EP2055801B1 - Verfahren zum Härten von Oberflächen von Werkstücken aus Edelstahl und Salzschmelze zur Durchführung des Verfahrens - Google Patents

Verfahren zum Härten von Oberflächen von Werkstücken aus Edelstahl und Salzschmelze zur Durchführung des Verfahrens Download PDF

Info

Publication number
EP2055801B1
EP2055801B1 EP08018519A EP08018519A EP2055801B1 EP 2055801 B1 EP2055801 B1 EP 2055801B1 EP 08018519 A EP08018519 A EP 08018519A EP 08018519 A EP08018519 A EP 08018519A EP 2055801 B1 EP2055801 B1 EP 2055801B1
Authority
EP
European Patent Office
Prior art keywords
molten salt
weight
stainless steel
salt bath
workpieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08018519A
Other languages
English (en)
French (fr)
Other versions
EP2055801A1 (de
Inventor
Ulrich Dr. Baudis
Michael. Dr. Merz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Durferrit GmbH Thermotechnik
Original Assignee
Durferrit GmbH Thermotechnik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Durferrit GmbH Thermotechnik filed Critical Durferrit GmbH Thermotechnik
Publication of EP2055801A1 publication Critical patent/EP2055801A1/de
Application granted granted Critical
Publication of EP2055801B1 publication Critical patent/EP2055801B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/44Carburising
    • C23C8/46Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/46Salt baths
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/18Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions
    • C23C10/20Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions only one element being diffused
    • C23C10/24Salt bath containing the element to be diffused
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the invention relates to a method for hardening surfaces of workpieces made of stainless steel and a molten salt for carrying out the method.
  • stainless steel Due to its excellent corrosion resistance, stainless steel is used in chemical apparatus engineering, in food technology, in the petrochemical industry, in the offshore sector, in shipbuilding and aircraft construction, in architecture, in building construction and equipment construction and in many other industrial sectors.
  • Corrosion-resistant stainless steel is used when at least 13% by weight chromium is alloyed to an iron material. In most cases nickel, titanium and molybdenum are additionally contained in the iron alloy, as for example in "Stahl Merkblatt 821 Stainless Steel - Properties Information Office Stainless Steel, PF 102205, 40013 Düsseldorf www.edelstahl-rostein.de” and in “ P. Gümpel et al. Stainless Steels, Expert Verlag, Volume 349, Renningen Malmsheim 1998 ", is operated.
  • the steel is generally not sufficiently resistant to corrosion to be considered "stainless steel".
  • the content of metallic chromium in the steel is thus an important criterion for corrosion resistance, as stated in particular in the cited publication by P. Gümpel.
  • a major disadvantage of most common stainless steels such as 1.4301, 1.4441, 1.4541 or 1.4575 is that they are quite soft and thus susceptible to scratching the surface by hard particles such as dust, sand and the like.
  • Most stainless steels - apart from the so-called martensitic stainless steels - are not hardenable by physical methods such as annealing and quenching. The low surface hardness often hinders the use of stainless steel.
  • Another disadvantage of most stainless steels is their strong tendency to seize, that is, to weld the surface of two mutually sliding surfaces due to adhesion.
  • Nitriding or nitrocarburizing in the gas (under ammonia atmosphere), in the plasma (under nitrogen / argon) or in the molten salt (in molten cyanates) enriches the surface of stainless steel with nitrogen to form iron and chromium nitrides.
  • the resulting layers form out of the material, so they are - unlike galvanic or physical layers - not applied from the outside and therefore extremely adherent.
  • hard layers of 5 to 50 ⁇ m thickness are formed. The hardness of such nitrided or nitrocarburized layers on stainless steel reaches over 1000 units on the Vickers hardness scale due to the high hardness of the resulting iron and chromium nitrides.
  • a hard and at the same time corrosion-resistant layer can be thermochemically produced by the so-called Kolster any on stainless steel.
  • This process is mentioned, for example, in "Kolsterizing - Corrosion-resistant O-surface hardening of austenitic stainless steel - Information Sheet of Bodycote Hardiff bv, Parimariboweg 45, NL-7333 Apeldoorn, info@hardiff.de”. fo@hardiff.de "However, the conditions of the process are neither described in the patent literature nor in the generally accessible scientific literature.These components treated have a hard, wear-resistant layer between 10 and 35 ⁇ m thick, the corrosion resistance of the base material is retained. Kolsterised components must not be heated above 400 ° C, otherwise they will lose their corrosion resistance.
  • the DE 10 2006 026 883 B3 relates to a method for hardening stainless steel workpieces by diffusing the elements carbon and / or nitrogen into the workpiece surfaces.
  • the workpieces are immersed in a molten salt and this exposed at temperatures below 450 ° C for a period of 15 minutes to 240 hours.
  • the molten salt contains an activator substance consisting of barium, strontium, magnesium and / or calcium chloride and a carbon-donating substance of a free or complex cyanide.
  • the US 3,840,450 A relates to an electrolytic process for surface hardening of metals.
  • the electrolyte solution may contain acetates.
  • the invention has for its object to provide a method by means of which a hardening of workpieces made of stainless steel is made possible, in which at the same time a high corrosion resistance of the workpieces is obtained.
  • the inventive method is used for hardening surfaces of workpieces made of stainless steel.
  • the workpieces are immersed in a molten salt and this exposed for a period of 24 hours to 240 hours.
  • the temperature of the molten salt is less than 400 ° C.
  • the molten salt has the following composition: potassium acetate with a proportion greater than or equal to 60% by weight and less than 100% by weight sodium ⁇ 100% by weight metal salt ⁇ 2% by weight
  • the metal salt used consists of at least one of the following anions: F - , Cl - , Br - , I - , O 2- , CH 3 COO - , C 2 O 4 2- , CN - , NCO - .
  • the treatment temperature of the workpieces that is, the temperature of the molten salt used in the present invention is smaller than the formation temperature of chromium carbide which is in the range of 420 ° C to 440 ° C, the formation of carbides in the steel matrix becomes is called the lattice structure of the stainless steel, avoided.
  • molten salt according to the invention which contains constituents from which diffusible carbon can be released and suitable activators which cause the release of diffusible carbon at low temperatures.
  • the concentration of active carbon donors (acetates or intermediate carbides) in the molten salt of the invention is very high compared to the concentration of corresponding substances (ammonia, methane, carbon monoxide) in gas atmospheres or in the plasma.
  • the relative Long treatment times of the workpieces in the molten salt are based on the fact that the diffusion rate of carbon is a function of the temperature and significantly decreases at temperatures below 450 ° C. At the low temperatures required to avoid formation of chromium carbide, long diffusion times of 24 to 240 hours must be used. However, the resulting long treatment periods are not critical because stainless steels, especially austenitic stainless steels or so-called. Duplex steels (ferritic - austenitic steels) are very insensitive to such long heat treatment periods, that is, they change their other mechanical properties or the structure so good as not.
  • Stainless steel is usually in the form of an austenitic steel, that is, the iron matrix has the structure of austenite, a face-centered cubic lattice, such as in "Steel Leaflet 821 Stainless Steel - Properties Observatory Stainless Steel, PF 102204, 40013 Dusseldorf www.edelstahl-rustproof .de “and in” P. Gümpel et al. Stainless Steels, Expert Verlag, Volume 349, Renningen Malmsheim 1998 "is described.
  • the base melt is a salt mixture of potassium acetate, sodium acetate and a metal salt. Due to the holding time at a fixed temperature, which is in any case below 400 ° C., and thus below the formation temperature of chromium carbide, and which preferably lies in the range between 320 ° C. and 380 ° C., the acetate decomposes and forms free carbon.
  • the added metal salt can also cause a catalytic decomposition of the acetate to a metal carbide, which in turn decomposes at the existing temperature and releases "atomic" carbon to the stainless steel.
  • the present invention avoids high equipment and energy costs and makes use of a light, easy for less qualified personnel easily executable procedure.
  • the tendency of the stainless steel for eating, that is, for cold welding and thus also the adhesive wear is substantially reduced.
  • the hardness of the surface of the stainless steel is increased from 200 to 300 Vickers to values up to 1000 Vickers, resulting in a high scratch resistance.
  • the metal salt contained in the molten salt of the invention preferably has the cations and anions recited in claims 3 and 4.
  • the molten salt is operated under air.
  • the disadvantage here is that by air contact an accelerated decomposition of the acetates in the molten salt is carried out by oxidation processes, whereby the efficiency in the treatment of the workpieces is reduced in the molten salt.
  • N 2 , Ar, CO, CO 2 or mixtures of these gases can be used as protective gases.
  • the acetates decompose only due to heat, no longer additionally by oxidation processes, that is, the rate of decomposition of acetates is significantly reduced.
  • the decomposition of the acetates can also be reduced with little design effort by the fact that the protective gases introduced into the molten salt, that is initiated. This results in a simultaneous circulation of the molten salt, which leads to a uniform distribution of the salts in the molten salt. In general, a circulation can also take place by introducing air into the molten salt.
  • the molten salt can also be moved mechanically, for example by stirring or tumbling.
  • a mixture of 120 g of potassium acetate and 0.2 g of NiCl 2 is melted in a crucible and at 380 ° C for 53.5 h, a bolt (material: X5 Cr Ni Mo 17-12-2) immersed. After treatment, the bolt is quenched in water. Layer thicknesses of 11 ⁇ m to 13 ⁇ m are formed.
  • the GDOS analysis according to Fig. 2 shows a significant increase of carbon (up to 16%) in this layer ( Fig. 2 shows the carbon content in wt.% depending on the distance from the surface of the workpiece).
  • Fig. 1 shows a cross-section of the workpiece (bolt) in the region of this layer.
  • Fig. 4 shows the concentration of Fe, C, Cr in the workpiece in% by weight as a function of the distance from the surface of the workpiece. How out Fig.4 can be seen, in turn, a significant increase of carbon is obtained in the layer, wherein in the layer, the proportion of Cr, Fe is reduced.
  • Fig. 3 shows a cross-section of the workpiece (bolt) in the region of this layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Härten von Oberflächen von Werkstücken aus Edelstahl sowie eine Salzschmelze zur Durchführung des Verfahrens.
  • Edelstahl wird aufgrund seiner ausgezeichneten Korrosionsbeständigkeit im chemischen Apparatebau, in der Lebensmitteltechnologie, in der petrochemischen Industrie, im Offshorebereich, im Schiffs- und Flugzeugbau, in der Architektur, im Hausbau und Gerätebau und in vielen weiteren Industriebereichen verwendet.
  • Von korrosionsbeständigem Edelstahl spricht man, wenn einem Eisenwerkstoff mindestens 13 Gew.% Chrom zulegiert sind. In den meisten Fällen ist zusätzlich noch Nickel, Titan und Molybdän in der Eisenlegierung enthalten, wie beispielsweise in "Stahl Merkblatt 821 Edelstahl Rostfrei - Eigenschaften Informationsstelle Edelstahl, PF 102205, 40013 Düsseldorf www.edelstahl-rostfrei.de" und in "P.Gümpel et al. Rostfreie Stähle, Expert Verlag, Band 349, Renningen Malmsheim 1998", betrieben ist.
  • Typische austenitische Edelstähle sind die Legierungen der Stähle 1.4301 oder 1.4571 mit folgenden Zusammensetzungen:
    • 1.4301: C 0,05 Si 0,5 Mn 1,4 Cr 18,5 Ni 9,5 Gew.%
    • 1.4571: C 0,03 Si 0,5 Mn 1,7 Cr 17,0 Ni 11,2 Mo 2,2 Ti 0,1 Gew.%
  • Beträgt der Chromgehalt weniger als 13 Gew.%, so ist der Stahl im allgemeinen nicht ausreichend korrosionsbeständig um als "Edelstahl" zu gelten. Der Gehalt an metallischem Chrom im Stahl ist somit ein wichtiges Kriterium für die Korrosionsbeständigkeit, wie insbesondere in der genannten Veröffentlichung von P. Gümpel angeführt ist.
  • Ein großer Nachteil der meisten gebräuchlichen Edelstähle wie 1.4301, 1.4441, 1.4541 oder 1.4575 besteht darin, dass diese ziemlich weich sind und somit anfällig gegen Verkratzen der Oberfläche durch harte Partikel wie Staub, Sand und dergleichen. Die meisten Edelstähle - abgesehen von den sogenannten martensitischen Edelstählen - sind nicht durch physikalische Methoden wie Glühen und Abschrecken härtbar. Die geringe Oberflächenhärte steht der Verwendung des Edelstahls häufig im Wege. Ein weiterer Nachteil der meisten Edelstähle ist ihre starke Neigung zum Fressen, das heißt zum Verschweißen der Oberfläche zweier gegeneinander gleitender Flächen aufgrund von Adhäsion.
  • Um diesem Problem zu begegnen ist es bekannt, eine thermochemische Behandlung von Werkstücken aus Edelstahl durchzuführen. Hierbei wird durch Nitrieren oder Nitrocarburieren im Gas (unter Ammoniakatmosphäre), im Plasma (unter Stickstoff / Argon) oder in der Salzschmelze (in geschmolzenen Cyanaten) die Oberfläche von Edelstahl mit Stickstoff angereichert, wobei sich Eisen- und Chromnitride bilden. Die dabei entstehenden Schichten bilden sich aus dem Werkstoff heraus, sie sind also - anders als bei galvanischen oder physikalischen Schichten - nicht von außen aufgetragen und deshalb extrem haftfest. Je nach Behandlungsdauer bilden sich harte Schichten von 5 bis 50 µm Dicke. Die Härte solcher nitrierter oder nitrocarburierter Schichten auf Edelstahl erreicht wegen der hohen Härte der dabei entstandenen Eisen- und Chromnitride Werte über 1000 Einheiten auf der Härteskala nach Vickers.
  • Das Problem beim praktischen Einsatz solcher nitrierter oder nitrocarburierter Schichten auf Edelstahl besteht darin, dass diese Schichten zwar hart sind, aber die Korrosionsbeständigkeit verlieren. Die Ursache dafür ist die relativ hohe Behandlungstemperatur, die beim Nitrieren oder Nitrocarburieren im Bereich um 580°C liegt. Bei dieser Temperatur bilden die eindiffundierenden Elemente Stickstoff und Kohlenstoff mit dem Chrom stabile Chromnitride (CrN) beziehungsweise Chromcarbide (Cr7C3) im Bereich der Bauteiloberfläche. Auf diese Weise wird das für die Korrosionsbeständigkeit unabdingbare freie Chrom aus der Edelstahlmatrix bis in eine Tiefe von ungefähr 50 µm unter der Oberfläche entfernt und in Chromnitrid oder Chromcarbid umgewandelt. Die Bauteiloberfläche wird aufgrund der Bildung von Eisen- und Chromnitrid zwar hart, aber korrosionsanfällig. Im Gebrauch werden solche Schichten aufgrund von Korrosion rasch abgenutzt beziehungsweise abgetragen.
  • Um dieses Problem zu vermeiden, existieren folgende Verfahrensweisen.
  • Es ist bekannt, dass die Oberflächenhärte auf Edelstahl durch galvanische Beschichtungen, zum Beispiel durch Vernickeln, oder physikalische Beschichtungen, zum Beispiel mittels PVD-Beschichtung (Physical Vapor Deposition) verbessert werden können. Dabei wird jedoch ein artfremder Stoff auf die Oberfläche des Stahls aufgebracht. Die mit dem verschleißenden oder korrosiven Medium in Kontakt stehende Oberfläche ist nicht mehr die Stahloberfläche selbst. Es ergeben sich Probleme der Haftung und der Korrosionsbeständigkeit. Diese Verfahren sind daher zur Verbesserung der Härte und des Verschleißverhaltens von Edelstahl nicht sehr verbreitet.
  • Eine harte und gleichzeitig korrosionsbeständige Schicht kann man durch das so genannte Kolsterisieren auf Edelstahl thermochemisch erzeugen. Dieses Verfahren ist beispielsweise erwähnt in "Kolsterisieren - korrosionsfestes O-berflächenhärten von austenitischem rostfreiem Stahl - Informationsblatt der Bodycote Hardiff bv, Parimariboweg 45, NL-7333 Apeldoorn, info@hardiff.de". fo@hardiff.de". Die Bedingungen des Prozesses sind jedoch weder in der Patentliteratur noch in der allgemein zugänglichen wissenschaftlichen Literatur beschrieben. So behandelte Bauteile weisen eine harte, verschleißfeste Schicht zwischen 10 und 35 µm Dicke auf, die Korrosionsbeständigkeit des Grundwerkstoffs bleibt erhalten. Kolsterisierte Bauteile dürfen nicht über 400°C erhitzt werden, da sie sonst ihre Korrosionsbeständigkeit verlieren.
  • Durch Plasmanitrieren, wie in "H.-J. Spies et al. Mat.-Wiss. u. Werkstofftechnik 30 (1999) 457-464" und in "Y. Sun, T. Bell et al. The Response of Austenitic Stainless Steel to Low Temp. Plasma Nitriding" beschrieben, oder durch Unterdruckaufkohlung bei niedrigen Temperaturen, wie in "D. Günther, F. Hoffmann, M. Jung, P. May: Oberflächenhärtung von austenitischen Stählen unter Beibehaltung der Korrosionsbeständigkeit Härterei-Techn. Mitt. 56 (2001) 74-83", beschrieben, kann man eine übersättigte Lösung von Stickstoff und/oder Kohlenstoff in der Oberfläche von Bauteilen aus Edelstahl erzeugen, die die gewünschten Eigenschaften, das heißt höhere Härte bei unveränderter Korrosionsfestigkeit, aufweist.
  • Beide Verfahren erfordern jedoch einen hohen apparativen Aufwand und hohe Investitions- und Energiekosten, zur Bedienung der Anlagen ist besonders geschultes, meist sogar wissenschaftlich ausgebildetes Personal erforderlich.
  • Die DE 10 2006 026 883 B3 betrifft ein Verfahren zum Härten von aus Edelstahl bestehenden Werkstücke durch Eindiffundieren der Elemente Kohlenstoff und/oder Stickstoff in die Werkstückoberflächen. Die Werkstücke werden in eine Salzschmelze eingetaucht und dieser bei Temperaturen unterhalb von 450°C für einen Zeitraum von 15 Minuten bis 240 Stunden ausgesetzt. Die Salzschmelze enthält neben Kaliumchlorid und Lithiumchlorid eine Aktivatorsubstanz bestehend aus Barium-, Strontium-, Magnesium- und/oder Calciumchlorid sowie eine kohlenstoffspendende Substanz aus einem freien oder komplexen Cyanid.
  • Die US 3,840,450 A betrifft ein elektrolytisches Verfahren zur Oberflächenhärtung von Metallen. Die Elektrolytlösung kann Acetate enthalten.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren bereitzustellen, mittels dessen ein Härten von Werkstücken aus Edelstahl ermöglicht wird, bei welchem zugleich eine hohe Korrosionsbeständigkeit der Werkstücke erhalten wird.
  • Zur Lösung dieser Aufgabe sind die Merkmale des Anspruchs 1 vorgesehen. Vorteilhafte Ausführungsformen und zweckmäßige Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.
  • Das erfindungsgemäße Verfahren dient zum Härten von Oberflächen von Werkstücken aus Edelstahl. Die Werkstücke werden in eine Salzschmelze eingetaucht und dieser für einen Zeitraum von 24 Stunden bis 240 Stunden ausgesetzt. Die Temperatur der Salzschmelze ist kleiner als 400°C. Die Salzschmelze weist folgende Zusammensetzung auf:
    Kaliumacetat mit einem Anteil größer gleich 60 Gew.-% und kleiner 100 Gew.-%
    Natriumacetat < 100 Gew.-%
    Metallsalz ≤ 2 Gew.-%
  • Das verwendete Metallsalz besteht aus wenigstens einem der folgenden Kationen:
    • Li+, Na+, K+, Cs+, Mg2+, Ca2+, Sr2+, Ba2+, Ti3+/4+, V2+/3+/4+/5+, Cr2+/3+, Mn2+/4+, Fe2+/3+, Co2+/3+, Ni2+/3+, Cu+/2+, Zn2+, Mo4+/5+/6+, Ru2+/3+, Rh1+/3+, Pd2+, W6+, Os4+, Ir+/4+
  • Weiterhin besteht das verwendete Metallsalz aus wenigstens einem der folgenden Anionen: F-, Cl-, Br-, I-, O2-, CH3COO-, C2O4 2-, CN-, NCO-.
  • Da bei dem erfindungsgemäßen Verfahren die Behandlungstemperatur der Werkstücke, das heißt die Temperatur der erfindungsgemäß eingesetzten Salzschmelze, kleiner ist als die Bildungstemperatur von Chromcarbid, die im Bereich von 420°C bis 440°C liegt, wird die Bildung von Carbiden in der Stahlmatrix, das heißt der Gitterstruktur des Edelstahls, vermieden.
  • Da die Bildung von Chromcarbiden weitgehend vermieden wird, bedeutet dies, dass das für die Korrosionsbeständigkeit der Edelstahl-Werkstücke unabdingbare freie Chrom nicht aus dem Oberflächenbereich der Werkstücke verdrängt wird. Die Werkstücke weisen somit harte, verschleißhemmende und leicht gleitende Oberflächen bei gleichzeitig hoher Korrosionsbeständigkeit auf.
  • Wesentlich zur Erzielung dieser vorteilhaften Wirkungen ist der Einsatz der erfindungsgemäßen Salzschmelze, die Bestandteile enthält, aus denen diffusionsfähiger Kohlenstoff freigesetzt werden kann und geeignete Aktivatoren, die die Freisetzung von diffusionsfähigem Kohlenstoff bei niedrigen Temperaturen bewirken.
  • Die Konzentration der aktiven kohlenstoffabgebenden Stoffe (Acetate oder sich als Zwischenstufe bildende Carbide) ist in der erfindungsgemäßen Salzschmelze sehr hoch verglichen mit der Konzentration entsprechender Stoffe (Ammoniak, Methan, Kohlenoxid) in Gasatmosphären oder im Plasma. Die relativ langen Behandlungsdauern der Werkstücke in der Salzschmelze beruhen darauf, dass die Diffusionsgeschwindigkeit von Kohlenstoff eine Funktion der Temperatur ist und bei Temperaturen unter 450°C signifikant sinkt. Bei den notwendigen niedrigen Temperaturen zur Vermeidung der Chromcarbidbildung müssen lange Diffusionszeiten von 24 bis 240 h angewendet werden. Die sich dadurch ergebenden langen Behandlungsdauern sind jedoch unkritisch, da Edelstähle, insbesondere austenitische rostfreie Stähle oder sog. Duplex-Stähle (ferritisch - austenitische Stähle), gegen solch lange Wärmebehandlungsdauern sehr unempfindlich sind, das heißt sie verändern ihre sonstigen mechanischen Eigenschaften oder das Gefüge so gut wie nicht.
  • Edelstahl liegt meistens in der Form eines austenitischen Stahls vor, das heißt die Eisenmatrix hat die Struktur des Austenits, ein kubisch flächenzentriertes Gitter, wie beispielsweise in "Stahl Merkblatt 821 Edelstahl Rostfrei - Eigenschaften Informationsstelle Edelstahl, PF 102204, 40013 Düsseldorf www.edelstahl-rostfrei.de" und in "P. Gümpel et al. Rostfreie Stähle, Expert Verlag, Band 349, Renningen Malmsheim 1998" beschrieben ist.
  • In diesem Gitter kann sich ein nichtmetallisches Element wie Kohlenstoff in fester Lösung aufhalten. Gelingt es, Kohlenstoff in die Oberfläche eines austenitischen Edelstahls einzubringen und dort in fester gesättigter oder sogar übersättigter Lösung zu halten, so treten zwei Effekte ein:
    1. (a) Wenn Kohlenstoff unterhalb der Bildungstemperatur des Chromcarbids (420 - 440°C) eindiffundiert, bilden sich keine Carbide des Chroms. Demzufolge wird der Legierungsmatrix im Bereich der Diffusionsschicht kein Chrom entzogen und die Korrosionsbeständigkeit des Edelstahls bleibt erhalten.
    2. (b) Die eindiffundierten Elemente dehnen das austenitische Gitter und führen zu einer starken Druckspannung im Bereich der Diffusionszone. Dies wiederum führt zu einer beträchtlichen Härtesteigerung. In der wissenschaftlichen Literatur spricht man von expandiertem Austenit oder einer so bezeichneten S-Phase, die eine Härte bis 1000 auf der Vickers Skala annehmen kann. Dies ist in "Y. Sun, T. Bell et al. The Response of Austenitic Stainless Steel to Low Temp. Plasma Nitriding" erwähnt.
  • In der vorliegenden Erfindung werden diese Überlegungen unter Verwendung einer Salzschmelze als reaktives Medium und als Wärmeüberträger genutzt, wobei die Salzschmelze folgende Zusammensetzung aufweist:
    Kaliumacetat mit einem Anteil größer gleich 60 Gew.-% und kleiner als 100 Gew.-%
    Natriumacetat < 100 Gew.-%
    Metallsalz ≤ 0-2 Gew.-%
    wobei das verwendete Metallsalz aus wenigstens einem der folgenden Kationen besteht:
    • Li+ Na+, K+,Cs+, Mg2+, Ca2+,Sr2+, Ba2+, Ti3+/4+, V2+/3+/4+/5+, Cr2+/3+, Mn2+/4+, Fe2+/3+, Co2+/3+, Ni2+/3+, Cu+/2+, Zn2+, Mo4+/5+/6+, Ru2+/3+, Rh1+/3+, Pd2+, W6+, Os4+, Ir+/4+,
    und wobei das verwendete Metallsalz aus wenigstens einem der folgenden Anionen besteht: F-, Cl-, Br-, I-, O2-, CH3COO-, C2O4 2-, CN-, NCO-.
  • Als Basisschmelze dient ein Salzgemisch aus Kaliumacetat, Natriumacetat und eines Metallsalzes. Durch die Haltedauer bei einer festgelegten Temperatur, die in jedem Fall unterhalb von 400°C und damit unter der Bildungstemperatur von Chromcarbid liegt, und welche bevorzugt im Bereich zwischen 320°C und 380°C liegt, zersetzt sich das Acetat und bildet freien Kohlenstoff. Das zugesetzte Metallsalz kann ebenfalls eine katalytische Zersetzung des Acetates zu einem Metallcarbid bewirken, welches sich wiederum bei der vorhandenen Temperatur zersetzt und "atomaren" Kohlenstoff an den Edelstahl abgibt.
  • Die vorliegende Erfindung vermeidet hohen apparativen und energetischen Aufwand und bedient sich einer leichten, auch für weniger qualifiziertes Personal leicht ausführbaren Verfahrensweise.
  • Durch die Erfindung wird die Neigung des Edelstahls zum Fressen, das heißt zum Kaltverschweißen und damit auch der adhäsive Verschleiß wesentlich reduziert. Die Härte der Oberfläche des Edelstahls wird von 200 bis 300 Vickers auf Werte bis zu 1000 Vickers gesteigert, wodurch eine hohe Kratzfestigkeit entsteht.
  • Das in der erfindungsgemäßen Salzschmelze enthaltene Metallsalz weist bevorzugt die in den Ansprüchen 3 und 4 angeführten Kationen und Anionen auf.
  • In einer besonders kostengünstigen und einfachen Ausgestaltung der Erfindung wird die Salzschmelze unter Luft betrieben. Nachteilig hierbei ist jedoch, dass durch Luftkontakt eine beschleunigte Zersetzung der Acetate in der Salzschmelze durch Oxidationsprozesse erfolgt, wodurch der Wirkungsgrad bei der Behandlung der Werkstücke in der Salzschmelze reduziert wird.
  • Dieser Nachteil kann dadurch vermieden werden, wenn die Salzschmelze in einer Schutzgasatmosphäre betrieben wird. Dabei können als Schutzgase N2, Ar, CO, CO2 oder Mischungen dieser Gase verwendet werden. In diesem Fall zerfallen die Acetate nur noch aufgrund von Wärmeeinwirkung, nicht mehr zusätzlich durch Oxidationsprozesse, das heißt die Zerfallsrate der Acetate ist erheblich reduziert.
  • Die Herstellung einer Schutzgasatmosphäre erfordert einen erheblichen Konstruktionsaufwand, da die Salzschmelze in einer Retorte gelagert werden muss, in welche das Schutzgas eingeführt werden muss, wobei das Einführen des Schutzgases nach jedem Öffnen der Retorte wiederholt werden muss.
  • Der Zerfall der Acetate kann mit geringem konstruktivem Aufwand auch dadurch reduziert werden, dass die Schutzgase in die Salzschmelze eingeführt, das heißt eingeleitet werden. Hierdurch ergibt sich gleichzeitig ein Umwälzen der Salzschmelze, was zu einer gleichmäßigen Verteilung der Salze in der Salzschmelze führt. Generell kann eine Umwälzung auch durch Einleitung von Luft in die Salzschmelze erfolgen.
  • Alternativ kann die Salzschmelze auch mechanisch bewegt werden, beispielsweise durch Rühren oder Umwälzen.
  • Die Erfindung wird im Folgenden anhand von Ausführungen und Abbildungen erläutert. Es zeigen:
  • Abb. 1:
    Querschliff eines mit einer ersten Salzschmelze behandelten Werkstücks.
    Abb. 2:
    Ortsabhängiger Verlauf der Kohlenstoffkonzentration im Oberflächenbereich des Werkstücks gemäß Abb. 1.
    Abb. 3:
    Querschliff des mit einer zweiten Salzschmelze behandelten Werkstücks.
    Abb. 4:
    Ortsabhängiger Verlauf der Konzentrationen von Fe, Cr, C im Oberflächenbereich des Werkstücks gemäß Abb.3.
  • Die nachfolgenden Beispiele zeigen die Ergebnisse der Behandlung desselben Werkstücks, nämlich eines Bolzens, bestehend aus dem Werkstoff X5 Cr Ni Mo 17 - 12 - 2, mit zwei unterschiedlichen Varianten der erfindungsgemäßen Salzschmelze.
  • Beispiel 1
  • Eine Mischung aus 120 g Kaliumacetat und 0,2 g NiCl2 wird in einem Tiegel aufgeschmolzen und bei 380°C wird für 53,5 h ein Bolzen (Werkstoff: X5 Cr Ni Mo 17-12-2) eingetaucht. Nach der Behandlung wird der Bolzen in Wasser abgeschreckt. Es bilden sich Schichtdicken von 11 µm bis 13 µm aus. Die GDOS-Analyse gemäß Abb. 2 zeigt einen deutlichen Anstieg von Kohlenstoff (bis zu 16%) in dieser Schicht (Abb. 2 zeigt den Kohlenstoffgehalt in Gew.% in Abhängigkeit des Abstands von der Oberfläche des Werkstücks). Abb. 1 zeigt einen Querschliff des Werkstücks (Bolzen) im Bereich dieser Schicht.
  • Beispiel 2
  • Eine Mischung aus 120 g Kaliumacetat und 0,2 g NiCl2 wird in einem Tiegel aufgeschmolzen und bei 380°C wird für 100 h ein Bolzen (Werkstoff: X5 Cr Ni Mo 17-12-2) eingetaucht. Nach der Behandlung wird der Bolzen in Wasser abgeschreckt. Es bilden sich Schichtdicken von 17 µm bis 21 µm aus. Abb. 4 zeigt hierbei die Konzentration von Fe, C, Cr im Werkstück in Gew.% in Abhängigkeit des Abstands von der Oberfläche des Werkstücks. Wie aus Abb.4 ersichtlich, wird wiederum ein deutlicher Anstieg von Kohlenstoff in der Schicht erhalten, wobei in der Schicht der Anteil an Cr, Fe reduziert ist. Abb. 3 zeigt einen Querschliff des Werkstücks (Bolzen) im Bereich dieser Schicht.

Claims (10)

  1. Verfahren zum Härten von Oberflächen von Werkstücken aus Edelstahl, dadurch gekennzeichnet, dass die Werkstücke in eine Salzschmelze eingetaucht werden und dieser für einen Zeitraum von 24 Stunden bis 240 Stunden ausgesetzt werden, wobei die Temperatur der Salzschmelze kleiner als 400°C ist, und wobei die Salzschmelze folgende Zusammensetzung aufweist:
    Kaliumacetat 60-100 Gew.-% mit einem Anteil größer gleich 60 Gew.-% und kleiner als 100 Gew.-%
    Natriumacetat < 100 Gew.-%
    Metallsalz ≤ 2 Gew.-%,
    wobei das verwendete Metallsalz aus wenigstens einem der folgenden Kationen besteht:
    Li+, Na+, K+, Cs+, Mg2+, Ca2+, Sr2+, Ba2+, Ti3+/4+, V2+/3+/4+/5+, Cr2+/3+, Mn2+/4+, Fe2+/3+, Co2+/3+, Ni2+/3+, Cu+/2+, Zn2+, Mo4+/5+/6+, Ru2+/3+, Rh1+/3+, Pd2+, W6+, Os4+, Ir+/4+,
    und wobei das verwendete Metallsalz aus wenigstens einem der folgenden Anionen besteht: F-, Cl-, Br-, I-, O2-, CH3COO-, C2O4 2-, CN-, NCO-.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur der Salzschmelze im Bereich von 330°C bis 380°C liegt.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Salzschmelze unter Luft betrieben wird.
  4. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Salzschmelze in einer Schutzgasatmosphäre betrieben wird.
  5. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass durch die Salzschmelze Luft oder ein Schutzgas gerührt wird.
  6. Verfahren nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass als Schutzgas N2, Ar, CO, und/oder CO2 verwendet wird.
  7. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Salzschmelze mit kohlenstoffhaltigem Pulver oder Granulat abgedeckt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Salzschmelze bewegt wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Salzschmelze gerührt oder umgewälzt wird.
  10. Verwendung einer Salzschmelze zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass diese folgende Zusammensetzung aufweist:
    Kaliumacetat mit einem Anteil größer gleich 60 Gew.-% und kleiner als 100 Gew.-%
    Natriumacetat < 100 Gew.-%
    Metallsalz ≤ 0-2 Gew.-%
    wobei das verwendete Metallsalz aus wenigstens einem der folgenden Kationen besteht:
    Li+, Na+, K+, Cs+, Mg2+, Ca2+, Sr2+, Ba2+, Ti3+/4+, V2+/3+/4+/5+, Cr2+/3+, Mn2+/4+, Fe2+/3+, Co2+/3+, Ni2+/3+, Cu+/2+, Zn2+, Mo4+/5+/6+, Ru2+/3+, Rh1+/3+, Pd2+, W6+, Os4+, Ir+/4+,
    und wobei das verwendete Metallsalz aus wenigstens einem der folgenden Anionen besteht: F-, Cl-, Br-, I-, O2-, CH3COO-, C2O4 2-, CN-, NCO-.
EP08018519A 2007-10-31 2008-10-23 Verfahren zum Härten von Oberflächen von Werkstücken aus Edelstahl und Salzschmelze zur Durchführung des Verfahrens Active EP2055801B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007051949A DE102007051949B3 (de) 2007-10-31 2007-10-31 Verfahren zum Härten von Oberflächen von Werkstücken aus Edelstahl und Verwendung einer Salzschmelze zur Durchführung des Verfahrens

Publications (2)

Publication Number Publication Date
EP2055801A1 EP2055801A1 (de) 2009-05-06
EP2055801B1 true EP2055801B1 (de) 2012-12-05

Family

ID=40340316

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08018519A Active EP2055801B1 (de) 2007-10-31 2008-10-23 Verfahren zum Härten von Oberflächen von Werkstücken aus Edelstahl und Salzschmelze zur Durchführung des Verfahrens

Country Status (6)

Country Link
US (1) US8083866B2 (de)
EP (1) EP2055801B1 (de)
JP (1) JP5371376B2 (de)
CA (1) CA2642322A1 (de)
DE (1) DE102007051949B3 (de)
DK (1) DK2055801T3 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2757423B1 (de) * 2013-01-17 2018-07-11 Omega SA Bauteil für Uhrwerk
CN103233215B (zh) * 2013-05-10 2015-08-12 江苏永昊高强度螺栓有限公司 螺栓表面发黑工艺
DE102016215709A1 (de) * 2015-08-28 2017-03-02 Tsubakimoto Chain Co. Kettenkomponente und Kette

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2249581A (en) * 1938-11-30 1941-07-15 Holden Artemas F Nonpoisonous carburizing liquid bath
US2537830A (en) * 1944-09-14 1951-01-09 Artemas F Holden Self-agitating metallurgical salt bath
US2948644A (en) * 1948-05-29 1960-08-09 Gerhard W Ahrens Pack carburizing with furane derivatives
US3840450A (en) 1963-10-21 1974-10-08 K Inoue Method of diffusing substances into surface zones of conductive bodies
DE3048607C2 (de) * 1980-12-23 1983-07-07 Goerig & Co GmbH & Co KG, 6800 Mannheim Cyanidfreies Verfahren zum Aufkohlen von Stahl und Zugabesalz zur Durchführung des Verfahrens
WO1982002905A1 (en) * 1981-02-18 1982-09-02 Kerridge David Henry Fused salt bath composition
ATE16714T1 (de) * 1982-02-23 1985-12-15 Nat Res Dev Zusammensetzung eines geschmolzenen salzbades.
DE102006026883B8 (de) 2006-06-09 2007-10-04 Durferrit Gmbh Verfahren zum Härten von Edelstahl und Salzschmelze zur Durchführung des Verfahrens

Also Published As

Publication number Publication date
DK2055801T3 (da) 2013-01-28
JP5371376B2 (ja) 2013-12-18
CA2642322A1 (en) 2009-04-30
EP2055801A1 (de) 2009-05-06
US20100108198A1 (en) 2010-05-06
DE102007051949B3 (de) 2009-03-12
JP2009108411A (ja) 2009-05-21
US8083866B2 (en) 2011-12-27

Similar Documents

Publication Publication Date Title
EP1865088B1 (de) Verfahren zum Härten von Edelstahl und Salzschmelze zur Durchführung des Verfahrens
DE3486037T2 (de) Korrosionsgeschuetzte werkstuecke aus stahl und verfahren zu ihrer herstellung.
DE2510329C2 (de) Verfahren zur Herstellung von korrosionsresistenten Formkörpern aus carburiertem Stahl
EP3169734B1 (de) Stahlprodukt mit einer korrosionsschutzbeschichtung aus einer aluminiumlegierung sowie verfahren zu dessen herstellung
DE69105023T2 (de) Formteile aus Titan oder Titanlegierungen mit einer Nitridschicht und Verfahren zu ihrer Herstellung.
DE202009011665U1 (de) Edelstahl-Bohrschraube
DE102012212426B3 (de) Wälzlagerelement, insbesondere Wälzlagerring
DE3431892C2 (de) Matrize aus einem kohlenstoffarmen Stahl, Verfahren zu deren Herstellung und deren Verwendung
EP2055801B1 (de) Verfahren zum Härten von Oberflächen von Werkstücken aus Edelstahl und Salzschmelze zur Durchführung des Verfahrens
EP2881492B1 (de) Verfahren zur Aufkohlung eines Tiefziehartikels oder eines Stanzbiegeartikels aus austenitischem nichtrostendem Edelstahl
EP1122331B1 (de) Verfahren zum Nitrieren und/oder Nitrocarburieren von höher legierten Stählen
EP1019561B1 (de) Verfahren und vorrichtung zum gemeinsamen oxidieren und wärmebehandeln von teilen
DE2303756A1 (de) Verfahren zur erzeugung einer extrem harten mischkarbidschicht auf eisenwerkstoffen zur erhoehung der verschleissfestigkeit
EP0713926B1 (de) Verfahren zur Nitrocarburierung von Stahlteilen im Salzbad
EP0464265B1 (de) Verfahren zum Aufbringen von Nitridschichten auf Titan
EP2881493B1 (de) Verfahren zur Nitrocarburierung eines Tiefziehartikels oder eines Stanzbiegeartikels aus austenitischem nichtrostendem Edelstahl
DE2109997B2 (de) Verfahren zum Oberflächeniegieren, insbesondere Inchromieren von Eisenwerkstoffen
DE3804824C2 (de)
DE3219071A1 (de) Verfahren zum plattieren von titan mit einer harten schicht
DE2149835A1 (de) Verfahren zur Verbesserung der Schwingdauer-und Verschleissfestigkeit,der Gleiteigenschaften und der Korrosionsbestaendigkeit von Werkstueckoberflaechen aus Eisen und Stahl
DE1796212B1 (de) Verfahren zum borieren von titan und seinen legierungen
DE3221388A1 (de) Verfahren zum beschichten eines werkstuecks aus ausscheidungshaertendem werkstoff mit hartstoffen nach der cvd-technik
DE2531835B2 (de) Verfahren zur bildung eines ueberzugs auf der grundlage von nickel und/oder kobalt auf gegenstaenden aus hochwarmfesten metallmaterialien
EP0812929A1 (de) Verfahren zum Nitrieren und/oder Nitrocarburieren metallischer Werkstücke
DE2053063C3 (de) Verfahren zur Abscheidung von Metallkarbidschichten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090422

17Q First examination report despatched

Effective date: 20090610

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK FR IT LU NL

RBV Designated contracting states (corrected)

Designated state(s): BE DE DK FR IT LU NL

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008008810

Country of ref document: DE

Effective date: 20130131

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130906

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008008810

Country of ref document: DE

Effective date: 20130906

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231019

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20231019

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231026

Year of fee payment: 16

Ref country code: FR

Payment date: 20231024

Year of fee payment: 16

Ref country code: DK

Payment date: 20231024

Year of fee payment: 16

Ref country code: DE

Payment date: 20230721

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231019

Year of fee payment: 16