EP2365935B1 - Substrat für oberflächenverstärkte raman-streuung (sers) - Google Patents

Substrat für oberflächenverstärkte raman-streuung (sers) Download PDF

Info

Publication number
EP2365935B1
EP2365935B1 EP08878191.9A EP08878191A EP2365935B1 EP 2365935 B1 EP2365935 B1 EP 2365935B1 EP 08878191 A EP08878191 A EP 08878191A EP 2365935 B1 EP2365935 B1 EP 2365935B1
Authority
EP
European Patent Office
Prior art keywords
substrate
nanostructures
nanostructure
active metal
sers active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08878191.9A
Other languages
English (en)
French (fr)
Other versions
EP2365935A4 (de
EP2365935B2 (de
EP2365935A1 (de
Inventor
Huei Pei Kuo
Jing Tang
Fung Suong Ou
Zhiyong Li
Shih-Yuan Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42170196&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2365935(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of EP2365935A1 publication Critical patent/EP2365935A1/de
Publication of EP2365935A4 publication Critical patent/EP2365935A4/de
Application granted granted Critical
Publication of EP2365935B1 publication Critical patent/EP2365935B1/de
Publication of EP2365935B2 publication Critical patent/EP2365935B2/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • Embodiments of the present technology relates generally to the field of nanotechnology.
  • SERS Surface Enhanced Raman Scattering
  • Raman scattering is the inelastic scattering of photons that can provide vibrational fingerprints of molecules.
  • the substrate surface on which the detection of molecular species is taking place, as well as the material of the substrate surface affects the strength and intensity of the Raman scattering.
  • Raman scattering signals are generally very weak, especially on flat substrates.
  • the weak Raman signal can make it difficult to detect and measure the Raman scattering signal and consequently make it difficult to detect and identify the molecular species.
  • the enhanced Raman scattering signal is usually in a localized area(s) on the substrate and not uniform across the substrate surface.
  • the area of the localized enhanced Raman scattering signal is exponentially small compared to the entire area of the substrate surface.
  • the large disparity between the area of the Raman scattering signal and the area of the substrate surface make it burdensome to search and locate the signal and consequently burdensome to detect and identify the molecular species.
  • the surface of a substrate for the use in SERS can influence the Raman signal, as described above.
  • the shape and size of the physical features on the substrate surface as well as the material of the physical features can amplify the Raman signal to help detect and identify molecules located at or near the substrate surface.
  • light is directed at the substrate surface and the reflected light has a signature that identifies the molecules located at or near the substrate surface.
  • Fig. 1a illustrates an example of a cross-sectional view of a substrate 100, for the use in SERS to detect and identify molecules.
  • the substrate 100 has nanostructures 110 protruding from a surface of the substrate.
  • the nanostructures 110 have a tip portion 130.
  • a layer of metal 120 is formed over the nanostructures 110.
  • the layer of metal 120 provides a textured surface over the nanostructures.
  • the textured surface can be, but is not limited to, a bumpy, wavy or rough surface.
  • the layer of metal 120 and the textured surface is generally uniform.
  • the process(es) used to apply the layer of metal over the nanostructure, described later, allows for a varying and random textured surface.
  • the metal 120 includes at least one SERS active metal.
  • SERS active metals can be, but are not limited to, silver, gold, platinum or copper. SERS active metals are metals that help provide for the enhancement of Raman scattering during SERS.
  • only one nanostructure protrudes from a surface of the substrate.
  • the shank of the nanostructure can be macroscopic and the tip of the protrusion is a nanostructure.
  • the substrate and the protrusion is one single needle-like structure with a radius of curvature of the needle point having a range of, but not limited to 10 to 1000 nm.
  • the thickness of the layer of SERS active metal 120 can be, but is not limited to, the range of 10 nm to 120 nm. In another embodiment, the thickness of the layer of SERS active metal is 80 nm.
  • the nanostructures 110 are generally a conical shape. In various embodiments, the shapes of the nanostructures 110 are not limited to hemispheres, pyramids or amorphous.
  • Fig. 1a illustrates a cross-sectional view of a substantially cone-shaped or a substantially pyramid shape nanostructure. For the sake of clarity, tip portion 130 has been expanded to show further detail.
  • Fig. 1b illustrates a substantially hemisphere shaped tip of the nanostructure.
  • Fig. 1c illustrates a substantially amorphous shaped tip of the nanostructure. For the sake of clarity, tip portion 130 has been expanded to show further detail.
  • the process used to fabricate the nanostructure 110 allows for the variations of the nanostructures.
  • the variations of the nanostructures can be, but are not limited to shape, width, height and density.
  • the height of a cone can be, but is not limited to, one micron.
  • the density of the nanostructures 110 on the substrate 100 is substantially uniform across the surface of the substrate.
  • the distance between the cone tips can be, but is not limited to, a range of 100 nm to 500 nm. In one embodiment, the distance between the cone tips is sub-wavelength. In another embodiment, the distance is in a range of wavelength to sub-wavelength.
  • the bases of the nanostructures can be proximate one another. In one embodiment, the bases of the nanostructures are not proximate. In a further embodiment, the bases of a plurality of nanostructures are proximate one another and bases of another plurality of nanostructures are not proximate one another.
  • Fig. 2 illustrates the method 200 of manufacturing a substrate for the use in SERS.
  • at block 210 at least one nanostructure is fabricated on a surface of the substrate.
  • the fabrication is performed using a customized Bosch process.
  • the Bosch process can be performed on a single crystalline silicon.
  • the fabrication is done in a single etching step.
  • the fabrication is done without a lithographically patterned masking layer.
  • only one nanostructure is fabricated.
  • the fabricating of the nanostructures can be performed using a customized Bosch process on the substrate without requiring lithographic masking.
  • the fabricating of the nanostructures can be performed using a single etching step.
  • the surface structure of the SERS substrate varies as a function of etching time. In particular, the height of the nanostructures increases as the time of etching increases.
  • Fig. 3a illustrates an example of the nanostructures of a SERS substrate, before metal deposition, after 550 seconds of etching.
  • Fig. 3b illustrates another example of the nanostructures of a SERS substrate, before metal deposition, after 20 minutes of etching.
  • the fabricated nanostructures are self-organized. In one embodiment, the nanostructures are randomly fabricated on the substrate. In another embodiment, the nanostructures are densely packed on the substrate. In a further embodiment, the nanostructures have an appearance of a bed-of-nails. In another embodiment, the nanostructures have an appearance similar to trees in a forest.
  • a SERS active metal is deposited over a surface of the nanostructures.
  • the SERS active metal substantially covers the nanostructures and creates a textured layer on the nanostructures.
  • Fig. 3c illustrates one embodiment of the SERS active metal over the nanostructures.
  • Fig. 3c depicts a silicon substrate with a 9 minute etching and 80 nm of silver (Ag) deposited over the conical nanostructures.
  • the SERS active metal can be evaporated over the nanostructures.
  • the SERS active metal can be chemically deposited over the nanostructures.
  • the SERS active metal is chemically deposited by the process of plating.
  • the SERS active metal can be deposited over the nanostructure by a pre-assembled nanostructure coating.
  • the pre-assembled nanostructure coating can be a pre-synthesized metal that is then deposited over the nanostructures.
  • the deposition of the SERS active metal does not require masking.
  • the deposition of the SERS active metal does not require lithography processes.
  • the SERS active metal can be evaporated onto the nanostructures.
  • the surface of the substrate with the fabricated nanostructures can be replicated.
  • the desire to replicate the substrate surface having nanostructures is to provide a wide-variety of low cost SERS substrates.
  • the replicating of substrate with fabricated nanostructures does not require an etching process.
  • the surface of the substrate with fabricated nanostructures can be replicated on a material different than the material of the substrate.
  • the surface of the substrate with fabricated nanostructures can be replicated on a material that is the same as the material of the substrate.
  • the original substrate surface with nanostructures is used as a master mold.
  • the replicating can be achieved by embossing.
  • a layer of polymer can be applied to the substrate surface and the polymer is subsequently peeled off the substrate surface. The peeled off polymer is then used as SERS substrate having a plurality of nanostructures.
  • the replicating is achieved by but not limited to stamping, thermal embossing or UV curing.
  • the replicating of a substrate with nanostructures does not require an etching process.
  • the replicating of a substrate with nanostructures does not require a vacuum process.
  • a positive mold is used for replicating.
  • a negative mold is used for replicating.
  • the original substrate with nanostructures can be impressed into a replicating material to a range of depth of 500 nm or less.
  • the original substrate with nanostructures can be impressed into a replicating material to a range of depth of 100 nm or less.
  • the replicated material can be, but is not limited to, plastic, thermal plastic, acrylic, UV curable material or metal. It should be appreciated that any material capable of maintaining structures at a nanometer scale can be used as the replicating material.
  • the material for the replicated substrate surface with nanostructures can be any material that allows for the replication of the substrate surface with nanostructures.
  • the material for the replicated substrate surface with nanostructures is not limited to silicon.
  • the material for the replicated substrate surface with nanostructures is different than the original substrate material.
  • the material for the replicated substrate surface with nanostructures is the same as the original substrate material.
  • the material for the replicated substrate surface with nanostructures can be the same as the original substrate material by the use of a release layer.
  • a SERS active metal is deposited over a surface of the replicated nanostructures, as described at block 220.
  • the SERS active metal can be evaporated over the replicated nanostructures.
  • the SERS active metal can be chemically deposited by over the replicated nanostructures.
  • the SERS active metal is chemically deposited by the process of plating.
  • the SERS active metal can be deposited over the replicated nanostructures by a pre-assembled nanostructure coating.
  • the pre-assembled nanostructure coating can be a pre-synthesized metal that is then deposited over the replicated nanostructures.
  • the deposition of the SERS active metal does not require masking.
  • the deposition of the SERS active metal does not require lithography processes.
  • the substrate used and nanostructures can have their statistical, mechanical, chemical and optical properties tailored by varying the starting material, etching and deposition parameters.
  • dopants such as but not limited to N and P, can affect the conductivity and thus the plasmonic structures of the nanostructured surfaces of the substrates. Dopants can also affect the electromagnetic field enhancement on Raman scattering.
  • the depth of the height of the nanostructures can be controlled by silicon-on-sapphire (SOS) structures and/or silicon-on-insulator (SOI) structures.
  • SOS and/or SOI structures provide etch stops to help control the height of the nanostructures.
  • the time of etching, as described above, also controls the height of the nanostructures.
  • Etching can also control and optimize the profiles, density and distribution of the nanostructures on the substrate surface.
  • the control parameters of the etching can be but are not limited to Bosch process, time steps, gas flow or power. Planarization and etch can also provide an independent control of the height of the nanostructures on the substrate surface.
  • the SERS active metals deposited over the nanostructures can optimize the field enhancement and stability of the substrates.
  • Control parameters of the deposition can be but are not limited to the materials, thickness, rate or surface finish.
  • SERS substrates can require patterned masking and etch-stopping layers.
  • the masking and etch-stopping layers make the substrate expensive and limits the density of the sites that enhances the Raman signal.
  • the limitations of the substrate surface provides for a weak Raman signal that can make it difficult to detect and measure the Raman scattering signal and make it difficult to detect and identify the molecular species.
  • the enhanced Raman scattering signal is usually in a localized area(s) on the substrate and not uniform across the substrate surface.
  • the large disparity between the area of the Raman scattering signal and the area of the substrate surface make it burdensome to search and locate the signal and consequently burdensome to detect and identify the molecular species.
  • a microscope or the like is used to find the weak signal in a localized area. The process to find the Raman scattering signal can be quite burdensome and time consuming.
  • the Raman signal is enhanced by a factor of 7.
  • the wave length of the pumping light source was 785 nm.
  • the Raman signal is enhanced by a factor of 5 compared to a currently available SERS substrate.
  • the wave length of the pumping light source was 632 nm.
  • the Raman signal is increased by over 10 times compared to a currently available SERS substrate.
  • the SERS signal is enhanced by a factor of 10 7 .
  • the nanostructures fabricated on the surface of the substrate have a uniform density across the surface of the substrate.
  • the uniform density of the nanostructures provides for a uniform and reliable enhanced Raman scattering signal across the surface of the substrate.
  • the area of uniform density of nanostructures is greater than 100 cm 2 .
  • the area of a uniform and reliable Raman scattering signal is greater than 100 cm 2 .
  • searching for the Raman scattering is not required because the enhanced Raman scattering signal is uniform and reliable across the substrate surface.
  • the substrate is a large-area nanostructured substrate that exhibits consistently repeatable strong enhancement of Raman scattering over the substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Claims (15)

  1. Substrat (100) für oberflächenverstärkte Raman-Streuung (surface enhaced Raman scattering - SERS), wobei das Substrat (100) Folgendes umfasst:
    wenigstens eine Nanostruktur (110), die von einer Oberfläche des Substrats (100) hervorsteht; und
    eine Schicht aus einem SERS-aktiven Metall (120) über der wenigstens einen Nanostruktur (110), dadurch gekennzeichnet, dass
    die Schicht aus SERS-aktivem Metall (120) im Wesentlichen die wenigstens eine Nanostruktur (110) bedeckt und die Schicht aus SERS-aktivem Metall (120) eine ungleichmäßige Dicke aufweist, sodass die Schicht aus SERS-aktivem Metall (120) eine raue Oberfläche gegenüber der Oberfläche der Schicht aus SERS-aktivem Metall (120) aufweist, die der wenigstens einen Nanostruktur (110) zugewandt ist.
  2. Substrat nach Anspruch 1, wobei die wenigstens eine Nanostruktur (110) eine Gestalt aufweist, die aus einer Liste ausgewählt ist, die hauptsächlich aus Folgendem besteht: einer im Wesentlichen kegelförmigen, halbkugelförmigen, pyramidenförmigen oder amorphen Gestalt.
  3. Substrat nach Anspruch 1, wobei die wenigstens eine Nanostruktur (110) zufällig auf das Substrat (100) verteilt ist.
  4. Substrat nach Anspruch 1, wobei die wenigstens eine Nanostruktur (110) einen Schaftabschnitt aufweist, der makroskopisch ist.
  5. Substrat nach Anspruch 1, wobei das Substrat (100) mehrere Nanostrukturen (110) umfasst und die mehreren Nanostrukturen (110) eine im Wesentlichen gleichmäßige Dichte über die Oberfläche des Substrats (100) aufweisen.
  6. Substrat nach Anspruch 1, wobei das Substrat (100) mehrere Nanostrukturen (110) umfasst und die mehreren Nanostrukturen (110) eine gleichmäßige Dichte über eine Fläche der Oberfläche des Substrats (100), die mehr als 100 cm2 beträgt, aufweisen.
  7. Substrat nach Anspruch 1, wobei das SERS-aktive Metall (120) aus einer Liste ausgewählt ist, die hauptsächlich aus Folgendem besteht: Silber, Gold, Platin und Kupfer.
  8. Verfahren (200) zum Herstellen des Substrats (100) für oberflächenverstärkte Raman-Streuung (SERS) nach einem der vorhergehenden Ansprüche oder Anspruch 15, wobei das Verfahren (200) Folgendes umfasst:
    Fertigen (210) wenigstens einer Nanostruktur (110) auf einer Oberfläche des Substrats (100); und
    Abscheiden (220) einer Schicht aus SERS-aktivem Metall (120) über der wenigstens einen Nanostruktur (110), wobei die Schicht aus SERS-aktivem Metall (120) die wenigstens eine Nanostruktur (110) im Wesentlichen bedeckt und die Schicht aus SERS-aktivem Metall (120) eine ungleichmäßige Dicke aufweist, sodass die Schicht aus SERS-aktivem Metall (120) eine raue Oberfläche gegenüber der Oberfläche der Schicht aus SERS-aktivem Metall (120) aufweist, die der wenigstens einen Nanostruktur (110) zugewandt ist.
  9. Verfahren nach Anspruch 8, wobei das Fertigen (210) unter Verwendung eines Bosch-Verfahrens (230) auf dem Substrat (100) durchgeführt wird, wobei kein lithographisches Maskieren erforderlich ist.
  10. Verfahren nach Anspruch 8, wobei das Fertigen (210) unter Verwendung eines einzigen Ätzschrittes (240) durchgeführt wird.
  11. Verfahren nach Anspruch 8, wobei das Abscheiden (220) das Verdampfen (250) des SERS-aktiven Metalls (120) über der wenigstens einen Nanostruktur (110) umfasst.
  12. Verfahren nach Anspruch 8, wobei das Abscheiden (220) das Abscheiden des SERS-aktiven Metalls (120) als zuvor zusammengestellte Nanostrukturbeschichtung über der wenigstens einen Nanostruktur (110) umfasst.
  13. Verfahren nach Anspruch 8, wobei das Fertigen (210) das Nachbilden (260) der wenigstens einen Nanostruktur (110) auf der Oberfläche des Substrats (100) auf ein anderes Substrat umfasst.
  14. Verfahren nach Anspruch 13, wobei das Nachbilden (260) keinen Ätzprozess (270) erfordert.
  15. Substrat (100) nach Anspruch 1, wobei das Substrat (100) Folgendes umfasst:
    mehrere Nanostrukturen (110), die von der Oberfläche des Substrats (100) hervorstehen, wobei die mehreren Nanostrukturen (110) im Wesentlichen kegelförmig sind, wobei die mehreren Nanostrukturen (110) eine im Wesentlichen gleichmäßige Dichte aufweisen und zufällig über die Oberfläche des Substrats (100) verteilt sind, sodass die Raman-Streuung über die Oberfläche des Substrats (100) im Wesentlichen gleichmäßig ist.
EP08878191.9A 2008-11-17 2008-11-17 Substrat für oberflächenverstärkte raman-streuung (sers) Not-in-force EP2365935B2 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2008/083827 WO2010056258A1 (en) 2008-11-17 2008-11-17 A substrate for surface enhanced raman scattering (sers)

Publications (4)

Publication Number Publication Date
EP2365935A1 EP2365935A1 (de) 2011-09-21
EP2365935A4 EP2365935A4 (de) 2016-08-03
EP2365935B1 true EP2365935B1 (de) 2019-06-12
EP2365935B2 EP2365935B2 (de) 2022-09-21

Family

ID=42170196

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08878191.9A Not-in-force EP2365935B2 (de) 2008-11-17 2008-11-17 Substrat für oberflächenverstärkte raman-streuung (sers)

Country Status (6)

Country Link
US (1) US8547549B2 (de)
EP (1) EP2365935B2 (de)
JP (1) JP2012508881A (de)
KR (1) KR20110097834A (de)
CN (1) CN102282094A (de)
WO (1) WO2010056258A1 (de)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267894B2 (en) 2012-08-10 2016-02-23 Hamamatsu Photonics K.K. Method for making surface enhanced Raman scattering device
CN102282094A (zh) 2008-11-17 2011-12-14 惠普开发有限公司 用于表面增强拉曼散射(sers)的衬底
US8687186B2 (en) 2009-07-30 2014-04-01 Hewlett-Packard Development Company, L.P. Nanowire-based systems for performing raman spectroscopy
US8559003B2 (en) * 2009-09-17 2013-10-15 Huei Pei Kuo Electrically driven devices for surface enhanced raman spectroscopy
JP5621394B2 (ja) * 2009-11-19 2014-11-12 セイコーエプソン株式会社 センサーチップ、センサーカートリッジ及び分析装置
JP5589656B2 (ja) * 2009-12-11 2014-09-17 セイコーエプソン株式会社 センサーチップ、センサーカートリッジ及び分析装置
US8358408B2 (en) 2010-04-30 2013-01-22 Hewlett-Packard Development Company, L.P. Apparatus for performing SERS
US8358407B2 (en) 2010-04-30 2013-01-22 Hewlett-Packard Development Company, L.P. Enhancing signals in Surface Enhanced Raman Spectroscopy (SERS)
US8314932B2 (en) 2010-04-30 2012-11-20 Hewlett-Packard Development Company, L.P. Surface-enhanced Raman spectroscopy device and a mold for creating and a method for making the same
US20140154668A1 (en) 2010-05-21 2014-06-05 The Trustees Of Princeton University Structures for Enhancement of Local Electric Field, Light Absorption, Light Radiation, Material Detection and Methods for Making and Using of the Same.
GB2481697B (en) * 2010-06-25 2013-07-24 Andrew Richard Parker Optical effect structures
WO2012054027A1 (en) 2010-10-20 2012-04-26 Hewlett-Packard Development Company, L.P. Chemical-analysis device integrated with metallic-nanofinger device for chemical sensing
JP5721905B2 (ja) 2011-05-20 2015-05-20 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 表面増強ラマン分光法に基づくセンサー、システム、及び検出方法
KR101229065B1 (ko) * 2011-07-01 2013-02-04 포항공과대학교 산학협력단 표면증강라만산란 분광용 기판 제조방법 및 그 방법에 의해 제조된 기판
US9080980B2 (en) 2011-07-27 2015-07-14 Hewlett-Packard Development Company, L.P. Surface enhanced raman spectroscopy employing a nanorod in a surface indentation
US9377409B2 (en) 2011-07-29 2016-06-28 Hewlett-Packard Development Company, L.P. Fabricating an apparatus for use in a sensing application
KR101272316B1 (ko) * 2011-11-29 2013-06-07 한국과학기술원 고밀도 핫 스팟을 가지는 플라즈모닉 나노필러 어레이를 포함하는 표면강화 라만 분광기판 및 그 제조방법
AU2013246359B2 (en) * 2012-04-10 2017-03-30 The Trustees Of Princeton University Ultra-sensitive sensor
JP6058313B2 (ja) 2012-08-10 2017-01-11 浜松ホトニクス株式会社 表面増強ラマン散乱ユニット
US9863884B2 (en) 2012-08-10 2018-01-09 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element, and method for producing same
US9863883B2 (en) 2012-08-10 2018-01-09 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element
JP5921381B2 (ja) 2012-08-10 2016-05-24 浜松ホトニクス株式会社 表面増強ラマン散乱ユニット
JP6023509B2 (ja) 2012-08-10 2016-11-09 浜松ホトニクス株式会社 表面増強ラマン散乱ユニット
JP5945192B2 (ja) 2012-08-10 2016-07-05 浜松ホトニクス株式会社 表面増強ラマン散乱ユニット
JP6230250B2 (ja) 2013-03-29 2017-11-15 浜松ホトニクス株式会社 表面増強ラマン散乱ユニット、及びラマン分光分析方法
JP6151948B2 (ja) 2013-03-29 2017-06-21 浜松ホトニクス株式会社 表面増強ラマン散乱ユニット及びラマン分光分析方法
JP5921380B2 (ja) 2012-08-10 2016-05-24 浜松ホトニクス株式会社 表面増強ラマン散乱ユニット
WO2014025038A1 (ja) 2012-08-10 2014-02-13 浜松ホトニクス株式会社 表面増強ラマン散乱素子、及び、表面増強ラマン散乱素子を製造する方法
WO2014025034A1 (ja) * 2012-08-10 2014-02-13 浜松ホトニクス株式会社 表面増強ラマン散乱ユニット
CN108844940B (zh) 2012-08-10 2021-10-29 浜松光子学株式会社 表面增强拉曼散射单元及其使用方法
JP6055234B2 (ja) * 2012-08-10 2016-12-27 浜松ホトニクス株式会社 表面増強ラマン散乱ユニット
JP5908370B2 (ja) 2012-08-10 2016-04-26 浜松ホトニクス株式会社 表面増強ラマン散乱ユニット
CN103048307A (zh) * 2012-12-23 2013-04-17 吉林大学 一种基于天然生物超疏水结构表面的增强拉曼检测基底及其制备方法
CN103048308B (zh) * 2013-01-11 2014-11-05 中国科学院光电技术研究所 基于二次增强的表面增强拉曼探头的制作方法
EP2985595B1 (de) 2013-03-29 2023-09-13 Hamamatsu Photonics K.K. Oberflächenverstärkte ramanstreuungseinheit und raman-spektroskopisches analyseverfahren
CN103276355B (zh) * 2013-05-20 2015-04-08 杭州电子科技大学 一种针尖增强拉曼测量用镀膜针尖的制备方法
LT6112B (lt) * 2013-05-24 2015-01-26 Integrated Optics, Uab Paviršiumi aktyvuotos ramano sklaidos (pars) jutiklis ir jo gamybos būdas
KR101589039B1 (ko) 2013-05-30 2016-01-27 한국과학기술원 대면적 금속 나노 구조물 및 투명전극층을 포함하는 표면증강라만산란 기판, 이의 제조방법 및 이를 이용한 표면증강라만 분광방법
CN103353451B (zh) * 2013-07-04 2015-04-08 首都师范大学 纳米探针的制备方法
JP6252053B2 (ja) * 2013-09-09 2017-12-27 大日本印刷株式会社 表面増強ラマン散乱測定用基板、及びその製造方法
KR101448111B1 (ko) * 2013-09-17 2014-10-13 한국기계연구원 표면 증강 라만 분광용 기판 및 이의 제조방법
US10085646B2 (en) 2014-05-26 2018-10-02 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Contact-type endoscope SERS probe, and related methods
CN107075661B (zh) 2014-09-26 2020-03-17 韩国机械研究院 形成有多个纳米间隙的基底及其制备方法
WO2016068538A1 (ko) * 2014-10-29 2016-05-06 한국과학기술원 나노전사 프린팅 방법 및 이를 이용하여 제작되는 sers 기판, sers 바이얼 및 sers 패치
US10507604B2 (en) 2014-10-29 2019-12-17 Korea Advanced Institute Of Science And Technology Nanotransfer printing method and surface-enhanced raman scattering substrate, surface-enhanced raman scattering vial and surface-enhanced raman scattering patch manufactured using the same
KR101696839B1 (ko) * 2015-03-12 2017-01-17 (주)광림정공 표면증강 라만 분광기판 및 그의 제조방법
TW201725385A (zh) 2016-01-05 2017-07-16 財團法人工業技術研究院 具有薄層層析之拉曼檢測晶片及分離檢測分析物之方法
US10310144B2 (en) * 2016-06-09 2019-06-04 Intel Corporation Image sensor having photodetectors with reduced reflections
JP6305500B2 (ja) * 2016-12-02 2018-04-04 浜松ホトニクス株式会社 表面増強ラマン散乱ユニット
CN108931515B (zh) 2017-05-25 2023-09-15 三星电子株式会社 感测用基底和制造感测用基底的方法
CN108226137B (zh) * 2018-01-31 2020-09-29 山东师范大学 一种柔性、透明的二硫化钼@银颗粒/三维金字塔结构pmma sers基底的制备方法及应用
US10900906B2 (en) 2019-06-05 2021-01-26 International Business Machines Corporation Surface enhanced Raman scattering substrate
KR102246480B1 (ko) * 2019-07-16 2021-05-03 한국재료연구원 곡면을 가지는 플라즈모닉 연속 박막을 포함하는 기판 및 이의 제조방법
US11092551B2 (en) 2019-10-17 2021-08-17 International Business Machines Corporation Staircase surface-enhanced raman scattering substrate
CN111337474A (zh) * 2020-03-19 2020-06-26 山东大学 一种基于微纳米复合结构和纳米颗粒的拉曼检测芯片及其制备方法与应用
CN113340869B (zh) * 2021-05-14 2023-05-02 西安交通大学 一种针尖定位富集型表面增强拉曼散射基底的制备方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284148B1 (en) 1997-08-21 2001-09-04 Robert Bosch Gmbh Method for anisotropic etching of silicon
US6531068B2 (en) 1998-06-12 2003-03-11 Robert Bosch Gmbh Method of anisotropic etching of silicon
US20040023046A1 (en) 1998-08-04 2004-02-05 Falko Schlottig Carrier substrate for Raman spectrometric analysis
EP1426756A1 (de) 2002-12-03 2004-06-09 Hewlett-Packard Development Company, L.P. Sensor mit freistehende Nanodrahtanordnung und Verfahren zur Bestimmung eines Analyts in einer Flüssigkeit
US20040135997A1 (en) 2002-06-12 2004-07-15 Selena Chan Metal coated nanocrystalline silicon as an active surface enhanced raman spectroscopy (SERS) substrate
US20050196870A1 (en) 2004-03-04 2005-09-08 Lei Sun Micelle-controlled nanoparticle synthesis for SERS
US20050214661A1 (en) 2004-03-23 2005-09-29 Stasiak James W Structure formed with template having nanoscale features
US20060054881A1 (en) 2004-09-16 2006-03-16 Zhiyong Li SERS-active structures including nanowires
WO2006048660A1 (en) 2004-11-04 2006-05-11 Mesophotonics Limited Metal nano-void photonic crystal for enhanced raman spectroscopy
WO2006099494A2 (en) 2005-03-14 2006-09-21 The Regents Of The University Of California Metallic nanostructures adapted for electromagnetic field enhancement
US20060225162A1 (en) 2005-03-30 2006-10-05 Sungsoo Yi Method of making a substrate structure with enhanced surface area
US20060250613A1 (en) 2005-04-14 2006-11-09 Chem Image Corporation Method and applications to enhance and image optical signals from biological objects
JP2006349463A (ja) 2005-06-15 2006-12-28 Canon Inc 表面増強ラマン分光分析用治具及びその製造方法
US20070015288A1 (en) 2005-07-14 2007-01-18 3M Innovative Properties Company Surface-enhanced spectroscopic method, flexible structured substrate, and method of making the same
US20070070341A1 (en) 2005-09-23 2007-03-29 Shih-Yuan Wang Nanostructures, systems, and methods including nanolasers for enhanced Raman spectroscopy
US20070115469A1 (en) 2005-06-14 2007-05-24 Ebstein Steven M Applications of laser-processed substrate for molecular diagnostics
US20080094621A1 (en) 2006-10-20 2008-04-24 Zhiyong Li Nanoscale structures, systems, and methods for use in nano-enhanced raman spectroscopy (ners)
WO2008091852A2 (en) * 2007-01-23 2008-07-31 President & Fellows Of Harvard College Polymeric substrates for surface enhanced raman spectroscopy
WO2010056258A1 (en) 2008-11-17 2010-05-20 Hewlett-Packard Development Company, L.P. A substrate for surface enhanced raman scattering (sers)

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001180920A (ja) 1999-12-24 2001-07-03 Nec Corp ナノチューブの加工方法及び電界放出型冷陰極の製造方法並びに表示装置の製造方法
CN1595586A (zh) 2000-03-31 2005-03-16 松下电器产业株式会社 显示板及其制造方法
US6970239B2 (en) 2002-06-12 2005-11-29 Intel Corporation Metal coated nanocrystalline silicon as an active surface enhanced Raman spectroscopy (SERS) substrate
US7460224B2 (en) 2005-12-19 2008-12-02 Opto Trace Technologies, Inc. Arrays of nano structures for surface-enhanced Raman scattering
US7947450B2 (en) 2003-07-10 2011-05-24 Universite Libre De Bruxelles Device, kit and method for pulsing biological samples with an agent and stabilising the sample so pulsed
JP4163606B2 (ja) 2003-12-10 2008-10-08 富士フイルム株式会社 微細構造体、微細構造体の作製方法、ラマン分光方法および装置
JP2005195441A (ja) 2004-01-07 2005-07-21 Fuji Photo Film Co Ltd ラマン分光方法および装置並びにラマン分光用デバイス
US7351588B2 (en) 2004-05-19 2008-04-01 Vladimir Poponin Optical sensor with layered plasmon structure for enhanced detection of chemical groups by SERS
US7656525B2 (en) 2004-10-21 2010-02-02 University Of Georgia Research Foundation, Inc. Fiber optic SERS sensor systems and SERS probes
US7236242B2 (en) * 2005-01-27 2007-06-26 Hewlett-Packard Development Company, L.P. Nano-enhanced Raman spectroscopy-active nanostructures including elongated components and methods of making the same
US7476787B2 (en) 2005-02-23 2009-01-13 Stc.Unm Addressable field enhancement microscopy
WO2006132224A1 (ja) 2005-06-09 2006-12-14 Tokyo University Of Agriculture And Technology 反射率変化型センサ、光学式測定装置、反射率変化型センサの製造方法、並びに反射率変化型センサ用自己組織化微粒子単層膜、自己組織化微粒子単層膜及びこれら単層膜の製造方法
US7342656B2 (en) 2005-10-17 2008-03-11 Hewlett-Packard Development Company, L.P. Dynamically variable separation among nanoparticles for nano-enhanced Raman spectroscopy (NERS) molecular sensing
JP2007240361A (ja) * 2006-03-09 2007-09-20 Sekisui Chem Co Ltd 局在プラズモン増強センサ
JP4930899B2 (ja) 2006-08-01 2012-05-16 凸版印刷株式会社 針状体の製造方法
US7872318B2 (en) 2006-09-29 2011-01-18 Hewlett-Packard Development Company, L.P. Sensing devices and methods for forming the same
WO2008091858A2 (en) * 2007-01-23 2008-07-31 President & Fellows Of Harvard College Non-invasive optical analysis using surface enhanced raman spectroscopy
JP2008261752A (ja) * 2007-04-12 2008-10-30 Fujifilm Corp 微細構造体及びその製造方法、電場増強デバイス
JP4871787B2 (ja) 2007-05-14 2012-02-08 キヤノン株式会社 表面増強振動分光分析を行うための分析試料用保持部材の製造方法
JP4818197B2 (ja) 2007-05-14 2011-11-16 キヤノン株式会社 表面増強振動分光分析用プローブおよびその製造方法
US7965388B2 (en) 2009-04-01 2011-06-21 Hewlett-Packard Development Company, L.P. Structure for surface enhanced raman spectroscopy
US8223331B2 (en) 2009-06-19 2012-07-17 Hewlett-Packard Development Company, L.P. Signal-amplification device for surface enhanced raman spectroscopy
US8687186B2 (en) 2009-07-30 2014-04-01 Hewlett-Packard Development Company, L.P. Nanowire-based systems for performing raman spectroscopy
CN102483379A (zh) 2009-07-30 2012-05-30 惠普开发有限公司 用于进行拉曼光谱学的纳米线集光器

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284148B1 (en) 1997-08-21 2001-09-04 Robert Bosch Gmbh Method for anisotropic etching of silicon
US6531068B2 (en) 1998-06-12 2003-03-11 Robert Bosch Gmbh Method of anisotropic etching of silicon
US20040023046A1 (en) 1998-08-04 2004-02-05 Falko Schlottig Carrier substrate for Raman spectrometric analysis
US20040135997A1 (en) 2002-06-12 2004-07-15 Selena Chan Metal coated nanocrystalline silicon as an active surface enhanced raman spectroscopy (SERS) substrate
EP1426756A1 (de) 2002-12-03 2004-06-09 Hewlett-Packard Development Company, L.P. Sensor mit freistehende Nanodrahtanordnung und Verfahren zur Bestimmung eines Analyts in einer Flüssigkeit
US20050196870A1 (en) 2004-03-04 2005-09-08 Lei Sun Micelle-controlled nanoparticle synthesis for SERS
US20050214661A1 (en) 2004-03-23 2005-09-29 Stasiak James W Structure formed with template having nanoscale features
US20060054881A1 (en) 2004-09-16 2006-03-16 Zhiyong Li SERS-active structures including nanowires
WO2006048660A1 (en) 2004-11-04 2006-05-11 Mesophotonics Limited Metal nano-void photonic crystal for enhanced raman spectroscopy
WO2006099494A2 (en) 2005-03-14 2006-09-21 The Regents Of The University Of California Metallic nanostructures adapted for electromagnetic field enhancement
US20060225162A1 (en) 2005-03-30 2006-10-05 Sungsoo Yi Method of making a substrate structure with enhanced surface area
US20060250613A1 (en) 2005-04-14 2006-11-09 Chem Image Corporation Method and applications to enhance and image optical signals from biological objects
US20070115469A1 (en) 2005-06-14 2007-05-24 Ebstein Steven M Applications of laser-processed substrate for molecular diagnostics
JP2006349463A (ja) 2005-06-15 2006-12-28 Canon Inc 表面増強ラマン分光分析用治具及びその製造方法
US20070015288A1 (en) 2005-07-14 2007-01-18 3M Innovative Properties Company Surface-enhanced spectroscopic method, flexible structured substrate, and method of making the same
US20070070341A1 (en) 2005-09-23 2007-03-29 Shih-Yuan Wang Nanostructures, systems, and methods including nanolasers for enhanced Raman spectroscopy
US20080094621A1 (en) 2006-10-20 2008-04-24 Zhiyong Li Nanoscale structures, systems, and methods for use in nano-enhanced raman spectroscopy (ners)
WO2008091852A2 (en) * 2007-01-23 2008-07-31 President & Fellows Of Harvard College Polymeric substrates for surface enhanced raman spectroscopy
WO2010056258A1 (en) 2008-11-17 2010-05-20 Hewlett-Packard Development Company, L.P. A substrate for surface enhanced raman scattering (sers)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FLEISCHMANN, M. ET AL.: "Raman Spectra of Pyridine Adsorbed at a Silver Electrode", CHEMICAL PHYSICS LETTERS, vol. 26, no. 2, 15 May 1974 (1974-05-15), XP026490267, DOI: 10.1016/0009-2614(74)85388-1
ZHONG-QUN TIAN ET AL.: "Surface-Enhanced Raman Scattering", vol. 106, no. 37, 19 September 2002 (2002-09-19), pages 9463 - 9483, XP055284170

Also Published As

Publication number Publication date
US20110228266A1 (en) 2011-09-22
JP2012508881A (ja) 2012-04-12
EP2365935A4 (de) 2016-08-03
KR20110097834A (ko) 2011-08-31
CN102282094A (zh) 2011-12-14
US8547549B2 (en) 2013-10-01
EP2365935B2 (de) 2022-09-21
WO2010056258A1 (en) 2010-05-20
EP2365935A1 (de) 2011-09-21

Similar Documents

Publication Publication Date Title
EP2365935B1 (de) Substrat für oberflächenverstärkte raman-streuung (sers)
Fredriksson et al. Hole–mask colloidal lithography
US9726788B2 (en) Method for fabricating nanoantenna array, nanoantenna array chip and structure for lithography
US11002908B2 (en) Fabrication and self-aligned local functionalization of nanocups and various plasmonic nanostructures on flexible substrates for implantable and sensing applications
US20110317160A1 (en) Broad band structures for surface enhanced raman spectroscopy
EP2403973B1 (de) Herstellungsverfahren für hoch geordnete arrays von nanolöchern in metallfilmen
EP1902307A2 (de) Oberflächenverstärktes spektroskopisches verfahren, substrat mit flexibler struktur und herstellungsverfahren dafür
CN101691207B (zh) 一种微纳结构的制备方法
US20110267606A1 (en) Surface-enhanced raman spectroscopy device and a mold for creating and a method for making the same
US9011705B2 (en) Method of forming a polymer substrate with variable refractive index sensitivity
Sun et al. Deep etched porous Si decorated with Au nanoparticles for surface-enhanced Raman spectroscopy (SERS)
CN109626322B (zh) 纳米尖锥状聚合物阵列的简易制备方法及sers应用
KR20170066089A (ko) 금속 나노구조체의 제조방법 및 상기 제조방법에 따라 제조되는 금속 나노구조체를 포함하는 표면증강라만산란 분광용 기판
KR20160038209A (ko) 플라즈모닉 광흡수체 및 이의 제조방법
CN110618478B (zh) 一种基于单个金属银纳米颗粒-金属银薄膜的Fano共振结构及其制备方法
US20120028029A1 (en) Highly ordered arrays of nanoholes in metallic films and methods for producing the same
Yang et al. Fabrication of highly ordered 2D metallic arrays with disc-in-hole binary nanostructures via a newly developed nanosphere lithography
Liu et al. Deep-elliptical-silver-nanowell arrays (d-EAgNWAs) fabricated by stretchable imprinting combining colloidal lithography: A highly sensitive plasmonic sensing platform
Phuc et al. Effects of morphology of nanodots on localized surface plasmon resonance property
Ovchinnikov et al. Self‐Organization‐Based Fabrication of Stable Noble‐Metal Nanostructures on Large‐Area Dielectric Substrates
TWI621585B (zh) 複合型奈米結構及其製作方法
CN205139007U (zh) 一种可见光折射率传感器
Portal et al. Surface nanopatterning by colloidal lithography
US11520228B2 (en) Mass fabrication-compatible processing of semiconductor metasurfaces
WO2004068501A3 (de) Sonde für ein optisches nahfeldmikroskop und verfahren zu deren herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WANG, SHIH-YUAN

Inventor name: LI, ZHIYONG

Inventor name: OU, FUNG SUONG

Inventor name: TANG, JING

Inventor name: KUO, HUEI, PEI

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20160706

RIC1 Information provided on ipc code assigned before grant

Ipc: B82B 1/00 20060101AFI20160630BHEP

Ipc: B82B 3/00 20060101ALI20160630BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190301

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1142319

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008060387

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190612

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190912

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190913

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1142319

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191014

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602008060387

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

26 Opposition filed

Opponent name: KELTIE LLP

Effective date: 20200312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191112

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191117

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191117

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191117

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081117

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: KELTIE LLP

Effective date: 20200312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210528

Year of fee payment: 14

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20220921

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 602008060387

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008060387

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601