EP2464781B1 - Verwendung einer beschichteten mikrofaserbahn als abdeckung eines strahlenschutzmaterials - Google Patents

Verwendung einer beschichteten mikrofaserbahn als abdeckung eines strahlenschutzmaterials Download PDF

Info

Publication number
EP2464781B1
EP2464781B1 EP20100741954 EP10741954A EP2464781B1 EP 2464781 B1 EP2464781 B1 EP 2464781B1 EP 20100741954 EP20100741954 EP 20100741954 EP 10741954 A EP10741954 A EP 10741954A EP 2464781 B1 EP2464781 B1 EP 2464781B1
Authority
EP
European Patent Office
Prior art keywords
radiation protection
polyurethane
fluoropolymer
microfibrous web
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20100741954
Other languages
English (en)
French (fr)
Other versions
EP2464781A1 (de
Inventor
Thomas Leucht
Barbara Ballsieper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mavig GmbH
Original Assignee
Mavig GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mavig GmbH filed Critical Mavig GmbH
Publication of EP2464781A1 publication Critical patent/EP2464781A1/de
Application granted granted Critical
Publication of EP2464781B1 publication Critical patent/EP2464781B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/244Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
    • D06M15/256Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/277Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/285Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acid amides or imides
    • D06M15/295Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acid amides or imides containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • D06M15/568Reaction products of isocyanates with polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • D06M15/572Reaction products of isocyanates with polyesters or polyesteramides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/047Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with fluoropolymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/18Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials
    • D06N3/183Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials the layers are one next to the other
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2041Two or more non-extruded coatings or impregnations
    • Y10T442/2098At least two coatings or impregnations of different chemical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2041Two or more non-extruded coatings or impregnations
    • Y10T442/2098At least two coatings or impregnations of different chemical composition
    • Y10T442/2107At least one coating or impregnation contains particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2164Coating or impregnation specified as water repellent
    • Y10T442/2189Fluorocarbon containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2262Coating or impregnation is oil repellent but not oil or stain release
    • Y10T442/227Fluorocarbon containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/259Coating or impregnation provides protection from radiation [e.g., U.V., visible light, I.R., micscheme-change-itemave, high energy particle, etc.] or heat retention thru radiation absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/259Coating or impregnation provides protection from radiation [e.g., U.V., visible light, I.R., micscheme-change-itemave, high energy particle, etc.] or heat retention thru radiation absorption
    • Y10T442/2598Radiation reflective
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • Y10T442/635Synthetic polymeric strand or fiber material

Definitions

  • the present invention relates to the use of a coated microfiber web as a cover of a radiation protection material and to a radiation protection device.
  • U.S. Patent 4,923,741 discloses a flexible multi-layered cover which serves as protection against the dangers in space.
  • the cover comprises a layer which is intended to protect against bremsstrahlung, for example.
  • GB 2 118 410 A describes a radiation protection article comprising at least one flexible layer of a lead-containing material, which is covered by a fabric, fabric or nonwoven or between two layers of a knitted fabric, woven or nonwoven, wherein the fabric, fabric or nonwoven fabric, a coating of flexible polyurethane on the outer surface.
  • the present inventors have found that such Radiation protection articles, which have a polyurethane coating on the outside, are subject to a very strong abrasion when used, for example, in a medical field.
  • US 5,922,445 A discloses a sheet composite material which can be obtained by coating or impregnating a fibrous base material with an elastic polymeric substance, wherein the fibers constituting the fibrous base material and the elastic polymeric substance are prevented from bonding to each other, and which is flexible, wear-resistant and peel-resistant is.
  • the material may be prepared by applying a hydrophobing treatment to the fibrous base material, then impregnating or coating with a solution of the elastic polymeric substance to which a hydrophilic silicone has been added, and wet-setting.
  • microfiber web having improved abrasion resistance for use as a cover of a radiation protection material.
  • the microfiber web is not particularly limited. It can be any flat structure, such as fabric, knitted fabric, knitted fabric, membrane or fleece containing microfibers. Preference is given to tissue.
  • Microfibers are fibers that preferably have a fiber thickness of 0.5 dtex to 1.5 dtex, more preferably 0.3 dtex to 1.0 dtex.
  • the type of microfibers depends on the intended use. Examples of suitable types of microfibers include microfibers based on polyester, polyamide, cellulose (eg acetate or viscose) and Polytetrafluoroethylene and mixture thereof. Microfibres based on polyester and / or polyamide are particularly suitable.
  • the microfiber web may contain electrically conductive fibers to reduce electrostatic charges.
  • the electrically conductive fibers are not particularly limited. Examples of these are fibers of carbon, metal or polymer-based fibers, for example polymer fibers containing carbon or metal particles. In a preferred embodiment, polymer fibers containing carbon particles are used.
  • the electrically conductive fibers have, for example, a fiber thickness in the range from 1 dtex to 3 dtex, preferably 1.2 dtex to 2 dtex. When the diameter of the electroconductive fibers is larger (preferably 1.2 to 3 times larger, more preferably 1.2 to 2 times larger) than the diameter of the microfibers, the electroconductive fibers protrude from the tissue surface.
  • the person skilled in the art can suitably choose the amount of the electrically conductive fibers on the basis of his knowledge. It will usually contain 0.1 wt .-% to 10 wt .-%, preferably 0.5 wt .-% to 3 wt .-% of electrically conductive fibers in the microfiber web, wherein the weight percent based on the total weight of the fibers in refer to the uncoated microfiber web.
  • the finished microfiber web should have an electrostatic surface resistance of about 10 5 ohms to about 10 8 ohms (measured according to DIN 100015-1 at 25% relative humidity and 23 ° C).
  • Microfibers and the optionally present electrically conductive fibers are processed according to known methods to a microfiber web.
  • the electrically conductive fibers may be incorporated randomly or in a regular array in the microfiber web. The type of incorporation will depend on the requirements for dissipation of electrical charges as well as the process by which the microfiber web is made.
  • the electrically conductive fibers are incorporated in a regular array. They can be incorporated, for example, in a grid-like arrangement, since this arrangement derives possible electrostatic charges particularly favorable.
  • the distances between the grid lines are preferably in the range of 3 mm to 100 mm, preferably 5 mm to 75 mm, wherein the side lengths of the grid rectangles may be different from each other.
  • the air permeability of the microfiber web used as the starting material is suitably selected by a person skilled in the art according to the purpose of use.
  • the air permeability is 0 to 100 l / min per dm 2 , preferably 5 to 50 l / min per dm 2 , wherein the air permeability according to DIN EN ISO 9237 is measured.
  • the basis weight of the microfiber web used as a starting material is also suitably selected in view of the purpose of use.
  • the basis weight will usually be in the range from 50 g / m 2 to 200 g / m 2 , preferably 60 g / m 2 to 150 g / m 2 .
  • the thickness of the microfiber web used as a starting material is not particularly limited. It will usually be chosen in view of the intended use. In one embodiment, the microfiber web will have a thickness in the range of 0.05 mm to 0.20 mm, preferably 0.10 mm to 0.15 mm.
  • the microfiber web is impregnated with fluoropolymer.
  • the fluoropolymer may be a partially or perfluorinated polymer. Both homopolymers and copolymers are suitable. Fluoroalkyl acrylate homopolymers and fluoroalkyl acrylate copolymers are particularly suitable.
  • the perfluoroalkyl moiety preferably has 4 to 12 carbon atoms.
  • the optional spacer is not particularly limited, provided that it is not a perfluoroalkyl unit. It preferably has 2 to 10 atoms, more preferably 2 to 8 atoms, in the chain. Both carbon atoms and heteroatoms such as N, O and S can be present in the spacer.
  • the polymerizable group is not particularly limited and may be any polymerizable group used to form a Polymers is suitable. Examples of polymerizable groups include ethylenically unsaturated groups.
  • the fluoropolymers may have further side groups, in particular alkyl-containing side groups and / or functional side groups being suitable.
  • the fluoropolymer may have alkyl-containing side groups.
  • the alkyl moiety preferably has 1 to 12 carbon atoms.
  • the optional spacer is not particularly limited, provided that it is not an alkyl moiety. It preferably has 0 to 20 atoms, more preferably 0 to 10 atoms, in the chain. Both carbon atoms and heteroatoms such as N, O and S can be present in the spacer.
  • the polymerizable group is not particularly limited and may be any polymerizable group that is suitable for forming a polymer. Examples of polymerizable groups include ethylenically unsaturated groups.
  • the fluoropolymer may have pendant functional groups.
  • the functional unit is not particularly limited and may include any functional group. Examples of functional groups are OH, SH, NH 2 , N-methylolsulfonamides, etc.
  • the functional unit preferably has 0 to 20 carbon atoms, preferably 0 to 12 carbon atoms.
  • the optional spacer is not particularly limited, provided that it is not an alkyl moiety. It preferably has 0 to 20 atoms, more preferably 0 to 10 atoms, in the chain. Both carbon atoms and heteroatoms such as N, O and S can be present in the spacer.
  • the polymerizable group is not particularly limited and may be any polymerizable group that is suitable for forming a polymer. Examples of polymerizable groups include ethylenically unsaturated groups.
  • fluoropolymers examples include Evoral ®, Oleophobol, Scotch Guard, Tubiguard, Repellan, Ruco-Guard, Unidyne, Quecophob and Nuva, but are not limited thereto.
  • the impregnated microfiber web preferably contains from 0.2 g to 5 g, more preferably from 0.2 g to 1.2 g, of fluoropolymer based on 100 g of microfiber web used as the starting material. If an appropriate amount of fluoropolymer is used, the coated microfiber web has long-term good water and oil repellency, adhesion to the substrate and good grip.
  • the impregnating composition may further contain adjuvants such as silicones, waxes and salts (for example, zirconium salts) if necessary.
  • adjuvants such as silicones, waxes and salts (for example, zirconium salts) if necessary.
  • a layer comprising polyurethane is applied on one side of the microfiber web. Due to the layer, which includes polyurethane, the coated microfiber web is easy to clean. Furthermore, this layer ensures tightness against water and penetration by microorganisms, such as bacteria.
  • the layer comprising polyurethane is preferably applied in the form of a continuous layer on a surface of the microfiber web.
  • the layer should have a uniform thickness. The thickness of the layer is preferably in the range of 3 g / m 2 to 50 g / m 2 , more preferably in the range of 8 g / m 2 to 20 g / m 2 .
  • Suitable polyurethanes are all polyurethane homopolymers and copolymers.
  • polyurethane block copolymers such as polyester polyurethanes and polyether polyol polyurethanes come into question.
  • the polyester and polyether polyols typically have a Molularclude from 4000 to 6000.
  • An example of a commercially available product is Impranil ®.
  • the polyurethane-containing layer may contain other ingredients in addition to polyurethane.
  • One possible ingredient is a fluororesin.
  • the fluororesin may be identical to or different from the fluoropolymer.
  • the fluororesin is preferably identical to the fluoropolymer, so that the above statements apply to the fluoropolymer.
  • the fluororesin is preferably contained in the layer in an amount of 0 to 10 parts by weight, more preferably 0.5 part by weight to 3 parts by weight, based on 100 parts by weight of polyurethane.
  • the layer comprising polyurethane may comprise further adjuvants.
  • An optional adjuvant is silica.
  • the sterilizability with gases such as ethylene oxide is improved by the addition of silicon dioxide.
  • Silica is preferably used in the form of silica in the layer.
  • the size of the silica particles is usually in the range of 0.2 ⁇ m to 10 ⁇ m, preferably 0.2 ⁇ m to 5 ⁇ m.
  • Silica is preferably contained in the layer in an amount of 0 to 10 parts by weight, more preferably 1 part to 5 parts by weight, based on 100 parts by weight of polyurethane.
  • the layer comprising polyurethane may further comprise titanium dioxide.
  • Titanium dioxide serves as a matting agent.
  • the size of the titanium dioxide particles is usually in the range of 0.2 ⁇ m to 10 ⁇ m, preferably 0.2 ⁇ m to 5 ⁇ m.
  • Titanium dioxide is preferably contained in the layer in an amount of 0 to 5 parts by weight, more preferably 0.2 part by weight to 2 parts by weight, based on 100 parts by weight of polyurethane.
  • the layer comprising polyurethane may contain further additives such as deaerators, fungicides, additives for increasing the scratch resistance, water repellents, thickeners, rheology aids, leveling agents, etc.
  • additives are either additives for the production of the layer or improve the properties of the finished layer. The person skilled in the art can choose it on the basis of his specialist knowledge.
  • the additives are preferably contained in the layer in an amount of 0 to 20 parts by weight, more preferably 0.5 part by weight to 10 parts by weight, based on 100 parts by weight of polyurethane.
  • the coated microfiber web can be produced by various methods. A preferred method will be described below.
  • microfiber web is provided.
  • the microfiber web used as the starting material has been described in detail above.
  • the microfiber web can be used as such in the process. However, if desired, it may be subjected to a pretreatment, for example to increase the hydrophilicity.
  • the pretreatment for example to increase the hydrophilicity, can be carried out by methods known in the art.
  • the hydrophilicity-enhancing agent there may be used nonionic surfactants, fatty acid condensates, silicones and mixtures thereof.
  • the hydrophilicity enhancers are applied to the microfiber web.
  • the application method is not particularly limited.
  • the microfiber web is contacted (for example, by spraying, dipping, etc.) with a solution or dispersion of the hydrophilicity enhancer.
  • the resulting microfiber web is preferably dried.
  • the exact drying conditions will depend on the hydrophilicizing agent used. Usually, a drying temperature of 40 ° C to 80 ° C, preferably from 50 ° C to 60 ° C, can be selected.
  • the drying time is usually from 30 seconds to 240 seconds, preferably from 60 seconds to 120 seconds.
  • the microfiber web before the impregnation step has a liquor pickup for the fluoropolymer of from 65 wt% to 85 wt%, stronger preferably from 65 wt .-% to 70 wt .-%, based on the dry weight of the optionally pretreated microfiber web.
  • microfiber web is impregnated with an impregnation composition comprising fluoropolymer.
  • fluoropolymer Suitable fluoropolymers are described above.
  • microfiber web is impregnated by known methods. These methods include spraying, dipping, exhaustion, paddling, and foam impregnation. Dipping impregnation is preferred because it allows complete impregnation of the microfiber web.
  • the fluoropolymer is usually used in the form of a solution or dispersion.
  • concentration of the solution or dispersion is not particularly limited, and is preferably in the range of 5 g / L to 70 g / L, more preferably in the range of 5 g / L to 50 g / L.
  • the impregnated microfiber web is dried.
  • the present inventors have found that the properties of fluoropolymer impregnations can be influenced by a suitable sequence of drying and thermal treatment. Without wishing to be bound by any particular theory, they believe that the molecules of the fluoropolymer initially settle randomly on a substrate (such as the present microfiber web) when the solvent is removed. Due to the statistical (ie disordered) arrangement, the hydrophobic fluorine atoms are initially also statistically distributed. When the fluoropolymer is exposed to a higher temperature, comes it leads to a reorientation of the molecules of the fluoropolymer, wherein the hydrophobic fluorine atoms are preferably arranged on the surface of the layer.
  • a test fabric of cotton EMPA 210, plain weave, bleached, without optical brightener (source EMPA Test Materials AG, St. Gallen, Switzerland) is impregnated by padding with 0.5 g of fluoropolymer per 100 g of cotton fabric and dried at room temperature.
  • the fabric is then cut into pieces of equal size.
  • the pieces are then heated at different temperatures for 120 s (eg 40 ° C, 50 ° C, Across, 140 ° C, 150 ° C), the temperature difference between the individual steps being 10 ° C.
  • the exact minimum and maximum temperature depends on the fluoropolymer and can be determined from the measured waveform.
  • the weight of the respective piece of fabric which has been heated at the temperature T i is measured (T i ).
  • the fabric pieces are padded with an aqueous liquor at 2 bar pressure and 1.5 m / min roller speed.
  • the weight of the respective piece of fabric which has been heated at the temperature T i wet (T i ) is measured.
  • the drying temperature should be selected to be in the range where the relatively constant high liquor pickup is is obtained.
  • the temperature of the thermal treatment should be selected to be within the range for which the relatively constant low liquor pickup is obtained. The transition area between the two zones is less suitable.
  • the liquor pick-up when drying is at least 20%. In general, the liquor pick-up, when in thermal treatment, will be at most 10%.
  • these figures are only guidelines and may vary depending on the fluoropolymer.
  • step (c) the impregnated microfiber web is dried.
  • the molecules of the fluoropolymer deposit statistically on the microfiber web.
  • the drying conditions are chosen so that there is no reorientation of the molecules of the fluoropolymer.
  • the exact drying conditions depend on the fluoropolymer used. Usually, a drying temperature of 40 ° C to 110 ° C, preferably from 50 ° C to 80 ° C, is selected. The drying time is usually from 10 s to 240 s, preferably from 30 s to 120 s.
  • Impregnation with the fluoropolymer sets the absorbency of the microfiber web. By merely drying the fluoropolymer, it is easier to ensure that the polyurethane coating composition does not penetrate the entire microfiber web. If the fluoropolymer were to be thermally treated prior to the application of the polyurethane coating composition so that the molecules of the fluoropolymer would orient themselves, the repellent surface would make subsequent coating with the coating composition more difficult.
  • the microfiber web has a liquor pickup for the coating composition of from 30% to 60%, more preferably from 30% to 50% by weight, based on dry weight of the impregnated microfiber web ,
  • the coating composition comprising polyurethane is applied to only one side of the dried, impregnated microfiber web.
  • the constituents of the layer comprising polyurethane have been described in detail above.
  • the coating composition is preferably used in the form of a solution or dispersion of the desired ingredients.
  • concentration of the polyurethane in the solution or dispersion is preferably in the range of 50 wt% to 80 wt%, more preferably 60 wt% to 80 wt%.
  • the coating composition is applied to the dried, impregnated microfiber web by known methods. These methods include roll coating, knife coating, knife coating, foam coating, transfer coating, and film drawing, preferably doctoring is used.
  • FIG. 1 shows a schematic representation of the cross section of a finished coated microfiber web, the microfiber layer is shown for simplicity as a monolayer.
  • the microfiber web (1) comprises microfibers (2) and electrically conductive fibers (3), in which embodiment the diameter of the electrically conductive fibers (3) is greater than the diameter of the microfibers (2).
  • the fluoropolymer impregnation is not shown in this figure.
  • the layer (4) comprising polyurethane is only present on one side of the finished microfiber web.
  • the thicknesses can be measured by optical methods such as microscopy.
  • optical methods such as microscopy.
  • An example of a possible measuring method is the investigation of a cross section by means of scanning electron microscopy.
  • the degree of penetration is in FIG. 1 pictorially indicated by the right curly bracket and the indication "x%". In FIG. 1 it is about 50%, because the microfibers (white balls) are about 50% embedded in the layer that includes polyurethane.
  • the coating composition may be dried after application in step (d). Alternatively, the drying may be dispensed with and the coating composition dried in the course of the thermal treatment in step (e).
  • the conditions are chosen depending on the chosen coating composition. However, they should be chosen so that there is no reorientation of the molecules of the fluoropolymer.
  • a drying temperature of 40 ° C to 110 ° C, preferably from 80 ° C to 100 ° C, can be selected.
  • the drying time is usually from 10 s to 240 s, preferably from 10 s to 120 s.
  • step (e) thermally treating the coated microfiber web obtained in step (d)
  • step (e) the (optionally dried) coated microfiber web obtained in step (d) is thermally treated.
  • the conditions are chosen so that there is a reorientation of the molecules of the fluoropolymer.
  • a temperature of 120 ° C to 190 ° C, preferably from 140 ° C to 180 ° C is usually selected. It is of course possible to carry out the thermal treatment in several stages with different temperatures.
  • the duration of the thermal treatment is usually from 10 s to 240 s, preferably from 30 s to 120 s.
  • the coated microfiber web may be used as a cover of a radiation protection material in a radiation protection device, wherein the coated microfiber web is applied to at least one side of the radiation protection material and wherein the polyurethane coated side is adjacent to the radiation protection material.
  • FIG. 2 shows a schematic representation of a cross section of the radiation protection device (6) according to the invention.
  • the microfiber web (1) comprises microfibers (2) and electrically conductive fibers (3), in which embodiment the diameter of the electrically conductive fibers (3) is greater than the diameter of the microfibers (2).
  • the fluoropolymer impregnation is not shown in this figure.
  • the layer (4) comprising polyurethane is present only on one side of the finished microfiber web (1).
  • the microfiber web (1) is applied to both sides of the radiation protection material (5), wherein the layer (4) comprising polyurethane is in each case adjacent to the radiation protection material (5).
  • radiation protection devices all devices which protect persons or objects from harmful radiation, in particular X-radiation, UV radiation, infrared radiation, and radioactive radiation, particularly preferably X-radiation.
  • examples include, but are not limited to, aprons, gloves, umbrellas, curtains, coats, drapes, draping materials, eye protection products and overcoats. Due to its flexibility and its pleasant haptic properties, the coated microfiber web is particularly suitable for flexible radiation protection devices and / or radiation protection devices that are worn by people.
  • the type of the radiation protection material will depend on the radiation to be shielded and is not particularly limited. By way of example, radiation protection material based on lead or lead oxide can be mentioned. Lead-free radiation protection material can also be used. Lead-free radiation protection material is, for example, in DE 10 2004 001 328 A . WO 2005/024846 A . WO 2005/023116 A . DE 10 2006 028 958 A . WO 2004/017332 A and DE 10 2005 034 384 disclosed. Combinations of radiation protection material are also possible.
  • the radiation protection material may comprise one or more layers.
  • the coated microfiber web is applied to at least one side of the radiation protection material.
  • the radiation protection material is enveloped by the coated microfiber web.
  • the microfiber web and the radiation protection material can be joined together in a known manner, for example by sewing, gluing, taping, laminating or laminating.
  • the microfiber web and the radiation protection material are processed into a composite material, for example by lamination or lamination, they can subsequently also be processed by means of confectioning processes, such as cutting, Punching, water jet cutting, molding or laser beam cutting are processed to the final products.
  • the coated microfiber web Due to its textile character, the coated microfiber web also gives the radiation protection devices a pleasant surface feel, which, in particular, gives garments a pleasant wearing comfort.
  • the coated microfiber web is arranged so that the polyurethane-coated side is adjacent to the radiation protection material.
  • the polyurethane-coated side is thus turned outwards and thus exposed to strong physical loads. This leads to increased closure and abrasion.
  • the inventive arrangement in which the polyurethane coated side faces inwards, the physical load is much lower.
  • the coated microfiber web has a high cutting and tear resistance, so that its service properties are clearly superior to those of conventional materials.
  • the microfiber web was made from polyester microfibers having a fiber density of 1 dtex and carbonaceous fibers (Belltron B31, available from Kanebo Gohsen Ltd., Japan).
  • the fibers were made into a canvas with about 70 warp threads / cm and about 37 weft threads / cm with a basis weight of 100 g / m 2 .
  • the carbonaceous electroconductive fibers were incorporated in the form of a grid measuring 5 ⁇ 5 mm.
  • the microfiber web had an air permeability of about 15 l / min per dm 2 and an electrostatic surface resistance of about 1 x 10 8 ohms (according to DIN 100015-1 at 25% relative humidity and 23 ° C).
  • the tensile strengths were about 850 N in warp and about 650 N in the weft.
  • the microfiber web was passed over a tenter.
  • Silastol WK available from Schill + Seilacher, DE
  • microfiber web was impregnated by padding with 10 g / l Evoral O 35 (fluoropolymer, available from the company Schill + Seilacher, DE).
  • Evoral O 35 fluoropolymer, available from the company Schill + Seilacher, DE.
  • the microfiber web was dried at 60 ° C. for 90 s. There was no orientation of the molecules of the fluoropolymer.
  • the applied amount of Evoral was about 0.7 g / 100 g microfiber web.
  • the coating composition had the following composition: 50 parts Impranil DLP-R, Bayer (polymer dispersion) 0.2 parts Agitan 218, Münzing Chemie (deaerator) 0.4 parts Afrotin FG, Schill + Seilacher (fungicide) 0.4 parts Byk 333, Byk Chemie (Additive for increasing scratch resistance) 0.8 parts Tegophobe 1650, Degussa (water repellent) 1.2 parts colloidal silica 41.7 parts water 0.3 parts Rheolate 255, Elementis (thickener) 4.2 parts Evoral, Schill + Seilacher (Fluoropolymer) 0.8 parts Hombitec RM 400, Sachtleben chemistry (matting agent)
  • the addition was carried out by adding in the above-mentioned order with the aid of a dissolver.
  • the stirring time was 35 minutes.
  • the paste produced was applied by means of an air knife surface as a closed film on the microfiber web.
  • the coated microfiber web was dried stepwise in a tenter frame in five 3 m long sections for a total of 2 minutes. Drying field 1: 80 ° C Drying field 2: 120 ° C Drying fields 3 to 5: 160 ° C
  • microfiber web was examined in accordance with DIN EN 13795-2 in order to clarify its suitability as a cover for X-ray protective material in the OR area.
  • KbE colony-forming units
  • the measured values show that the material can be used excellently as a textile in the surgical area.
  • Example 1 of WO 2005/024846 manufactured lead-free radiation protection material was cut in the form of a radiation protection apron.
  • the coated microfiber web prepared above was cut to size and placed on both sides of the radiation protection material with the polyurethane-coated side facing the radiation protection material.
  • the microfiber webs and the radiation protection material were sewn together, so that a radiation protection apron was obtained.
  • the radiation protection apron mediated by the use of the described microfiber web a comfortable fit. Skin irritation was avoided.
  • the described microfiber web serves as a protective barrier for the sensitive radiation protection inlay.
  • the radiation protection apron had an excellent tightness against blood, urine and microorganisms. It also could be sterilized without damage from ethylene oxide. Consequently, the radiation protection apron is very well suited for use in the medical field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

    Technisches Gebiet
  • Die vorliegende Erfindung betrifft, die Verwendung einer beschichteten Mikrofaserbahn als Abdeckung eines Strahlenschutzmaterials sowie eine Strahlenschutzvorrichtung.
  • Technischer Hintergrund
  • US-Patent 4,923,741 offenbart eine flexible mehrschichtige Abdeckung, die als Schutz gegen die Gefahren im Weltall dient. Die Abdeckung umfasst unter anderem eine Schicht, die beispielsweise gegen Bremsstrahlung schützen soll.
  • GB 2 118 410 A beschreibt einen Strahlenschutzgegenstand, der mindestens eine flexible Schicht eines bleihaltigen Materials umfasst, das von einem Gestrick, Gewebe oder Vlies umhüllt ist bzw. zwischen zwei Lagen eines Gestricks, Gewebes oder Vlieses eingefasst ist, wobei das Gestrick, Gewebe oder Vlies eine Beschichtung aus flexiblem Polyurethan auf der äußeren Oberfläche aufweist. Die vorliegenden Erfinder haben jedoch gefunden, dass derartige Strahlenschutzgegenstände, die eine Polyurethanbeschichtung auf der Außenseite aufweisen, einen sehr starkem Abrieb unterliegen, wenn sie beispielsweise in einem medizinischen Bereich verwendet werden.
  • US 5,922,445 A offenbart ein flächiges Verbundmaterial, das durch Beschichten oder Imprägnieren eines faserförmigen Grundmaterials mit einer elastischen polymeren Substanz erhalten werden kann, wobei die Fasern, die das faserförmige Grundmaterial bilden, und die elastische polymere Substanz am Verbinden miteinander gehindert werden, und welches flexibel, verschleißfest und schälfest ist. Das Material kann durch Aufbringen einer hydrophobierenden Behandlung auf das faserförmige Grundmaterial, dann Imprägnieren oder Beschichten mit einer Lösung der elastischen polymeren Substanz, der ein hydrophiles Silikon zugesetzt wurde, und Nassverfestigen hergestellt werden.
  • Demgemäß war es eine Aufgabe der vorliegenden Erfindung eine Mikrofaserbahn, welche eine verbesserte Abriebfestigkeit aufweist, zur Verwendung als Abdeckung eines Strahlenschutzmaterials bereitzustellen.
  • Zusammenfassung der Erfindung
  • In einer Ausführungsform betrifft die vorliegende Erfindung die Verwendung einer beschichteten Mikrofaserbahn, umfassend:
    1. (i) eine Mikrofaserbahn, die mit einem Fluorpolymer imprägniert ist; und
    2. (ii) eine Schicht, die Polyurethan umfasst, welches nur auf einer Seite der Mikrofaserbahn vorhanden ist,
    oder einer beschichteten Mikrofaserbahn, die gemäß dem Verfahren erhältlich ist, welches die folgenden Schritte umfasst:
    1. (a) Bereitstellen einer Mikrofaserbahn;
    2. (b) Imprägnieren der Mikrofaserbahn mit einer Imprägnierungszusammensetzung, die Fluorpolymer umfasst;
    3. (c) Trocknen der imprägnierten Mikrofaserbahn;
    4. (d) Aufbringen einer Beschichtungszusammensetzung, die Polyurethan umfasst, auf nur einer Seite der getrockneten, imprägnierten Mikrofaserbahn; und
    5. (e) thermisches Behandeln der in Schritt (d) erhaltenen beschichteten Mikrofaserbahn,
    als Abdeckung eines Strahlenschutzmaterials, wobei die beschichtete Mikrofaserbahn auf mindestens einer Seite des Strahlenschutzmaterials aufgebracht ist und wobei die mit Polyurethan beschichtete Seite dem Strahlenschutzmaterial benachbart ist.
  • In einer anderen Ausführungsform der Erfindung wird eine Strahlenschutzvorrichtung beansprucht, die
    • (α) ein Strahlenschutzmaterial; und
    • (β) eine beschichtete Mikrofaserbahn, umfassend
      1. (i) eine Mikrofaserbahn, die mit einem Fluorpolymer imprägniert ist; und
      2. (ii) eine Schicht, die Polyurethan umfasst, welches nur auf einer Seite der Mikrofaserbahn vorhanden ist,
      oder eine beschichtete Mikrofaserbahn, die gemäß dem Verfahren erhältlich ist, welches die folgenden Schritte umfasst:
      1. (a) Bereitstellen einer Mikrofaserbahn;
      2. (b) Imprägnieren der Mikrofaserbahn mit einer Imprägnierungszusammensetzung, die Fluorpolymer umfasst;
      3. (c) Trocknen der imprägnierten Mikrofaserbahn;
      4. (d) Aufbringen einer Beschichtungszusammensetzung, die Polyurethan umfasst, auf nur einer Seite der getrockneten, imprägnierten Mikrofaserbahn; und
      5. (e) thermisches Behandeln der in Schritt (d) erhaltenen beschichteten Mikrofaserbahn,
      wobei die beschichtete Mikrofaserbahn auf mindestens einer Seite des Strahlenschutzmaterials aufgebracht ist und wobei die mit Polyurethan beschichtete Seite dem Strahlenschutzmaterial benachbart ist.
    Beschreibung der Figuren
    • Figur 1 zeigt eine schematische Darstellung eines Querschnitts der beschichteten Mikrofaserbahn.
    • Figur 2 zeigt eine schematische Darstellung eines Querschnitts der erfindungsgemäßen Strahlenschutzvorrichtung.
    Beschichtete Mikrofaserbahn
  • Die vorliegende Erfindung betrifft die Verwendung einer beschichteten Mikrofaserbahn, umfassend:
    1. (i) eine Mikrofaserbahn, die mit einem Fluorpolymer imprägniert ist; und
    2. (ii) eine Schicht, die Polyurethan umfasst, welches nur auf einer Seite der Mikrofaserbahn vorhanden ist.
  • Die Mikrofaserbahn ist nicht besonders beschränkt. Sie kann ein beliebiges flächiges Gebilde, wie Gewebe, Gewirk, Gestrick, Membran oder Vlies, sein, das Mikrofasern enthält. Bevorzugt sind Gewebe.
  • Mikrofasern sind Fasern, die bevorzugt eine Faserstärke von 0,5 dtex bis 1,5 dtex, stärker bevorzugt 0,3 dtex bis 1,0 dtex aufweisen. Die Art der Mikrofasern ist vom geplanten Einsatzzweck abhängig. Beispiele für geeignete Mikrofasertypen umfassen Mikrofasern auf der Basis von Polyester, Polyamid, Cellulose (z.B. Acetat oder Viskose) und Polytetrafluorethylen sowie Gemisch davon. Mikrofasern auf der Basis von Polyester und/oder Polyamid besonders geeignet.
  • Die Mikrofaserbahn kann elektrisch leitende Fasern enthalten, um elektrostatische Aufladungen zu vermindern. Die elektrisch leitenden Fasern sind nicht besonders beschränkt. Beispiele hierfür sind Fasern aus Kohlenstoff, Metall oder Fasern auf Polymerbasis, beispielsweise Polymerfasern, die Kohlenstoff- oder Metallteilchen enthalten. In einer bevorzugten Ausführungsform werden Polymerfasern, die Kohlenstoffteilchen enthalten, verwendet. Die elektrisch leitenden Fasern haben beispielsweise eine Faserstärke im Bereich von 1 dtex bis 3 dtex, bevorzugt 1,2 dtex bis 2 dtex. Wenn der Durchmesser der elektrisch leitenden Fasern größer (bevorzugt 1,2- bis 3-fach größer, stärker bevorzugt 1,2- bis 2-fach größer) als der Durchmesser der Mikrofasern ist, ragen die elektrisch leitenden Fasern aus der Gewebeoberfläche hervor. Der Fachmann kann die Menge der elektrisch leitenden Fasern auf Grund seines Fachwissens geeignet wählen. Es werden üblicherweise 0,1 Gew.-% bis 10 Gew.-%, bevorzugt 0,5 Gew.-% bis 3 Gew.-% elektrisch leitende Fasern in der Mikrofaserbahn enthalten sein, wobei sich die Gewichtsprozent auf das Gesamtgewicht der Fasern in der unbeschichteten Mikrofaserbahn beziehen. In einer bevorzugten Ausführungsform soll die fertige Mikrofaserbahn einen elektrostatischen Oberflächenwiderstand von etwa 105 Ohm bis etwa 108 Ohm (gemessen nach DIN 100015-1 bei 25 % rel. Luftfeuchtigkeit und 23 °C) aufweisen.
  • Mikrofasern und die gegebenenfalls vorhandenen elektrisch leitenden Fasern werden gemäß bekannten Verfahren zu einer Mikrofaserbahn verarbeitet. Die elektrisch leitenden Fasern können statistisch oder in einer regelmäßigen Anordnung in die Mikrofaserbahn eingearbeitet sein. Die Art der Einarbeitung wird von den Anforderungen an die Ableitung von elektrischen Aufladungen sowie von dem Verfahren, mit dem die Mikrofaserbahn hergestellt wird, abhängen. In einer bevorzugten Ausführungsform werden die elektrisch leitenden Fasern in einer regelmäßigen Anordnung eingearbeitet. Sie können beispielsweise in einer gitterförmigen Anordnung eingearbeitet sein, da diese Anordnung mögliche elektrostatische Aufladungen besonders günstig ableitet. Die Abstände zwischen den Gitterlinien liegen bevorzugt im Bereich von 3 mm bis 100 mm, bevorzugt 5 mm bis 75 mm, wobei die Seitenlängen der Gitterrechtecke voneinander verschieden sein können.
  • Die Luftdurchlässigkeit der Mikrofaserbahn, die als Ausgangsmaterial verwendet wird, wird vom Fachmann je nach Verwendungszweck geeignet gewählt. In einer Ausführungsform beträgt die Luftdurchlässigkeit 0 bis 100 l/min pro dm2, bevorzugt 5 bis 50l/min pro dm2, wobei die Luftdurchlässigkeit nach DIN EN ISO 9237 gemessen wird.
  • Das Flächengewicht der Mikrofaserbahn, die als Ausgangsmaterial verwendet wird, wird ebenfalls im Hinblick auf den Verwendungszweck geeignet gewählt. Das Flächengewicht wird üblicherweise im Bereich von 50 g/m2 bis 200 g/m2, bevorzugt 60 g/m2 bis 150 g/m2, liegen.
  • Die Dicke der Mikrofaserbahn, die als Ausgangsmaterial verwendet wird, ist nicht besonders beschränkt. Sie wird üblicherweise im Hinblick auf den Verwendungszweck gewählt werden. In einer Ausführungsform wird die Mikrofaserbahn eine Dicke im Bereich von 0,05 mm bis 0,20 mm, bevorzugt 0,10 mm bis 0,15 mm, aufweisen.
  • Die Mikrofaserbahn ist mit Fluorpolymer imprägniert. Das Fluorpolymer kann ein teil- oder perfluoriertes Polymer sein. Es sind sowohl Homo- als auch Copolymere geeignet. Fluoralkylacrylathomopolymere und Fluoralkylacrylatcopolymere sind besonders geeignet.
  • Bevorzugte Fluorpolymere weisen perfluoralkylhaltige Seitengruppen auf. Diese Seitengruppen können beispielsweise durch Polymerisieren von perfluoralkylhaltigen Monomeren, die den folgenden Aufbau aufweisen, in das Fluorpolymer eingebracht werden:
    • Perfluoralkyleinheit - optionaler Spacer - polymerisierbare Gruppe
  • Die Perfluoralkyleinheit weist bevorzugt 4 bis 12 Kohlenstoffatomen auf. Der optionale Spacer ist nicht besonders beschränkt, mit der Maßgabe, dass er keine Perfluoralkyleinheit ist. Er weist bevorzugt 2 bis 10 Atome, stärker bevorzugt 2 bis 8 Atome, in der Kette auf. In dem Spacer können sowohl Kohlenstoffatome wie auch Heteroatome wie N, O und S vorhanden sein. Die polymerisierbare Gruppe ist nicht besonders beschränkt und kann jede polymerisierbare Gruppe sein, die zur Bildung eines Polymers geeignet ist. Beispiele für polymerisierbare Gruppen umfassen ethylenisch ungesättigte Gruppen.
  • Beispiele für perfluoralkylhaltige Monomere sind perfluoralkylhaltige Acrylate der Formel

            H2C=CR-C(O)-C)-(CH2)n-CmF2m+1

    wobei
    • R H oder CH3 bedeutet;
    • n 0 bis 8, bevorzugt 0 bis 6, beträgt; und
    • m 4 bis 12 beträgt.
  • Die Fluorpolymere können weitere Seitengruppen aufweisen, wobei insbesondere alkylhaltige Seitengruppen und/oder funktionelle Seitengruppen geeignet sind. In einer Ausführungsform kann das Fluorpolymer alkylhaltige Seitengruppen aufweisen.
  • Diese Seitengruppen können beispielsweise durch Polymerisieren von alkylhaltigen Monomeren, die den folgenden Aufbau aufweisen, in das Fluorpolymer eingebracht werden:
    • Alkyleinheit - optionaler Spacer - polymeriserbare Gruppe
  • Die Alkyleinheit weist bevorzugt 1 bis 12 Kohlenstoffatomen auf. Der optionale Spacer ist nicht besonders beschränkt, mit der Maßgabe, dass er keine Alkyleinheit ist. Er weist bevorzugt 0 bis 20 Atome, stärker bevorzugt 0 bis 10 Atome, in der Kette auf. In dem Spacer können sowohl Kohlenstoffatome wie auch Heteroatome wie N, O und S vorhanden sein. Die polymerisierbare Gruppe ist nicht besonders beschränkt und kann jede polymerisierbare Gruppe sein, die zur Bildung eines Polymers geeignet ist. Beispiele für polymerisierbare Gruppen umfassen ethylenisch ungesättigte Gruppen.
  • Beispiele für alkylhaltige Monomere sind alkylhaltige Acrylate der Formel
    • H2C=CR-C(O)-O-CpH2p+1
    wobei
    • R H oder CH3 bedeutet; und
    • p 1 bis 12 beträgt.
  • In einer Ausführungsform kann das Fluorpolymer funktionelle Seitengruppen aufweisen.
  • Diese Seitengruppen können beispielsweise durch Polymerisieren von funktionellen Monomeren, die den folgenden Aufbau aufweisen, in das Fluorpolymer eingebracht werden:
    • funktionelle Einheit - optionaler Spacer - polymerisierbare Gruppe
  • Die funktionelle Einheit ist nicht besonders beschränkt und kann jede funktionelle Gruppe enthalten. Beispiele für funktionelle Gruppen sind OH, SH, NH2, N-Methylolsulfonamide usw. Die funktionelle Einheit weist bevorzugt 0 bis 20 Kohlenstoffatomen, bevorzugt 0 bis 12 Kohlenstoffatomen, auf. Der optionale Spacer ist nicht besonders beschränkt, mit der Maßgabe, dass er keine Alkyleinheit ist. Er weist bevorzugt 0 bis 20 Atome, stärker bevorzugt 0 bis 10 Atome, in der Kette auf. In dem Spacer können sowohl Kohlenstoffatome wie auch Heteroatome wie N, O und S vorhanden sein. Die polymerisierbare Gruppe ist nicht besonders beschränkt und kann jede polymerisierbare Gruppe sein, die zur Bildung eines Polymers geeignet ist. Beispiele für polymerisierbare Gruppen umfassen ethylenisch ungesättigte Gruppen.
  • Beispiele für funktionelle Monomere sind Acrylate der Formel
    • H2C=CR-C(O)-O-CpH2pX
    wobei
    • R H oder CH3 bedeutet;
    • p 1 bis 12 beträgt; und
    • X eine funktionelle Gruppe ausgewählt aus OH, SH, NH2, und N-Methylolsulfonamide bedeutet.
  • Beispiele von kommerziell erhältlichen Fluorpolymeren umfassen Evoral®, Oleophobol, Scotchguard, Tubiguard, Repellan, Ruco-Guard, Unidyne, Quecophob und Nuva, sind aber nicht darauf beschränkt.
  • Die imprägnierte Mikrofaserbahn enthält bevorzugt 0,2 g bis 5 g, stärker bevorzugt 0,2 g bis 1,2 g, Fluorpolymer bezogen auf 100 g Mikrofaserbahn, die als Ausgangsmaterial verwendet wird. Wenn eine entsprechende Menge an Fluorpolymer eingesetzt wird, weist die beschichtete Mikrofaserbahn langfristig eine gute Wasser- und Ölabweisung, Haftung zum Substrat und guten Griff auf.
  • Die Imprägnierungszusammensetzung kann des Weiteren, falls erforderlich, Hilfsstoffe, wie Silikone, Wachse und Salze (beispielsweise Zirkoniumsalze), enthalten.
  • Auf einer Seite der Mikrofaserbahn ist eine Schicht, die Polyurethan umfasst, aufgebracht. Durch die Schicht, die Polyurethan umfasst, ist die beschichtete Mikrofaserbahn leicht zu Reinigen. Des Weiteren gewährleistet diese Schicht Dichtheit gegen Wasser und Penetration durch Mikroorganismen, wie Bakterien. Die Schicht, die Polyurethan umfasst, ist bevorzugt in Form einer kontinuierlichen Schicht auf einer Oberfläche der Mikrofaserbahn aufgebracht. Die Schicht sollte eine einheitliche Dicke aufweisen. Die Dicke der Schicht liegt bevorzugt im Bereich von 3 g/m2 bis 50 g/m2, stärker bevorzugt im Bereich von 8 g/m2 bis 20 g/m2.
  • Als Polyurethane kommen alle Polyurethanhomo- und -copolymere in Frage. Unter anderem kommen Polyurethanblockcopolymere wie Polyester-Polyurethane und Polyetherpolyol-Polyurethane in Frage. Die Polyester und Poletherpolyole haben üblicherweise ein Molelulargewicht von 4000 bis 6000. Ein Beispiel eines kommerziell erhältlichen Produktes ist Impranil®.
  • Die Schicht, die Polyurethan umfasst, kann neben Polyurethan auch weitere Bestandteile enthalten. Ein möglicher Bestandteil ist ein Fluorharz. Das Fluorharz kann mit dem Fluorpolymer identisch sein oder von diesem verschieden sein. Das Fluorharz ist bevorzugt mit dem Fluorpolymer identisch, so dass die vorstehenden Ausführungen zum Fluorpolymer gelten.
  • Das Fluorharz ist bevorzugt in einer Menge von 0 bis 10 Gewichtsteilen, stärker bevorzugt 0,5 Gewichtsteilen bis 3 Gewichtsteilen, bezogen auf 100 Gewichtsteile Polyurethan, in der Schicht enthalten.
  • Die Schicht, die Polyurethan umfasst, kann weitere Hilfsstoffe umfassen. Ein optionaler Hilfsstoff ist Siliciumdioxid. Die Sterilisierbarkeit mit Gasen wie Ethylenoxid wird durch den Zusatz von Siliciumdioxid verbessert. Siliciumdioxid wird bevorzugt in Form von Kieselsäure in der Schicht eingesetzt. Die Größe der Siliciumdioxidteilchen liegt üblicherweise im Bereich von 0,2 µm bis 10 µm, bevorzugt 0,2 µm bis 5 µm. Siliciumdioxid ist bevorzugt in einer Menge von 0 bis 10 Gewichtsteilen, stärker bevorzugt von 1 Gewichtsteil bis 5 Gewichtsteilen, bezogen auf 100 Gewichtsteile Polyurethan, in der Schicht enthalten.
  • Die Schicht, die Polyurethan umfasst, kann außerdem Titandioxid umfassen. Titandioxid dient als Mattierungsmittel. Die Größe der Titandioxidteilchen liegt üblicherweise im Bereich von 0,2 µm bis 10 µm, bevorzugt von 0,2 µm bis 5 µm. Titandioxid ist bevorzugt in einer Menge von 0 bis 5 Gewichtsteilen, stärker bevorzugt 0,2 Gewichtsteilen bis 2 Gewichtsteilen, bezogen auf 100 Gewichtsteile Polyurethan, in der Schicht enthalten.
  • Des Weiteren kann die Schicht, die Polyurethan umfasst, weitere Additive wie Entlüfter, Fungizide, Additive zur Erhöhung der Kratzfestigkeit, Hydrophobierungsmittel, Verdicker, Rheologiehilfsmittel, Verlaufshilfsmittel, usw. enthalten. Diese Additive sind entweder Additive für die Herstellung der Schicht oder verbessern die Eigenschaften der fertigen Schicht. Der Fachmann kann sie auf Grund seines Fachwissens geeignet wählen. Die Additive sind bevorzugt in einer Menge von 0 bis 20 Gewichtsteile, stärker bevorzugt 0,5 Gewichtsteile bis 10 Gewichtsteile, bezogen auf 100 Gewichtsteile Polyurethan, in der Schicht enthalten.
  • Verfahren zur Herstellung der beschichteten Mikrofaserbahn
  • Die beschichtete Mikrofaserbahn kann nach verschiedenen Verfahren hergestellt werden. Ein bevorzugtes Verfahren wird im Folgenden beschrieben.
  • (a) Bereitstellen einer Mikrofaserbahn
  • Zunächst wird eine Mikrofaserbahn bereitgestellt. Die Mikrofaserbahn, die als Ausgangsmaterial verwendet wird, ist vorstehend eingehend beschrieben worden.
  • Die Mikrofaserbahn kann als solches in dem Verfahren eingesetzt werden. Sie kann jedoch, falls gewünscht, einer Vorbehandlung beispielsweise zur Erhöhung der Hydrophilie unterzogen werden. Die Vorbehandlung beispielsweise zur Erhöhung der Hydrophilie kann nach auf dem Fachgebiet bekannten Verfahren durchgeführt werden. Als Mittel zur Erhöhung der Hydrophilie können nichtionische Tenside, Fettsäurekondensate, Silicone und Gemische davon verwendet werden.
  • Die Mittel zur Erhöhung der Hydrophilie werden auf die Mikrofaserbahn aufgebracht. Das Aufbringungsverfahren ist nicht besonders beschränkt. In einer Ausführungsform wird die Mikrofaserbahn (beispielsweise durch Sprühen, Eintauchen, usw.) mit einer Lösung oder Dispersion der Mittel zur Erhöhung der Hydrophilie in Kontakt gebracht.
  • Nach dem Aufbringen der Mittel zur Erhöhung der Hydrophilie wird die erhaltene Mikrofaserbahn bevorzugt getrocknet. Die genauen Trocknungsbedingungen hängen von dem verwendeten Mittel zur Erhöhung der Hydrophilie ab. Üblicherweise wird eine Trocknungstemperatur von 40 °C bis 80 °C, bevorzugt von 50 °C bis 60 °C, gewählt werden. Die Trocknungsdauer liegt üblicherweise bei 30 s bis 240 s, bevorzugt bei 60 s bis 120 s.
  • Es ist wünschenswert, wenn die Mikrofaserbahn vor dem Imprägnierschritt eine Flottenaufnahme für das Fluorpolymer von 65 Gew.-% bis 85 Gew.-%, stärker bevorzugt von 65 Gew.-% bis 70 Gew.-%, bezogen auf das Trockengewicht der ggf. vorbehandelten Mikrofaserbahn aufweist.
  • (b) Imprägnieren der Mikrofaserbahn mit einer Imprägnierungszusammensetzung, die Fluorpolymer umfasst
  • Die Mikrofaserbahn wird mit einer Imprägnierungszusammensetzung, die Fluorpolymer umfasst, imprägniert. Geeignete Fluorpolymere sind vorstehend beschrieben.
  • Die Mikrofaserbahn wird nach bekannten Verfahren imprägniert. Diese Verfahren umfassen Sprühen, Eintauchen, Ausziehverfahren, Pflatschen, und Schaumimprägnierung. Eine Tauchimprägnierung ist bevorzugt, da dies eine vollständige Imprägnierung der Mikrofaserbahn ermöglicht.
  • Bei der Imprägnierung der Mikrofaserbahn wird das Fluorpolymer üblicherweise in Form einer Lösung oder Dispersion eingesetzt. Die Konzentration der Lösung oder Dispersion ist nicht besonders beschränkt und liegt bevorzugt im Bereich von 5 g/l bis 70 g/l, stärker bevorzugt im Bereich von 5 g/l bis 50 g/l.
  • (c) Trocknen der imprägnierten Mikrofaserbahn
  • Nach der Imprägnierung wird die imprägnierte Mikrofaserbahn getrocknet.
  • Die vorliegenden Erfinder haben gefunden, dass die Eigenschaften von Imprägnierungen mit Fluorpolymeren durch eine geeignete Abfolge von Trocknung und thermischer Behandlung beeinflusst werden können. Ohne an eine bestimmte Theorie gebunden sein zu wollen, glauben sie, dass die Moleküle des Fluorpolymers sich zunächst statistisch auf einem Substrat (wie die vorliegende Mikrofaserbahn) ablagern, wenn das Lösungsmittel entfernt wird. Durch die statistische (d.h. ungeordnete) Anordnung sind die hydrophoben Fluoratome zunächst ebenfalls statistisch verteilt. Wenn das Fluorpolymer einer höheren Temperatur ausgesetzt wird, kommt es zu einer Umorientierung der Moleküle des Fluorpolymers, wobei die hydrophoben Fluoratome sich bevorzugt auf der Oberfläche der Schicht anordnen.
  • Man kann mit Hilfe der Saugfähigkeit bestimmen, ob eine bestimmte Temperatur für ein bestimmtes Fluorpolymer als Trocknungstemperatur (Schritt (c)) oder als Temperatur für die thermische Behandlung (Schritt (e)) anzusehen ist.
  • Ein Testgewebe aus Baumwolle EMPA 210, Leinwandbindung, gebleicht, ohne optische Aufheller (Bezugsquelle EMPA Testmaterialien AG, St. Gallen, Schweiz) wird mittels Foulardierung mit 0,5 g Fluorpolymer pro 100 g Baumwollgewebe imprägniert und bei Raumtemperatur getrocknet. Das Gewebe wird anschließend in gleichgroße Stücke geschnitten. Die Stücke werden anschließend bei unterschiedlichen Temperaturen 120 s erwärmt (bspw. 40 °C, 50 °C, ....., 140 °C, 150 °C), wobei die Temperaturdifferenz zwischen den einzelnen Schritten 10 °C beträgt. Die genaue Minimal- und Maximaltemperatur hängt vom Fluorpolymer ab und kann anhand des gemessenen Kurvenverlaufs betimmt werden. Es wird das Gewicht des jeweiligen Gewebestücks, das bei der Temperatur Ti erwärmt wurde mtrocken(Ti), gemessen.
  • Nach dem Abkühlen werden die Gewebestücke mit einer wässrigen Flotte bei 2 bar Druck und 1,5 m/min Walzengeschwindigkeit foulardiert. Es wird das Gewicht des jeweiligen Gewebestücks, das bei der Temperatur Ti erwärmt wurde mnass(Ti), gemessen.
  • Die Flottenaufnahme für das Gewebestück, das bei der Temperatur Ti erwärmt wurde, wird anhand der folgenden Formel berechnet: Flottenaufnahme T i % = m nass T i - m trocken T i m trocken T i × 100
    Figure imgb0001
  • Bei niedrigen Temperaturen Ti ist die Flottenaufnahme relativ konstant. Sie sinkt bei einer bestimmten Temperatur Ti jedoch plötzlich auf deutlich niedrigere Werte ab. Nach dem Anstieg werden dann trotz steigender Temperatur Ti wieder relativ konstante Werte für die Flottenaufnahme ermittelt. Beim Schritt (c) sollte die Trocknungstemperatur so gewählt werden, dass man im Bereich liegt, bei dem die relativ konstante hohe Flottenaufnahme erhalten wird. Beim Schritt (e) sollte die Temperatur der thermischen Behandlung so gewählt werden, dass man im Bereich liegt, bei dem die relativ konstante niedrige Flottenaufnahme erhalten wird. Der Übergangsbereich zwischen beiden Zonen ist weniger geeignet. In der Regel wird die Flottenaufnahme, wenn man sich im Bereich der Trocknung befindet, mindestens 20 % betragen. In der Regel wird die Flottenaufnahme, wenn man sich im Bereich der thermischen Behanldung befindet, höchstens 10 % betragen. Diese Zahlen sind jedoch nur Anhaltspunkte und können je nach Fluorpolymer variieren.
  • Die vorliegende Erfindung macht von dieser Erkenntnis Gebrauch. In Schritt (c) wird die imprägnierte Mikrofaserbahn getrocknet. Dabei lagern sich die Moleküle des Fluorpolymers statistisch auf der Mikrofaserbahn ab. Die Trocknungsbedingungen werden dabei so gewählt, dass es nicht zu einer Umorientierung der Moleküle des Fluorpolymers kommt.
  • Die genauen Trocknungsbedingungen hängen von dem verwendeten Fluorpolymer ab. Üblicherweise wird eine Trocknungstemperatur von 40 °C bis 110 °C, bevorzugt von 50 °C bis 80 °C, gewählt. Die Trocknungsdauer liegt üblicherweise bei 10 s bis 240 s, bevorzugt bei 30 s bis 120 s.
  • Durch die Imprägnierung mit dem Fluorpolymer wird die Saugfähigkeit der Mikrofaserbahn eingestellt. Dadurch dass das Fluorpolymer lediglich getrocknet wird, ist es einfacher zu gewährleisten, dass die Polyurethanbeschichtungszusammensetzung nicht die gesamte Mikrofaserbahn durchdringt. Wenn das Fluorpolymer bereits vor dem Aufbringen der Polyurethanbeschichtungszusammensetzung thermisch behandelt werden würde, so dass die Moleküle des Fluorpolymers sich orientieren würden, würde die abweisende Oberfläche eine nachträgliche Beschichtung mit der Beschichtungszusammensetzung erschweren.
  • Es ist wünschenswert, wenn die Mikrofaserbahn nach dem Trocknungsschritt eine Flottenaufnahme für die Beschichtungszusammensetzung von 30 Gew.-% bis 60 Gew.-%, stärker bevorzugt von 30 Gew.-% bis 50 Gew.-%, bezogen auf Trockengewicht der imprägnierten Mikrofaserbahn aufweist.
  • (d) Aufbringen einer Beschichtungszusammensetzung, die Polyurethan umfasst, auf nur einer Seite der getrockneten, imprägnierten Mikrofaserbahn
  • Nach dem Trocknungsschritt wird die Beschichtungszusammensetzung, die Polyurethan umfasst, auf nur einer Seite der getrockneten, imprägnierten Mikrofaserbahn aufgebracht. Die Bestandteile der Schicht, die Polyurethan umfasst, sind vorstehend ausführlich beschrieben worden.
  • Die Beschichtungszusammensetzung wird bevorzugt in Form einer Lösung oder Dispersion der gewünschten Bestandteile eingesetzt. Die Konzentration des Polyurethans in der Lösung oder Dispersion ist bevorzugt im Bereich von 50 Gew.-% bis 80 Gew.-%, stärker bevorzugt von 60 Gew.-% bis 80 Gew.-%. Durch die Wahl einer viskosen Beschichtungszusammensetzung ist es einfacher sicherzustellen, dass die Schicht, die Polyurethan umfasst, nur auf einer Seite der fertigen Mikrofaserbahn vorhanden ist.
  • Die Beschichtungszusammensetzung wird nach bekannten Verfahren auf die getrocknete, imprägnierte Mikrofaserbahn aufgebracht. Zu diesen Verfahren gehören Walzenbeschichten, Rakeln, Streichbeschichten, Schaumbeschichten, Transferbeschichten, und Filmziehen, bevorzugt wird Rakeln verwendet.
  • Die Beschichtungszusammensetzung wird so aufgebracht, dass die Schicht, die Polyurethan umfasst, nur auf einer Seite der fertigen Mikrofaserbahn vorhanden ist. Figur 1 zeigt eine schematische Darstellung des Querschnitts einer fertigen beschichteten Mikrofaserbahn, wobei die Mikrofaserschicht der Einfachheit halber als Monoschicht dargestellt ist.
  • In der gezeigten Ausführungsform umfasst die Mikrofaserbahn (1) Mikrofasern (2) und elektrisch leitende Fasern (3), wobei in dieser Ausführungsform der Durchmesser der elektrisch leitenden Fasern (3) größer als der Durchmesser der Mikrofasern (2) ist. Die Fluorpolymerimprägnierung ist in dieser Abbildung nicht gezeigt. Die Schicht (4), die Polyurethan umfasst, ist nur auf einer Seite der fertigen Mikrofaserbahn vorhanden.
  • Es ist selbstverständlich, dass die Beschichtungszusammensetzung beim Aufbringen auf die getrocknete, imprägnierte Mikrofaserbahn zu einem gewissen Grad in die Mikrofaserbahn eindringt. Im Rahmen der Erfindung darf die Schicht, die Polyurethan umfasst, jedoch nicht die Mikrofasern auf der Seite der Mikrofaserbahn, die der Seite, von der sie aufgebracht wurde, gegenüberliegt, abdecken. Der Durchdringungsgrad beträgt bevorzugt höchstens 60 %, stärker bevorzugt höchstens 40 %. Der Durchdringungsgrad beträgt bevorzugt mindestens 20 %, stärker bevorzugt mindestens 30 %. Im Rahmen der Erfindung wird der Durchdringungsgrad wie folgt definiert: Durchdringungsgrad = d 1 d 2 × 100
    Figure imgb0002
  • d1
    Dicke des Teils der Mikrofaserschicht, der mit der Schicht, die Polyurethan umfasst, in Kontakt ist
    d2
    Dicke der gesamten Mikrofaserschicht
  • Die Dicken kann man durch optische Verfahren wie beispielsweise Mikroskopie messen. Ein Beispiel für ein mögliches Meßverfahren ist die Untersuchung eines Querschnitts mittels Rasterelektronenmikroskopie.
  • Der Durchdringungsgrad ist in Figur 1 bildlich durch die rechte geschweifte Klammer und die Angabe "x %" angedeutet. In Figur 1 beträgt sie ca. 50 %, da die Mikrofasern (weiße Kugeln) zu ca. 50 % in die Schicht, die Polyurethan umfasst, eingebettet sind.
  • Die Beschichtungszusammensetzung kann nach dem Aufbringen in Schritt (d) getrocknet werden. Alternativ kann auf die Trocknung verzichtet werden und die Beschichtungszusammensetzung im Rahmen der thermischen Behandlung in Schritt (e) getrocknet werden.
  • Falls ein getrennter Trocknungsschritt durchgeführt wird, werden die Bedingungen in Abhängigkeit von der gewählten Beschichtungszusammensetzung gewählt. Sie sollten jedoch so gewählt werden, dass es nicht zu einer Umorientierung der Moleküle des Fluorpolymers kommt.
  • Üblicherweise wird eine Trocknungstemperatur von 40 °C bis 110 °C, bevorzugt von 80 °C bis 100 °C, gewählt werden. Die Trocknungsdauer liegt üblicherweise bei 10 s bis 240 s, bevorzugt bei 10 s bis 120 s.
  • (e) Thermisches Behandeln der in Schritt (d) erhaltenen beschichteten Mikrofaserbahn
  • In Schritt (e) wird die (gegebenenfalls getrocknete) beschichtete Mikrofaserbahn, die in Schritt (d) erhalten wird, thermisch behandelt. Bei diesem Schritt werden die Bedingungen so gewählt, dass es zu einer Umorientierung der Moleküle des Fluorpolymers kommt.
  • Bei der thermischen Behandlung wird üblicherweise eine Temperatur von 120 °C bis 190 °C, bevorzugt von 140 °C bis 180 °C, gewählt. Es ist selbstverständlich möglich die thermische Behandlung in mehreren Stufen mit unterschiedlicher Temperatur durchzuführen. Die Dauer der thermischen Behandlung liegt üblicherweise bei 10 s bis 240 s, bevorzugt bei 30 s bis 120 s.
  • Strahlenschutzvorrichtung
  • Die beschichtete Mikrofaserbahn kann als Abdeckung eines Strahlenschutzmaterials in einer Strahlenschutzvorrichtung verwendet werden, wobei die beschichtete Mikrofaserbahn auf mindestens einer Seite des Strahlenschutzmaterials aufgebracht ist und wobei die mit Polyurethan beschichtete Seite dem Strahlenschutzmaterial benachbart ist.
  • Figur 2 zeigt eine schematische Darstellung eines Querschnitts der erfindungsgemäßen Strahlenschutzvorrichtung (6). In der gezeigten Ausführungsform umfasst die Mikrofaserbahn (1) Mikrofasern (2) und elektrisch leitende Fasern (3), wobei in dieser Ausführungsform der Durchmesser der elektrisch leitenden Fasern (3) größer als der Durchmesser der Mikrofasern (2) ist. Die Fluorpolymerimprägnierung ist in dieser Abbildung nicht gezeigt. Die Schicht (4), die Polyurethan umfasst, ist nur auf einer Seite der fertigen Mikrofaserbahn (1) vorhanden.
  • Die Mikrofaserbahn (1) ist in der gezeigten Ausführungsform auf beide Seiten des Strahlenschutzmaterials (5) aufgebracht, wobei die Schicht (4), die Polyurethan umfasst, jeweils dem Strahlenschutzmaterial (5) benachbart ist.
  • Als Strahlenschutzvorrichtungen können alle Vorrichtungen genannt werden, die Personen oder Gegenstände vor schädlicher Strahlung, insbesondere Röntgenstrahlung, UV-Strahlung, Infrarot-Strahlung, und radioaktiver Strahlung, besonders bevorzugt Röntgenstrahlung, schützen. Beispiele umfassen Schürzen, Handschuhe, Schirme, Vorhänge, Mäntel, Abdecktücher, Abdeckmaterialien, Augenschutzprodukte und Überzieher, sind aber nicht darauf beschränkt. Durch ihre Flexibilität und ihren angenehmen haptischen Eigenschaften eignet sich die beschichtete Mikrofaserbahn besonders für flexible Strahlenschutzvorrichtungen und/oder Strahlenschutzvorrichtungen, die von Personen getragen werden.
  • Im Rahmen der Erfindung können alle Arten von Strahlenschutzmaterial verwendet werden. Die Art des Strahlenschutzmaterials wird von der abzuschirmenden Strahlung abhängen und ist nicht besonders beschränkt. Beispielhaft kann Strahlenschutzmaterial auf der Basis von Blei oder Bleioxid erwähnt werden. Bleifreies Strahlenschutzmaterial kann ebenfalls verwendet werden. Bleifreies Strahlenschutzmaterial ist beispielsweise in DE 10 2004 001 328 A , WO 2005/024846 A , WO 2005/023116 A , DE 10 2006 028 958 A , WO 2004/017332 A und DE 10 2005 034 384 offenbart. Kombinationen von Strahlenschutzmaterial sind auch möglich. Das Strahlenschutzmaterial kann eine oder mehrere Lagen umfassen.
  • Bei der Herstellung einer Strahlenschutzvorrichtung wird die beschichtete Mikrofaserbahn auf mindestens einer Seite des Strahlenschutzmaterials aufgebracht. Üblicherweise wird das Strahlenschutzmaterial von der beschichteten Mikrofaserbahn umhüllt. Die Mikrofaserbahn und das Strahlenschutzmaterial können auf bekannte Weise, beispielsweise durch Nähen, Kleben, Tapen, Kaschieren oder Laminieren, miteinander verbunden werden. Wenn die Mikrofaserbahn und das Strahlenschutzmaterial, beispielsweise durch Kaschieren oder Laminieren, zu einem Verbundmaterial verarbeitet werden, können sie auch anschließend durch konfektionstechnische Verfahren, wie Schneiden, Stanzen, Wasserstrahlschneiden, Formen oder Laserstrahlschneiden zu den Endprodukten verarbeitet werden.
  • Die Mikrofaserbahn schützt das Strahlenschutzmaterial. Insbesondere wird das Strahlenschutzmaterial geschützt vor:
    • mechanischer Einwirkung;
    • Penetration durch Keimer (wie Bakterien-, Viren- und Pilzen);
    • chemischer Einwirkung beispielsweise durch Reinigungs- und Desinfektionsmittel;
    • Lichteinwirkung; und/oder
    • Eindringen von Körperflüssigkeiten, wie Blut, Urin oder Schweiß.
  • Die beschichtete Mikrofaserbahn verleiht durch ihren textilen Charakter zudem den Strahlenschutzvorrichtungen ein angenehmes Oberflächengefühl, was vor allem Kleidungsstücken ein angenehmes Tragegefühl verleiht.
  • Im Gegensatz zu konventionellen Strahlenschutzvorrichtungen, bei denen eine mit Polyurethan beschichtete Seite dem Strahlenschutzmaterial abgewandt ist, wird die beschichtete Mikrofaserbahn so angeordnet, dass die mit Polyurethan beschichtete Seite dem Strahlenschutzmaterial benachbart ist. Bei der konventionellen Anordnung ist die mit Polyurethan beschichtete Seite folglich nach außen gewandt und somit starken physischen Belastungen ausgesetzt. Dadurch kommt es zu verstärktem Verschließ und Abrieb. Durch die erfindungsgemäße Anordnung, bei der die mit Polyurethan beschichtete Seite nach innen gewandt ist, ist die physische Belastung deutlich geringer. Überraschenderweise weist die beschichtete Mikrofaserbahn bei der erfindungsgemäßen Anordnung eine hohe Schnitt- und Reißfestigkeit auf, so dass ihre Gebrauchseigenschaften denen von konventionellen Materialien deutlich überlegen sind.
  • Die Erfindung wird anhand des folgenden Beispiels erläutert. Die Erfindung ist jedoch nicht auf diese Ausführungsform beschränkt.
  • BEISPIEL
  • Die Mikrofaserbahn wurde aus Polyester-Mikrofasern mit einer Faserstärke von 1 dtex und kohlenstoffhaltigen Fasern (Belltron B31, erhältlich von Kanebo Gohsen Ltd., Japan) hergestellt. Die Fasern wurden zu einer Leinwand mit ca. 70 Kettfäden/cm und ca. 37 Schussfäden/cm mit einem Flächengewicht von 100 g/m2 verarbeitet. Die kohlenstoffhaltigen elektrisch leitenden Fasern wurden in Form eines Gitters mit den Maßen 5 x 5 mm eingearbeitet.
  • Die Mikrofaserbahn hatte eine Luftdurchlässigkeit von ca. 15 l/min pro dm2 und einen elektrostatischen Oberflächenwiderstand von ca. 1 x 108 Ohm (nach DIN 100015-1 bei 25 % rel. Luftfeuchte und 23 °C). Die Reißfestigkeiten betrugen ca. 850 N in Kette und ca. 650 N im Schuss.
  • Für das Beispiel wurde die Mikrofaserbahn über einen Spannrahmen geführt.
  • 20 g/l Silastol WK (erhältlich von der Fa. Schill + Seilacher, DE) wurden zunächst durch Foulardapplikation auf die Mikrofaserbahn aufgebracht, um die Hydrophilie anzupassen. Nach der Foulardapplikation wurde die Mikrofaserbahn bei 80 °C getrocknet.
  • Anschließend wurde die Mikrofaserbahn durch Foulardierung mit 10 g/l Evoral O 35 (Fluorpolymer; erhältlich von der Fa. Schill + Seilacher, DE) imprägniert. Die Mikrofaserbahn wurde 90 s bei 60 °C getrocknet. Es kam nicht zu einer Orientierung der Moleküle des Fluorpolymers. Die aufgebrachte Menge an Evoral betrug ca. 0,7 g/100 g Mikrofaserbahn.
  • Nach der Trocknung wurde eine polyurethanhaltige Beschichtung auf die Mikrofaserbahn aufgerakelt. Die Beschichtungszusammensetzung wies die folgende Zusammensetzung auf:
    50 Teile Impranil DLP-R, Bayer (Polymerdispersion)
    0,2 Teile Agitan 218, Münzing Chemie (Entlüfter)
    0,4 Teile Afrotin FG, Schill + Seilacher (Fungizid)
    0,4 Teile Byk 333, Byk Chemie (Additiv zur Erhöhung der Kratzbeständigkeit)
    0,8 Teile Tegophobe 1650, Degussa (Hydophobierungsmittel)
    1,2 Teile kolloidale Kieselsäure
    41,7 Teile Wasser
    0,3 Teile Rheolate 255, Elementis (Verdicker)
    4,2 Teile Evoral, Schill+Seilacher (Fluorpolymer)
    0,8 Teile Hombitec RM 400, Sachtleben Chemie (Mattierungsmittel)
  • Die Anmischung erfolgte unter Zugabe in der obengenannten Reihenfolge mit Hilfe eines Dissolvers. Die Rührzeit betrug 35 Minuten. Die hergestellte Paste wurde mittels einer Luftrakel flächig als geschlossener Film auf die Mikrofaserbahn aufgebracht.
  • Die beschichtete Mikrofaserbahn wurde in einem Spannrahmen in fünf Feldern mit je 3 m Länge und einer Gesamtzeit von 2 min stufenweise getrocknet.
    Trocknung Feld 1: 80 °C
    Trocknung Feld 2: 120 °C
    Trocknung Felder 3 bis 5: 160 °C
  • Die erhaltene Mikrofaserbahn wurde nach DIN EN 13795-2 untersucht, um ihre Eignung als Abdeckung von Röntgenschutzmaterial im OP Bereich zu klären. (KbE = Koloniebildende Einheiten).
  • Barriereeigenschaften:
  • Bakterienpenetration trocken: log10KbE: 0
    Flüssigkeitsdurchtritt: > 200 cm
  • Reinheit:
  • mikrobiologisch: log10(KbE/dm2): < 0,3
    Partikuläres Material: Index Partikuläres Material < 3,3
    Partikelfreisetzung: log10-Partikel (2 - 25 µm) < 3,7
  • Festigkeit:
  • Berstfestigkeit trocken: > 750 kPa
    Berstfestigkeit nass: > 750 kPa
    Reißfestigkeit: trocken: > 750 N/5 cm
    Reißfestigkeit: nass: > 680 N/5 cm
  • Die Messwerte zeigen, dass das Material hervorragend als Textil im OP-Bereich eingesetzt werden kann.
  • Das in Beispiel 1 von WO 2005/024846 hergestellte bleifreie Strahlenschutzmaterial wurde in Form einer Strahlenschutzschürze geschnitten. Die vorstehend hergestellte beschichtete Mikrofaserbahn wurde entsprechend zugeschnitten und beidseitig auf das Strahlenschutzmaterial gelegt, wobei die mit Polyurethan beschichtete Seite dem Strahlenschutzmaterial zugewandt war. Die Mikrofaserbahnen und das Strahlenschutzmaterial wurden miteinander vernäht, so dass eine Strahlenschutzschürze erhalten wurde. Die Strahlenschutzschürze vermittelte durch die Verwendung der beschriebenen Mikrofaserbahn ein angenehmes Tragegefühl. Hautreizungen wurden vermieden. Außerdem dient die beschriebene Mikrofaserbahn als Schutzbarriere für das sensible Strahlenschutz-Inlay. Die Strahlenschutzschürze wies eine hervorragende Dichtheit gegen Blut, Urin und Mikroorganismen auf. Sie konnte außerdem ohne Beschädigung durch Ethylenoxid sterilisiert werden. Folglich ist die Strahlenschutzschürze sehr gut für den Einsatz im medizinischen Bereich geeignet.

Claims (25)

  1. Verwendung einer beschichteten Mikrofaserbahn, umfassend:
    (i) eine Mikrofaserbahn, die mit einem Fluorpolymer imprägniert ist; und
    (ii) eine Schicht, die Polyurethan umfasst, welches nur auf einer Seite der Mikrofaserbahn vorhanden ist,
    oder einer beschichteten Mikrofaserbahn, die gemäß dem Verfahren erhältlich ist, welches die folgenden Schritte umfasst:
    (a) Bereitstellen einer Mikrofaserbahn;
    (b) Imprägnieren der Mikrofaserbahn mit einer Imprägnierungszusammensetzung, die Fluorpolymer umfasst;
    (c) Trocknen der imprägnierten Mikrofaserbahn;
    (d) Aufbringen einer Beschichtungszusammensetzung, die Polyurethan umfasst, auf nur einer Seite der getrockneten, imprägnierten Mikrofaserbahn; und
    (e) thermisches Behandeln der in Schritt (d) erhaltenen beschichteten Mikrofaserbahn,
    als Abdeckung eines Strahlenschutzmaterials;
    wobei die beschichtete Mikrofaserbahn auf mindestens einer Seite des Strahlenschutzmaterials aufgebracht ist und wobei die mit Polyurethan beschichtete Seite dem Strahlenschutzmaterial benachbart ist.
  2. Verwendung gemäß Anspruch 1, wobei das Fluorpolymer in einer Menge von 0,2 g bis 5 g, bezogen auf 100 g der unbeschichteten Mikrofaserbahn, vorhanden ist.
  3. Verwendung gemäß Anspruch 1 oder 2, wobei die Dicke der Schicht, die Polyurethan umfasst, 3 g/m2 bis 50 g/m2 beträgt.
  4. Verwendung gemäß einem der Ansprüche 1 bis 3, wobei die Schicht, die Polyurethan umfasst, des Weiteren Fluorharz in einer Menge von 3 Gewichtsteilen bis 30 Gewichtsteilen, bezogen auf 100 Gewichtsteile Polyurethan, umfasst.
  5. Verwendung gemäß einem der Ansprüche 1 bis 4, wobei die Schicht, die Polyurethan umfasst, des Weiteren Siliciumdioxid in einer Menge von 1 Gewichtsteil bis 10 Gewichtsteilen, bezogen auf 100 Gewichtsteile Polyurethan, umfasst.
  6. Verwendung gemäß einem der Ansprüche 1 bis 5, wobei das Fluorpolymer durch Polymerisation von perfluoralkylhaltigen Acrylaten der Formel

            H2C=CR-C(O)-O-(CH2)n-CmF2m+1

    wobei
    R H oder CH3 bedeutet;
    n 0 bis 8 beträgt; und
    m 4 bis 12 beträgt;
    erhältlich ist.
  7. Verwendung gemäß Anspruch 6, wobei das Fluorpolymer ein Copolymer ist, das durch Copolymerisation von perfluoralkylhaltigen Acrylaten mit
    (i) mindestens einem alkylhaltigen Acrylat der Formel

            H2C=CR-C(O)-O-CpH2p+1

    wobei
    R H oder CH3 bedeutet; und
    p 1 bis 12 beträgt;
    und/oder
    (ii) mindestens einem funktionellen Monomer der Formel

            H2C=CR-C(O)-O-CpH2pX

    wobei
    R H oder CH3 bedeutet;
    p 1 bis 12 beträgt; und
    X eine funktionelle Gruppe ausgewählt aus OH, SH, NH2, und N-Methylolsulfonamide bedeutet;
    erhältlich ist.
  8. Verwendung gemäß Anspruch 1, wobei die Trocknung in Schritt (c) bei einer Temperatur im Bereich von 40°C bis 110°C für eine Dauer von 10 s bis 240 s durchgeführt wird.
  9. Verwendung gemäß Anspruch 1 oder 8, wobei die thermische Behandlung in Schritt (e) bei einer Temperatur im Bereich von 120°C bis 190°C für eine Dauer von 10 s bis 240 s durchgeführt wird.
  10. Verwendung gemäß Anspruch 1, wobei das Trocknen der imprägnierten Mikrofaserbahn in Schritt (c) so durchgeführt wird, dass sich die Moleküle des Fluorpolymers statistisch auf der Mikrofaserbahn ablagern und es nicht zu einer Umorientierung der Moleküle des Fluorpolymers kommt.
  11. Verwendung gemäß Anspruch 1 oder 10, wobei die thermische Behandlung in Schritt (e) so durchgeführt wird, dass es zu einer Umorientierung der Moleküle des Fluorpolymers kommt, wobei die hydrophoben Fluoratome sich bevorzugt auf der Oberfläche der Schicht anordnen.
  12. Strahlenschutzvorrichtung, umfassend:
    (α) ein Strahlenschutzmaterial; und
    (β) eine beschichtete Mikrofaserbahn, umfassend:
    (i) eine Mikrofaserbahn, die mit einem Fluorpolymer imprägniert ist;
    und
    (ii) eine Schicht, die Polyurethan umfasst, welches nur auf einer Seite der Mikrofaserbahn vorhanden ist,
    oder eine beschichtete Mikrofaserbahn, die gemäß dem Verfahren erhältlich ist, welches die folgenden Schritte umfasst:
    (a) Bereitstellen einer Mikrofaserbahn;
    (b) Imprägnieren der Mikrofaserbahn mit einer Imprägnierungszusammensetzung, die Fluorpolymer umfasst;
    (c) Trocknen der imprägnierten Mikrofaserbahn;
    (d) Aufbringen einer Beschichtungszusammensetzung, die Polyurethan umfasst, auf nur einer Seite der getrockneten, imprägnierten Mikrofaserbahn; und
    (e) thermisches Behandeln der in Schritt (d) erhaltenen beschichteten Mikrofaserbahn,
    wobei die beschichtete Mikrofaserbahn auf mindestens einer Seite des Strahlenschutzmaterials aufgebracht ist und wobei die mit Polyurethan beschichtete Seite dem Strahlenschutzmaterial benachbart ist.
  13. Strahlenschutzvorrichtung gemäß Anspruch 12, wobei das Fluorpolymer in einer Menge von 0,2 g bis 5 g, bezogen auf 100 g der unbeschichteten Mikrofaserbahn, vorhanden ist.
  14. Strahlenschutzvorrichtung gemäß Anspruch 12 oder 13, wobei die Dicke der Schicht, die Polyurethan umfasst, 3 g/m2 bis 50 g/m2 beträgt.
  15. Strahlenschutzvorrichtung gemäß einem der Ansprüche 12 bis 14, wobei die Schicht, die Polyurethan umfasst, des Weiteren Fluorharz in einer Menge von 3 Gewichtsteilen bis 30 Gewichtsteilen, bezogen auf 100 Gewichtsteile Polyurethan, umfasst.
  16. Strahlenschutzvorrichtung gemäß einem der Ansprüche 12 bis 15, wobei die Schicht, die Polyurethan umfasst, des Weiteren Siliciumdioxid in einer Menge von 1 Gewichtsteil bis 10 Gewichtsteilen, bezogen auf 100 Gewichtsteile Polyurethan, umfasst.
  17. Strahlenschutzvorrichtung gemäß einem der Ansprüche 12 bis 16, wobei das Fluorpolymer durch Polymerisation von perfluoralkylhaltigen Acrylaten der Formel

            H2C=CR-C(O)-O-(CH2)nCmF2m+1

    wobei
    R H oder CH3 bedeutet;
    n 0 bis 8 beträgt; und
    m 4 bis 12 beträgt;
    erhältlich ist.
  18. Strahlenschutzvorrichtung gemäß Anspruch 17, wobei das Fluorpolymer ein Copolymer ist, das durch Copolymerisation von perfluoralkylhaltigen Acrylaten mit
    (i) mindestens einem alkylhaltigen Acrylat der Formel

            H2C=CR-C(O)-O-CpH2p+1

    wobei
    R H oder CH3 bedeutet; und
    p 1 bis 12 beträgt;
    und/oder
    (ii) mindestens einem funktionellen Monomer der Formel

            H2C=CR-C(O)-O-CpH2pX

    wobei
    R H oder CH3 bedeutet;
    p 1 bis 12 beträgt; und
    X eine funktionelle Gruppe ausgewählt aus OH, SH, NH2, und N-Methylolsulfonamide bedeutet;
    erhältlich ist.
  19. Strahlenschutzvorrichtung gemäß Anspruch 12, wobei die Trocknung in Schritt (c) bei einer Temperatur im Bereich von 40°C bis 110°C für eine Dauer von 10 s bis 240 s durchgeführt wird.
  20. Strahlenschutzvorrichtung gemäß Anspruch 12 oder 19, wobei die thermische Behandlung in Schritt (e) bei einer Temperatur im Bereich von 120°C bis 190°C für eine Dauer von 10 s bis 240 s durchgerührt wird.
  21. Strahlenschutzvorrichtung gemäß Anspruch 12, wobei das Trocknen der imprägnierten Mikrofaserbahn in Schritt (c) so durchgeführt wird, dass sich die Moleküle des Fluorpolymers statistisch auf der Mikrofaserbahn ablagern und es nicht zu einer Umorientierung der Moleküle des Fluorpolymers kommt.
  22. Strahlenschutzvorrichtung gemäß Anspruch 12 oder 21, wobei die thermische Behandlung in Schritt (e) so durchgeführt wird, dass es zu einer Umorientierung der Moleküle des Fluorpolymers kommt, wobei die hydrophoben Fluoratome sich bevorzugt auf der Oberfläche der Schicht anordnen.
  23. Strahlenschutzvorrichtung gemäß einem der Ansprüche 12 bis 22, wobei das Strahlenschutzmaterial zur Abschirmung von Röntgenstrahlung geeignet ist.
  24. Strahlenschutzvorrichtung gemäß einem der Ansprüche 12 bis 23, wobei das Strahlenschutzmaterial kein Blei enthält.
  25. Strahlenschutzvorrichtung gemäß einem der Ansprüche 12 bis 24, wobei die beschichtete Mikrofaserbahn auf beiden Seiten des Strahlenschutzmaterials aufgebracht ist und wobei jeweils die mit Polyurethan beschichteten Seiten dem Strahlenschutzmaterial benachbart sind.
EP20100741954 2009-08-14 2010-08-10 Verwendung einer beschichteten mikrofaserbahn als abdeckung eines strahlenschutzmaterials Active EP2464781B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US23401409P 2009-08-14 2009-08-14
DE102009037565A DE102009037565A1 (de) 2009-08-14 2009-08-14 Beschichtete Mikrofaserbahn und Verfahren zur Herstellung derselben
PCT/EP2010/061631 WO2011018459A1 (de) 2009-08-14 2010-08-10 Beschichtete mikrofaserbahn und verfahren zur herstellung derselben

Publications (2)

Publication Number Publication Date
EP2464781A1 EP2464781A1 (de) 2012-06-20
EP2464781B1 true EP2464781B1 (de) 2013-10-30

Family

ID=43495330

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20100741954 Active EP2464781B1 (de) 2009-08-14 2010-08-10 Verwendung einer beschichteten mikrofaserbahn als abdeckung eines strahlenschutzmaterials

Country Status (6)

Country Link
US (1) US8803115B2 (de)
EP (1) EP2464781B1 (de)
JP (1) JP5668065B2 (de)
CN (1) CN102471992B (de)
DE (1) DE102009037565A1 (de)
WO (1) WO2011018459A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
US20120183861A1 (en) 2010-10-21 2012-07-19 Eastman Chemical Company Sulfopolyester binders
DE102011051902A1 (de) * 2011-07-18 2013-01-24 Haomin Ding Filter, insbesondere Atemluftfilter
US8882963B2 (en) 2012-01-31 2014-11-11 Eastman Chemical Company Processes to produce short cut microfibers
US8731452B2 (en) * 2012-04-13 2014-05-20 Xerox Corporation Bionanocomposite fuser topcoats comprising nanosized cellulosic particles
EP2926345B1 (de) 2012-10-31 2019-04-03 Lite-Tech Inc. Flexible hochgefüllte zusammensetzung, schutzkleidung daraus und verfahren zur herstellung davon
DE102013203812B4 (de) 2013-03-06 2017-04-13 Mavig Gmbh Fahrbare Strahlenschutzanordnung
US9617685B2 (en) 2013-04-19 2017-04-11 Eastman Chemical Company Process for making paper and nonwoven articles comprising synthetic microfiber binders
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US10026513B2 (en) 2014-06-02 2018-07-17 Turner Innovations, Llc. Radiation shielding and processes for producing and using the same
DE102016208345B4 (de) 2016-05-13 2022-02-24 Raymaster Holding Ag Verfahren zum Herstellen eines Dekors auf einem Substrat
DE102017009989A1 (de) * 2017-10-26 2019-05-02 Carl Freudenberg Kg Biokompatibles Verbundmaterial zum Einbringen in einen menschlichen Körper
CN108614303A (zh) * 2018-07-12 2018-10-02 同方威视技术股份有限公司 安全检查设备的屏蔽结构及安全检查通道
CN110284331A (zh) * 2019-05-30 2019-09-27 福建辅布司纺织有限公司 一种耐磨抗污网布及其生产工艺
WO2021032486A1 (de) * 2019-08-16 2021-02-25 Mavig Gmbh Beschichtete mikrofaserbahn und verfahren zur herstellung derselben
US11890699B1 (en) 2019-09-19 2024-02-06 Dustin Hawkins Method of manufacturing a waterproof strapped accessory
CN113957705B (zh) * 2021-09-26 2023-07-04 浙江理工大学 一种导电织物的制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112175A (en) * 1974-06-20 1978-09-05 Toray Industries, Inc. Sound insulating sheet containing lead fibers
JPS584873A (ja) * 1981-06-30 1983-01-12 カネボウ株式会社 繊維構造物の加工方法
JPS5866099A (ja) * 1981-10-16 1983-04-20 株式会社薬理学中央研究所 放射線遮蔽法
GB2118410B (en) 1982-03-10 1985-09-11 Wardray Products Protective articles
WO1986006737A1 (en) * 1985-05-08 1986-11-20 Bgb-Gesellschaft Reinmar John, Rainer-Leo Meyer & Coating material for flexible substrates, its use and process for producing a protective coating
JPS6212897A (ja) * 1985-07-10 1987-01-21 三菱電線工業株式会社 放射線遮蔽材
JP2514200B2 (ja) * 1987-03-31 1996-07-10 帝人株式会社 人工皮革の製造方法
JPH01277800A (ja) * 1988-04-30 1989-11-08 Mitsui Toatsu Chem Inc 防護シート
US4923741A (en) 1988-06-30 1990-05-08 The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration Hazards protection for space suits and spacecraft
JPH06293116A (ja) * 1992-05-07 1994-10-21 Asahi Chem Ind Co Ltd 複合材料及びその製造方法
WO1995012706A1 (fr) 1993-11-05 1995-05-11 Asahi Kasei Kogyo Kabushiki Kaisha Materiau composite et procede de production
JPH08291473A (ja) * 1995-04-20 1996-11-05 Asahi Chem Ind Co Ltd 複合材料とその製造方法及びそれからなる透湿防水布
JPH09228252A (ja) * 1996-02-20 1997-09-02 Asahi Chem Ind Co Ltd 複合布帛
JPH11302980A (ja) * 1998-04-27 1999-11-02 Unitika Ltd 制電撥水性ポリエステルマイクロファイバー布帛
US7476889B2 (en) * 1998-12-07 2009-01-13 Meridian Research And Development Radiation detectable and protective articles
DE10234159C1 (de) 2002-07-26 2003-11-06 Heinrich Eder Blei-Ersatzmaterial für Strahlenschutzzwecke
US7449705B2 (en) 2003-09-03 2008-11-11 Mavig Gmbh Lead-free radiation protection material comprising at least two layers with different shielding characteristics
DE102004001328A1 (de) 2003-09-03 2005-04-07 Mavig Gmbh Leichtes Strahlenschutzmaterial für einen großen Energieanwendungsbereich
CN2745739Y (zh) 2004-11-02 2005-12-14 鲁倩 有导电屏蔽作用的软体织物
DE102005034384A1 (de) 2005-07-22 2007-02-01 Mavig Gmbh Strahlenschutzmaterial, Verfahren zu dessen Herstellung und dessen Verwendung
DE102006028958B4 (de) * 2006-06-23 2008-12-04 Mavig Gmbh Geschichtetes Bleifrei-Röntgenschutzmaterial
CN101157822B (zh) 2007-09-20 2010-06-16 华明扬 外罩织物吸波涂层胶的制备方法

Also Published As

Publication number Publication date
JP5668065B2 (ja) 2015-02-12
US20120181458A1 (en) 2012-07-19
DE102009037565A1 (de) 2011-02-24
EP2464781A1 (de) 2012-06-20
US8803115B2 (en) 2014-08-12
WO2011018459A1 (de) 2011-02-17
CN102471992B (zh) 2014-01-08
JP2013501859A (ja) 2013-01-17
CN102471992A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
EP2464781B1 (de) Verwendung einer beschichteten mikrofaserbahn als abdeckung eines strahlenschutzmaterials
EP0084616B1 (de) Wasser- und luftdichtes, feuchtigkeitsleitendes Textilmaterial
EP1595599B1 (de) Adsorptionsfiltermaterial und seine verwendung
DE60225803T2 (de) Poröse folie, faserverbundfolie und verfahren zu deren herstellung
DE69925334T2 (de) Verfahren zur Herstellung von lederartigem Bahnenmaterial
DE3210070C2 (de) Schutzmaterial
DE2948892C2 (de)
DE202010018597U1 (de) Textiler Verbundartikel
EP2347050A1 (de) Multifunktionelle, responsive funktionsschichten auf festen oberflächen und verfahren zur herstellung dazu
DE602004006653T2 (de) Dehnbares lederartiges bahnenförmiges Substrat und Verfahren zu seiner Herstellung
DE60303297T2 (de) Elastischer vliesstoff
EP1931824B1 (de) Pferdedecke zum schutz von tieren vor insekten
DE10239004B4 (de) Textiles Flächengebilde aus Synthesefasern, Verfahren zu seiner Herstellung und seine Verwendung
EP2043425A1 (de) Vorrichtung zum schutz von tieren vor insekten
DE10240548B4 (de) Adsorptionsmaterial, Verfahren zu seiner Herstellung und seine Verwendung
EP3847308B1 (de) Beschichtete mikrofaserbahn und verfahren zur herstellung derselben
EP1183056B1 (de) Polyurethanträgerfolie mit hydrophobierungsmitteln für filmpflaster
DE112019003628T5 (de) Atmungsaktive hydrostatisch beständige strukturen
WO2007003147A1 (de) Schutzbekleidung mit einer isolationsmembran insbesondere für den einsatz bei der feuerbekämpfung
EP3945822A1 (de) Kissen für einen flugzeugsitz mit antimikrobieller wirkung
DE1619249B (de)
DE2364130B2 (de) Kunstleder und verfahren zu dessen herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130219

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: D06M 15/256 20060101ALI20130626BHEP

Ipc: D06N 3/18 20060101ALI20130626BHEP

Ipc: G21F 1/10 20060101ALI20130626BHEP

Ipc: G21F 1/12 20060101ALI20130626BHEP

Ipc: D06M 11/79 20060101AFI20130626BHEP

Ipc: D06M 15/564 20060101ALI20130626BHEP

Ipc: D06N 3/14 20060101ALI20130626BHEP

Ipc: D06M 15/295 20060101ALI20130626BHEP

Ipc: D06M 15/568 20060101ALI20130626BHEP

Ipc: D06M 15/277 20060101ALI20130626BHEP

Ipc: D06M 15/572 20060101ALI20130626BHEP

Ipc: D06N 3/04 20060101ALI20130626BHEP

INTG Intention to grant announced

Effective date: 20130712

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 638523

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010005227

Country of ref document: DE

Effective date: 20131224

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010005227

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

26N No opposition filed

Effective date: 20140731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010005227

Country of ref document: DE

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140810

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140131

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100810

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 638523

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150810

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230828

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230811

Year of fee payment: 14

Ref country code: GB

Payment date: 20230817

Year of fee payment: 14

Ref country code: CH

Payment date: 20230902

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230815

Year of fee payment: 14

Ref country code: FR

Payment date: 20230811

Year of fee payment: 14

Ref country code: DE

Payment date: 20230830

Year of fee payment: 14