EP2849185B1 - Kontaktwerkstoffe für hochspannungs- gleichstrombordsysteme - Google Patents

Kontaktwerkstoffe für hochspannungs- gleichstrombordsysteme Download PDF

Info

Publication number
EP2849185B1
EP2849185B1 EP14002972.9A EP14002972A EP2849185B1 EP 2849185 B1 EP2849185 B1 EP 2849185B1 EP 14002972 A EP14002972 A EP 14002972A EP 2849185 B1 EP2849185 B1 EP 2849185B1
Authority
EP
European Patent Office
Prior art keywords
contact element
matrix
range
silver
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14002972.9A
Other languages
English (en)
French (fr)
Other versions
EP2849185A1 (de
Inventor
Jürgen STEINWANDEL
Dietrich P. Jonke
Helmut Piringer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Airbus Defence and Space GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH filed Critical Airbus Defence and Space GmbH
Publication of EP2849185A1 publication Critical patent/EP2849185A1/de
Application granted granted Critical
Publication of EP2849185B1 publication Critical patent/EP2849185B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/08Stationary parts for restricting or subdividing the arc, e.g. barrier plate
    • H01H33/10Metal parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • H01H1/02372Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/025Composite material having copper as the basic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/048Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by powder-metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H2001/0208Contacts characterised by the material thereof containing rhenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2201/00Contacts
    • H01H2201/022Material
    • H01H2201/024Material precious
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2201/00Contacts
    • H01H2201/022Material
    • H01H2201/026Material non precious
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2201/00Contacts
    • H01H2201/022Material
    • H01H2201/03Composite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2239/00Miscellaneous
    • H01H2239/044High voltage application
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2300/00Orthogonal indexing scheme relating to electric switches, relays, selectors or emergency protective devices covered by H01H
    • H01H2300/036Application nanoparticles, e.g. nanotubes, integrated in switch components, e.g. contacts, the switch itself being clearly of a different scale, e.g. greater than nanoscale

Definitions

  • the present invention relates to a contact element for high-voltage DC switches, a method for producing such a contact element and the use of the contact element in a high-voltage DC switch.
  • contact elements or joints are mainly known from AC circuits.
  • the known contact materials are for example silver / tin oxide, which are suitable for use at currents up to 50A.
  • High-current switches on the other side are plasma switches, such as those used in power plants, for example.
  • plasma switches such as those used in power plants, for example.
  • electronic switching elements are used for high voltage DC switches.
  • Object of the present invention is therefore to provide a contact element or a connection point available, which can be used in a high-voltage DC switch and in comparison to conventional contact elements or connection points a smaller formation of plasma flashovers is achieved, the one lower security risk leads.
  • Another object of the present invention is to provide a method of manufacturing such a contact element for high voltage DC switches. In particular, this method should have a low production cost.
  • the contact element according to the invention is suitable for use in a high-voltage DC switch. Another advantage is that the contact element has a greatly reduced tendency to form plasma flashovers or no plasma flashovers and thus offers a low security risk.
  • the contact element comprises the matrix in an amount of 75.0 to 99.9 wt .-%, based on the total weight of the contact element, and / or the contact element comprises the foreign phase in an amount of 0.1 to 25.0 wt .-%, based on the total weight of contact element.
  • the foreign phase is homogeneously distributed in the matrix.
  • the foreign phase distributed in the matrix comprises nanoparticles having a diameter in a range of 100.0 to 1000.0 nm, preferably in a range of 100.0 to 750.0 nm and more preferably in a range of 100.0 to 500.0 nm.
  • the contact element has a porosity of ⁇ 0.5 vol.% And preferably ⁇ 0.1 vol.%, Based on the total volume of the contact element.
  • the contact element is a thermally sprayed contact element.
  • the contact element has a layer thickness between 100.0 ⁇ m and 5.0 mm, preferably between 200.0 ⁇ m and 3.0 mm, more preferably between 250.0 ⁇ m and 2.0 mm and in particular between 300.0 ⁇ m and 1.0 mm.
  • the first material comprises particles having a diameter in the range from 5.0 to 100.0 ⁇ m, preferably in a range from 5.0 to 50.0 ⁇ m and more preferably in a range from 5.0 to 25.0 ⁇ m and / or the second material in step b) comprises nanoparticles with a diameter in a range of 100.0 to 1000.0 nm, preferably in one range from 100.0 to 750.0 nm, and more preferably in a range of 100.0 to 500.0 nm.
  • the second material is carbon and is selected from the group comprising fullerenes, carbon nanotubes, graphene, graphite, and mixtures of these.
  • the first material is provided in an amount of 75.0 to 99.9 wt .-%, based on the total weight of the contact element, and / or the second material in an amount of 0.1 to 25.0 wt .-%, based on the total weight of the contact element , provided.
  • step c) takes place by grinding the first material with the second material.
  • step d) takes place by cold gas spraying or plasma spraying or flame spraying.
  • the present invention relates to the use of the contact element in a high voltage DC switch.
  • a high voltage DC switch for example, in an electric power drive, preferably in an aircraft.
  • the contact element comprises a matrix of a first material selected from the group comprising copper, silver, palladium, platinum, tungsten, molybdenum, rhenium, nickel, gold and alloys thereof.
  • the first material comprises molybdenum or copper.
  • the first material comprises silver or gold or palladium.
  • the first material comprises silver or gold, preferably silver.
  • the first material is silver or gold or palladium.
  • the first material is silver or gold, preferably silver.
  • a matrix comprising a first material, preferably consisting of silver, has the particular advantage that a contact element comprising such a matrix has a high electrical conductivity.
  • the first material comprises an alloy, wherein the base metal is selected from one of the above-mentioned elements.
  • the alloy preferably comprises a first element selected from the group consisting of copper, silver, palladium, platinum, tungsten, molybdenum, rhenium, nickel and gold as the base metal.
  • the alloy comprises at least a second element or a second compound selected from the group comprising palladium, tungsten, tungsten carbide, carbide, nickel, nickel carbide, ruthenium, iridium, silver copper, silver nickel, cobalt, copper, carbon, silver, and mixtures of these.
  • the first element is chemically different from the second element or the second compound.
  • the first element of the alloy ie, the base metal, silver
  • the second element or compound of the alloy selected from the group comprising palladium, tungsten, tungsten carbide, carbide, nickel, nickel carbide, ruthenium, iridium, silver copper, silver nickel, Cobalt, copper, carbon and mixtures of these.
  • the carbon is preferably selected from the group comprising fullerenes, carbon nanotubes, graphene, graphite, and mixtures of these.
  • the matrix comprises an alloy such as Ag-Pd, Ag-Cd, AgC, Ag-WC, Ag-WC-C, Ag-Ni, AgNiC, AgCu, Ag-W, Au-Ni, Au Co, AuAg, AuAgCu, AuAgNi, Pd-Ag, PdCu, PdRu, Ptlr, PtRu, PtW, W-Cu, Cu-W, Cu-Ag, etc.
  • the alloy preferably comprises the first element in an amount of 50.0 to 97.0% by weight, based on the total weight of the alloy.
  • the alloy comprises the first element in an amount of 60.0 to 95.0 wt% or in an amount of 70.0 to 90.0 wt%, based on the total weight of the alloy.
  • the alloy comprises the second element or compound in an amount of from 3.0 to 50.0 weight percent, based on the total weight of the alloy.
  • the alloy comprises the second element or the second compound in an amount of 5.0 to 40.0 wt% or in an amount of 10.0 to 30.0 wt% based on the total weight of the alloy.
  • the matrix comprises an alloy such as AgNi10, AgNi15, AgNi40, AgCu3, AgCu10, AgCu20, AgCu28, AgPd30, AgPd50, PdCu15 or PdCu40.
  • the amount of matrix in the contact element can vary within a wide range.
  • the contact element comprises the matrix in an amount of 75.0 to 99.9 wt .-%, based on the total weight of the contact element.
  • the contact element comprises the matrix in an amount of 75.0 to 90.0 wt .-%, based on the total weight of the contact element.
  • the contact element comprises the matrix in an amount of 80.0 to 90.0 wt .-%, based on the total weight of the contact element.
  • the contact element comprises the foreign phase in an amount of 0.1 to 25.0 wt .-%, based on the total weight of the contact element.
  • the contact element comprises the foreign phase in an amount of 10.0 to 25.0 wt .-%, based on the total weight of the contact element.
  • the contact element comprises the foreign phase in an amount of 10.0 to 20.0 wt .-%, based on the total weight of the contact element.
  • the contact element comprises the matrix in an amount of 75.0 to 99.9 wt .-% and the foreign phase in an amount of 0.1 to 25.0 wt .-%, based on the total weight of the contact element.
  • the contact element comprises the matrix in an amount of 75.0 to 90.0 wt .-% and the foreign phase in an amount of 10.0 to 25.0 wt .-%, based on the total weight of the contact element.
  • the contact element comprises the matrix in an amount of 80.0 to 90.0 Wt .-% and the foreign phase in an amount of 10.0 to 20.0 wt .-%, based on the total weight of the contact element.
  • the contact element consists of the matrix in an amount of 75.0 to 99.9 wt .-% and the foreign phase in an amount of 0.1 to 25.0 wt .-%, based on the total weight of the contact element.
  • the contact element consists of the matrix in an amount of 75.0 to 90.0 wt .-% and the foreign phase in an amount of 10.0 to 25.0 wt .-%, based on the total weight of the contact element.
  • the contact element consists of the matrix in an amount of 80.0 to 90.0 wt .-% and the foreign phase in an amount of 10.0 to 20.0 wt .-%, based on the total weight of the contact element.
  • the contact element has a foreign phase distributed in the matrix.
  • the foreign phase comprises a second material selected from the group comprising carbon.
  • the use of carbon as the second material has the advantage that the contact element obtained has a high erosion protection and thus uniform wear of the contacts is ensured.
  • the second material is carbon
  • the second material is carbon and the carbon is selected from the group comprising fullerenes, carbon nanotubes, graphene, graphite and mixtures thereof.
  • the second material is chemically different from the first material.
  • the first material is tungsten
  • the second material is selected from the group comprising carbon.
  • the first material of the contact element comprises silver and the second material is selected from the group comprising carbon.
  • the first material of the contact element comprises silver and the second material comprises carbon.
  • the first material of the contact element is made of silver and the second material consists of carbon.
  • the foreign phase is homogeneously distributed in the matrix.
  • the foreign phase distributed in the matrix comprises nanoparticles.
  • nanoparticles particles having particle sizes in the nanometer to micrometer range.
  • the extraneous phase distributed in the matrix comprises nanoparticles having a diameter in a range of 100.0 to 1000.0 nm.
  • the extraneous phase distributed in the matrix comprises nanoparticles having a diameter in a range of 100.0 to 750.0 nm or in a range of 100.0 to 500.0 nm.
  • the use of nanoparticles has the advantage that this contributes to a more homogeneous distribution of the foreign phase in the matrix.
  • the contact element has a porosity of ⁇ 1.0 vol .-%, based on the total volume of the contact element on.
  • a low porosity is advantageous, since this leads to the reduction or avoidance of arcing and the contact element obtained has a high erosion protection and thus offers a lower security risk.
  • by grinding graphite on the matrix material a uniform distribution of the graphite in the matrix can be achieved.
  • the contact element has a porosity of ⁇ 0.5 vol .-%, based on the total volume of the contact element on.
  • the contact element has a porosity of ⁇ 0.1% by volume, based on the total volume of the contact element.
  • a porosity of ⁇ 1.0% by volume, preferably ⁇ 0.5% by volume and more preferably ⁇ 0.1% by volume, based on the total volume of the contact element, in the contact element is preferably obtained by producing it in a thermal spraying process , Accordingly, the inventive contact element is preferably a thermally sprayed contact element.
  • the layer thickness of the contact element is in typical areas for these elements.
  • the contact element has a layer thickness of between 100.0 ⁇ m and 5.0 mm.
  • the contact element has a layer thickness between 200.0 ⁇ m and 3.0 mm, more preferably between 250.0 ⁇ m and 2.0 mm and in particular between 300.0 ⁇ m and 1.0 mm.
  • This process offers in comparison to the previously customary melt metallurgical and powder metallurgy process the advantage that a complex production of precursors, such as sintered blocks, and their complex further processing by rolling, drawing and / or extrusion omitted.
  • the contact element can be sprayed directly onto the carrier used, so that the soldering of the contact element on the corresponding carrier or the stamping and embossing for the production of individual parts is eliminated.
  • the present method therefore has only a low production cost.
  • an advantage of sprayed contact elements compared to extruded contact elements is that intermediate annealing steps are eliminated to re-dissolve the strain hardening resulting from high levels of strain and strain to make the material "flowable" again. During the spraying process, these steps are eliminated because the contact element is constructed generatively layer by layer and this is not done by forming steps with tools.
  • step a) comprises providing a first material as described above.
  • a requirement of the present invention is that a first material selected from the group consisting of copper, silver, palladium, platinum, tungsten, molybdenum, rhenium, nickel, gold, and alloys thereof is provided therefrom.
  • the first material comprises molybdenum or copper.
  • the first material comprises silver or gold or palladium.
  • the first material comprises silver or gold, preferably silver.
  • the first material is silver or gold or palladium.
  • the first material is silver or gold, preferably silver.
  • the first material comprises an alloy, wherein the base metal is selected from one of the above-mentioned elements.
  • the alloy preferably comprises a first element selected from the group consisting of copper, silver, palladium, platinum, tungsten, molybdenum, rhenium, nickel and gold as the base metal.
  • the alloy comprises at least one second element or a second compound selected from the group consisting of palladium, tungsten, tungsten carbide, carbide, nickel, cobalt, copper, carbon, silver, and mixtures of these. It should be noted that the first element is chemically different from the second element or the second compound.
  • the first element of the alloy ie, the base metal, silver
  • the second element or compound of the alloy selected from the group comprising palladium, tungsten, tungsten carbide, carbide, nickel, nickel carbide, ruthenium, iridium, silver copper, silver nickel, Cobalt, copper, carbon and mixtures of these.
  • the carbon is preferably selected from the group comprising fullerenes, carbon nanotubes, graphene, graphite, and mixtures of these.
  • the alloy comprises, for example, Ag-Pd, Ag-Cd, AgC, Ag-WC, Ag-WC-C, Ag-Ni, AgNiC, AgCu, Ag-W, Au-Ni, Au-Co, AuAg, AuAgCu, AuAgNi, Pd-Ag, PdCu, PdRu, Ptlr, PtRu, PtW, W-Cu, Cu-W, Cu-Ag, etc.
  • the alloy preferably comprises the first element in an amount of 50.0 to 97.0% by weight, based on the total weight of the alloy.
  • the alloy comprises the first element in an amount of 60.0 to 95.0 wt% or in an amount of 70.0 to 90.0 wt%, based on the total weight of the alloy.
  • the alloy comprises the second element or compound in an amount of from 3.0 to 50.0 weight percent, based on the total weight of the alloy.
  • the alloy comprises the second element or the second compound in an amount of 5.0 to 40.0 wt% or in an amount of 10.0 to 30.0 wt% based on the total weight of the alloy.
  • the matrix comprises an alloy such as AgNi10, AgNi15, AgNi40, AgCu3, AgCu10, AgCu20, AgCu28, AgPd30, AgPd50, PdCu15 or PdCu40.
  • the first material has a certain particle size.
  • the first material in step a) comprises particles with a diameter in a range of 5.0 to 100.0 ⁇ m.
  • the first material in step a) comprises particles with a diameter in the range of 5.0 to 50.0 ⁇ m or of 5.0 to 25.0 ⁇ m.
  • the first material in step a) consists of particles with a diameter in the range of 5.0 to 100.0 ⁇ m.
  • the first material in step a) consists of particles with a diameter in the range of 5.0 to 50.0 ⁇ m or of 5.0 to 25.0 ⁇ m.
  • the first material is provided as a powder.
  • the first material is preferably provided in an amount of from 75.0 to 99.9% by weight, based on the total weight of the contact element.
  • the first material is provided in an amount of 75.0 to 90.0% by weight, based on the total weight of the contact element.
  • the first material is provided in an amount of from 80.0 to 90.0 weight percent, based on the total weight of the contact element.
  • the second material is carbon
  • the second material is carbon, and the carbon is preferably selected from the group comprising fullerenes, carbon nanotubes, graphene, graphite, and mixtures of these.
  • the second material has a certain particle size.
  • the second material in step b) comprises nanoparticles.
  • the second material in step b) comprises particles having a diameter in the range from 100.0 to 1000.0 nm.
  • the second material in step b) comprises particles having a diameter in a range from 100.0 to 750.0 nm or from 100.0 to 500.0 nm.
  • the second material is chemically different from the first material.
  • a material selected from the group consisting of carbon is provided as the second material.
  • the second material is provided in an amount of from 0.1% to 25.0% by weight, based on the total weight of the contact element.
  • the second material is provided in an amount of 10.0 to 25.0 wt%, based on the total weight of the contact element.
  • the second material is provided in an amount of from 10.0 to 20.0% by weight, based on the total weight of the contact element.
  • the second material is provided as a powder.
  • the first material and the second material are provided as a powder.
  • the foreign phase of the second material preferably homogeneous, in the matrix, ie the first material, is distributed. This is achieved, in particular, by bringing the first material into contact with the second material for producing a master alloy comprising the first material and the second material, preferably consisting of the first material and the second material.
  • the first material is preferably achieved by bringing the first material into contact with the second material in step c) by grinding the first material with the second material.
  • milling the first material with the second material may be carried out in a mill suitable therefor, e.g. Attritormühle, ball mill, etc., take place.
  • the second material can be rubbed onto the particles of the first material and thus lead to a homogeneous distribution of foreign phase in the matrix. This is usually done at temperatures of preferably not more than 100 ° C for preferably less than 10 minutes. For example, this occurs at room temperature, i. about 18 to 24 ° C, for preferably less than 10 minutes.
  • the contacting of the first material with the second material in step c) can be carried out by chemical attachment of the second material to the first material via conventional auxiliaries.
  • cladding processes are known in the art.
  • the contacting of the first material with the second material in step c) is used in particular for producing a master alloy comprising the first material and the second material, preferably consisting of the first material and the second material. It should be noted that the received in this step Pre-alloy has a preferably homogeneous distribution of the second material in the first material.
  • the master alloy for the production of the contact element is thermally sprayed.
  • the thermal spraying takes place by cold gas spraying or plasma spraying or flame spraying.
  • the thermal spraying in step d) takes place by flame spraying.
  • flame spraying is by high velocity flame spraying. Flame spraying and high speed flame spraying processes are known in the art. In particular, this occurs at temperatures of preferably more than 800 ° C. In one embodiment of the present invention, the process temperature ⁇ the melting temperature of the powder material to be processed.
  • the thermal spraying in step d) is carried out by plasma spraying.
  • Plasma spray techniques are known in the art. In particular, this happens in the normal or low pressure range.
  • the thermal spraying in the low-pressure region has the advantage that a more homogeneous distribution of the foreign phase, ie of the second material, in the matrix, ie the first material, can be achieved.
  • the plasma spraying process is carried out in the low-pressure range, this is preferably carried out in a range from 0.01 to 1 bar.
  • the plasma is preferably generated by passing a process gas through an arc burning continuously within the plasma torch.
  • the process gas used is preferably a gas selected from the group comprising argon, nitrogen, helium, hydrogen or mixtures of these.
  • a mixture of argon and helium and optionally nitrogen is used as the process gas.
  • a mixture of argon and hydrogen and optionally nitrogen is used as the process gas.
  • the plasma spraying process is carried out at temperatures of preferably more than 800 ° C.
  • the thermal spraying in step d) by cold gas spraying by cold gas spraying.
  • Cold gas spraying processes are known in the art.
  • a protective gas is accelerated to supersonic speed and the master alloy comprising the first material and the second material is injected into the gas jet.
  • the master alloy injected into the gas jet is accelerated to such a high speed that it is not necessary to premelt or reflow the master alloy.
  • the inert gas used is preferably a gas selected from the group comprising nitrogen, helium, compressed air or mixtures of these.
  • compressed air is used as protective gas.
  • the use of compressed air is preferably carried out in a pressure range of 30 to 70 bar, for example in a pressure range of 30 to 60 bar.
  • a mixture of nitrogen and helium is used as protective gas.
  • Cold gas spraying offers several advantages. On the one hand, contact elements with a very low porosity are obtained, preferably with a porosity of ⁇ 0.5 vol.% And more preferably ⁇ 0.1 vol.%, Based on the total volume of the contact element. On the other hand, the contact elements produced in this way have a very dense layer with a high hardness, with which a high adhesion to carrier materials can additionally be achieved. Furthermore, the cold gas spraying avoids oxidation of the first and / or second material in the master alloy. Another advantage of cold gas spraying is that a contact element can be made with a gradual fraction of the second material in the first material.
  • the present invention also relates to the use of the contact element in a high-voltage DC switch.
  • the contact element is used in an electric power drive.
  • the contact element is used in an electric power drive of an aircraft.
  • the formation of plasma flashovers are greatly reduced by the contact element according to the invention or the contact element according to the invention has no plasma flashovers. This reduces the security risk when using the contact element.
  • a contact element not according to the invention comprising a matrix of silver and a foreign phase of stannous oxide distributed in the matrix was prepared as explained below.
  • the visual inspection of the contact element by means of micrograph analysis showed that the contact element had a porosity of ⁇ 1.0% by volume, based on the total volume of the contact element; see also Fig. 1 , The particles of the foreign phase have a diameter of 5-35 microns. Furthermore, an adhesion of about 80 MPa was determined on the carrier tape for the contact element, so that a very high adhesion to the carrier material is given. The adhesion was determined by the AQL method (statistical control) according to Din 50014.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Contacts (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Kontaktelement für Hochspannungs-Gleichstromschalter, ein Verfahren zur Herstellung eines solchen Kontaktelements sowie die Verwendung des Kontaktelements in einem Hochspannungs-Gleichstromschalter.
  • Hintergrund der Erfindung
  • Kontaktelemente und Verbindungsstellen für Hochspannungs-Gleichstromkreise (100 - 1000 V) sind potentielle Schwachstellen bzgl. Plasmaüberschlägen. Aufgrund der Ausbildung stationärer elektrischer Felder ist eine Plasmaausbildung bei Gleichströmen kritischer im Vergleich zu den alternierenden Wechselstromfeldern, die eine Plasmaausbildung erschweren. Plasmaüberschläge sollten vermieden werden, da diese ein erhebliches Sicherheitsrisiko darstellen und eine Ursache von Kurzschlüssen sein können, mit der Gefahr eines Totalausfalls des elektrischen Systems und ggf. eines Brandschadens. Dieses gilt unabhängig von der jeweiligen Gleichstromquelle (Batterien, Brennstoffzellen oder Wechselstrom-Gleichrichtung).
  • Derzeit eingesetzte Kontaktelemente bzw. Verbindungsstellen sind vorwiegend aus Wechselstromkreisen bekannt. Die bekannten Kontaktmaterialien sind z.B. Silber/Zinnoxid, welche sich für die Verwendung bei Strömen bis 50A eignen. Hochstromschalter auf der anderen Seite sind Plasmaschalter, wie diese z.B. in Kraftwerken zum Einsatz kommen. Für Hochspannungs-Gleichstromschalter werden üblicherweise elektronische Schaltelemente verwendet. Es ist jedoch in solchen Kreisen erforderlich zusätzlich mechanische oder plasmabasierte Schalter mit kompletter galvanischer Abtrennung einzusetzen.
  • Aufgabe der vorliegenden Erfindung ist es daher, ein Kontaktelement bzw. eine Verbindungsstelle zur Verfügung zu stellen, das/die in einem Hochspannungs-Gleichstromschalter verwendet werden kann und im Vergleich zu herkömmlichen Kontaktelementen bzw. Verbindungsstellen eine geringere Ausbildung von Plasmaüberschlägen erzielt wird, die zu einem geringeren Sicherheitsrisiko führt. Eine weitere Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung eines solchen Kontaktelements für Hochspannungs-Gleichstromschalter zur Verfügung zu stellen. Insbesondere soll dieses Verfahren einen niedrigen Fertigungsaufwand aufweisen.
  • Diese Aufgaben werden durch die in den Ansprüchen definierten Gegenstände gelöst. Vorteilhafte Ausführungsformen sind Gegenstand von Unteransprüchen.
    • L. Wang et al., A new Silver-Based Graded Composite as Electrical Contact Material, Key Engineering Materils Vols. 336-338 (2007), Seiten 2616-2618 beschreibt elektrische Schaltelemente basierend auf Silber/Metalloxid-Materialien. Diese Veröffentlichung beschreibt insbesondere die graduelle Verteilung von verschiedenen Oxiden (NiO und SnO2) innerhalb der Silbermatrix.
  • F.L. Miguel et al., Electroless deposition of a AG matrix on semiconducting one-dimensional nanostructures, Thin solid Films Bd. 536, 2. April 2013, Seiten 54-56 beschreibt die Herstellung von Kompositmaterialien bestehend aus eindimensionalen halbleitenden Nanostrukturen die in eine Silbermatrix eingebettet sind.
  • Zusammenfassung der Erfindung
  • Ein erster Gegenstand der vorliegenden Erfindung ist dementsprechend ein Kontaktelement für Hochspannungs-Gleichstromschalter, das Kontaktelement umfassend
    1. a) eine Matrix aus einem ersten Material ausgewählt aus der Gruppe umfassend Kupfer, Silber, Palladium, Platin, Wolfram, Molybdän, Rhenium, Nickel, Gold und Legierungen von diesen, und
    2. b) eine in der Matrix verteilte Fremdphase aus einem zweiten Material, wobei das zweite Material Kohlenstoff ist und ausgewählt ist aus der Gruppe umfassend Fullerene, Kohlenstoff-Nanotubes, Graphen, Graphit und Gemische von diesen,
    wobei das Kontaktelement eine Porosität von ≤ 1.0 Vol.-%, bezogen auf das Gesamtvolumen des Kontaktelements, aufweist.
  • Das erfindungsgemäße Kontaktelement ist zur Verwendung in einem Hochspannungs-Gleichstromschalter geeignet. Ein weiterer Vorteil ist, dass das Kontaktelement eine stark reduzierte Neigung zur Ausbildung von Plasmaüberschlägen bzw. keine Plasmaüberschläge aufweist und so ein geringes Sicherheitsrisiko bietet.
  • Beispielsweise umfasst das Kontaktelement die Matrix in einer Menge von 75.0 bis 99.9 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements, und/oder das Kontaktelement umfasst die Fremdphase in einer Menge von 0.1 bis 25.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements.
  • Beispielsweise ist die Fremdphase homogen in der Matrix verteilt.
  • Beispielsweise umfasst die in der Matrix verteilte Fremdphase Nanopartikel mit einem Durchmesser in einem Bereich von 100.0 bis 1000.0 nm, bevorzugt in einem Bereich von 100.0 bis 750.0 nm und weiter bevorzugt in einem Bereich von 100.0 bis 500.0 nm.
  • Beispielsweise weist das Kontaktelement eine Porosität von ≤ 0.5 Vol.-% und bevorzug ≤ 0.1 Vol.-%, bezogen auf das Gesamtvolumen des Kontaktelements, auf.
  • Beispielsweise ist das Kontaktelement ein thermisch gespritztes Kontaktelement.
  • Beispielsweise weist das Kontaktelement eine Schichtdicke zwischen 100.0 µm und 5.0 mm, bevorzugt zwischen 200.0 µm und 3.0 mm, weiter bevorzugt zwischen 250.0 µm und 2.0 mm und insbesondere zwischen 300.0 µm und 1.0 mm auf.
  • Die vorliegende Erfindung stellt ferner ein Verfahren zur Herstellung eines Kontaktelements für Hochspannungs-Gleichstromschalter, das Verfahren umfassend
    1. a) Bereitstellen eines ersten Materials ausgewählt aus der Gruppe umfassend Kupfer, Silber, Palladium, Platin, Wolfram, Molybdän, Rhenium, Nickel, Gold und Legierungen von diesen,
    2. b) Bereitstellen eines zweiten Materials, wobei das zweite Material Kohlenstoff ist und ausgewählt ist aus der Gruppe umfassend Fullerene, Kohlenstoff-Nanotubes, Graphen, Graphit und Gemische von diesen,
    3. c) Inkontaktbringen des ersten Materials aus Schritt a) mit dem zweiten Material aus Schritt b) zur Herstellung einer Vorlegierung umfassend das erste Material und das zweite Material, und
    4. d) Thermisches Spritzen der in Schritt c) erhaltenen Vorlegierung zur Herstellung des Kontaktelements umfassend eine Matrix aus dem ersten Material und eine in der Matrix verteilte Fremdphase aus dem zweiten Material.
  • Beispielsweise umfasst das erste Material in Schritt a) Partikel mit einem Durchmesser in einem Bereich von 5.0 bis 100.0 µm, bevorzugt in einem Bereich von 5.0 bis 50.0 µm und weiter bevorzugt in einem Bereich von 5.0 bis 25.0 µm und/oder das zweite Material in Schritt b) umfasst Nanopartikel mit einem Durchmesser in einem Bereich von 100.0 bis 1000.0 nm, bevorzugt in einem Bereich von 100.0 bis 750.0 nm und weiter bevorzugt in einem Bereich von 100.0 bis 500.0 nm.
  • Das zweite Material ist Kohlenstoff und ist ausgewählt aus der Gruppe umfassend Fullerene, Kohlenstoff-Nanotubes, Graphen, Graphit und Gemische von diesen.
  • Beispielsweise wird das erste Material in einer Menge von 75.0 bis 99.9 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements, bereitgestellt wird und/oder das zweite Material in einer Menge von 0.1 bis 25.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements, bereitgestellt.
  • Beispielsweise erfolgt das Inkontaktbringen in Schritt c) durch Vermahlen des ersten Materials mit dem zweiten Material.
  • Beispielsweise erfolgt das thermische Spritzen in Schritt d) durch Kaltgasspritzen oder Plasmaspritzen oder Flammspritzen.
  • Ebenso betrifft die vorliegende Erfindung die Verwendung des Kontaktelements in einem Hochspannungs-Gleichstromschalter. Beispielsweise in einem elektrischen Leistungsantrieb, bevorzugt in einem Luftfahrzeug.
  • Detaillierte Beschreibung der Erfindung
  • Die vorliegende Erfindung betrifft ein Kontaktelement für Hochspannungs-Gleichstromschalter, das Kontaktelement umfassend
    1. a) eine Matrix aus einem ersten Material ausgewählt aus der Gruppe umfassend Kupfer, Silber, Palladium, Platin, Wolfram, Molybdän, Rhenium, Nickel, Gold und Legierungen von diesen, und
    2. b) eine in der Matrix verteilte Fremdphase aus einem zweiten Material, wobei das zweite Material Kohlenstoff ist und ausgewählt ist aus der Gruppe umfassend Fullerene, Kohlenstoff-Nanotubes, Graphen, Graphit und Gemische von diesen,
    wobei das Kontaktelement eine Porosität von ≤ 1.0 Vol.-%, bezogen auf das Gesamtvolumen des Kontaktelements, aufweist.
  • Ein Erfordernis der vorliegenden Erfindung ist demnach, dass das Kontaktelement eine Matrix aus einem ersten Material ausgewählt aus der Gruppe umfassend Kupfer, Silber, Palladium, Platin, Wolfram, Molybdän, Rhenium, Nickel, Gold und Legierungen von diesen umfasst.
  • In einer Ausführungsform der vorliegenden Erfindung umfasst, vorzugsweise besteht, das erste Material aus Molybdän oder Kupfer.
  • In einer weiteren Ausführungsform der vorliegenden Erfindung umfasst das erste Material Silber oder Gold oder Palladium. Beispielsweise umfasst das erste Material Silber oder Gold, vorzugsweise Silber.
  • In einer Ausführungsform der vorliegenden Erfindung besteht das erste Material aus Silber oder Gold oder Palladium. Beispielsweise besteht das erste Material aus Silber oder Gold, vorzugsweise Silber. Eine Matrix aus einem ersten Material umfassend, vorzugsweise bestehend aus, Silber hat insbesondere den Vorteil, dass ein Kontaktelement umfassend eine solche Matrix eine hohe elektrische Leitfähigkeit aufweist.
  • In einer Ausführungsform der vorliegenden Erfindung umfasst das erste Material eine Legierung, wobei das Basismetall ausgewählt ist aus einem der oben genannten Elemente. Dementsprechend umfasst die Legierung vorzugsweise ein erstes Element ausgewählt aus der Gruppe umfassend Kupfer, Silber, Palladium, Platin, Wolfram, Molybdän, Rhenium, Nickel und Gold als Basismetall. Weiterhin umfasst die Legierung mindestens ein zweites Element oder eine zweite Verbindung ausgewählt aus der Gruppe umfassend Palladium, Wolfram, Wolframcarbid, Carbid, Nickel, Nickelcarbid, Ruthenium, Iridium, SilberKupfer, SilberNickel, Cobalt, Kupfer, Kohlenstoff, Silber und Gemische von diesen. Hierbei ist festzuhalten, dass sich das erste Element chemisch von dem zweiten Element oder der zweiten Verbindung unterscheidet. Beispielsweise, ist das erste Element der Legierung, d.h. das Basismetall, Silber, ist das zweite Element oder die zweite Verbindung der Legierung ausgewählt aus der Gruppe umfassend Palladium, Wolfram, Wolframcarbid, Carbid, Nickel, Nickelcarbid, Ruthenium, Iridium, SilberKupfer, SilberNickel, Cobalt, Kupfer, Kohlenstoff und Gemische von diesen.
  • Ist das zweite Element der Legierung Kohlenstoff, ist der Kohlenstoff vorzugsweise ausgewählt aus der Gruppe umfassend Fullerene, Kohlenstoff-Nanotubes, Graphen, Graphit und Gemische von diesen.
  • In einer Ausführungsform der vorliegenden Erfindung umfasst die Matrix eine Legierung wie beispielsweise Ag-Pd, Ag-Cd, AgC, Ag-WC, Ag-WC-C, Ag-Ni, AgNiC, AgCu, Ag-W, Au-Ni, Au-Co, AuAg, AuAgCu, AuAgNi, Pd-Ag, PdCu, PdRu, Ptlr, PtRu, PtW, W-Cu, Cu-W, Cu-Ag etc.
  • Umfasst das erste Material eine Legierung, umfasst die Legierung das erste Element vorzugsweise in einer Menge von 50.0 bis 97.0 Gew.-%, bezogen auf das Gesamtgewicht der Legierung. Beispielsweise umfasst die Legierung das erste Element in einer Menge von 60.0 bis 95.0 Gew.-% oder in einer Menge von 70.0 bis 90.0 Gew.-%, bezogen auf das Gesamtgewicht der Legierung. Zusätzlich oder alternativ umfasst die Legierung das zweite Element oder die zweite Verbindung in einer Menge von 3.0 bis 50.0 Gew.-%, bezogen auf das Gesamtgewicht der Legierung. Beispielsweise umfasst die Legierung das zweite Element oder die zweite Verbindung in einer Menge von 5.0 bis 40.0 Gew.-% oder in einer Menge von 10.0 bis 30.0 Gew.-%, bezogen auf das Gesamtgewicht der Legierung.
  • In einer Ausführungsform der vorliegenden Erfindung umfasst die Matrix eine Legierung wie beispielsweise AgNi10, AgNi15, AgNi40, AgCu3, AgCu10, AgCu20, AgCu28, AgPd30, AgPd50, PdCu15 oder PdCu40.
  • Die Menge der Matrix in dem Kontaktelement kann in einem weiten Bereich variieren.
  • Insbesondere umfasst das Kontaktelement die Matrix in einer Menge von 75.0 bis 99.9 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements. Beispielsweise umfasst das Kontaktelement die Matrix in einer Menge von 75.0 bis 90.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements. In einer Ausführungsform der vorliegenden Erfindung umfasst das Kontaktelement die Matrix in einer Menge von 80.0 bis 90.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements.
  • Zusätzlich oder alternativ, umfasst das Kontaktelement die Fremdphase in einer Menge von 0.1 bis 25.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements. Beispielsweise umfasst das Kontaktelement die Fremdphase in einer Menge von 10.0 bis 25.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements. In einer Ausführungsform der vorliegenden Erfindung umfasst das Kontaktelement die Fremdphase in einer Menge von 10.0 bis 20.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements.
  • Beispielsweise umfasst das Kontaktelement die Matrix in einer Menge von 75.0 bis 99.9 Gew.-% und die Fremdphase in einer Menge von 0.1 bis 25.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements. Beispielsweise umfasst das Kontaktelement die Matrix in einer Menge von 75.0 bis 90.0 Gew.-% und die Fremdphase in einer Menge von 10.0 bis 25.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements. In einer Ausführungsform der vorliegenden Erfindung umfasst das Kontaktelement die Matrix in einer Menge von 80.0 bis 90.0 Gew.-% und die Fremdphase in einer Menge von 10.0 bis 20.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements.
  • In einer Ausführungsform besteht das Kontaktelement aus der Matrix in einer Menge von 75.0 bis 99.9 Gew.-% und der Fremdphase in einer Menge von 0.1 bis 25.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements. Beispielsweise besteht das Kontaktelement aus der Matrix in einer Menge von 75.0 bis 90.0 Gew.-% und der Fremdphase in einer Menge von 10.0 bis 25.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements. In einer Ausführungsform der vorliegenden Erfindung besteht das Kontaktelement aus der Matrix in einer Menge von 80.0 bis 90.0 Gew.-% und der Fremdphase in einer Menge von 10.0 bis 20.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements.
  • Ein weiteres Erfordenis der vorliegenden Erfindung ist, dass das Kontaktelement eine in der Matrix verteilte Fremdphase aufweist. Dabei umfasst die Fremdphase ein zweites Material ausgewählt aus der Gruppe umfassend Kohlenstoff. Die Verwendung von Kohlenstoff als zweites Material hat den Vorteil, dass das erhaltene Kontaktelement einen hohen Abbrandschutz aufweist und so eine gleichmäßige Abnutzung der Kontakte gewährleistet ist.
  • In einer Ausführungsform der vorliegenden Erfindung besteht das zweite Material aus Kohlenstoff.
  • Ist dDas zweite Material ist Kohlenstoff und der Kohlenstoff ist ausgewählt aus der Gruppe umfassend Fullerene, Kohlenstoff-Nanotubes, Graphen, Graphit und Gemische von diesen.
  • Hierbei ist festzuhalten, dass sich das zweite Material chemisch von dem ersten Material unterscheidet. Beispielsweise, ist das erste Material Wolfram, ist das zweite Material ausgewählt aus der Gruppe umfassend Kohlenstoff.
  • In einer Ausführungsform der vorliegenden Erfindung umfasst das erste Material des Kontaktelements Silber und das zweite Material ist ausgewählt aus der Gruppe umfassend Kohlenstoff. Beispielsweise umfasst das erste Material des Kontaktelements Silber und das zweite Material umfasst Kohlenstoff. Vorzugsweise besteht das erste Material des Kontaktelements aus Silber und das zweite Material besteht aus Kohlenstoff.
  • Für das Kontaktelement ist es besonders vorteilhaft, wenn die Fremdphase homogen in der Matrix verteilt ist.
  • Beispielsweise umfasst die in der Matrix verteilte Fremdphase Nanopartikel.
  • Unter "Nanopartikel" sind gemäß der vorliegenden Erfindung Partikel mit Teilchengrößen im Nanometer- bis Mikrometerbereich zu verstehen. In einer Ausführungsform umfasst die in der Matrix verteilte Fremdphase Nanopartikel mit einem Durchmesser in einem Bereich von 100.0 bis 1000.0 nm. Beispielsweise umfasst die in der Matrix verteilte Fremdphase Nanopartikel mit einem Durchmesser in einem Bereich von 100.0 bis 750.0 nm oder in einem Bereich von 100.0 bis 500.0 nm. Die Verwendung von Nanopartikeln hat den Vorteil, dass dies zu einer homogeneren Verteilung der Fremdphase in der Matrix beiträgt.
  • Gemäß der vorliegenden Erfindung weist das Kontaktelement eine Porosität von ≤ 1.0 Vol.-%, bezogen auf das Gesamtvolumen des Kontaktelements, auf. Eine geringe Porosität ist vorteilhaft, da dies zur Verringerung oder Vermeidung einer Lichtbogenbildung führt und das erhaltene Kontaktelement einen hohen Abbrandschutz aufweist und so ein geringeres Sicherheitsrisiko bietet. Des Weiteren kann durch Aufmahlen von Graphit auf den Matrixwerkstoff eine gleichmäßige Verteilung des Graphits in der Matrix erzielt werden.
  • In einer Ausführungsform der vorliegenden Erfindung weist das Kontaktelement eine Porosität von ≤ 0.5 Vol.-%, bezogen auf das Gesamtvolumen des Kontaktelements, auf. Beispielsweise weist das Kontaktelement eine Porosität von ≤ 0.1 Vol.-%, bezogen auf das Gesamtvolumen des Kontaktelements, auf.
  • Eine Porosität von ≤ 1.0 Vol.-%, bevorzugt ≤ 0.5 Vol.-% und weiter bevorzugt ≤ 0.1 Vol.-%, bezogen auf das Gesamtvolumen des Kontaktelements, in dem Kontaktelement wird vorzugsweise erhalten, in dem dieses in einem thermischen Spritzverfahren hergestellt wird. Demnach ist das erfinderische Kontaktelement vorzugsweise ein thermisch gespritztes Kontaktelement.
  • Die Schichtdicke des Kontaktelements liegt in für diese Elemente typischen Bereichen. Beispielsweise weist das Kontaktelement eine Schichtdicke zwischen 100.0 µm und 5.0 mm auf. In einer weiteren Ausführungsform weist das Kontaktelement eine Schichtdicke zwischen 200.0 µm und 3.0 mm, weiter bevorzugt zwischen 250.0 µm und 2.0 mm und insbesondere zwischen 300.0 µm und 1.0 mm auf.
  • Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung eines Kontaktelements für Hochspannungs-Gleichstromschalter. Das erfindungsgemäße Verfahren zur Herstellung eines Kontaktelements für Hochspannungs-Gleichstromschalter wie vorstehend beschrieben, umfasst mindestens die Schritte:
    1. a) Bereitstellen eines ersten Materials ausgewählt aus der Gruppe umfassend Kupfer, Silber, Palladium, Platin, Wolfram, Molybdän, Rhenium, Nickel, Gold und Legierungen von diesen,
    2. b) Bereitstellen eines zweiten Materials, wobei das zweite Material Kohlenstoff ist und ausgewählt ist aus der Gruppe umfassend Fullerene, Kohlenstoff-Nanotubes, Graphen, Graphit und Gemische von diesen,
    3. c) Inkontaktbringen des ersten Materials aus Schritt a) mit dem zweiten Material aus Schritt b) zur Herstellung einer Vorlegierung umfassend das erste Material und das zweite Material, und
    4. d) Thermisches Spritzen der in Schritt c) erhaltenen Vorlegierung zur Herstellung des Kontaktelements umfassend eine Matrix aus dem ersten Material und eine in der Matrix verteilte Fremdphase aus dem zweiten Material.
  • In einer Ausführungsform der vorliegenden Erfindung besteht das Verfahren zur Herstellung eines Kontaktelements für Hochspannungs-Gleichstromschalter aus den Schritten:
    1. a) Bereitstellen eines ersten Materials ausgewählt aus der Gruppe umfassend Kupfer, Silber, Palladium, Platin, Wolfram, Molybdän, Rhenium, Nickel, Gold und Legierungen von diesen,
    2. b) Bereitstellen eines zweiten Materials, wobei das zweite Material Kohlenstoff ist und ausgewählt ist aus der Gruppe umfassend Fullerene, Kohlenstoff-Nanotubes, Graphen, Graphit und Gemische von diesen,
    3. c) Inkontaktbringen des ersten Materials aus Schritt a) mit dem zweiten Material aus Schritt b) zur Herstellung einer Vorlegierung umfassend das erste Material und das zweite Material, und
    4. d) Thermisches Spritzen der in Schritt c) erhaltenen Vorlegierung zur Herstellung des Kontaktelements umfassend eine Matrix aus dem ersten Material und eine in der Matrix verteilte Fremdphase aus dem zweiten Material.
  • Dieses Verfahren bietet im Vergleich zu den bisher üblichen schmelzmetallurgischen und pulvermetallurgischen Verfahren den Vorteil, dass eine aufwendige Herstellung von Vorprodukten, wie z.B. Sinterblöcken, und deren aufwendige Weiterverarbeitung durch Walzen, Ziehen und/oder Strangpressen entfallen. Des Weiteren kann das Kontaktelement direkt auf dem verwendeten Träger aufgespritzt werden, so dass das Auflöten des Kontaktelements auf dem entsprechenden Träger bzw. das Stanzen und Prägen zur Herstellung von Einzelteilen entfällt. Das vorliegende Verfahren weist daher nur einen geringen Fertigungsaufwand auf. Weiterhin ist ein Vorteil von gespritzten Kontaktelementen im Vergleich zu stranggepressten Kontaktelementen, dass Zwischenglühschritte entfallen, um die Kaltverfestigungen, die durch hohe Verformungs- und Reckgrade entstehen, wieder aufzulösen, damit das Material wieder "fließfähig" wird. Beim Spritzverfahren entfallen diese Schritte, da das Kontaktelement generativ Lage für Lage aufgebaut wird und dies nicht durch Umformschritte mit Werkzeugen erfolgt.
  • In einer Ausführungsform des erfindungsgemäßen Verfahrens umfasst Schritt a) das Bereitstellen eines ersten Materials wie oben beschrieben.
  • Ein Erfordernis der vorliegenden Erfindung ist demnach, dass ein erstes Material ausgewählt aus der Gruppe umfassend Kupfer, Silber, Palladium, Platin, Wolfram, Molybdän, Rhenium, Nickel, Gold und Legierungen von diesen bereitgestellt wird.
  • In einer Ausführungsform der vorliegenden Erfindung umfasst, vorzugsweise besteht, das erste Material aus Molybdän oder Kupfer.
  • In einer weiteren Ausführungsform der vorliegenden Erfindung umfasst das erste Material Silber oder Gold oder Palladium. Beispielsweise umfasst das erste Material Silber oder Gold, vorzugsweise Silber.
  • In einer Ausführungsform der vorliegenden Erfindung besteht das erste Material aus Silber oder Gold oder Palladium. Beispielsweise besteht das erste Material aus Silber oder Gold, vorzugsweise Silber.
  • In einer Ausführungsform der vorliegenden Erfindung umfasst das erste Material eine Legierung, wobei das Basismetall ausgewählt ist aus einem der oben genannten Elemente. Dementsprechend umfasst die Legierung vorzugsweise ein erstes Element ausgewählt aus der Gruppe umfassend Kupfer, Silber, Palladium, Platin, Wolfram, Molybdän, Rhenium, Nickel und Gold als Basismetall. Weiterhin umfasst die Legierung mindestens ein zweites Element oder eine zweite Verbindung ausgewählt aus der Gruppe umfassend Palladium, Wolfram, Wolframcarbid, Carbid, Nickel, Cobalt, Kupfer, Kohlenstoff, Silber und Gemische von diesen. Hierbei ist festzuhalten, dass sich das erste Element chemisch von dem zweiten Element oder der zweiten Verbindung unterscheidet. Beispielsweise, ist das erste Element der Legierung, d.h. das Basismetall, Silber, ist das zweite Element oder die zweite Verbindung der Legierung ausgewählt aus der Gruppe umfassend Palladium, Wolfram, Wolframcarbid, Carbid, Nickel, Nickelcarbid, Ruthenium, Iridium, SilberKupfer, SilberNickel, Cobalt, Kupfer, Kohlenstoff und Gemische von diesen.
  • Ist das zweite Element der Legierung Kohlenstoff, ist der Kohlenstoff vorzugsweise ausgewählt aus der Gruppe umfassend Fullerene, Kohlenstoff-Nanotubes, Graphen, Graphit und Gemische von diesen.
  • In einer Ausführungsform der vorliegenden Erfindung umfasst die Legierung beispielsweise Ag-Pd, Ag-Cd, AgC, Ag-WC, Ag-WC-C, Ag-Ni, AgNiC, AgCu, Ag-W, Au-Ni, Au-Co, AuAg, AuAgCu, AuAgNi, Pd-Ag, PdCu, PdRu, Ptlr, PtRu, PtW, W-Cu, Cu-W, Cu-Ag etc.
  • Umfasst das erste Material eine Legierung, umfasst die Legierung das erste Element vorzugsweise in einer Menge von 50.0 bis 97.0 Gew.-%, bezogen auf das Gesamtgewicht der Legierung. Beispielsweise umfasst die Legierung das erste Element in einer Menge von 60.0 bis 95.0 Gew.-% oder in einer Menge von 70.0 bis 90.0 Gew.-%, bezogen auf das Gesamtgewicht der Legierung. Zusätzlich oder alternativ umfasst die Legierung das zweite Element oder die zweite Verbindung in einer Menge von 3.0 bis 50.0 Gew.-%, bezogen auf das Gesamtgewicht der Legierung. Beispielsweise umfasst die Legierung das zweite Element oder die zweite Verbindung in einer Menge von 5.0 bis 40.0 Gew.-% oder in einer Menge von 10.0 bis 30.0 Gew.-%, bezogen auf das Gesamtgewicht der Legierung.
  • In einer Ausführungsform der vorliegenden Erfindung umfasst die Matrix eine Legierung wie beispielsweise AgNi10, AgNi15, AgNi40, AgCu3, AgCu10, AgCu20, AgCu28, AgPd30, AgPd50, PdCu15 oder PdCu40.
  • Zusätzlich oder alternativ, weist das erste Material eine bestimmte Partikelgröße auf. Gemäß dieser Ausführungsform umfasst das erste Material in Schritt a) Partikel mit einem Durchmesser in einem Bereich von 5.0 bis 100.0 µm. Beispielsweise umfasst das erste Material in Schritt a) Partikel mit einem Durchmesser in einem Bereich von 5.0 bis 50.0 µm oder von 5.0 bis 25.0 µm.
  • In einer Ausführungsform der vorliegenden Erfindung besteht das erste Material in Schritt a) aus Partikel mit einem Durchmesser in einem Bereich von 5.0 bis 100.0 µm. Beispielsweise besteht das erste Material in Schritt a) aus Partikel mit einem Durchmesser in einem Bereich von 5.0 bis 50.0 µm oder von 5.0 bis 25.0 µm.
  • In einer Ausführungsform der vorliegenden Erfindung wird das erste Material als Pulver bereitgestellt.
  • Das erste Material wird vorzugsweise in einer Menge von 75.0 bis 99.9 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements, bereitgestellt. Beispielsweise wird das erste Material in einer Menge von 75.0 bis 90.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements, bereitgestellt. In einer Ausführungsform der vorliegenden Erfindung wird das erste Material in einer Menge von 80.0 bis 90.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements, bereitgestellt.
  • In einer Ausführungsform der vorliegenden Erfindung besteht das zweite Material aus Kohlenstoff.
  • Das zweite Material ist Kohlenstoff, und der Kohlenstoff ist vorzugsweise ausgewählt aus der Gruppe umfassend Fullerene, Kohlenstoff-Nanotubes, Graphen, Graphit und Gemische von diesen.
  • Zusätzlich oder alternativ, weist das zweite Material eine bestimmte Partikelgröße auf. Gemäß dieser Ausführungsform umfasst das zweite Material in Schritt b) Nanopartikel. Beispielsweise umfasst das zweite Material in Schritt b) Partikel mit einem Durchmesser in einem Bereich von 100.0 bis 1000.0 nm. Beispielsweise umfasst das zweite Material in Schritt b) Partikel mit einem Durchmesser in einem Bereich von 100.0 bis 750.0 nm oder von 100.0 bis 500.0 nm.
  • Es ist festzuhalten, dass sich das zweite Material chemisch von dem ersten Material unterscheidet. Beispielsweise, wird Wolfram als erstes Material bereitgestellt, wird als zweites Material ein Material ausgewählt aus der Gruppe umfassend Kohlenstoff bereitgestellt.
  • Zusätzlich oder alternativ, wird das zweite Material in einer Menge von 0.1 bis 25.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements, bereitgestellt. Beispielsweise wird das zweite Material in einer Menge von 10.0 bis 25.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements bereitgestellt. In einer Ausführungsform der vorliegenden Erfindung wird das zweite Material in einer Menge von 10.0 bis 20.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements, bereitgestellt.
  • In einer Ausführungsform der vorliegenden Erfindung wird das zweite Material als Pulver bereitgestellt. Vorzugsweise wird das erste Material und das zweite Material als Pulver bereitgestellt.
  • Wie bereits oben erwähnt, ist es besonders vorteilhaft, wenn die Fremdphase aus dem zweiten Material, vorzugsweise homogen, in der Matrix, d.h. dem ersten Material, verteilt ist. Dies wird insbesondere dadurch erzielt, dass das erste Material mit dem zweiten Material zur Herstellung einer Vorlegierung umfassend das erste Material und das zweite Material, vorzugsweise bestehend aus dem ersten Material und dem zweiten Material, in Kontakt gebracht wird.
  • Eine Verteilung, vorzugsweise eine homogene Verteilung, der Fremdphase, d.h. dem zweiten Material, in der Matrix, d.h. dem ersten Material, wird vorzugsweise dadurch erzielt, dass das Inkontaktbringen des ersten Materials mit dem zweiten Material in Schritt c) durch Vermahlen des ersten Materials mit dem zweiten Material erfolgt.
  • Verfahren zum Vermahlen von Materialien sind im Stand der Technik bekannt. Beispielsweise kann das Vermahlen des ersten Materials mit dem zweiten Material in einer dafür geeigneten Mühle, wie z.B. Attritormühle, Kugelmühle etc., erfolgen. Mit Hilfe dieses Schrittes kann das zweite Material auf die Partikel des ersten Materials aufgerieben werden und so zu einer homogenen Verteilung Fremdphase in der Matrix führen. Dies geschieht üblicherweise bei Temperaturen von vorzugsweise nicht mehr als 100 °C für vorzugsweise weniger als 10 Minuten. Beispielsweise erfolgt dies bei Raumtemperatur, d.h. ca. 18 bis 24 °C, für vorzugsweise weniger als 10 Minuten.
  • Alternativ kann das Inkontaktbringen des ersten Materials mit dem zweiten Material in Schritt c) durch chemische Anbindung des zweiten Materials an das erste Material über übliche Hilfsstoffe erfolgen. Solche sogenannten "Cladding-Verfahren" sind im Stand der Technik bekannt.
  • Das Inkontaktbringen des ersten Materials mit dem zweiten Material in Schritt c) dient insbesondere zur Herstellung einer Vorlegierung umfassend das erste Material und das zweite Material, vorzugsweise bestehend aus dem ersten Material und dem zweiten Material. Dabei ist festzuhalten, dass die in diesem Schritt erhaltene Vorlegierung eine vorzugsweise homogene Verteilung des zweiten Materials in dem ersten Material aufweist.
  • Gemäß Schritt d) der vorliegenden Erfindung wird die Vorlegierung zur Herstellung des Kontaktelements thermisch gespritzt. Beispielsweise erfolgt das thermische Spritzen durch Kaltgasspritzen oder Plasmaspritzen oder Flammspritzen.
  • Beispielsweise erfolgt das thermische Spritzen in Schritt d) durch Flammspritzen. In einer Ausführungsform der vorliegenden Erfindung erfolgt das Flammspritzen durch Hochgeschwindigkeits-Flammspritzen. Flammspritzverfahren und Hochgeschwindigkeits-Flammspritzverfahren sind im Stand der Technik bekannt. Insbesondere geschieht dies bei Temperaturen von vorzugsweise mehr als 800°C. In einer Ausführungsform der vorliegenden Erfindung, ist die Prozesstemperatur ≥ der Schmelztemperatur des zu verarbeitenden Pulverwerkstoffes.
  • Alternativ erfolgt das thermische Spritzen in Schritt d) durch Plasmaspritzen. Plasmaspritzverfahren sind im Stand der Technik bekannt. Insbesondere geschieht dies im Normal- oder Niederdruckbereich. Das thermische Spritzen im Niederdruckbereich hat den Vorteil, dass eine homogenere Verteilung der Fremdphase, d.h. des zweiten Materials, in der Matrix, d.h. dem ersten Material, erzielt werden kann. Wird das Plasmaspritzverfahren im Niederdruckbereich ausgeführt, erfolgt dies vorzugsweise in einem Bereich von 0.01 bis 1 bar. Das Plasma wird vorzugsweise dadurch erzeugt, dass durch einen innerhalb des Plasmabrenners kontinuierlich brennenden Lichtbogen ein Prozessgas geführt wird. Als Prozessgas wird vorzugsweise ein Gas ausgewählt aus der Gruppe umfassend Argon, Stickstoff, Helium, Wasserstoff oder Gemische von diesen eingesetzt. Beispielsweise wird als Prozessgas eine Mischung aus Argon und Helium und optional Stickstoff verwendet. Alternativ wird als Prozessgas eine Mischung aus Argon und Wasserstoff und optional Stickstoff verwendet. Das Plasmaspritzverfahren erfolgt bei Temperaturen von vorzugsweise mehr als 800 °C.
  • Alternativ erfolgt das thermische Spritzen in Schritt d) durch Kaltgasspritzen. Kaltgasspritzverfahren sind im Stand der Technik bekannt. Dabei wird ein Schutzgas auf Überschallgeschwindigkeit beschleunigt und die Vorlegierung umfassend das erste Material und das zweite Material in den Gasstrahl injiziert. Dies führt dazu, dass die in den Gasstrahl injizierte Vorlegierung auf eine so hohe Geschwindigkeit beschleunigt wird, dass ein vorangehendes An- oder Aufschmelzen der Vorlegierung nicht erforderlich ist. Als Schutzgas wird vorzugsweise ein Gas ausgewählt aus der Gruppe umfassend Stickstoff, Helium, Druckluft oder Gemische von diesen eingesetzt. Beispielsweise wird als Schutzgas Druckluft verwendet. Die Verwendung von Druckluft erfolgt vorzugsweise in einem Druckbereich von 30 bis 70 bar, beispielsweise in einem Druckbereich von 30 bis 60 bar. Alternativ wird als Schutzgas eine Mischung aus Stickstoff und Helium verwendet. Das Kaltgasspritzen bietet mehrere Vorteile. Zum einen werden Kontaktelemente mit einer sehr geringen Porosität erhalten, vorzugsweise mit einer Porosität von ≤ 0.5 Vol.-% und weiter bevorzugt ≤ 0.1 Vol.-%, bezogen auf das Gesamtvolumen des Kontaktelements. Zum anderen weisen die so hergestellten Kontaktelemente eine sehr dichte Schicht mit einer hohen Härte auf, mit denen zusätzlich eine hohe Haftung auf Trägerwerkstoffen erzielt werden kann. Des Weiteren wird durch das Kaltgasspritzen eine Oxidation des ersten und/oder zweiten Materials in der Vorlegierung vermieden. Ein weiterer Vorteil des Kaltgasspritzens ist, dass ein Kontaktelement mit einem graduellen Anteil des zweiten Materials in dem ersten Material hergestellt werden kann.
  • Aufgrund der Vorteile, die das erfindungsgemäße Kontaktelement bietet, betrifft die vorliegende Erfindung auch die Verwendung des Kontaktelements in einem Hochspannungs-Gleichstromschalter. In einer Ausführungsform der vorliegenden Erfindung wird das Kontaktelement in einem elektrischen Leistungsantrieb verwendet. Beispielsweise wird das Kontaktelement in einem elektrischen Leistungsantrieb eines Luftfahrzeugs verwendet. Wie vorstehend ausgeführt kann durch das erfindungsgemäße Kontaktelement die Ausbildung von Plasmaüberschlägen stark reduziert werden bzw. das erfindungsgemäße Kontaktelement weist keine Plasmaüberschläge auf. Dadurch wird das Sicherheitsrisiko bei Verwendung des Kontaktelements reduziert.
  • Beispiele
  • Ein Kontaktelement nicht gemäß der Erfindung umfassend eine Matrix aus Silber und eine in der Matrix verteilte Fremdphase aus Zinn(II)-oxid wurde wie nachfolgend erläutert hergestellt.
  • 80 Vol.-% Silberpulver und 20 Vol.-% Zinn(II)-oxidpulver, bezogen auf das Gesamtvolumen der Mischung, wurden trocken durch Vermahlen gemischt. Die Mischung wurde mit Hilfe einer Kaltgas-Spritzanlage mit 40 bar und Stickstoff als Prozessgas auf ein Kontaktträgerband aus Kupfer aufgespritzt. Das Kupferträgerband wurde vor dem Aufspritzen der Silber/Zinn(II)-oxid-Mischung zunächst geschliffen und dann gebürstet. Das Aufspritzen der Silber/Zinn(II)-oxid-Mischung als Kontaktelement erfolgte zur homogeneren Verteilung der Fremdphase, d.h. Zinn(II)-oxid, in der Silbermatrix unter Vakuum. Das erhaltene Kontaktelement wurde anschließend ausgestanzt oder geprägt.
  • Die visuelle Überprüfung des Kontaktelementes mittels Schliffbildanalyse ergab, dass das Kontaktelement eine Porosität von ≤ 1.0 Vol.-%, bezogen auf das Gesamtvolumen des Kontaktelements, aufwies; siehe auch Fig. 1. Die Partikel der Fremdphase haben einen Durchmesser von 5-35 µm. Ferner wurde für das Kontaktelement eine Haftung von ca. 80 MPa auf dem Trägerband ermittelt, so dass eine sehr hohe Haftung auf dem Trägerwerkstoff gegeben ist. Die Haftung wurde mittels der AQL-Methode (statistische Kontrolle) gemäß Din 50014 bestimmt.

Claims (14)

  1. Kontaktelement für Hochspannungs-Gleichstromschalter, das Kontaktelement umfassend
    a) eine Matrix aus einem ersten Material ausgewählt aus der Gruppe umfassend Kupfer, Silber, Palladium, Platin, Wolfram, Molybdän, Rhenium, Nickel, Gold und Legierungen von diesen, und
    b) eine in der Matrix verteilte Fremdphase aus einem zweiten Material, wobei das zweite Material Kohlenstoff ist und ausgewählt ist aus der Gruppe umfassend Fullerene, Kohlenstoff-Nanotubes, Graphen, Graphit und Gemische von diesen,
    wobei das Kontaktelement eine Porosität von ≤ 1.0 Vol.-%, bezogen auf das Gesamtvolumen des Kontaktelements, aufweist.
  2. Das Kontaktelement gemäß Anspruch 1, wobei das Kontaktelement die Matrix in einer Menge von 75.0 bis 99.9 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements, umfasst und/oder das Kontaktelement die Fremdphase in einer Menge von 0.1 bis 25.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements, umfasst.
  3. Das Kontaktelement gemäß Anspruch 1 oder 2, wobei die Fremdphase homogen in der Matrix verteilt ist.
  4. Das Kontaktelement gemäß einem der vorherigen Ansprüche, wobei die in der Matrix verteilte Fremdphase Nanopartikel mit einem Durchmesser in einem Bereich von 100.0 bis 1000.0 nm, bevorzugt in einem Bereich von 100.0 bis 750.0 nm und weiter bevorzugt in einem Bereich von 100.0 bis 500.0 nm umfasst.
  5. Das Kontaktelement gemäß einem der vorherigen Ansprüche, wobei das Kontaktelement eine Porosität von ≤ 0.5 Vol.-% und bevorzugt ≤ 0.1 Vol.-%, bezogen auf das Gesamtvolumen des Kontaktelements, aufweist.
  6. Das Kontaktelement gemäß einem der vorherigen Ansprüche, wobei das Kontaktelement ein thermisch gespritztes Kontaktelement ist.
  7. Das Kontaktelement gemäß einem der vorherigen Ansprüche, wobei das Kontaktelement eine Schichtdicke zwischen 100.0 µm und 5.0 mm, bevorzugt zwischen 200.0 µm und 3.0 mm, weiter bevorzugt zwischen 250.0 µm und 2.0 mm und insbesondere zwischen 300.0 µm und 1.0 mm aufweist.
  8. Verfahren zur Herstellung eines Kontaktelements für Hochspannungs-Gleichstromschalter, das Verfahren umfassend
    a) Bereitstellen eines ersten Materials ausgewählt aus der Gruppe umfassend Kupfer, Silber, Palladium, Platin, Wolfram, Molybdän, Rhenium, Nickel, Gold und Legierungen von diesen,
    b) Bereitstellen eines zweiten Materials, wobei das zweite Material Kohlenstoff ist und ausgewählt ist aus der Gruppe umfassend Fullerene, Kohlenstoff-Nanotubes, Graphen, Graphit und Gemische von diesen,
    c) Inkontaktbringen des ersten Materials aus Schritt a) mit dem zweiten Material aus Schritt b) zur Herstellung einer Vorlegierung umfassend das erste Material und das zweite Material, und
    d) Thermisches Spritzen der in Schritt c) erhaltenen Vorlegierung zur Herstellung des Kontaktelements umfassend eine Matrix aus dem ersten Material und eine in der Matrix verteilte Fremdphase aus dem zweiten Material.
  9. Verfahren gemäß Anspruch 8, wobei das erste Material in Schritt a) Partikel mit einem Durchmesser in einem Bereich von 5.0 bis 100.0 µm, bevorzugt in einem Bereich von 5.0 bis 50.0 µm und weiter bevorzugt in einem Bereich von 5.0 bis 25.0 µm umfasst und/oder das zweite Material in Schritt b) Nanopartikel mit einem Durchmesser in einem Bereich von 100.0 bis 1000.0 nm, bevorzugt in einem Bereich von 100.0 bis 750.0 nm und weiter bevorzugt in einem Bereich von 100.0 bis 500.0 nm umfasst.
  10. Verfahren gemäß einem der vorhergehenden Ansprüche 8 oder 9, wobei das erste Material in einer Menge von 75.0 bis 99.9 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements, bereitgestellt wird und/oder das zweite Material in einer Menge von 0.1 bis 25.0 Gew.-%, bezogen auf das Gesamtgewicht des Kontaktelements, bereitgestellt wird.
  11. Verfahren gemäß einem der vorhergehenden Ansprüche 8 bis 10, wobei das Inkontaktbringen in Schritt c) durch Vermahlen des ersten Materials mit dem zweiten Material erfolgt.
  12. Verfahren gemäß einem der vorhergehenden Ansprüche 8 bis 11, wobei das thermische Spritzen in Schritt d) durch Kaltgasspritzen oder Plasmaspritzen oder Flammspritzen erfolgt.
  13. Verwendung eines Kontaktelements gemäß einem der Ansprüche 1 bis 7 in einem Hochspannungs-Gleichstromschalter.
  14. Verwendung gemäß Anspruch 13 in einem elektrischen Leistungsantrieb, bevorzugt in einem Luftfahrzeug.
EP14002972.9A 2013-09-11 2014-08-28 Kontaktwerkstoffe für hochspannungs- gleichstrombordsysteme Active EP2849185B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013014915.0A DE102013014915A1 (de) 2013-09-11 2013-09-11 Kontaktwerkstoffe für Hochspannungs-Gleichstrombordsysteme

Publications (2)

Publication Number Publication Date
EP2849185A1 EP2849185A1 (de) 2015-03-18
EP2849185B1 true EP2849185B1 (de) 2016-12-07

Family

ID=51494061

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14002972.9A Active EP2849185B1 (de) 2013-09-11 2014-08-28 Kontaktwerkstoffe für hochspannungs- gleichstrombordsysteme

Country Status (3)

Country Link
US (1) US20150069020A1 (de)
EP (1) EP2849185B1 (de)
DE (1) DE102013014915A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6603729B2 (ja) * 2015-03-27 2019-11-06 ユニバーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレイテッド 修復及び保護コーティングの溶射
DE102017200292A1 (de) * 2017-01-10 2018-07-12 Siemens Aktiengesellschaft Kontaktstück für einen elektrischen Schalter, elektrischer Schalter mit solch einem Kontaktstück und Verfahren zum Herstellen eines solchen Kontaktstückes
KR102129656B1 (ko) * 2017-12-13 2020-07-02 엘티메탈 주식회사 전기 접점 재료 및 이를 포함하는 전기 접점
DE102018104415A1 (de) * 2018-02-27 2019-08-29 Tdk Electronics Ag Schaltvorrichtung
JP6669327B1 (ja) * 2019-08-27 2020-03-18 三菱電機株式会社 電気接点、電気接点を備えた真空バルブ
CN111001801A (zh) * 2019-12-04 2020-04-14 福达合金材料股份有限公司 一种银碳化钨-钼复合电触头材料及其骨架粉体和制备方法
DE102020201523A1 (de) 2020-02-07 2021-08-12 Siemens Aktiengesellschaft Schaltlichtbogen-resistenter Beschichtungswerkstoff für Schalt- und Kontaktvorrichtungen sowie Anwendungsbeispiele für den Beschichtungswerkstoff und zwei Verfahren für dessen Herstellung
US11114254B2 (en) * 2020-02-07 2021-09-07 Siemens Industry, Inc. Silver-graphene tungsten material electrical contact tips of a low voltage circuit breaker
EP4276864A1 (de) * 2022-05-08 2023-11-15 Abb Schweiz Ag Vakuumschaltröhre

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1605432A (en) * 1923-08-02 1926-11-02 Hardy M Fredriksen Alloy and process of forming the same
DE747830C (de) * 1941-06-17 1945-01-20 Verwendung von Goldlegierungen fuer elektrische Kontakte
US2496555A (en) * 1945-06-02 1950-02-07 Allen Bradley Co Contact for electrical switches
JPS5351128A (en) * 1976-10-21 1978-05-10 Nat Res Inst Metals Electric contact materials
DE3213265A1 (de) * 1981-04-10 1982-11-18 Sumitomo Electric Industries, Ltd., Osaka Elektrisches kontaktmaterial
US4452652A (en) * 1982-07-08 1984-06-05 Akira Shibata Electrical contact materials and their production method
US4452651A (en) * 1982-07-08 1984-06-05 Chugai Denki Kogyo K.K. Electrical contact materials and their production method
US4689196A (en) * 1985-06-24 1987-08-25 Gte Products Corporation Silver-tungsten carbide-graphite electrical contact
DE69032065T2 (de) * 1989-12-26 1998-10-29 Akira Shibata Verbundwerkstoff von Silber und Metalloxyd und Verfahren zur Herstellung desselben
US5236628A (en) * 1991-02-27 1993-08-17 Metallon Engineered Materials Corporation Noble metal and solid-phase lubricant composition and electrically conductive interconnector
WO2002006542A1 (en) * 2000-07-14 2002-01-24 Omg Americas, Inc. Dispersion strengthened silver
DE10245343A1 (de) * 2002-09-27 2004-04-08 Robert Bosch Gmbh Elektrischer Kontakt
DE10261303B3 (de) * 2002-12-27 2004-06-24 Wieland-Werke Ag Verbundmaterial zur Herstellung elektrischer Kontakte und Verfahren zu dessen Herstellung
US7345296B2 (en) * 2004-09-16 2008-03-18 Atomate Corporation Nanotube transistor and rectifying devices
JP2009282003A (ja) * 2008-05-22 2009-12-03 Vision Development Co Ltd 接点部材
DE102009026655B3 (de) * 2009-06-03 2011-06-30 Linde Aktiengesellschaft, 80331 Verfahren zur Herstellung eines Metallmatrix-Verbundwerkstoffs, Metallmatrix-Verbundwerkstoff und seine Verwendung
EP2337044A1 (de) * 2009-12-18 2011-06-22 Metalor Technologies International S.A. Herstellungsverfahren eines Kontaktplättchens eines elektrischen Kontakts und eines elektrischen Kontakts
CN102142325B (zh) * 2010-12-30 2013-04-03 温州宏丰电工合金股份有限公司 颗粒定向排列增强银基氧化物电触头材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102013014915A1 (de) 2015-03-12
EP2849185A1 (de) 2015-03-18
US20150069020A1 (en) 2015-03-12

Similar Documents

Publication Publication Date Title
EP2849185B1 (de) Kontaktwerkstoffe für hochspannungs- gleichstrombordsysteme
EP1915765B1 (de) Werkstoff auf der basis silber-kohlenstoff und verfahren zu dessen herstellung
EP3389897B1 (de) Verbundwerkstoff, verfahren zum herstellen eines verbundwerkstoffs und entladungskomponente mit einem solchen verbundwerkstoff
DE102017129388A1 (de) Kontaktanordnung für elektrische Vorrichtungen und Verfahren zur Herstellung
EP2538423A1 (de) Verfahren zur herstellung eines elektrischen oxidkontaktmaterials auf silberbasis mit ausgerichteten partikeln
EP2326742B1 (de) Verwendung eines targets für das funkenverdampfen und verfahren zum herstellen eines für diese verwendung geeigneten targets
EP0440620B1 (de) Halbzeug für elektrische kontakte aus einem verbundwerkstoff auf silber-zinnoxid-basis und pulvermetallurgisches verfahren zu seiner herstellung
WO2010051923A1 (de) Verfahren zur herstellung eines halbzeugs und halbzeug für elektrische kontakte sowie kontaktstück
DE19535814C2 (de) Material zur Herstellung elektrischer Kontakte auf Silberbasis
EP0645049B1 (de) Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid
DE69116935T2 (de) Elektrisches Kontaktmaterial auf Silberbasis und Verfahren zur Herstellung
DE3421758A1 (de) Sinterkontaktwerkstoff fuer niederspannungsschaltgeraete der energietechnik und verfahren zu dessen herstellung
EP2644723B1 (de) Verbundwerkstoff
EP0725154B1 (de) Sinterwerkstoff auf der Basis Silberzinnoxid für elektrische Kontakte und Verfahren zu dessen Herstellung
EP0586411A1 (de) Kontaktwerkstoff auf silberbasis zur verwendung in schaltgeräten der energietechnik sowie verfahren zur herstellung von kontaktstücken aus diesem werkstoff.
EP3433866B1 (de) Verfahren zur herstellung eines kontaktwerkstoffes auf basis von silber-zinnoxid oder silber-zinkoxid sowie kontaktwerkstoff
WO2015090865A1 (de) Verfahren zur herstellung von kontaktmaterialstücken für vakuumschaltröhren
EP0876670B1 (de) Verfahren zur herstellung eines formstücks aus einem kontaktwerkstoff auf silberbasis
EP0338401B1 (de) Pulvermetallurgisches Verfahren zum Herstellen eines Halbzeugs für elektrische Kontakte aus einem Verbundwerkstoff auf Silberbasis mit Eisen
DE3402091A1 (de) Verbundwerkstoff fuer elektrische kontaktstuecke
WO2007020006A1 (de) Verwendung von indium-zinn-mischoxid für werkstoffe auf silberbasis
WO2007144332A1 (de) Elektricher schaltkontakt für einen vakuumleistungsschalter mit nickel-kohlenstofffnanoröhrenschicht
WO2020114687A1 (de) Verbesserung der oberflächeneigenschaften von kontaktwerkstoffen
EP0311134A1 (de) Pulvermetallurgisch hergestellter Werkstoff für elektrische Kontakte aus Silber mit Graphit und Verfahren zu seiner Herstellung
DE102020133062A1 (de) Vielzahl von Partikeln mit Beschichtung und Verfahren zu deren Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150330

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20150821

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H05H 1/36 20060101ALI20160620BHEP

Ipc: H01B 1/02 20060101AFI20160620BHEP

Ipc: H01H 33/59 20060101ALI20160620BHEP

Ipc: C23C 4/08 20060101ALI20160620BHEP

Ipc: H01H 1/0237 20060101ALI20160620BHEP

Ipc: H01H 1/02 20060101ALI20160620BHEP

Ipc: H01H 11/04 20060101ALI20160620BHEP

Ipc: H01H 1/025 20060101ALI20160620BHEP

INTG Intention to grant announced

Effective date: 20160706

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STEINWANDEL, JUERGEN

Inventor name: JONKE, DIETRICH P.

Inventor name: PIRINGER, HELMUT

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 852367

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014002113

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170407

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170407

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014002113

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170828

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 852367

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190828

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230822

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230824

Year of fee payment: 10

Ref country code: DE

Payment date: 20230821

Year of fee payment: 10