EP2487428A1 - Climatiseur et son procédé de fonctionnement - Google Patents
Climatiseur et son procédé de fonctionnement Download PDFInfo
- Publication number
- EP2487428A1 EP2487428A1 EP12167470A EP12167470A EP2487428A1 EP 2487428 A1 EP2487428 A1 EP 2487428A1 EP 12167470 A EP12167470 A EP 12167470A EP 12167470 A EP12167470 A EP 12167470A EP 2487428 A1 EP2487428 A1 EP 2487428A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- air conditioner
- powerful operation
- powerful
- during
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/79—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0011—Indoor units, e.g. fan coil units characterised by air outlets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0043—Indoor units, e.g. fan coil units characterised by mounting arrangements
- F24F1/0057—Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/74—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
- F24F11/77—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/84—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/86—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/56—Remote control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2120/00—Control inputs relating to users or occupants
- F24F2120/10—Occupancy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2120/00—Control inputs relating to users or occupants
- F24F2120/10—Occupancy
- F24F2120/12—Position of occupants
Definitions
- the present invention relates to an air conditioner that is capable of powerful operation in which the fan speed, the operating frequency of the compressor, or the like is temporarily increased, and air conditioning capacity is enhanced.
- the present invention also relates to a method for controlling the air conditioner.
- Conventional air conditioners are known which are installed in residences, buildings, and the like, and which enhance the comfort of a room by ventilating conditioned air into the room. Such air conditioners maintain a room temperature that is comfortable to the occupants and enhance the comfort of the room by ventilating cool air or warm air into the room.
- An air conditioner is provided with an indoor air conditioning unit mounted indoors for performing air conditioning, and an outdoor air conditioning unit mounted outdoors.
- the indoor air conditioning unit and the outdoor air conditioning unit are connected to each other by a connection pipe, and air conditioning is performed by causing heat to be exchanged between the indoor air and the refrigerant flowing through a refrigerant pipe.
- air conditioners in particular among those of this type that perform so-called powerful operation for temporarily increasing the operating frequency of the compressor, the fan speed, or the like and enhancing the air conditioning capacity according to an instruction entered by a user during cooling operation, heating operation, or the like.
- the operating capacity at that moment is temporarily increased.
- the air conditioning capacity for heating and cooling at that moment is temporarily increased (see JP-A 7-103551 ).
- the air conditioner is controlled so that the operating frequency of the compressor, the fan speed, or the like is increased, and the air conditioning capacity is enhanced as described above.
- the air conditioner is controlled so that the operating frequency of the compressor, the fan speed, or the like is increased, and the air conditioning capacity is enhanced as described above.
- no control is performed regarding the direction in which the conditioned air is blown at this time, and the direction in which the air is blown is determined by the direction in which the air deflector happens to be turned when the command for powerful operation is entered.
- An object of the present invention is to provide an air conditioner and a method for controlling the air conditioner whereby the direction in which conditioned air is discharged during powerful operation can be controlled.
- An air conditioner according to the present invention comprises the features of claim 1. Embodiments are named in the dependent claims.
- the sole difference during powerful operation was that the capacity of the air conditioning mechanism was temporarily increased, and control of the discharge direction of air at that time was not addressed.
- the direction of the air deflector during powerful operation was determined by whatever direction the air deflector happened to be facing immediately before the command for powerful operation was entered. Consequently, even when the same powerful operation was executed during cooling, for example, the direction of the air deflector could sometimes vary according to the operating conditions immediately preceding the powerful operation.
- the direction of the air deflector is controlled so that conditioned air is discharged in the direction in which people are not present when the command for powerful operation is entered.
- the room occupants can be prevented from experiencing discomfort due to excessive coldness during cooling operation, discomfort due to direct contact with warm air during heating, or other discomfort.
- control unit adjusts the direction of the air deflector so that air is discharged in the direction in which people are not present during powerful operation.
- the direction of the air deflector is controlled so that conditioned air is discharged in the direction in which people are not present when the command for powerful operation is entered.
- the direction of the air deflector is fixed during powerful operation.
- the direction of the air deflector is fixed in the direction in which people are present when the command for powerful operation is entered.
- the swing range of the air deflector is changed during powerful operation.
- the swing range is changed to a range wherein the wind blows on the person. Since air is thereby blown directly onto the person by the setting of powerful operation, the sensation of power can thereby be imparted even when air is not blown directly onto the person before powerful operation.
- the swing range can also be changed to a range wherein the wind does not blow on the person, even when powerful operation is set with the air deflector in mid-swing.
- a timer is provided for limiting the time in which powerful operation is performed.
- a timer is furthermore provided for limiting the time in which powerful operation is performed.
- the air conditioning capacity for cooling, heating, and the like can thereby be temporarily enhanced.
- the time in which powerful operation is performed is also limited by the timer also when the air deflector is adjusted in a direction whereby condensation is likely to form near the discharge vent during continuous operation. Consequently, the formation of condensation near the discharge vent can thereby be reliably prevented. It is also possible to limit the time in which powerful operation is performed, and to temporarily enhance the air conditioning capacity for cooling, heating, and the like.
- a time at which the air deflector is stopped during powerful operation is set in the timer.
- a time is set in the timer at which the air deflector is stopped at a prescribed angle during powerful operation.
- the air deflector can therefore be caused to swing in a range that includes the direction in which people are present when a prescribed time has elapsed during powerful operation.
- the air deflector is a vertically moving flap.
- the direction of the vertically moving flap in the air deflector is controlled, and it is determined whether the wind is or is not blowing towards a person.
- the air deflector can therefore be easily adjusted so as to point at a person merely by swinging the discharge direction up and down.
- the air deflector may also be adjusted so as not to point at a person.
- a sensor for detecting a person is provided.
- a sensor for detecting a person in the room is further comprised in this arrangement.
- the wind direction can be reliably adjusted so as to point towards a person during powerful operation, and can also be reliably adjusted so as to point away from a person.
- the direction of the air deflector is adjusted when powerful operation is set during cooling operation.
- control of the direction of the air deflector during execution of powerful operation is only performed when the command for powerful operation is entered, particularly during cooling operation.
- control is performed so that cold air is blown directly onto a person when powerful operation is performed during cooling.
- a stronger sensation of power can thereby be imparted by imparting the sensation of cold to the person.
- control can also be performed so that cold air is not blown directly onto the person during powerful cooling operation.
- a method for controlling an air conditioner according to the present invention is defined in claim 9.
- FIG. 1 is an external view of the air conditioner 1 in which the first embodiment not part of the present invention is employed.
- the air conditioner 1 is a device for blowing cooled or heated air, de-humidified air, or other conditioned air into a room and performing conditioning of indoor air.
- This air conditioner 1 is provided with an indoor unit 2 mounted at an upper portion of a wall surface inside a room, and an outdoor unit 3 disposed outdoors.
- the outdoor unit 3 is provided with an outdoor air conditioning unit 5 that houses an outdoor heat exchanger (air conditioning mechanism), an outdoor fan (air conditioning mechanism), and the like.
- An indoor heat exchanger (air conditioning mechanism) is housed in the indoor unit 2, the outdoor heat exchanger is housed in the outdoor air conditioning unit 5, and the heat exchangers and a refrigerant pipe 6 for connecting these heat exchangers constitute a refrigerant circuit.
- FIG. 2 shows a schematic diagram of the refrigerant circuit used in the air conditioner 1.
- the indoor heat exchanger 11 is provided inside the indoor unit 2.
- This indoor heat exchanger 11 is composed of a heat transfer tube that is folded over a plurality of times at both ends in the longitudinal direction thereof, and a plurality of fins through which the heat transfer tube is inserted. This indoor heat exchanger 11 exchanges heat with the surrounding air.
- a cross-flow fan (air conditioning mechanism) 12 is also provided inside the indoor unit 2, for blowing the air into the room after the indoor air has been drawn in and heat-exchanged with the indoor heat exchanger 11.
- the cross-flow fan 12 is formed in a cylindrical shape, and the peripheral surface thereof is provided with blades in the direction of the rotational axis thereof.
- the cross-flow fan 12 generates an airflow in the direction orthogonal to the axis of rotation.
- This cross-flow fan 12 is rotatably driven by a fan motor 13 provided inside the indoor unit 2.
- a compressor (air conditioning mechanism) 21, a four-way switching valve 22, an accumulator 23, an outdoor heat exchanger 24, and a pressure-reducing device 25 are provided to the outdoor air conditioning unit 5 (see FIG. 2 ).
- the four-way switching valve 22 is connected to the discharge side of the compressor 21.
- the accumulator 23 is connected to the intake side of the compressor 21.
- the outdoor heat exchanger 24 is connected to the four-way switching valve 22.
- the pressure-reducing device 25 is an electric expansion valve connected to the outdoor heat exchanger 24.
- the pressure-reducing device 25 is also connected to a connection pipe 31 via a filter 26 and a liquid stop valve 27, and is connected to one end of the indoor heat exchanger 11 via the connection pipe 31.
- the four-way switching valve 22 is also connected to a connection pipe 32 via a gas stop valve 28, and is connected to the other end of the indoor heat exchanger 11 via this connection pipe 32.
- connection pipes 31 and 32 correspond to the refrigerant pipe 6 in FIG. 1 .
- FIG. 3 A sectional view of the indoor unit 2 is shown in FIG. 3 .
- the indoor heat exchanger 11 and cross-flow fan 12 described previously are housed inside a casing 14 of the indoor unit 2.
- the indoor heat exchanger 11 is mounted so as to surround the cross-flow fan 12 from the front, from above, and from the top of the rear thereof.
- the air passes through the indoor heat exchanger 11 by the cross-flow fan 12, and then heat exchange occurs between the air and the refrigerant flowing through the inside of the heat transfer tube.
- a drain pan 141 for receiving water droplets that form on the surface of the indoor heat exchanger 11 during heat exchange is provided under the indoor heat exchanger 11.
- a drain hose (not shown) for discharging the received water droplets to the outside is mounted on the drain pan 141.
- the drain pan 141 is configured so as to receive such water droplets and drain out the water droplets through the drain hose.
- An intake vent 142 composed of a plurality of slit-shaped openings is provided at the top of the casing 14.
- a discharge vent 143 composed of an opening elongated in the longitudinal direction of the indoor unit 2 is provided at the bottom of the casing 14.
- a horizontal flap (vertically moving flap) 144 for determining the discharge direction of the air blown into the room by the cross-flow fan 12 is provided to the discharge vent 143.
- This horizontal flap 144 is provided so as to be able to rotate about a shaft 145 that is parallel to the longitudinal direction of the indoor unit 2.
- the horizontal flap 144 is rotated by a flap motor 146 (see FIG. 7 ) described hereinafter, whereby the discharge direction of the air can be determined. As shown in FIG.
- the edge 144a of the horizontal flap 144 when the edge 144a of the horizontal flap 144 is oriented in an approximately horizontal direction, the conditioned air is discharged in an approximately horizontal direction. As shown in FIG. 5 , when the edge 144a of the horizontal flap 144 is turned downward in an approximately vertical direction, the conditioned air is discharged downward in an approximately vertical direction. Furthermore, the edge 144a of the horizontal flap 144 is in contact with the edge of the casing 14 when operation of the air conditioner 1 is stopped, as shown in FIG. 6 . The horizontal flap 144 in this case almost completely covers the discharge vent 143.
- a propeller fan 29 for discharging to the outside the air that is heat-exchanged by the outdoor heat exchanger 24 is provided inside the outdoor air conditioning unit 5.
- This propeller fan 29 is rotatably driven by a propeller fan motor 30.
- a control unit 60 is further provided to the air conditioner 1.
- the control unit 60 is connected to the compressor 21, four-way switching valve 22, pressure-reducing device 25, ROM 41, RAM 42, fan motor 13, flap motor 146, temperature sensor 43, and infrared sensor 44, as shown in FIG. 7 .
- the control unit 60 also communicates with a remote control 40, and the time of powerful operation is limited by a timer 45 working inside a program.
- the control unit 60 also controls the compressor 21, the four-way switching valve 22, the pressure-reducing device 25, the fan motor 13, and the flap motor 146.
- a control program and various parameters are stored in the ROM 41. Also stored in the ROM 41 are airflow settings for various set times, the positioning, swing range, and the like of the horizontal flap 144 when powerful operation is set, and other parameters.
- the airflow setting is the operational airflow for determining the rate at which air is discharged from the discharge vent 143, and may be set to any of the following settings: “quiet,” “slight breeze,” “faint wind,” “low,” “medium,” and “high.”
- the "quiet” setting indicates the smallest operational airflow, and "high” indicates the highest operational airflow.
- the control unit 60 selects any one of the airflow settings based on a signal from the remote control 40 described hereinafter, and stores the selected airflow setting in the RAM 42.
- the control unit 60 also causes the fan motor 13 to rotate so that an amount of conditioned air corresponding to the selected airflow setting is blown into the room.
- the remote control 40 is an operation device for transmitting a command from the room occupant to the air conditioner 1 and causing the air conditioner 1 to operate according to the wishes of the occupant.
- the occupant can set the room temperature, turn the swing function of the horizontal flap 144 on and off, select the swing mode, enter a command for powerful operation, and perform other functions using the remote control 40.
- Powerful operation is a function whereby the air conditioning capacity can be temporarily enhanced by temporarily increasing the rotation speed of the cross-flow fan 12, the operating frequency of the compressor 21, and the like according to a command entered by the user. This powerful operation will be described in detail hereinafter.
- These commands are transmitted to the control unit 60 from the remote control 40 and used for controlling each component. These commands are transmitted from the control unit 60 to the RAM 42 together with the presence-sensing results (information relating to the direction in which people are present) from the infrared sensor 44, and are stored in the RAM 42.
- the target temperature T attained by the operation of the air conditioner 1 can also be set using the remote control 40.
- This target temperature T is transmitted from the remote control 40 to the control unit 60, and is used for controlling each component.
- This target temperature T is also transferred from the control unit 60 to the RAM 42 and stored in the RAM 42.
- the control unit 60 stops the operation of the compressor 21 in order to minimize energy consumption by the air conditioner 1.
- stoppage of the compressor 21 causes the room temperature to increase by a prescribed temperature t2 or more above the target temperature T
- the control unit 60 reactivates the compressor 21.
- the temperature sensor 43 provided to the indoor unit 2 measures the temperature inside the room.
- the temperature sensor 43 transmits the measured room temperature to the control unit 60.
- the infrared sensor (sensor) 44 is provided near the surface of the indoor unit 2, and is a presence sensor for detecting the presence of a person in the room. This infrared sensor 44 transmits to the control unit 60 information regarding the direction in which the detected person is present. Such detection using the infrared sensor 44 may be performed at all times, or at prescribed time intervals.
- control unit 60 of the air conditioner 1 controls the fan motor 13 so as to increase the speed of the cross-flow fan 12, and controls the operating frequency of the compressor 21 in order to enhance the air conditioning capacity.
- a particular feature of the air conditioner 1 of the present embodiment is that the control unit 60 controls the direction of the horizontal flap 144 in addition to performing the abovementioned control when the command for powerful operation is entered.
- conditioned air is blown into the room S in an approximately horizontal direction, as shown in FIG. 8(a) .
- the flap motor 146 is controlled, and the direction of the horizontal flap 144 is adjusted so that the air heat-exchanged by the indoor heat exchanger 11 is blown towards the people as shown in FIG. 8(b) , according to the detection results from the infrared sensor 44.
- the direction of the horizontal flap 144 is controlled so as to always change to the direction in which people are present when the command for powerful operation is entered, regardless of what direction the horizontal flap 144 was in during operation prior to when the powerful operation command was entered.
- the user can thereby experience the sensation of power from powerful operation by directly receiving the conditioned air.
- This type of powerful operation is also performed in the same manner during heating operation.
- Powerful operation is a state in which the air conditioning capacity of the air conditioner 1 is temporarily increased, and the time in which powerful operation is performed is limited by the timer 45.
- This timer 45 begins measuring time after the control unit 60 receives the powerful operation command entered by the user, and transmits a signal to the control unit 60 when a prescribed time occurs.
- the control unit 60 performs control so as to cause the fan motor 13, the compressor 21, and the flap motor 146 to return to the original normal operation state, causes powerful operation to end, and returns the system to normal operation.
- a time is set in the timer 45 whereby condensation does not form in the vicinity of the discharge vent 143 even when there is a direct discharge of air near the discharge vent 143 during powerful cooling operation.
- the air conditioner 1 of the first embodiment temporarily increases the rotational speed of the cross-flow fan 12, the operating frequency of the compressor 21, and the like, enhances the air conditioning capacity, and even so much as controls the wind direction when a command for powerful operation is entered from the remote control 40.
- a particular feature of the air conditioner 1 of the present embodiment is that the direction of the horizontal flap 144 is controlled so that conditioned air is discharged in the direction in which people are present in the room.
- the air conditioner 1 of the first embodiment detects the direction in which people are present in the room using the infrared sensor 44.
- the direction of the horizontal flap 144 can thereby be adjusted to ensure that wind blows directly on the people regardless of where the people are in the room.
- the direction of the horizontal flap 144 is fixed, and conditioned air is blown in the direction in which people are present.
- the users in the room can thereby be ensured to experience the heightened effects of powerful operation.
- the air conditioner 1 of the first embodiment uses the timer 45 to limit the time in which powerful operation is performed.
- a time is set in the timer 45 whereby condensation does not form near the discharge vent 143 of the indoor unit 2.
- conditioned air In powerful operation during cooling, conditioned air usually comes in contact with the area near the discharge vent as well when the horizontal flap 144 is turned towards where people are present. In such a case, condensation can form near the discharge vent when cold air continues to be discharged unchanged for a long period of time.
- the formation of condensation near the discharge vent 143 can be reliably prevented by limiting the time in which the horizontal flap 144 is directed in such a direction.
- the air conditioner 1 of the first embodiment controls the discharge direction of air fed into the room using the horizontal flap 144.
- the first embodiment was described by way of an example wherein the direction in which people are present is detected using the infrared sensor 44, and the air conditioned during powerful operation is blown in that direction.
- the present invention is not limited to this configuration.
- the sensor may be omitted, and conditioned air may be blown towards a specified range in which people are assumed to be present.
- the sensor need not be an infrared sensor as long as it is capable of detecting where people are present, and another type of sensor may be used.
- the present invention is not limited to this configuration.
- the horizontal flap 144 when the horizontal flap 144 is swinging between an approximately horizontal direction and a direction a few degrees below the horizontal direction during normal cooling operation, the horizontal flap 144 may be caused to swing in a range that is enlarged so as to include the direction in which people are present, as shown in FIG. 9(b) .
- the horizontal flap 144 since the user can directly feel the air discharged during powerful operation, the heightened effects of powerful operation can be imparted to the user in the same manner as when the horizontal flap 144 is fixed so as to point towards where people are present.
- the wind direction may also be controlled in the left-right direction using a vertically moving flap, and the wind direction may be controlled using both a vertically moving flap and the horizontal flap 144.
- control of the direction of the horizontal flap 144 may be limited so that conditioned air is blown in the direction towards people only when the command for powerful operation is entered during cooling operation.
- the user can thereby be caused to feel the coldness of powerful operation during cooling, and to better experience the heightened effects of powerful operation.
- the present invention is not limited to this configuration.
- a time in which the direction of the horizontal flap 144 is fixed during powerful operation may be set in the timer 45.
- the horizontal flap 144 fixed at a prescribed angle during powerful operation may be controlled so as to swing after a time limit that is set in the timer 45 has elapsed.
- An air conditioner according to the second embodiment differs from the air conditioner of the first embodiment in that the control unit 60 controls the flap motor 146 so that the air heat-exchanged (air-conditioned) with the indoor heat exchanger 11 is blown in a direction in which people are not present, and the direction of the horizontal flap 144 is adjusted. Consequently, only the operation of the air conditioner during powerful operation is described herein.
- control unit 60 of the air conditioner 1 controls the fan motor 13 so as to increase the speed of the cross-flow fan 12, and controls the operating frequency of the compressor 21 in order to enhance the air conditioning capacity.
- a particular feature of the air conditioner 1 of the second embodiment is that the control unit 60 controls the direction of the horizontal flap 144 in addition to performing the control described in the first embodiment when the command for powerful operation is entered.
- conditioned air is blown into the room S somewhat downward from the approximately horizontal direction, as shown in FIG. 10(a) .
- the flap motor 146 is controlled, and the direction of the horizontal flap 144 is adjusted so that the air heat-exchanged (air-conditioned) by the indoor heat exchanger 11 is blown in a direction in which people are not present, as shown in FIG. 10(b) , according to the detection results from the infrared sensor 44.
- the direction of the horizontal flap 144 is controlled so as to always change to the direction in which people are not present when the command for powerful operation is entered, regardless of what direction the horizontal flap 144 was in during operation prior to when the powerful operation command was entered. Even when the command for powerful operation is entered, the room occupants can thus be comfortable in the room without experiencing excessive coldness from being directly blown on during cooling.
- This type of powerful operation is also performed in the same manner during heating operation.
- Powerful operation is a state in which the air conditioning capacity of the air conditioner 1 is temporarily increased, and the time in which powerful operation is performed is limited by the timer 45.
- This timer 45 begins measuring time after the control unit 60 receives the powerful operation command entered by the user, and transmits a signal to the control unit 60 when a prescribed time occurs.
- the control unit 60 performs control so as to cause the fan motor 13, the compressor 21, and the flap motor 146 to return to the original normal operation state, causes powerful operation to end, and returns the system to normal operation.
- the air conditioner 1 of the second embodiment temporarily increases the rotational speed of the cross-flow fan 12, the operating frequency of the compressor 21, and the like, enhances the air conditioning capacity, and even so much as controls the wind direction when a command for powerful operation is entered from the remote control 40.
- a particular feature of the air conditioner 1 of the present embodiment is that the direction of the horizontal flap 144 is controlled so that conditioned air is discharged away from the direction in which people are present in the room.
- the conditioned air is discharged in a direction other than the direction in which people are present; for example, towards the ceiling, or in another direction.
- the conditioned air can be discharged in a direction other than the direction in which people are present; for example, towards the ceiling, or in another direction.
- cold air can be prevented from blowing directly on the people. Powerful operation can therefore be performed without causing discomfort due to excessive coldness.
- the air conditioner 1 of the second embodiment detects the direction in which people are present in the room using the infrared sensor 44.
- the direction of the horizontal flap 144 can thereby be adjusted to ensure that wind does not blow directly on the people regardless of where the people are in the room.
- the direction of the horizontal flap 144 is fixed, and conditioned air is blown in the direction in which people are not present.
- the users in the room can thereby be prevented from experiencing discomfort of excessive coldness from coming in direct contact with cold air during cooling, for example.
- the air conditioner 1 of the second embodiment limits the time in which powerful operation is performed using a timer 45 working inside the program.
- the air conditioner 1 of the second embodiment controls the discharge direction of air fed into the room using the horizontal flap 144.
- the air can be blown in a direction where people are not present more easily than by controlling the direction of a vertically moving flap.
- the present invention is not limited to this configuration.
- the horizontal flap 144 when the horizontal flap 144 is swinging between the horizontal direction and a direction a few degrees downward during cooling operation, the horizontal flap 144 may be caused to swing within a range that does not include the direction in which people are present during powerful operation, as shown in FIG. 11(b) .
- FIG. 11(b) Even in this case, since the user is not directly affected by the air discharged during powerful operation, powerful operation can be performed without causing discomfort, the same as when the horizontal flap 144 is fixed so as to point away from where people are present.
- the wind direction may also be controlled in the left-right direction using a vertically moving flap, or using both the horizontal flap 144 and a vertically moving flap.
- control of the direction of the horizontal flap 144 may be limited so that conditioned air is blown in a direction away from people only when the command for powerful operation is entered during cooling operation.
- the present invention demonstrates effects whereby the direction in which conditioned air is blown during powerful operation can be controlled, and can therefore be applied in an air conditioner capable of performing powerful operation during both cooling operation and heating operation.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Signal Processing (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- Human Computer Interaction (AREA)
- Air Conditioning Control Device (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003371920A JP3815471B2 (ja) | 2003-10-31 | 2003-10-31 | 空気調和機 |
JP2003371919A JP3815470B2 (ja) | 2003-10-31 | 2003-10-31 | 空気調和機 |
EP04788170.1A EP1696185B1 (fr) | 2003-10-31 | 2004-09-27 | Climatiseur et procede de commande correspondant |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04788170.1 Division | 2004-09-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2487428A1 true EP2487428A1 (fr) | 2012-08-15 |
EP2487428B1 EP2487428B1 (fr) | 2014-01-01 |
Family
ID=34554761
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04788170.1A Withdrawn - After Issue EP1696185B1 (fr) | 2003-10-31 | 2004-09-27 | Climatiseur et procede de commande correspondant |
EP12167470.9A Expired - Lifetime EP2487428B1 (fr) | 2003-10-31 | 2004-09-27 | Climatiseur et son procédé de fonctionnement |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04788170.1A Withdrawn - After Issue EP1696185B1 (fr) | 2003-10-31 | 2004-09-27 | Climatiseur et procede de commande correspondant |
Country Status (7)
Country | Link |
---|---|
US (1) | US20060286923A1 (fr) |
EP (2) | EP1696185B1 (fr) |
KR (1) | KR20060076324A (fr) |
CN (1) | CN101825328B (fr) |
AU (1) | AU2004286118B2 (fr) |
ES (1) | ES2453482T3 (fr) |
WO (1) | WO2005043047A1 (fr) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100460771C (zh) * | 2005-08-11 | 2009-02-11 | 深圳市广宁实业有限公司 | 中央空调负载温度控制优化系统、方法和采用的温控器 |
US20100035537A1 (en) * | 2008-08-07 | 2010-02-11 | James Ho | Air cleaner |
JP4483990B2 (ja) * | 2008-11-20 | 2010-06-16 | ダイキン工業株式会社 | 空気調和機 |
US20120288363A1 (en) * | 2010-01-26 | 2012-11-15 | Daikin Industries, Ltd. | Ceiling-mounted indoor unit for air conditioning apparatus |
CN102147129A (zh) * | 2011-04-12 | 2011-08-10 | 海信科龙电器股份有限公司 | 一种空调器室内机 |
TWI456150B (zh) * | 2012-11-01 | 2014-10-11 | Matsushita Electric Tw Co Ltd | 冷氣機及其節約出風方法 |
CN102997372B (zh) * | 2012-12-21 | 2015-05-13 | 广东美的制冷设备有限公司 | 开关门控制方法、装置及空调器 |
CN104633847B (zh) * | 2014-12-30 | 2017-06-27 | 广东美的制冷设备有限公司 | 空调保护电路的实现方法和装置 |
WO2016157311A1 (fr) * | 2015-03-27 | 2016-10-06 | 三菱電機株式会社 | Climatiseur |
CN104864550B (zh) * | 2015-04-30 | 2018-09-11 | 广东美的制冷设备有限公司 | 变频空调 |
CN105588270B (zh) * | 2015-07-31 | 2018-09-25 | 青岛海信日立空调系统有限公司 | 一种送风控制方法和送风设备 |
JP6213539B2 (ja) * | 2015-09-29 | 2017-10-18 | ダイキン工業株式会社 | 空気調和装置の室内ユニット |
CN106322520B (zh) * | 2016-08-23 | 2019-06-28 | 美的集团武汉制冷设备有限公司 | 空调器及其送风方法 |
CN106287963B (zh) * | 2016-08-23 | 2019-06-28 | 美的集团武汉制冷设备有限公司 | 空调器及其送风方法 |
WO2020094158A2 (fr) * | 2018-11-11 | 2020-05-14 | 江洪 | Machine de réfrigération sans fréon |
AU2020349932B2 (en) * | 2019-09-17 | 2023-03-16 | Daikin Industries, Ltd. | Indoor unit of air conditioner |
ES2976474T3 (es) * | 2019-09-17 | 2024-08-01 | Daikin Ind Ltd | Unidad interior para acondicionador de aire |
EP4332452A4 (fr) * | 2021-04-27 | 2024-05-22 | Mitsubishi Electric Corporation | Dispositif de climatisation |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57179528A (en) * | 1981-04-27 | 1982-11-05 | Matsushita Electric Ind Co Ltd | Air conditioning equipment |
JPS61122443A (ja) * | 1984-11-20 | 1986-06-10 | Matsushita Electric Ind Co Ltd | 空気調和装置 |
JPS63143449A (ja) * | 1986-12-06 | 1988-06-15 | Daikin Ind Ltd | 空気調和機 |
JPS6479532A (en) * | 1987-09-18 | 1989-03-24 | Matsushita Refrigeration | Airflow direction control system for air-conditioning equipment |
JPH01127840A (ja) * | 1987-11-13 | 1989-05-19 | Daikin Ind Ltd | 空気調和機の風向制御装置 |
JPH02143047A (ja) * | 1988-11-24 | 1990-06-01 | Daikin Ind Ltd | 空気調和機 |
GB2260830A (en) * | 1991-10-24 | 1993-04-28 | Norm Pacific Automat Corp | Ventilation device adjusted and controlled automatically with movement of human body |
JPH07103551A (ja) | 1993-10-08 | 1995-04-18 | Mitsubishi Electric Corp | 空気調和機の制御装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4729293A (en) * | 1985-03-29 | 1988-03-08 | Kabushiki Kaisha Toshiba | Air direction control apparatus for a louver at an air outlet |
US5097672A (en) * | 1988-11-18 | 1992-03-24 | Daikin Industries Ltd. | Spot air-conditioner |
JP2517098B2 (ja) * | 1989-01-25 | 1996-07-24 | 松下電器産業株式会社 | 空気調和機 |
US5039008A (en) * | 1989-05-10 | 1991-08-13 | Mitsubishi Denki Kabushiki Kaisha | Air conditioner |
JPH0379944A (ja) * | 1989-08-22 | 1991-04-04 | Matsushita Electric Ind Co Ltd | 空気調和機 |
US5180333A (en) * | 1991-10-28 | 1993-01-19 | Norm Pacific Automation Corp. | Ventilation device adjusted and controlled automatically with movement of human body |
JP2921256B2 (ja) * | 1991-11-14 | 1999-07-19 | 三菱電機株式会社 | 空気調和機の制御装置及び人体検知センサー及び空気調和機 |
CN1056225C (zh) * | 1992-03-07 | 2000-09-06 | 三星电子株式会社 | 空调系统 |
ES2171235T3 (es) * | 1993-03-05 | 2002-09-01 | Mitsubishi Electric Corp | Dispositivo de ajuste de la direccion de soplado de aire para aparatos de aire acondicionado. |
US5720176A (en) * | 1994-10-19 | 1998-02-24 | Whirlpool Corporation | Control system for an air conditioner |
ID16934A (id) * | 1996-05-22 | 1997-11-20 | Samsung Electronics Co Ltd | Alat kontrol arah dan kecepatan alir udara yang dikeluarkan oleh mesin penyejuk udara dan metoda kerjanya |
KR0175625B1 (ko) * | 1996-08-02 | 1999-03-20 | 김광호 | 공기조화기의 루버구동제어장치 및 방법 |
JP3036520B2 (ja) * | 1998-07-28 | 2000-04-24 | ダイキン工業株式会社 | マルチ型空気調和機 |
-
2004
- 2004-09-27 US US10/573,586 patent/US20060286923A1/en not_active Abandoned
- 2004-09-27 EP EP04788170.1A patent/EP1696185B1/fr not_active Withdrawn - After Issue
- 2004-09-27 WO PCT/JP2004/014074 patent/WO2005043047A1/fr active Application Filing
- 2004-09-27 KR KR1020067008457A patent/KR20060076324A/ko active Search and Examination
- 2004-09-27 EP EP12167470.9A patent/EP2487428B1/fr not_active Expired - Lifetime
- 2004-09-27 AU AU2004286118A patent/AU2004286118B2/en not_active Ceased
- 2004-09-27 ES ES12167470.9T patent/ES2453482T3/es not_active Expired - Lifetime
- 2004-09-27 CN CN2010101456460A patent/CN101825328B/zh not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57179528A (en) * | 1981-04-27 | 1982-11-05 | Matsushita Electric Ind Co Ltd | Air conditioning equipment |
JPS61122443A (ja) * | 1984-11-20 | 1986-06-10 | Matsushita Electric Ind Co Ltd | 空気調和装置 |
JPS63143449A (ja) * | 1986-12-06 | 1988-06-15 | Daikin Ind Ltd | 空気調和機 |
JPS6479532A (en) * | 1987-09-18 | 1989-03-24 | Matsushita Refrigeration | Airflow direction control system for air-conditioning equipment |
JPH01127840A (ja) * | 1987-11-13 | 1989-05-19 | Daikin Ind Ltd | 空気調和機の風向制御装置 |
JPH02143047A (ja) * | 1988-11-24 | 1990-06-01 | Daikin Ind Ltd | 空気調和機 |
GB2260830A (en) * | 1991-10-24 | 1993-04-28 | Norm Pacific Automat Corp | Ventilation device adjusted and controlled automatically with movement of human body |
JPH07103551A (ja) | 1993-10-08 | 1995-04-18 | Mitsubishi Electric Corp | 空気調和機の制御装置 |
Also Published As
Publication number | Publication date |
---|---|
AU2004286118B2 (en) | 2007-10-04 |
EP1696185B1 (fr) | 2017-07-19 |
EP2487428B1 (fr) | 2014-01-01 |
US20060286923A1 (en) | 2006-12-21 |
CN101825328A (zh) | 2010-09-08 |
CN101825328B (zh) | 2012-07-04 |
KR20060076324A (ko) | 2006-07-04 |
EP1696185A1 (fr) | 2006-08-30 |
AU2004286118A1 (en) | 2005-05-12 |
EP1696185A4 (fr) | 2009-06-10 |
ES2453482T3 (es) | 2014-04-07 |
WO2005043047A1 (fr) | 2005-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2487428B1 (fr) | Climatiseur et son procédé de fonctionnement | |
CN107166532B (zh) | 壁挂式空调室内机及其控制方法 | |
GB2513694A (en) | Indoor unit and air conditioning apparatus | |
EP3705801B1 (fr) | Climatiseur | |
EP1530008B1 (fr) | Conditionneur d'air et procede pour reguler un conditionneur d'air | |
JPH0650595A (ja) | 空気調和装置 | |
JP3073482B2 (ja) | 空気調和機の運転制御装置およびその方法 | |
JP4215035B2 (ja) | 空気調和機およびその制御方法 | |
JP4133100B2 (ja) | 空気調和機および空気調和機の制御方法 | |
JP3815471B2 (ja) | 空気調和機 | |
JP3815470B2 (ja) | 空気調和機 | |
JPH10103739A (ja) | 空気調和機 | |
JPH05296548A (ja) | 空気調和装置 | |
JPH08178344A (ja) | 空気調和装置 | |
EP4414617A1 (fr) | Climatiseur et procédé de commande d'un climatiseur | |
JP4483944B2 (ja) | 空気調和機 | |
JP2004316969A (ja) | 空気調和装置 | |
JP2005201490A (ja) | 空気調和機 | |
JPH0678837B2 (ja) | 空気調和機 | |
JP2022151352A (ja) | 空調システム | |
JPH11337153A (ja) | 空気調和機 | |
CN115654572A (zh) | 立式空调器室内机 | |
JP2001201149A (ja) | 空気調和装置 | |
JP2001165492A (ja) | 空気調和機およびその制御方法 | |
JPH0861746A (ja) | 空気調和機の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120510 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1696185 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20130726 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1696185 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 647773 Country of ref document: AT Kind code of ref document: T Effective date: 20140215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602004044167 Country of ref document: DE Effective date: 20140220 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2453482 Country of ref document: ES Kind code of ref document: T3 Effective date: 20140407 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140101 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 647773 Country of ref document: AT Kind code of ref document: T Effective date: 20140101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140502 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140101 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140101 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140101 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140101 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140101 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602004044167 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140101 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140101 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140101 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140101 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140101 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140101 |
|
26N | No opposition filed |
Effective date: 20141002 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602004044167 Country of ref document: DE Effective date: 20141002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140101 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140927 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140101 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140927 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140927 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20040927 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160921 Year of fee payment: 13 Ref country code: DE Payment date: 20160920 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20160826 Year of fee payment: 13 Ref country code: ES Payment date: 20160810 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602004044167 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170927 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170927 |