layer.
  • it means salt compounds and / or organic substances and acid generators, which are applied in solid or liquid form to the product or in the oven.
  • the application is preferably carried out before the article is placed in the oven or during the second process step.
  • solids and / or liquids are used which form acid reaction products in conjunction with the reaction gases, which would give a pH ⁇ 7 when introduced into water, as the application of the substances has proven particularly advantageous directly on or in the article surface , As a result, local depassivation processes, which initiate and promote uniform depassivation earlier, already occur at low temperatures.
  • an unsaturated hydrocarbon in particular ethyne used.
  • elemental nitrogen is used in the second gas mixture.
  • the temperature is measured continuously or at intervals by means of a sensor.
  • the control unit connected to the sensor checks the actual value here continuously or at intervals with a freely selectable setpoint value for the second temperature and releases the oven in the case of an identity between the actual and setpoint values for a third method step.
  • the inventive method is thereby greatly simplified in an advantageous manner and minimizes in this way possible user-side sources of error.
  • a third method step is provided in which the deep-drawn part is kept constant at the second temperature.
  • the third step in this context serves to carburize the thin-walled deep-drawn part. It has been found that the second temperature advantageously allows a careful construction of the surface layer to be hardened. The diffusion of the carbon into the edge region of the deep-drawn part takes place slowly at these temperatures, is therefore easy to control and causes the formation of a homogeneous carbon-rich surface layer. Too high a temperature is to avoid in any case, as it comes to the formation of irregular layers and the formation of carbide particles due to the high diffusion rate and the high kinetic energy of the molecules involved.
  • the second gas mixture is replaced by a third gas mixture, which is particularly suitable for gentle carburizing under mild conditions.
  • a gas mixture which is composed of a hydrogen-containing gas, a nitrogen-containing gas and a carbon-containing gas. It is further provided according to the invention to add a further carbon-containing component to this gas mixture, whereby the formation of a homogeneous carbon-rich surface layer is promoted by the two different carbon components in a synergetic manner.
  • the carbon-containing component of the second gas mixture according to the invention an unsaturated hydrocarbon, in particular ethyne, is used .
  • the second gas mixture contains elemental nitrogen.
  • the individual concentrations of the gas components are measured continuously or at intervals by means of respective sensors.
  • the control unit connected to the sensors checks the respective actual values here continuously or at intervals with freely selectable desired values for the respective concentration of the gas component and compensates for changes within a fault tolerance continuously or at intervals.
  • the process control is advantageously simplified and allows the provision of constant process conditions, which is for the construction of a homogeneous carbon-rich surface layer of crucial importance.
  • the layer thickness of the carbon-rich surface layer can be adjusted over the gassing time.
  • a period of 2 to 10 hours is required to generate a 10-40 microns thick edge layer.
  • control unit which has a corresponding device for time recording, releases the furnace for the fourth method step after the expiration of a freely selectable carburizing time.
  • the inventive method is thereby greatly simplified in an advantageous manner and minimizes in this way possible user-side sources of error.
  • a fourth method step is provided in which the deep-drawn part is cooled to a third temperature. It is provided here, the deep-drawn part to a temperature of 50 ° C to 80 ° C and more preferably cool to 60 ° C.
  • the choice of atmosphere in the cooled is crucial for the formation of a homogeneous surface layer. It is therefore provided according to the invention to replace the third gas mixture by a fourth gas mixture.
  • the fourth gas mixture consists of a hydrogen-containing gas and a nitrogen-containing gas. It is envisaged here that the fourth gas mixture is formed from H2 and N2.
  • the composition of the fourth gas mixture advantageously from 5% to 25% H2 and 75% to 95% N2, more preferably 5% to 10% H2 and 90% to 95% N2 and more preferably 5% H2 and 95% N2. It has been found that the cooling according to the invention of the thin-walled deep-drawn part effectively prevents the escape of the carbon from the hardened edge layer.
  • the invention relates to an edge-hardened thermoforming article with very small wall thicknesses.
  • the deep-drawing article produced by the method according to the invention has a soft, elastic core with a hardness of 350 to 400 HV1 and a hard carbon-rich surface layer.
  • the edge layer is free of defects and / or particles, circumferentially completely closed and has a substantially planar surface.
  • the thin-walled thermoforming article produced by the method according to the invention has mechanical properties of unprecedented quality.
  • thermoforming article produced by means of the method according to the invention has in its edge region a carbon-rich layer with a hardness of 700 to 1000 HV0.01 and with a layer thickness of 10 to 40 ⁇ m.
  • the corrosion and abrasion resistance of the thermoforming article is better than that of the starting material.
  • the former in particular, is surprising in that carburizing generally worsens the corrosion properties of a steel product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Aufkohlung eines Tiefziehartikels oder eines Stanzbiegeartikels aus austenitischem nichtrostendem Edelstahl mit einer wenigstens bereichsweise für solche Artikel üblichen geringen Wandstärke.
  • Bei Tiefziehartikeln und Stanzbiegeartikeln im Sinne der Erfindung liegen übliche geringe Wandstärken unterhalb von 2000 µm. Solche Edelstahlartikel werden aus sehr dünnen Blechen durch Zugdruckumformen oder Stanzbiegen hergestellt und nehmen mitunter sehr filigrane Strukturen an. Je nach verwendetem Verfahren können Artikel mit variierender oder konstanter Wandstärke hergestellt werden, wodurch diese dann wenigstens bereichsweise oder in Gänze eine Wandstärke von weniger als 2000 µm aufweisen.
  • Diese filigranen Artikel werden in den unterschiedlichsten Bereichen der Technik wie z.B. als Lagerabdeckung in Getrieben, Ventilsitze in ABS-Systemen oder als Probenträger für Gefahrstoffe bei Hochpräzisionsmessungen eingesetzt und sind dort extremen mechanischen, thermischen und chemischen Belastungen ausgesetzt. Der Bedarf an korrosionsbeständigen Materialien mit hoher Härte ist daher dementsprechend hoch.
  • Die Qualität solcher gehärteten Artikel, insbesondere bei solchen Teilen, die ein hohes Verhältnis von Länge zu Durchmesser besitzen (Aspektverhältnis) und/oder die Stickstoff enthalten, lässt allerdings bislang sowohl hinsichtlich der mechanischen Beständigkeit, der Schweißeignung als auch der Korrosionsbeständigkeit zu wünschen übrig. Abhilfe liefern hier Verfahren auf Kohlenstoffbasis. Diese eignen sich jedoch nur eingeschränkt für schöpfende Tiefzieh- oder Stanzbiegeartikel. Es entstehen durch das Randschichthärten mit Kohlenstoff Verschmutzungen, die sich gemäß dem aktuellen industriellen Standard bei schöpfenden Teilen nicht mehr wirtschaftlich entfernen lassen. Wendet man aus dem Stand der Technik bekannte und etablierte Verfahren zur Randschichthärtung auf Artikel mit sehr dünner Wandstärke und hohem Aspektverhältnis an, so lassen sich keine industriell reproduzierbaren und den Qualitätsansprüchen genügende Randschichten herstellen.
  • Der Grund für diese Ergebnisse ist vor allem in den zum Teil extremen Behandlungsbedingungen der etablierten Verfahren zu suchen.
  • So zeigt zum Beispiel die US 2012/111454 ein Hochtemperaturverfahren zur Aufkohlung von nichtrostenden Stahlbarren. In diesem Verfahren werden Aufkohlungstemperaturen von 760 °C - 1200 °C verwendet. Verfahren mit derart hohen Temperaturen sind für die Randschichthärtung dünnwandiger Tiefzieh- und Stanzbiegeartikel nicht anwendbar, da sie eine thermische Deformation der zum Teil sehr filigranen Strukturen bewirken und somit unbrauchbar machen.
  • Die US 6,461,448 zeigt ein Verfahren zur Aufkohlung eines Stahlartikels, bei dem besagter Stahlartikel in einem Schmelzalkalibad behandelt wird. Eine solch aggressive Art der Behandlung führt bei filigranen Artikeln im Sinne der Erfindung aufgrund der geringen Wandstärke zu zum Teil erheblichen Korrosionserscheinungen, was eine in hohem Maße inhomogene Randschicht zur Folge hat. Darüber hinaus hat es sich gezeigt, dass Flüssigkeitsbehandlungen bei filigranen Artikeln aufgrund einer unvollständigen Oberflächenbenetzung zu unbefriedigenden Ergebnissen führen.
  • Die EP 0 678 589 B1 offenbart in diesem Zusammenhang ein Verfahren zum Aufkohlen eines austenitischen Metalls. Hier wird das Metall mit einem fluorhaltigen Gas beaufschlagt. Fluorhaltige Gase sind aufgrund ihrer Reaktionsfreudigkeit hochkorrosiv und wirken infolgedessen aggressiv auf die Oberfläche des Metalls ein. Während der damit bewirkte Oberflächenabtrag bei Artikeln mit hoher Wandstärke infolge eines entsprechenden Materialreichtums sogar erwünscht ist, kann er bei dünnwandigen Tiefzieh- und Stanzbiegeartikeln nicht kompensiert werden und führt zur irreversiblen Zerstörung des Artikels. Darüber hinaus stellen die dort eingesetzten Gase aufgrund ihrer hohen Giftigkeit, ihrer hohen Korrosivität und ihrer stark umweltgefährdenden Eigenschaften enorme Ansprüche an den zu verwendenden Reaktor, die Lagerung und die Arbeitssicherheit.
  • Die EP 1 553 204 A1 offenbart ein Verfahren zur Randhärtung eines austenitischen Stahlteils. Das Verfahren zeichnet sich dadurch aus, dass das Stahlteil in einem ersten Verfahrensschritt auf eine Temperatur zwischen 200°C und 500°C für eine Zeit zwischen 10 Minuten und 3 Stunden erwärmt wird. Die Erwärmung findet in einer Atmosphäre statt, die zwischen 0,5 bis 20 Vol.-% eines Halogengases oder eines Halogenitgases und der Rest aus Stickstoff, Wasserstoff oder einem Inertgas zur Aktivierung der Stahloberfläche besteht. Nach der Aktivierung der Stahloberfläche wird die Oberfläche des Stahlteils in einem zweiten Verfahrensschritt nitrocarboriert. Dies geschieht innerhalb eines Temperaturbereichs von 430°C bis 600°C für 20 Minuten oder mehr innerhalb einer Mischatmosphäre aufweisend Ammoniak zur Nitrigierung und Kohlenstoffmonoxid und/oder Methan zur Carborierung.
  • Die D3 offenbart ein Verfahren zur Aufkohlung eines Stahlteils. Zur initialen Aktivierung der Stahloberfläche wird das Stahlteil in einem ersten Verfahrensschritt auf eine Temperatur zwischen 500°F und 600°F in einer halogenen Wasserstoffatmosphäre, vorzugsweise HCL oder HF, erhitzt. Anstelle besagter Gasbehandlung kann zur Aktivierung auch die Kontaktierung mit starken Basen, die Beschichtung mit Eisen oder eine Behandlung im Cyanidschmelzbad genutzt werden. Zur Aufkohlung wird das derart aktivierte Stahlteil dann initial auf eine Temperatur von 1125°C erhitzt. Besagte initiale Aufkohlungstemperatur wird im Laufe des Aufkohlungsprozesses auf 925°F abgekühlt. Als Aufkohlungsgas können insbesondere Kohlenwasserstoffgase wie Methan, Ethan und Propan, sauerstoffhaltige Gase wie Kohlenstoffmonoxid und Kohlenstoffdioxid oder Mischungen dieser Gase wie Synthesegase eingesetzt werden.
  • Die EP 1 193 413 A1 offenbart ein Verfahren zur Aufkohlung eines Rolllagers aus austenitischem Stahl. In einem ersten Verfahrensschritt wird besagtes Rolllager bei einer Temperatur zwischen 200°C und 400°C einem fluorhaltigen Gas, vorzugsweise NF3 im Stickstoff aktiviert. In einem zweiten Verfahrensschritt wird das aktivierte Rolllager bei einer Temperatur zwischen 460°C und 520°C mit einem Aufkohlungsgas behandelt. Besagtes Aufkohlungsgas kann entweder aus RX-Gas oder einem einen ungesättigten Kohlenwasserstoff, vorzugsweise Acetylen oder Äthylen aufweisenden Gas bestehen.
  • Die EP 0 497 409 A2 offenbart ein Verfahren zur Randhärtung eines austenitischen Stahlteils. In einem ersten Verfahrensschritt wird das Stahlteil entweder auf eine Temperatur zwischen 250°C und 400°C in einer Fluorid enthaltenden Gasatmosphäre oder auf eine Temperatur zwischen 100°C. und 250°C in einer fluorgashaltigen Atmosphäre erhitzt. Ferner würde das im ersten Schritt aktivierte Stahlteil in einem zweiten Verfahrensschritt auf eine Temperatur von 530°C erhitzt und in einer Atmosphäre bestehend aus Stickstoff und Wasserstoff über einen Zeitraum von 30 Minuten behandelt. In einem dritten Verfahrensschritt wird das aktivierte Stahlteil dann in einem ammoniakhaltigen Gasgemisch bei einer Temperatur von 480°C bis 700°C über einen Zeitraum von drei bis fünf Stunden nitrocarboriert. Die ammoniakhaltige Atmosphäre kann insbesondere aus Ammoniak und RX-Gas oder Ammoniak, Kohlenstoffdioxid und RX-Gas gebildet sein.
  • Allen vorgenannten Verfahren ist gemein, dass sie zur Depassivierung bzw. Aktivierung der Randschicht des Stahlteils auf aggressive Verfahrensschritte aufweisend halogenhaltige, insbesondere fluorhaltige Gase setzen. Wie bereits ausgeführt wurde, sind diese Verfahrensbedingungen allerdings für Tiefziehteile mit geringen Wandstärken unterhalb von 2000 µm nicht geeignet.
  • Es ist daher die Aufgabe der Erfindung ein wirksames Verfahren zur Aufkohlung von dünnwandigen tiefgezogenen oder stanzgebogenen Edelstahlartikeln bereitzustellen.
  • Zur Lösung dieser Aufgabe wird eine Erfindung mit den Merkmalen gemäß Anspruch 1 vorgeschlagen. Weitere Vorteile und Merkmale ergeben sich aus den Unteransprüchen.
  • Mit der Erfindung wird in vorteilhafterweise ein Verfahren mit milden Bedingungen vorgeschlagen, welche auf die Besonderheiten von dünnwandigen Tiefzieh- und Stanzbiegeartikeln abgestimmt sind.
  • In erfindungsgemäßer Weise wird der Artikel zur Durchführung des Verfahrens in einen Ofen eingebracht. Es hat sich gezeigt, dass insbesondere Sauerstoff- und Wasserreste die Randschichthärtung stören. Zum Ausschluss dieser Störfaktoren wird der Artikel auf eine Temperatur erwärmt, die Oberhalb des Siedepunktes von Wasser liegt. Bevorzugt ist hierbei eine Temperatur von 110 °C bis 140 °C, besonders bevorzugt 120 °C.
  • Darüber hinaus wird die sich im Ofen befindliche sauerstoffhaltige Atmosphäre in erfindungsgemäßer Weise durch ein erstes Gasgemisch ersetzt. Der Ofen verfügt daher vorteilhafterweise über Gaseinlässe und Gasauslässe.
  • Gemäß einer bevorzugten Verfahrensführung kann es vorgesehen sein, den Ofen vor der Einleitung des ersten Gasgemisches mit einem Inertgas zu fluten. Die Sauerstoffverdrängung wird hierbei in vorteilhafter Weise beschleunigt und ein möglicherweise bestehendes Gefahrenpotential, resultierend aus dem Kontakt der sauerstoffhaltigen Normalatmosphäre mit dem ersten Gasgemisch gesenkt. Als Inertgas werden bevorzugterweise bekannte chemisch unreaktive Gase wie insbesondere Stickstoff oder Argon verwendet.
  • Nichtrostende Edelstähle beinhalten unter anderem Chrom als Legierungsbestandteil. An der Materialoberfläche bildet sich durch den Kontakt mit Luftsauerstoff eine passivierende und korrosionsbeständige Chrom-(III)-Oxidschicht aus.
  • Bei der Aufkohlung ist es von enormer Bedeutung, diese passivierende Chrom-Oxidschicht zu entfernen bzw. zu depassivieren, um eine homogene Diffusion des Kohlenstoffs in den Randbereich des Edelstahls zu ermöglichen. Ist dies durch mangelnde Depassivierung nicht gewährleistet, ist die Eindiffusion in Bereichen mit intakter Chrom-Oxidschicht gehemmt und es kommt in der Konsequenz zu einer inhomogenen Härteverteilung der resultierenden Randschicht. Darüber hinaus fördert eine mangelnde Depassivierung in Bereichen mit intakter Chrom-Oxidschicht die Ausbildung von Defektstellen im Randbereich. Diese Defektstellen führen in der Konsequenz zu einer unerwünschten, verminderten Korrosionsbeständigkeit des Stahls.
  • Das erste Gasgemisch hat daher gemäß einem Merkmal der Erfindung reduzierende Eigenschaften, um eine weitere Oxidation des Chroms zu vermeiden. Darüber hinaus wird mit dieser Gasmischung bereits die Depassivierung der Oberfläche eingeleitet. Gemäß einem weiteren Merkmal der Erfindung besteht das erste Gasgemisch aus H2 und N2. Es hat sich gezeigt, dass dieses Gasgemisch insbesondere in Verbindung mit der milden Temperatur des ersten Verfahrensschrittes eine besonders milde und vorteilhafte Wirkung auf die Chromoxidschicht ausübt, ohne die Morphologie der Oberfläche der filigranen Artikel nachteilig zu verändern.
  • Gemäß einem bevorzugten Merkmal der Erfindung wird die Sauerstoffkonzentration mittels eines Sensors stetig oder intervallweise gemessen. Eine mit dem Sensor verbundene Steuerungseinheit überprüft den Ist-Wert hierbei stetig oder intervallweise mit einem frei wählbaren Soll-Wert und gibt den Ofen im Falle einer Identität zwischen Ist- und Soll-Wert für einen zweiten Verfahrensschritt frei. Das erfindungsgemäße Verfahren ist hierdurch in vorteilhafterweise stark vereinfacht und minimiert auf diese Weise mögliche benutzerseitige Fehlerquellen.
  • Erfindungsgemäß ist ein zweiter Verfahrensschritt vorgesehen, in welchem der Artikel auf die Zieltemperatur, die zweite Temperatur, für die Aufkohlung erwärmt wird. Die zweite Temperatur ist so gewählt, dass diese deutlich unterhalb der Rekristallisationstemperatur von stark kaltverformten Eisenlegierungen (680 °C) liegt. Eine mögliche Änderung der Morphologie der Oberfläche ist hierbei wirkungsvoll unterbunden, wodurch die Ausbildung einer homogenen Randschicht gefördert wird. Erfindungsgemäß liegt die zweite Temperatur bei 450 °C bis 550 °C und bevorzugt bei 500 °C. Die Aufheizphase dient hierbei insbesondere der behutsamen und vollständigen Depassivierung der Chromoxidschicht.
  • Es ist vorteilhaft, die Aufheizrate wenigstens in bestimmten Temperaturbereichen möglichst niedrig zu wählen, um eine gleichmäßige Depassivierung zur gewährleisten. Der Anmelder hat in diesem Zusammenhang herausgefunden, dass die Qualität der resultierenden Randschicht von dünnwandigen Tiefziehteilen in besonderer Weise unter einer hohen Aufheizrate leidet. Bevorzugterweise beträgt die Aufheizrate in einem bestimmten Temperaturbereich zwischen 0,5 und 1 °C/min, weiter bevorzugt zwischen 0,5 und 0,7 °C/min und besonders bevorzugt 0,5 °C/min. Der Temperaturbereich in dem diese niedrige Aufheizrate gewählt wird, beträgt bevorzugterweise 420 °C bis 550 °C, weiter bevorzugt 450 °C bis 500 °C und besonders bevorzugt 480 °C bis 500 °C.
  • Gemäß einem Merkmal der Erfindung wird das erste Gasgemisch im zweiten Verfahrensschritt durch ein zweites Gasgemisch ersetzt. Es hat sich hierbei herausgestellt, dass eine milde Depassivierung der dünnwandigen Tiefziehteile während der Aufheizphase auf die zweite Temperatur durch ein Gasgemisch bestehend aus H2, N2 und einem kohlenstoffhaltigen Gas aus einem ungesättigten Kohlenwasserstoff erfolgt. Insbesondere in Verbindung mit der niedrigen Aufheizrate kann bevorzugterweise eine besonders langsame und daher milde und gut steuerbare Depassivierung der Chromoxidschicht erreicht werden.
  • Gemäß einem bevorzugten Merkmal der Erfindung wird der Artikel mit Zusätzen behandelt, die die Passivschicht selektiv oder in Gänze auflösen. Insbesondere sind damit Salzverbindungen und/oder organische Stoffe und Säurebildner gemeint, die in fester oder flüssiger Form auf der Ware oder im Ofen appliziert werden. Die Applikation erfolgt hierbei bevorzugt vor der Verbringung des Artikels in den Ofen oder während des zweiten Verfahrensschritts. Hierfür werden Feststoff und/oder Flüssigkeiten verwendet, die in Verbindung mit den Reaktionsgasen saure Reaktionsprodukte bilden, die bei Einleitung in Wasser einen pH-Wert < 7 ergeben würden, als besonders vorteilhaft hat sich dabei die Applizierung der Stoffe direkt auf oder in der Artikeloberfläche erwiesen. Hierdurch entstehen bereits bei niedrigen Temperaturen lokale Depassivierungsvorgänge, die eine gleichmäßige Depassivierung früher einleiten und fördern.
  • Als kohlenstoffhaltige Komponente wird dem zweiten Gasgemisch erfindungsgemäß ein ungesättigter Kohlenwasserstoff, wie insbesondere Ethin, eingesetzt.
  • Erfindungsgemäß wird dem zweiten Gasgemisch elementarer Stickstoff eingesetzt.
  • Es hat sich darüber hinaus herausgestellt, dass der Einsatz von elementarem Wasserstoff als Bestandteil des zweiten Gasgemisches, insbesondere in Verbindung mit den Depassivierungszusätzen, zur Ausbildung besonders homogener Randschichten führt.
  • Gemäß einem bevorzugten Merkmal der Erfindung wird die Temperatur mittels eines Sensors stetig oder intervallweise gemessen. Die mit dem Sensor verbundene Steuerungseinheit überprüft den Ist-Wert hierbei stetig oder intervallweise mit einem frei wählbaren Soll-Wert für die zweite Temperatur und gibt den Ofen im Falle einer Identität zwischen Ist- und Soll-Wert für einen dritten Verfahrensschritt frei. Das erfindungsgemäße Verfahren ist hierdurch in vorteilhafterweise stark vereinfacht und minimiert auf diese Weise mögliche benutzerseitige Fehlerquellen.
  • Erfindungsgemäß ist ein dritter Verfahrensschritt vorgesehen, bei dem das Tiefziehteil konstant auf der zweiten Temperatur gehalten wird. Der dritte Verfahrensschritt dient in diesem Zusammenhang der Aufkohlung des dünnwandigen Tiefziehteils. Es hat sich gezeigt, dass die zweite Temperatur in vorteilhafterweise einen behutsamen Aufbau der zu härtenden Randschicht ermöglicht. Die Diffusion des Kohlenstoffes in den Randbereich des Tiefziehteils erfolgt bei diesen Temperaturen langsam, ist infolgedessen gut steuerbar und bewirkt den Aufbau einer homogenen kohlenstoffreichen Randschicht. Eine zu hohe Temperatur ist in jedem Fall zu vermeiden, da es infolge der hohen Diffusionsgeschwindigkeit und der hohen kinetischen Energie der beteiligten Moleküle zur Ausbildung unregelmäßiger Schichten und zur Bildung von Carbid-Partikeln kommt.
  • In erfindungsgemäße Weise wird das zweite Gasgemisch durch ein drittes Gasgemisch ersetzt, welches sich insbesondere für eine behutsame Aufkohlung unter milden Bedingungen eignet. Als besonders Vorteilhaft hat sich in diesem Zusammenhang die Verwendung eines Gasgemisches bewährt, welches aus einem wasserstoffhaltigen Gas, einem stickstoffhaltigen Gas sowie einem kohlenstoffhaltigen Gas zusammengesetzt ist. Es ist weiterhin erfindungsgemäß vorgesehen, dieser Gasmischung noch eine weitere kohlenstoffhaltige Komponente beizufügen, wodurch die Ausbildung einer homogenen kohlenstoffreichen Randschicht durch die beiden verschiedenen Kohlenstoffkomponenten in synergetischer Weise gefördert wird.Als kohlenstoffhaltige Komponente des zweiten Gasgemisches wird erfindungsgemäß ein ungesättigter Kohlenwasserstoff, wie insbesondere Ethin, eingesetzt. Erfindungsgemäß enthält das zweite Gasgemisch elementaren Stickstoff.
  • Gemäß einem bevorzugten Merkmal der Erfindung werden die einzelnen Konzentrationen der Gaskomponenten mittels jeweiliger Sensoren stetig oder intervallweise gemessen. Die mit den Sensoren verbundene Steuerungseinheit überprüft die jeweiligen Ist-Werte hierbei stetig oder intervallweise mit frei wählbaren Soll-Werten für die jeweilige Konzentration der Gaskomponente und gleicht Änderungen innerhalb einer Fehlertoleranz stetig oder intervallweise aus. Auf diese Weise ist die Verfahrensführung in vorteilhafter Weise vereinfacht und erlaubt die Bereitstellung konstanter Verfahrensbedingungen, was für den Aufbau einer homogenen kohlenstoffreichen Randschicht von entscheidender Bedeutung ist.
  • Die Schichtdicke der kohlenstoffreichen Randschicht ist hierbei über die Begasungsdauer einstellbar. In vorteilhafter Weise wird zur Generierung einer 10-40 µm dicken Randschicht ein Zeitraum von 2 bis 10 Stunden benötigt.
  • Gemäß einem bevorzugten Merkmal der Erfindung gibt die Steuereinheit, welche zur Zeiterfassung über eine entsprechende Vorrichtung verfügt, nach Ablauf einer frei wählbaren Aufkohlungszeit den Ofen für den vierten Verfahrensschritt frei. Das erfindungsgemäße Verfahren ist hierdurch in vorteilhafterweise stark vereinfacht und minimiert auf diese Weise mögliche benutzerseitige Fehlerquellen.
  • Erfindungsgemäß ist ein vierter Verfahrensschritt vorgesehen, bei dem das Tiefziehteil auf eine dritte Temperatur abgekühlt wird. Es ist hierbei vorgesehen, das Tiefziehteil auf eine Temperatur von 50 °C bis 80 °C und besonders bevorzugt 60 °C abzukühlen.
  • Es hat sich hierbei herausgestellt, dass die Wahl der Atmosphäre in der abgekühlt wird für die Ausbildung einer homogenen Randschicht von entscheidender Bedeutung ist. Es ist daher gemäß der Erfindung vorgesehen, das dritte Gasgemisch durch ein viertes Gasgemisch zu ersetzen. Insbesondere die Wahl eines leicht reduzierend wirkenden Gasgemisches wird als vorteilhaft angesehen. Gemäß der Erfindung besteht das vierte Gasgemisch aus einem wasserstoffhaltigen Gas und einem stickstoffhaltigen Gas. Vorgesehen ist hierbei, dass das vierte Gasgemisch aus H2 und N2 gebildet ist. Um ein schwaches Reduktionspotential zu gewährleisten, besteht die Zusammensetzung des vierten Gasgemisches vorteilhafterweise aus 5 % bis 25 % H2 und 75 % bis 95 % N2, weiter bevorzugt 5 % bis 10 % H2 und 90 % bis 95 % N2 und besonders bevorzugt 5 % H2 und 95 % N2. Es hat sich gezeigt, dass das erfindungsgemäße Abkühlen des dünnwandigen Tiefziehteils ein Entweichen des Kohlenstoffs aus der gehärteten Randschicht wirkungsvoll unterbindet.
  • Des Weiteren betrifft die Erfindung einen randgehärteten Tiefziehartikel mit sehr geringen Wandstärken.
  • Mittels des erfindungsgemäßen Verfahrens ist es nun erstmals möglich, dünnwandige Edelstahlartikel, insbesondere Tiefziehartikel, mit einem hohen Längen-Durchmesserverhältnis mit dünner Wandstärke industriell reproduzierbar und in exzellenter Qualität zu härten.
  • Der mittels des erfindungsgemäßen Verfahrens hergestellte Tiefziehartikel weist einen weichen, elastischen Kern mit einer Härte von 350 bis 400 HV1 und eine harte kohlenstoffreiche Randschicht auf.
  • Gemäß einem Merkmal ist die Randschicht frei von Defektstellen und/oder Partikeln, umlaufend vollständig geschlossen und weist eine im Wesentlichen plan ausgebildete Oberfläche auf.
  • Der mittels des erfindungsgemäßen Verfahrens hergestellte dünnwandige Tiefziehartikel weist infolgedessen mechanische Eigenschaften bisher unerreichter Qualität auf.
  • So weist der mittels des erfindungsgemäßen Verfahrens hergestellte Tiefziehartikel in seinem Randbereich eine kohlenstoffreiche Schicht mit einer Härte von 700 bis 1000 HV0.01 und mit einer Schichtdtcke von 10 bis 40 µm auf.
  • Gemäß einem weiteren Merkmal sind die Körrosions- und die Abriebbeständigkeit des Tiefziehartikels besser als die des Ausgangsproduktes. Insbesondere Ersteres ist insofern überraschend, da eine Aufkohlung die Korrosionseigenschaften eines Stahlproduktes in der Regel verschlechtert.

Claims (5)

  1. Dünnwand-Aufkohlungsverfahren für einen Tiefziehartikel oder einen Stanzbiegeartikel aus austenitischem nichtrostendem Edelstahl,
    bei dem der Artikel, welcher wenigstens bereichsweise eine Wandstärke von weniger als 2000 µm aufweist, in einem ersten Verfahrensschritt in einen Ofen eingebracht und auf eine erste Temperatur zwischen 100 °C und 140 °C erwärmt wird,
    wobei eine im Ofen vorliegende sauerstoffhaltige Atmosphäre durch ein erstes Gasgemisch ersetzt wird, wobei das erste Gasgemisch aus N2 und H2 besteht,
    und bei dem der Artikel in einem zweiten Verfahrensschritt auf eine zweite Temperatur zwischen 450°C und 550 °C erwärmt wird,
    wobei das erste Gasgemisch durch ein zweites Gasgemisch ersetzt wird, wobei das zweite Gasgemisch aus H2, N2 und einem kohlenstoffhaltigen Gas aus einem ungesättigten Kohlenwasserstoff besteht,
    und bei dem der Artikel in einem dritten Verfahrensschritt auf der zweiten Temperatur gehalten wird,
    wobei das zweite Gasgemisch durch ein drittes Gasgemisch ersetzt wird, wobei das dritte Gasgemisch aus einem wasserstoffhaltigen Gas, einem stickstoffhaltigen Gas, einem ersten kohlenstoffhaltigen Gas und einem zweiten kohlenstoffhaltigen Gas besteht, wobei das zweite kohlenstoffhaltige Gas ein anderes Gas ist, als das erste kohlenstoffhaltige Gas,
    und bei dem der Artikel in einem vierten Verfahrensschritt auf eine dritte Temperatur zwischen 50 °C und 80 °C abgekühlt wird,
    wobei das dritte Gasgemisch durch ein viertes Gasgemisch ersetzt wird, wobei das vierte Gasgemisch aus N2 und H2 besteht.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Restsauerstoffgehalt während des ersten Verfahrensschrittes mittels eines Sensors gemessen wird, und dass bei Erreichen eines frei wählbaren Restsauerstoffwertes der zweite Verfahrensschritt eingeleitet wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche 1 oder 2, dadurch gekennzeichnet, dass bei Erreichen der zweiten Temperatur der dritte Verfahrensschritt automatisch eingeleitet wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Artikel mit wenigstens einer depassivierenden Salzverbindung behandelt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach Ablauf einer frei wählbaren Behandlungsdauer der vierte Verfahrensschritt eingeleitet wird.
EP13196076.7A 2013-12-06 2013-12-06 Verfahren zur Aufkohlung eines Tiefziehartikels oder eines Stanzbiegeartikels aus austenitischem nichtrostendem Edelstahl Active EP2881492B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL13196076T PL2881492T3 (pl) 2013-12-06 2013-12-06 Sposób nawęglania wyrobu głęboko tłoczonego lub giętnego wyrobu wykrawanego z austenitycznej, nierdzewnej stali szlachetnej
EP13196076.7A EP2881492B1 (de) 2013-12-06 2013-12-06 Verfahren zur Aufkohlung eines Tiefziehartikels oder eines Stanzbiegeartikels aus austenitischem nichtrostendem Edelstahl
US14/557,574 US9738962B2 (en) 2013-12-06 2014-12-02 Method for the carburization of a deep-drawn part or a stamped-bent part made of austenitic rustproof stainless steel
CN201410737053.1A CN104451534B (zh) 2013-12-06 2014-12-04 用于对由奥氏体防锈不锈钢制成的深拉件或冲压弯折件渗碳的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13196076.7A EP2881492B1 (de) 2013-12-06 2013-12-06 Verfahren zur Aufkohlung eines Tiefziehartikels oder eines Stanzbiegeartikels aus austenitischem nichtrostendem Edelstahl

Publications (2)

Publication Number Publication Date
EP2881492A1 EP2881492A1 (de) 2015-06-10
EP2881492B1 true EP2881492B1 (de) 2017-05-03

Family

ID=49724510

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13196076.7A Active EP2881492B1 (de) 2013-12-06 2013-12-06 Verfahren zur Aufkohlung eines Tiefziehartikels oder eines Stanzbiegeartikels aus austenitischem nichtrostendem Edelstahl

Country Status (4)

Country Link
US (1) US9738962B2 (de)
EP (1) EP2881492B1 (de)
CN (1) CN104451534B (de)
PL (1) PL2881492T3 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4086366A1 (de) 2014-07-31 2022-11-09 Case Western Reserve University Erhöhte aktivierung von selbstpassivierenden metallen
US11193197B2 (en) 2018-06-11 2021-12-07 Swagelok Company Chemical activation of self-passivating metals
US11396692B2 (en) 2019-02-21 2022-07-26 Fluid Controls Private Limited Method of heat treating an article
JP2023523333A (ja) 2020-04-29 2023-06-02 スウェージロック カンパニー 低温軟窒化のための試薬コーティングを使用する自己不動態化金属の活性化

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2633076B2 (ja) * 1990-10-04 1997-07-23 大同ほくさん株式会社 硬質オーステナイト系ステンレスねじおよびその製法
DE3933053C1 (de) 1989-10-04 1990-05-03 Degussa Ag, 6000 Frankfurt, De
TW237484B (de) 1992-09-16 1995-01-01 Daido Oxygen
US5536549A (en) * 1993-08-02 1996-07-16 Tulip Memory Systems, Inc. Austenitic stainless steel substrate for magnetic-recording media
US5556483A (en) * 1994-04-18 1996-09-17 Daido Hoxan, Inc. Method of carburizing austenitic metal
EP0678589B1 (de) 1994-04-18 1999-07-14 Daido Hoxan Inc. Verfahren zur Aufkohlung von austenitischem Metall
US6093303A (en) 1998-08-12 2000-07-25 Swagelok Company Low temperature case hardening processes
US6547888B1 (en) * 2000-01-28 2003-04-15 Swagelok Company Modified low temperature case hardening processes
JP2001330038A (ja) * 2000-03-17 2001-11-30 Nsk Ltd 転がり支持装置
JP3961390B2 (ja) * 2002-10-04 2007-08-22 エア・ウォーター株式会社 耐摩耗性にすぐれた表面炭窒化ステンレス鋼部品およびその製造方法
JP4295350B1 (ja) 2008-09-17 2009-07-15 エア・ウォーター株式会社 熱処理炉の使用方法および熱処理方法ならびに熱処理炉
DK2462253T3 (da) * 2009-08-07 2021-05-31 Swagelok Co Opkulning ved lav temperatur under lavt vakuum
DE102009056875B4 (de) 2009-12-03 2013-07-11 Bosch Mahle Turbo Systems Gmbh & Co. Kg Lagergehäuse, Ladeeinrichtung und Verfahren zur Oberflächenbehandlung eines Lagergehäuses
US8696830B2 (en) 2010-07-21 2014-04-15 Kenneth H. Moyer Stainless steel carburization process
DE112010005929A5 (de) * 2010-10-11 2014-01-02 Ipsen International Gmbh Verfahren und Einrichtung zum Aufkohlen und Carbonitrieren von metallischen Werkstoffen
ITRM20110596A1 (it) * 2010-11-16 2012-05-17 Selex Sistemi Integrati Spa Elemento radiante di antenna in guida di onda in grado di operare in banda wi-fi, e sistema di misura delle prestazioni di una antenna operante in banda c e utilizzante tale elemento radiante.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN104451534B (zh) 2018-04-27
US9738962B2 (en) 2017-08-22
PL2881492T3 (pl) 2017-10-31
CN104451534A (zh) 2015-03-25
EP2881492A1 (de) 2015-06-10
US20150159260A1 (en) 2015-06-11

Similar Documents

Publication Publication Date Title
DE60316294T2 (de) Einsatzhärten von rostfreiem stahl
EP3169734B1 (de) Stahlprodukt mit einer korrosionsschutzbeschichtung aus einer aluminiumlegierung sowie verfahren zu dessen herstellung
DE102006026883B3 (de) Verfahren zum Härten von Edelstahl und Salzschmelze zur Durchführung des Verfahrens
DE3108160C2 (de) Verfahren zur Herstellung von Oxidschichten auf chrom- und/oder nickellegierten Stählen
DE2658174A1 (de) Verfahren zum nitrierhaerten martensitischer staehle
EP2881492B1 (de) Verfahren zur Aufkohlung eines Tiefziehartikels oder eines Stanzbiegeartikels aus austenitischem nichtrostendem Edelstahl
DE102012212426B3 (de) Wälzlagerelement, insbesondere Wälzlagerring
DE102012024616A1 (de) Stahlblech und Formteil daraus
EP3749793B1 (de) Verfahren zur herstellung eines stahlbandes mit verbesserter haftung metallischer schmelztauchüberzüge
DE3042469A1 (de) Nitrid-einsatzhaertung und das dadurch erhaltene erzeugnis
DE10322255A1 (de) Verfahren zur Hochtemperaturaufkohlung von Stahlteilen
EP2881493B1 (de) Verfahren zur Nitrocarburierung eines Tiefziehartikels oder eines Stanzbiegeartikels aus austenitischem nichtrostendem Edelstahl
EP1122331A1 (de) Verfahren zum Nitrieren und/oder Nitrocarburieren von höher legierten Stählen
EP2055801B1 (de) Verfahren zum Härten von Oberflächen von Werkstücken aus Edelstahl und Salzschmelze zur Durchführung des Verfahrens
EP0464265B1 (de) Verfahren zum Aufbringen von Nitridschichten auf Titan
DE1621204B1 (de) Verfahren zur verbesserung der haltbarkeit von chrom schutzschichten auf metallen bei hohen temperaturen in stickstoffhaltiger atomsphäre
EP0366646B1 (de) Verfahren zum Herstellen eines plattierten Formkörpers
DE3039731A1 (de) Korrosionsbestaendiges stahlerzeugnis und verfahren zu dessen herstellung
DE3804824C2 (de)
DE3219071A1 (de) Verfahren zum plattieren von titan mit einer harten schicht
EP0545069A1 (de) Verfahren zur Behandlung von Stählen und Refraktärmetallen
WO2010009718A2 (de) Bauteil bestehend aus einem unlegierten oder niedriglegierten stahl, verfahren zum schutz dieser bauteile gegen coke-abscheidung bzw. metal-dusting
EP1391525A1 (de) Verfahren und Vorrichtung zum Schwärzen von Bauteilen
DE2947799A1 (de) Verfahren zum lokalen schutz von eisen- und stahlteilen bei waermebehandlungen
EP0812929A1 (de) Verfahren zum Nitrieren und/oder Nitrocarburieren metallischer Werkstücke

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150311

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20151214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 8/22 20060101ALI20161222BHEP

Ipc: C23C 8/02 20060101AFI20161222BHEP

Ipc: C21D 1/74 20060101ALI20161222BHEP

INTG Intention to grant announced

Effective date: 20170124

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20170323

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 890075

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013007129

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170903

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013007129

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013007129

Country of ref document: DE

Representative=s name: BRINKMANN & PARTNER PATENTANWAELTE PARTNERSCHA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013007129

Country of ref document: DE

Representative=s name: RAUSCH WANISCHECK-BERGMANN BRINKMANN PARTNERSC, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171206

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131206

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231220

Year of fee payment: 11

Ref country code: IT

Payment date: 20231228

Year of fee payment: 11

Ref country code: FR

Payment date: 20231221

Year of fee payment: 11

Ref country code: CZ

Payment date: 20231127

Year of fee payment: 11

Ref country code: AT

Payment date: 20231221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231123

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240226

Year of fee payment: 11

Ref country code: CH

Payment date: 20240101

Year of fee payment: 11